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Abstract. Contrary to the statements put forward in “Evaluation of measurement data – Guide to the

expression of uncertainty in measurement” (GUM08), issued by the Joint Committee for Guides in

Metrology, the error concept and the uncertainty concept are the same. Arguments in favour of the

contrary have been analyzed and were found not compelling. Neither was any evidence presented

in GUM08 that “errors” and “uncertainties” define a different relation between the measured and5

the true value of the variable of interest, nor does this document refer to a Bayesian account of

uncertainty beyond the mere endorsement of a degree-of-belief-type conception of probability.

1 Introduction

For more than 200 years, error estimation used a more or less unified terminology where the

term ‘error’ was used, with some caveats, for designating a statistical estimate of the expected10

difference between the measured and the true value of a measurand (Gauss, 1809, 1816; Pear-

son, 1920; Fisher, 1925; Rodgers, 1990; Mayo, 1996; Rodgers, 2000, just to name a few). More

recently, the Joint Committee for Guides in Metrology (JCGM), on request of the Bureau Inter-

national de Poids et Mesures (BIPM) presented a contrasting definition how we have to conceive

the term ‘error’ and have stipulated a new terminology, where the term ‘measurement uncertainty’15

is used in situations where one would have said ‘measurement error’ before (Joint Committee

for Guides in Metrology (JCGM), 2008, this source is henceforth referenced as GUM08). Sup-

plementary material in the context of GUM is found in Joint Committee for Guides in Metrol-

ogy (JCGM) (2012) and several supplements to GUM08, that are found on the BIPM website

(https://www.bipm.org/en/publications/guides/gum.html). The new concept has been critically dis-20

cussed by, e.g., Bich (2012), Grégis (2015), Elster et al. (2013) and The European Centre for Math-

ematics and Statistics in Metrology (2019), and more favorably by, e.g., Kacker et al. (2007). The

claim is made that the uncertainty concept can be construed without reference to the unknown and

unknowable true value while the error concept cannot (GUM08, p.3 and p. 5). Thus, the dispute be-
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tween the error statisticians and the uncertainty statisticians comes down to the question if and how25

the error (or uncertainty) distribution is related to the true value of the measurand. In this paper we

try to shed some light upon this relation which seems to have caused a rift both in the communities

of statistics and of empirical sciences. Further, we critically discuss the applicability of the GUM08

recommendations in the context of remote sensing of the atmosphere. Remote sounding employs in-

direct measurements where the measurand is not measured directly but retrieved from the measured30

signal by the inverse solution of the radiative transfer equation which provides the link between the

measurand and the measured signal. In the context of the work undertaken by the activity ‘Towards

Unified Error Reporting, (TUNER),’ a project aiming at unification of error reporting of satellite

data (von Clarmann et al., 2020)), this issue is particularly problematic. Without agreement on the

concepts and the terminology of error versus uncertainty assessment, any unification is out of reach.35

At the outset we recapitulate the concept of indirect measurements and lay down an appropriate

terminology and notation (Section 2). In the subsequent section (Section 3), we analyze the use of

the term ‘error’ by the uncertainty statisticians1 and will find that it is often not consistent with the

use of this term as originally used by the error statisticians. Then we try to find out what the exact

connotation of the term ‘uncertainty’ is and how it is actually distinguished from the traditional con-40

cept of error analysis (Section 4). We shall find that the concept of the ‘true value of the measurand’

makes up the alleged key difference. That is to say, the uncertainty concept is claimed, contrary to

traditional error analysis, to be able to dispense with the concept of the true value. The problem of

the true value is that it is neither known nor knowable. In Section 5 we discuss how this affects error

and uncertainty estimation and the relation between the measured and the true value. We find (1) that45

according to Bayesian statistics (Bayes, 1763) the measured value cannot always be interpreted as

the most probable value of the measurand. (2) We further find that nonlinear relationships between

the measurand and the measured signal poses problems to the uncertainty analysis because a value

in sufficient proximity to the true value should be chosen as linearization point for uncertainty es-

timation and thus must be – at least approximately – known; and (3) we accept that we can never50

know for certain if the error or uncertainty budget is complete. In the following we investigate the

implications of these three problems in turn. First, we investigate under which conditions an error

or uncertainty distribution can be understood as a distribution which tells us which likelihood or

probability we can assign to a value to be the true value, given a certain measured value (Section

5.2). We shall see that the interpretation of resulting error or uncertainty estimates is completely55

different in a maximum likelihood versus a Bayesian framework. Second we assess to which degree

1We use the term ‘uncertainty concept’ for a concept where it is claimed that error and uncertainty are different entities

and that ‘uncertainty’ can be defined without reference to the true value of the measurand. We use the term ‘uncertainty

scientists’ or ‘uncertainty statisticians’ for scientists endorsing the uncertainty analysis concept. Conversely, we use the term

‘error analysis concept’ for a concept which denies a fundamental difference between the traditional concept of error analysis

and the uncertainty concept as endorsed by GUM08’, and we call ‘error scientists’ or ‘error statisticians’ those scientists who

endorse the traditional concept of error analysis.
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the nonlinearity of the relationship between the measured signal and the target quantity, viz., the ra-

diative transfer equation, poses additional problems (Section 5.3). And third we scrutinize the claim

that there will always be unknown sources of uncertainty and that it is thus impossible to relate the

measured value along with its uncertainty estimate to the true value (Section 5.4). After these more60

general considerations we critically discuss the applicability of the GUM08 concept to indirect mea-

surements of atmospheric state variables (Section 6). There we discuss the problems of measurands

that are not well-defined in the sense of GUM08 (Section 6.1), if it is really adequate to report the

combined error only (Section 6.2) and if the measurement equation as presented in GUM08 does

optimally support the uncertainty assessment in atmospheric remote sensing (Section 6.3) In this65

context, we also investigate whether the difference between the traditional concept of error anal-

ysis and the uncertainty concept might be linked to a Bayesian versus a frequentist conception of

probability. Finally (Section 7) we conclude to which degree the arguments put forward by the Joint

Committee for Guides in Metrology (JCGM) are conclusive and what the differences between the

error concept and the uncertainty concept actually are.70

2 Recapitulation of the concept of indirect measurements

In the case of indirect measurements, e.g., remote sensing, the measurand, i.e., the quantity of inter-

est, x, and the measured signal y are linked via a function f as

y = f(x;b) + ε, (1)

where b represents the parameters of f representing physical side conditions and ε is the actual75

measurement error in the y-domain (Rodgers, 2000). In the case of remote sensing of the atmosphere

f is the radiative transfer function. We use vector notation because in remote sensing typically

multiple measurands are estimated from multiple measurement signals. For example, y could be

a spectral measurement of an ozone emission line in the infrared; x could be a vertical profile of

ozone concentrations, and b could include a vertical profile of temperature, known a priori with80

some uncertainty and affecting the signal in the ozone line. To obtain information on the measurand,

some kind of inverse solution of Equation 1 is required, because the estimate of the target quantity

x involves a conclusion from the effect to the cause. More often than not, this inverse problem is

ill-posed in the sense of Hadamard (1902), and the direct inversion is impossible and some kind of

workaround is employed. Candidate workarounds are least-squares solutions, regularized solutions85

and so forth. von Clarmann et al. (2020) summarize the most common methods to solve this kind

of problem, along with related error estimation schemes. Here we call this substitute for the genuine

inversion F̃−1. HereF is a function representing the true radiative transfer function to the best of our

knowledge, i.e., the descriptive radiative transfer law as opposed to the governing but unknown law.

The˜symbol reminds us that the inversion is not necessarily a genuine inversion in a mathematical90
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sense. With this an estimate of the measurand can be obtained2:

x̂= F̃−1(y;b) (2)

Differences between the estimate3 x̂ and the true value of the measurand x can be due to

1. measurement errors representd by ε,

2. erroneous assumptions on the values of the parameter vector b,95

3. differences between the radiative transfer model F and the true but not exactly known radiative

transfer physics f , and

4. characteristics of F̃−1, i.e., tricks applied to make a non-invertible inverse problem solvable.

These error sources and recipes to estimate related error components of x̂ are discussed in depth in

von Clarmann et al. (2020), drawing upon Rodgers (2000) and Rodgers (1990).100

Some complication arises because the true atmospheric state can be represented only by spatially

continuous functions while we work with vectors of finite dimension. Here we avoid related difficul-

ties by assuming that the measurand x represents a discretized atmosphere, i.e., it does not represent

a point value but some kind of spatio-temporal average.

All this holds mutatis mutandis also for scalar quantities where105

y = f(x) + ε (3)

but this distinction has no bearing upon our argument.

When reading the thermometer, we actually read the length of the mercury column, apply inversely

the law of thermal expansion, and get an estimate of the temperature:

x̂= F̃−1(y;b) (4)110

Only in trivial cases, when a measurement device has a calibrated scale from which x̂ can be directly

read, F is unity. Here the inverse process is effectively pretabulated in the scale. In any case, the

availability of F̃−1 allows to statistically estimate the effect of measurement noise ε and systematic

effects in b or F̃−1 on x̂ (Rodgers, 1990, 2000; von Clarmann et al., 2020).

2Strictly speaking, it would be adequate to assign a different symbol to the vector of parameters b when it appears in the

context of f , where it designates the true parameters, and in the context of F , where it represents estimates or uncertain a

priori knowledge about these parameters. However, we assume that it is clear from the context what is meant.
3In the context of direct measurements, ‘estimated value’ and ‘measured value’ connote the same thing; in the context

of indirect measurements, we use the term ‘estimated value’ for the value of the target quantity that was inferred from the

measured signal.
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3 The connotation of the term ‘error’115

Although GUM08 (Sect. 0.2) claims the “concept of uncertainty as a quantifiable attribute to be a

relatively new concept in the history of measurement”, we uphold the view that it has long been

recognized that the result of a measurement remains to some degree uncertain even when a thorough

measurement procedure and error evaluation is performed. We recall that even ancient researchers re-

alized that measurement results always have errors. Carl Friedrich (Gauss, 1809) and Adrien-Marie120

Legendre (1805) formalized the required procedure of balancing imperfect astrometric measure-

ments by least squares fitting, in support of orbital calculations from overdetermined data sets. And

there is no reason to believe that earlier investigators were unaware of the fact that they were not

working on perfect observational data. Kepler‘s conclusion concerning the elliptical shape of the

orbit of Mars based on the rich observational dataset collected by Brahe would have been impossible125

without proper implicit assumptions concerning the limited validity of the reported values (Kepler,

1609).

A rich methodical toolbox for error estimation and uncertainty assessment has been developed

since then, and a confusing plethora of conventions how to communicate measurement uncertain-

ties exists. Unification of error or uncertainty reporting is overdue but this requires, at a minimum,130

agreement on terminology and the underlying concepts. While many of the technical terms used are

quite clear and often self-explanatory, there is a particularly troublesome terminological issue. It is

related to the use of the term ‘error’ and the underlying concept. According to the Joint Committee

for Guides in Metrology (JCGM), the concept of uncertainty analysis should replace the concept

of error analysis. Thus, some conceptual and terminological remarks seem appropriate. While on135

the face of it, this is quibbling about words, actually conceptual differences between the errors and

uncertainties are claimed to exist. This issue is discussed in the following.

In the context of measurements, the term ‘error’ traditionally has two slightly different connoti-

ations. The first is the actual difference between the measured or, in the context of indirect mea-

surements, retrieved, value and the true value of the measurand; the second meaning of the term140

‘error’ is a statistical estimate of this difference. Often some attributes are used for clarification and

specification, e.g., ‘probable error’ (Gauss, 1816; Bich, 2012), ‘statistical error’ Nuzzo (2014), ‘error

estimation’ (Zhang et al., 2010) or ‘error analysis’ (Rodgers, 1990, 2000; Hughes and Hase, 2010).

GUM08 (Annex B.2.19) allows only the connotation ‘actual difference’, but their use of the terms

‘error and error analysis’ in the first sentence of their 0.2 or ’possible error’ in their 2.2.4 only make145

sense if the statistical meaning of the term ‘error’ is conceded. The authors of this paper are not

aware of any case where the ambiguity of these connotations of the term ‘error’ has ever led to any

misunderstanding, most probably because it is always clear from the context what is meant.

In the case of ‘error’, its statistical estimate is mostly understood to be a quadratic estimate and

thus does not carry any information about the sign of the error. This entails that the true or most150

probable value cannot simply be determined by subtracting the estimated error from the measured
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value. One of the first major documents, where the term ‘error’ has been used with this statistical

connotation is, to the best of our knowledge, “Theoria Motus Corporum Celestium” by C. G. Gauss

(1809). Since then, the term ‘error’ has commonly been used to signify a statistical estimate of the

size of the difference between the measured and the true value of the measurand. Seminal books155

such as “Statistical Methods For Research Workers” by R. A. Fisher (1925) or “Inverse Methods

For Atmospheric Sounding - Theory and Practice” by C. D. Rodgers (2000) furnish evidence of this

claim about the use of this term. The estimated error is understood as a measure of the width of a

distribution around the measured (or estimated) value which tells the data user the probability – or the

likelihood, depending on the statistical framework used – density of a certain value to be measured160

or estimated if the value actually measured or estimated was the true value. Counterintuitively, in

general it does not always provide the probability density that the measured value is the true value.

This issue will be discussed in Section 5.2.

In some cases, uncertainty scientists repudiate the use of the term ’error’ to refer to a statistical

estimate. Instead, they claim that the term ’error’ only connotes the actual difference between the165

measured or estimated and the true value of the measurand. E.g., on page 5 in GUM08, the error

of a measurent is the “result of a measurement minus a true value of the measurand” (GUM08,

p. 5). It may be challenged that this definition is fully adequate, because it suppresses the use of

the term ‘error’ for the statistical estimate of the actual error in the scientific literature since Gauss

(1809) who uses the terms ‘error’ and ‘incertitudo’ (latin for error and uncertainty, respectively)170

broadly as synonyms. The only difference, if any, in Gauss’ use of these terms seems to be that

error refers to estimated values, and uncertainty refers to the true values, saying that they are not

known with certainty. In spite of the explicit definition in GUM08, there is no unified stance among

GUM08 endorsers as to what ‘error’ is. E.g., Merchant et al. (2017) uphold that ‘error’ connotates

only the absolute difference, while Kacker et al. (2007) or White (2016) refer to ‘error’ as a statistical175

estimate. Kacker et al. (2007) complain that GUM08 is often misunderstood, and we suspect that the

cause for this might be that GUM08 is indeed not sufficiently clear with respect to the differences

between the error concept and the uncertainty concept.

Since the true value is not known, the actual difference between the measured or estimated value

and the true value of the measurand cannot be calculated. This argument is often used to dispraise the180

traditional concept of error analysis as an obsolete concept. However, history and existing literature

tell a different story. Above we have listed numerous sources where the term ‘error’ connotes a

statistical quantity which can be estimated without knowledge of the true value of the measurand.

The issue of whether the term ‘error’ should be used also for a statistical estimate cannot be judged

on scientific grounds. It is a matter of stipulation, although in the main body of GUM08 this stipu-185

lation is presented as if it was a factual statement (“In this Guide, great care is taken to distinguish

between the terms ‘error’ and ‘uncertainty’. They are not synonyms, but represent completely dif-

ferent concepts; they should not be confused with one another or misused.”, Sect 3.2, Note 2). The
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synonymity of ‘error’ and ‘uncertainty’ is thus neither true nor false but adequate or inadequate.

Instead of quibbling about words we will concentrate on the concepts behind these terms.190

GUM08 does not only present traditional error analysis in a revised language but suggests that

there is more to it. That is to say, the entire concept is claimed to be replaced. We understand that

GUM08 grants that the classical concept of error analysis deals with statistical quantities, but these

are statistical estimates of the difference between the measured or estimated value and the true value.

We take GUM to be saying that the reference of even this statistical quantity to the true value poses195

certain problems, because the true value is unknown and unknowable. As a solution of this problem,

the uncertainty concept is introduced which allegedly makes no reference to the true value of the

measurand and is thus hoped to avoid related problems. GUM08 (particularly Section 2.2.4) un-

fortunately leaves room for multiple interpretations, but our reading is that an error distribution is

understood as a distribution whose spread is the estimated statistical error and whose expectation200

value is the true value, while an uncertainty distribution is understood as a distribution whose spread

is the estimated uncertainty and whose expectation value is the measured or estimated value.

GUM08 (p.5) characterizes error as “an idealized concept” and states that “errors cannot be known

exactly”. This is certainly true but it has never been claimed that errors can be known exactly. Since

not all relevant error sources are necessarily known, any error estimate remains fallible but still it is205

and has always been the goal of error analysis to provide error estimates as realistic as possible. To

use the statistical conception of ‘error’ and conceding the fallibility of its estimated value, it is not

necessary to know the true value. It is only necessary to know the chief mechanisms which can make

the measured value deviate from the true value and to have estimates available on the uncertainties

of the input values to these mechanisms.210

Some GUM08 endorsers (e.g., Kacker et al., 2007) try to draw a borderline between error anal-

ysis and uncertainty assessment in a way that they associate error analysis with frequentist statistics

while uncertainty is placed in the context of Bayesian statistics. Frequentist statistics, we understand,

is a concept where the term ‘probability’ is defined via the limit of frequencies for a sample size ap-

proaching infinity. This definition is untenable because it involves a circularity: It is based on the215

large number theorem, according to which a frequency distribution will almost certainly converge

towards its limit. This limit is then associated with the probability. ‘Almost certainly’ means ‘with

probability 1’. The circularity is given by the fact that the definiendum appears in the definiens (See,

e.g., Stegmüller, 1973, pp. 27). We concede that many estimators in error estimation rely on fre-

quency distributions. It is, however, a serious misconception to conclude from this that error analysis220

is based on a frequentist definition of ‘probability’. This is simply a non sequitur. Frequency-based

estimators are consistent with any of the established definitions of probability, and their use does not

allow any conclusion on the definition of ‘probability’ in use.
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4 The definition of the term ‘uncertainty’

According to GUM08, p.2, the uncertainty of a measurement is defined as “a parameter, associated225

with the result of a measurement, that characterizes the dispersion of the values that could reason-

ably be attributed to the measurand”. GUM08 claims that this context does not make reference to the

‘true’ value which is unknown anyway and that the uncertainty concept is more adequate because

there can always exist unknown error sources which entail that an error budget can never be guaran-

teed to be complete (GUM08 p. viii). It is stated that the uncertainty concept is not inconsistent with230

the error concept [GUM08 p. 2/3]. There are, however, certain inconsistencies and shortcomings,

which are discussed in the following.

One of the major purposes of making scientific observations, besides triggering ideas on possi-

ble relations between quantities, is to test predictions based on theories on the real world (Popper,

1935). To decide if an observation corroborates or refutes a hypothesis, it is necessary to have an235

estimate how well the observation represents the true state, because it must be decided how well any

discrepancy between the prediction and the observation can be explained by the observational error

(e.g., Mayo, 1996). Any concept of uncertainty which is not related to the true state cannot serve this

purpose.

On page 3, GUM08 says that the attribute ‘true’ is intentionally not used within the uncertainty240

concept because truth is not knowable. In GUM08, p. 59 it is claimed that the uncertainty con-

cept “uncouple the often confusing connection between uncertainty and the unknowable quantities

“true” value and “error”. The term ‘measurand’ in their definition, however, is defined as the quan-

tity intended to be measured (Joint Committee for Guides in Metrology (JCGM), 2009) (henceforth

abbreviated GUM09); GUM08, (p.32) says basically the same; GUM09, p. 20, says that the ‘quan-245

tity’ is the same as the ‘true quantity value’. Inserting this definition in the GUM08 definition of

uncertainty yields that, through the back door, uncertainty still refers to the true value. Thus it is

not clear what the difference between the traditional concept of error analysis and the uncertainty

concept is. Further, it is stated that systematic effects can contribute to the uncertainty. GUM08 falls

short of clarifying how a systematic effect be understood other than a systematic deviation between250

the measurement and the true value, the concept GUM08 apparently tries to avoid. In order to justify

the attribution of an uncertainty distribution to the systematic effects without relying on frequentist

statistics, they invoke the concept of subjective probability. With this it becomes possible to assign

an uncertainty distribution to the combined random and systematic uncertainty but still it is not clear

how the systematic effect is defined without reference to the unknown truth.255

Subjective probability reflects the personal degree of belief (GUM08, p. 39). Thus, a knowledge-

dependent concept of probability is used in GUM08. As discussed in the previous paragraph, this

approach has been chosen to allow the treatment of systematic errors as dispersions, although the

systematic error does not vary and cannot thus be characterized by a distribution in a frequentist

sense (GUM08 p. 60). If we construe ‘estimated error’ and ‘estimated value’ as parameters of a260
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distribution assigning to each possible value the probability (in a Bayesian context) or the likelihood

(in a maximum likelihood context4) that it is the true value, no knowledge of the true value is re-

quired. This is because, by definition, the subjective probability distribution merely represents the

knowledge of the person generating it. In the context of subjective probability it is not clear why the

true error or the true value should be needed to generate an error distribution. The values the rational265

agent believes to be true are sufficient in this case, because the error distribution does not tell us

anything about the truth anyway but only about the agent’s believe of what truth is. There is noth-

ing wrong with the subjectivist concept of probability, nor do we attack the possibility to combine

random and systematic errors in a single distribution. This concept, however, makes the knowledge

of the true value and the true error unnecessary, and still the estimated error can be conceived as a270

statistical estimate of the absolute difference between the measured value and the true value. We con-

sider it untenable and inconsistent to refer to the concept of subjective probability when it comes in

handy and to deny it when it would solve the conflict between the error and the uncertainty concepts.

Our skepticism about the possibility of dispensing with the concept of the true value is shared by,

e.g., Ehrlich (2014), Grégis (2015), and Mari and Giordani (2014). Note that in the International Vo-275

cabulary of Metrology (known as VIM) (Joint Committee for Guides in Metrology (JCGM), 2012),

although also issued by the JCGM the concept and definition of the true value are explicitly retained.

The use of the term ‘uncertainty’ in GUM08 seems inconsistent: The general GUM08 concept

seems to be that the ‘error’ has to include all error sources and thus cannot be known; ‘uncertainty’

is weaker, it is only an estimate of quantifiable errors, excluding the unknown components. This280

view is supported by the following quotation (GUM08, p. viii) “It is now widely recognized that,

when all of the known or suspected components of error have been evaluated and the appropriate

corrections have been applied, there still remains an uncertainty about the correctness of the stated

result, that is, a doubt about how well the result of the measurement represents the value of the

quantity being measured.” It is not fully clear what this means. One possible reading is that they285

use the term ‘error’ in the redefined sense, viz., as a quantity which measures the actual deviation

from the true value. Then this statement would be a mere truism, just saying that after all correction

and calibration activities there is still a need for error (in the error concept terminology) estimation.

The only other possible reading is that they want to say that, since due to unknown (unrecognized

and/or recognized but not quantified5) error sources, error estimation will always be incomplete290

and there remains an additional uncertainty not covered by the error estimation. This often is very

true but the use of the term ‘uncertainty’ would then be inconsistent in their document, because

here the connotation of ‘uncertainty’ is the unknown (unquantified or even unrecognized) part of

the error, which by definition cannot be assessed, while in the main part of their document, the

4see Section 5.2 for a deeper discussion of this issue.
5Rigorously speaking, within the concept of subjective probability recognized but unquantified uncertainties should not

exist.
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connotation of ‘uncertainty’ seems to be a quantified statistical estimate. In summary, it is not clear295

if the ’uncertainty’ includes the unknown error terms or not.

In GUM08, p. 2/3 it is claimed that the concept of uncertainty “is not inconsistent with other con-

cepts of uncertainty of measurement, such as a measure of the possible error in the estimated value of

the measurand as provided by the result of a measurement [or] an estimate characterizing the range

of values within which the true value of the measurand lies6 (VIM:1984 definition 3.09). Although300

these two traditional concepts are valid as ideals, they focus on unknowable quantities: the “error”

of the result of a measurement and the “true value” of the measurand (in contrast to the estimated

value), respectively. Nevertheless, whichever concept of uncertainty is adopted, an uncertainty com-

ponent is always evaluated using the same data and related information...”. It remains unclear how

the concepts can, on the one hand, be consistent, while, on the other hand, it is claimed that the error305

approach and the uncertainty approach are actually conceptually different and not only with respect

to terminology. In GUM08, p.5 it reads “In this Guide, great care is taken to distinguish between

the terms “error” and “uncertainty”. They are not synonyms, but represent completely different con-

cepts; they should not be confused with one another or misused” Since both concepts, however, are

consistent, it is not clear in what the difference of the concepts consists.310

Again, we come back to Kacker et al. (2007) who claim that error estimation and uncertainty

analysis are best distinguished in the sense that the former relies on frequentist statistics while the

latter is founded on Bayesian statistics. Here the following remarks are in order: (1) Many of the

methods presented in GUM08, including their ‘Type A evaluation (of uncertainty)’, which is the

‘method of evaluation of uncertainty by the statistical analysis of series of observations’ are from315

the frequentist toolbox. (2) Kacker et al. (2007) endorse Monte Carlo methods to estimate uncer-

tainty. Monte Carlo uncertainty estimation, however, is in its heart a frequentist method, because it

estimates the uncertainty from the frequency distribution of the Monte Carlo samples. And (3) it

is astonishing why GUM08, if representing a Bayesian concept, does not in the first place require

to apply the Bayes theorem to convert the likelihood distributions into a posteriori probability dis-320

tributions. The methodology proposed in GUM is uncertainty propagation. This is a mere forward

(or direct) problem: given that xtrue is the true value, and a measurement procedure with some error

distribution, it returns a probability distribution for values xmeasured that might be measured. How-

ever, GUM08’s definition of uncertainty “parameter, associated with the result of a measurement,

that characterizes the dispersion of the values that could reasonably be attributed to the measurand”325

(emphasis added by us), seems associated with another meaning: given a measured value xmeasured

(“result of a measurement”) and a measurement procedure with some error distribution, what is the

probability distribution xtrue (“values that could reasonably be attributed to the measurand”). This is

an inverse problem, for which Bayes theorem is applicable rather than uncertainty propagation.

6It is not clear how this can be achieved without explicit consideration of the Bayes theorem.
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Interestingly enough, early documents of the history of GUM (Kaarls, 1980; Bureau International330

des Poids et Mésures) provide evidence that the terminological turn from ‘error’ to ‘uncertainty’

was triggered only by linguistic arguments, based upon the fact that in common language the term

‘uncertainty’ is often associated with “doubt, vagueness, indeterminacy, ignorance, imperfect knowl-

edge”. These early documents provide no evidence that ‘error’ and ‘uncertainty’ were conceived as

two different technical terms connotating different concepts. Any re-interpretation of the terms ‘er-335

ror’ and ‘uncertainty’ as frequentist versus Bayesian terms or operational versus idealistic concepts

came later.

In summary, it appears that the uncertainty concept is not essentially different from the error

concept. We do, however, not claim that the terms ‘error’ and ‘uncertainty’ are fully equivalent;

even in pre-GUM language there might be some subtle linguistic differences.We perfectly know our340

measurement (even if it is erroneous) and are ignorant with respect to and have imperfect knowledge

only about the true value. This suggests that the uncertainty is an attribute of the true value while

the error is associated with a measurement or an estimate. Because of the measurement error there

is an uncertainty as to what the true value is. The uncertainty thus describes the degree of ignorance

about the true value while the estimated error describes to which degree the measurement is thought345

to deviate from the true value. In this use of language both terms still relate to the same concept. This

notion seems, as far as we can judge, to be consistent with the language widely used in the pre-GUM

literature, but this issue deserves a more thorough linguistic assessment that is beyond the scope of

this paper. The introduction of the term ‘uncertainty of measurement’ seems to us a mere linguistic

revision of an established terminology which does not connect to any further insights.350

In summary, we have to distinguish between two questions; first, whether the terms ‘error’ and

‘uncertainty’ have the same connotation, and second, whether the underlying concepts are indeed

different. The first question is contingent upon the underlying stipulation, and any statement about

their equivalence or difference without reference to a definition is a futile pseudo-statement. The an-

swer to the second question is less trivial and deserves some scientific discussion. The main question355

still seems to be how the true value, the error or uncertainty, and the measured value are related with

each other. This question will be addressed in the following sections.

5 The unknown true value of the measurand

The alleged key problem of the error concept is, in our reading of GUM08, that the value of the true

value of the measurand is not known, and that this true value must appear neither in the definition of360

any term nor in the recipes to estimate it. To better understand this key problem, we decompose it

into four sub-problems.

1. Quantities of which the value cannot determined must not appear in definitions.
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2. The error distribution must not be conceived as a probability density distribution of a value to

be the true value.365

3. Nonlinearity issues pose problems on error estimation.

4. On can never know that the uncertainty budget is complete because it can always happen

that a certain source of uncertainty has been overlooked; thus, the full error estimate is an

unachievable ideal.

Some of these sub-problems are in some way formulated in GUM08 but it is not exactly specified370

there why the fact that the true value of the measurand is unknowable poses a problem to the er-

ror scientist. Others have been formulated by us, serving, as arguments of the Devil’s advocate, as

working hypotheses in order to moot the error and uncertainty concepts in the context of indirect

measurements. In the following we will scrutinize these theses one after the other.

5.1 The operational definition375

GUM08 tries to avoid to use the true value of the measurand in the definition of the term ‘un-

certainty’. This strategy is employed because the true value of the measurand is “not knowable”

(GUM08, p. 3). It may be found puzzling why it should be necessary to know the value of a quantity

to use it in the definition of a term. The weight of Thomas Bayes or the body height of David Hume

at a certain time are well-defined quantities although we have no chance to measure them today. Also380

we might have a clear physical conception of what the temperature in the center of the sun might

be although it may not be practicable to put a thermometer there, and we even might not be able to

figure out any other, more sophisticated, method to assign an accurate observation-based value to

this quantity. Intuitively, we conceive the definition of a quantity and the assignment of the value to

a quantity as quite different things.385

In GUM08 it is claimed that the definition of ‘uncertainty’ is an operational one (p. 2). An op-

erational definition defines a quantity by stipulating a procedure by which a value is assigned to

this quantity. The concept of operational definitions was suggested by Bridgeman (1927) in order to

give terms in science a clear-cut meaning. This operationalism, at least a narrow conception of it,

has its own problems, has received considerable criticism and has led to deep philosophical discus-390

sions (see, e.g., Chang, 2019). To summarize these is beyond the scope of this paper and for here it

must suffice to mention that there are alternatives, such as theoretical definitions or reduction of the

definiendum to previously defined terms.

GUM08’s claim that the uncertainty concept is based on an operational definition leads to two

further inconsistencies. First, no unambiguous operation is stipulated on which the definition can be395

based, but multiple operations are proposed, which might give different uncertainty estimates. Thus,

the definition is void. Our critical attitude with respect to operationalism in the context of GUM is

shared, e.g., by MARI14.
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The other problem with the operational definition is the following: In GUM08, pp 2-3, it is claimed

that the uncertainty concept is not inconsistent with the error concept, and a few lines later it reads400

“an uncertainty component is always evaluated using the same data and related information.” The

latter suggests that within the error concept the same operations are used as within the uncertainty

concept. Since the operations define the term and the related concept, the uncertainty concept and

the error concept must be the same.

In summary, the fact that the true value of the measurand is unknowable is a problem for the405

definition of the term ‘error’ and its statistical estimates only if we commit ourselves to the doctrine

of that only operational definitions must be used. If we abandon this dogma, there is nothing wrong

with conceiving the estimated error as a statistical estimate between the measured or estimated and

the true value, and the problem is restricted to the assignment of a value to this quantity. Related

issues are investigated in the following.410

5.2 Likelihood, probability, and the base rate fallacy

The argument discussed in the following is not put forward in GUM08, probably because there indi-

rect measurements are not in the focus. However, since we do focus on indirect measurements, and

since this argument is of particular importance in this context, we present and discuss this argument.

Counterintuitively, in general, the error bar or the uncertainty estimate do not tell the probability415

density of the true value with respect to the measured value, unless the prior probability of the

measurand has been considered in the retrieval. It is the theorem of Bayes (1763) which makes the

difference. The non-consideration of the Bayes theorem goes under the name of ‘base rate fallacy’.

50% of people suffering Covid-19 have fever (Robert Koch Institut, 2020), but this does not imply

that the probability that a person suffering fever to have Covid-19 is 50%. To estimate the latter420

probability requires knowledge of the percentage of people being infected with the Corona virus,

and the probability that a person suffers fever for any reason. In metrology the situation is quite

analogous. If we define the true value to be x, the ideally measured value f(x) = yideal, and the

estimated measurement error in terms of the standard deviation σy , then the probability density of a

certain value y to be measured is given by a pdf with yideal mean and σy spread. This, however, does425

not imply that, if we measure y with an uncertainty of σy , and propagate σy through the inversion

procedure to get the uncertainty of x̂, namely, σx, that the probability of some x being the true value

of the measurand is given by the pdf with mean x̂ and σx spread. Again, it is the a priori probability

distribution7 which is missing. There are three ways out of this problem. For now we will defer

the problem of a possibly incomplete error budget to Section 5.4 and assume that the error buget is430

complete.

The first solution is to apply a Bayesian retrieval scheme. Indeed in many cases, the solution of the

inverse problem F̃−1 employs a Bayesian estimator. Examples are found, e.g., in Rodgers (2000) or

7or the background frequency distribution.
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von Clarmann et al. (2020). On the supposition that the error budget is complete, the interpretation

of the error bar as the spread of a distribution representing the probability density that a certain value435

is the true value is correct.

The second solution is the application of the principle of indifference. Often there is no firm a

priori knowledge on the value of the measurand available. Gauss (1809) solves this problem by

application of the indifference principle. That is, the same a priori probability is assigned to all

possible values of the measurand. With this, e.g., in the application to a linear inverse problem and440

normal distributions of uncertainties, the Bayesian solution collapses back to a simple unconstrained

least squares solution. Due to the assumption of the equidistribution of the a priori probabilities the

estimated uncertainty of the estimate can still be interpreted as the width of the probability density

function of the true value of the measurand. This concept of ‘non-informative a priori’, however,

has its own problems. Even if we ignore some more trivial problems for the moment, e.g., that445

some quantities cannot, by definition, take negative values, this concept can lead to absurdities:

If we assume that we have no knowledge on, say, the volume density of small-particle aerosols

in the atmosphere, and describe this missing knowledge by an equidistribution of probabilities, this

would correspond to a non-equidistribution of the surface densities, due to the non-linear relationship

between surface and volume. It strikes us as absurd that information can be generated just by such450

a simple transformation from one domain into another. The principle of indifference, upon which

the concept of non-informative priors is built, is critically discussed, e.g., by Keynes (1921, Chapter

IV). The concept of non-informative priors is still criticized even in the Bayesian community (e.g.

D’Agostini, 2003).

The third solution is the likelihood interpretation, which has been introduced by Fisher (1922). The455

likelihood that the true value is x if the measured signal is y equals the probability that y is measured

if the true value is x. No prior information is considered. Solution of the inverse problem F̃−1 by

maximizing the likelihood of x does not provide the most probable estimate of x, and accordingly

the error bar of the solution must not be interpreted as the width of a probability distribution of

the true value. Application to a linear inverse problem and normal distributions of uncertainties460

renders formally the same estimator as the Gaussian least squares solution, but its interpretation has

changed. It can no longer be interpreted as the mean of a pdf of the true value. The distribution

with mean x̂ and the standard deviation σx can still be interpreted as a likelihood distribution of the

true value around the estimate. If need be, in some cases, i.e., if the inverse problem is well-posed

enough to allow an unconstrained solution, the maximum likelihood estimate can be, post factum,465

transformed into a Bayesian estimate by application of the Bayes theorem. Certainly one might

urge the objection that the true a priori distribution is never known and that this transformation

is thus an idealized concept. This argument is only applicable by the frequentist statistician. The

uncertainty statisticians, however, have already committed themselves to the concept of subjective

probability because otherwise the aggregarion of random uncertainties and systematic effects into470
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one combined uncertainty distribution would not be possible8. For the uncertainty statistician the a

priori distribution represents the knowledge of a rational agent, as opposed to the true underlying

frequency distribution. Thus this counter-argument is not valid.

In summary, it is true that the error bar does not necessarily represent the width of a distribution

representing the probability density that a certain value is the true value of the measurement. In the475

case of a Bayesian estimate, however, which is quite frequently chosen in remote sensing, it can be

conceived this way. And in the context of maximum likelihood estimates, the estimated error still

can be conceived as the width of a distribution representing the likelihood that a certain value is the

true value of the measurement. All these statements, however, are contingent upon the assumption

that the error or uncertainty budget is complete. This problem is deferred to Section 5.4.480

5.3 Nonlinearity issues

The uncertainty concept relies on the possibility of evaluating uncertainties caused by measurement

errors and “systematic effects” without knowledge of the true value. This is certainly granted for

linear problems. The resulting uncertainty in x̂, namely σx, generated by a measurement error statis-

tically characterized by its standard deviation σy or by a systematic effect, e.g., a not exactly known485

value of a constant b will be the same for each x̂, and no specific relation between the estimate x̂

and the true value of the measurand x is required. This is because in the linear case Gaussian error

propagation holds,

σ2
x,noise =

(
∂x

∂y

)2

σ2
y,noise, (5)

and490

σ2
x,b =

(
∂x

∂b

)2

σ2
b , (6)

or for vectorial quantities

Sx,noise = GSyGT , (7)

and

Sx,b = GbSbGT
b , (8)495

where Sx,noise, Sx,b and Sb are the covariance matrices and G and Gb the matrices of partial deriva-

tives ∂xn

∂ym
and ∂xn

∂bk
, respectivly9.

8Willink and White (2012) might contradict here and make the claim that even systematic errors can be conceived as

drawn from some population of errors, consistent with the frequentist view.
9For standard deviations and covariance matrices we use the notation suggested by von Clarmann et al. (2020) where the

first subscript indicates the domain to which the uncertainty or error estimate refers, and the optional second subscript the

source of te error.
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For nonlinear problems the situation is more complicated because Equations (5) to (8) are only

valid in approximation. The error scientist can invoke the concept of moderate nonlinearity (Rodgers,

2000). That is to say, x̂ is assumed to be a reasonably good approximation of x, and the partial500

derivatives needed are evaluated at x̂. If the error in b is small enough ensuring that the resulting

x̂±σx is within the range where linear approximation is justifiable, then σx is a less-than-perfect but

far-better-than-useless estimate of the corresponding error component in x.

The uncertainty scientist has a problem if they want to stay consistent with their doctrine. Since

knowledge of x is denied, the approximation x̂≈ x begs justification and it is not clear how Gaussian505

error estimation can be applied to systematic effects.

On the face of it, Monte Carlo error estimation or other variants of ensemble-based sensitivity

studies can serve as an alternative. These, however, also invoke the nonlinear model F and results

thus still depend on the choice of x̂, and any choice of this value which is not closely related to

the true value x will produce uncertainty estimates which are recalcitrant against any interpretation.510

Monte Carlo and related methods, however, are apt for the error scientists to estimate the error budget

including the systematic effects if f is too nonlinear to justify Gaussian error estimation.

In summary, the evaluation of uncertainties in the case nonlinearity poses a problem to the un-

certainty scientist because the uncertainty estimate depends on the assumed value of the measurand,

and x̂≈ x must be assumed. Within the framework of error analysis this assumption is allowed and515

measurement errors as well as systematic effects thus can be evaluated also for nonlinear inverse

problems.

5.4 Incompleteness of the error budget

The arguments put forward above are based on the supposition that the error budget is complete.

Beyond measurement noise, the total error budget includes systematic effects in the measured signal520

y, uncertainties in parameters b, and effects due to the chosen inverse scheme F̃−1. If our reading

of GUM08 is correct, then the most severe criticism of the ‘error concept’ by GUM08 is that one

can never be sure that the error budget is indeed complete, and that thus the distribution with x̂

expectation and σx standard deviation cannot tell us the probability density that any value of x is the

true value.525

The precision of a measurement is a well-behaved quantity in a sense that it is testable in a straight

forward way: From three sets of collocated measurements of the same quantity, where each set

is homogeneous with respect to the expected precision of its measurements, the variances of the

differences provide unambigous precision estimates. The situation is more difficult for biases. Biases

between different measurement systems do not tell us what the bias of one measurement system with530

respect to the – unfortunately unknowable – truth is. Even if the number of measurement systems

is quite large, it is not guaranteed that the mean bias of all of them is zero. And an infinite number

16

https://doi.org/10.5194/amt-2021-157
Preprint. Discussion started: 29 June 2021
c© Author(s) 2021. CC BY 4.0 License.



of measurement systems is out of reach in a real world. Up to that point we concede that a positive

proof of the completeness of the error budget is impossible. But this is not the end of the story.

A falsificationist (Popper, 1935) approach is more promising. It follows the rationale that it will535

never be possible to prove that our assumptions on the bias of a measurement system is correct.

Instead, we estimate the bias as well as we can, and use it as a best estimate of the bias until some test

provides evidence that the estimate is incorrect. Such a test typically consists of the intercomparison

of data sets from different measurement systems. If the bias between these data sets is larger than

the combined systematic error estimates, at least one of the systematic error estimates is too low540

and has to be refuted. Further work is then needed to find out which of the measurement systems is

most likely to underestimate its systematic error. Conversely, as long as the mean difference of the

measurements of the same measurand can be explained by the combined estimate of the systematic

errors of both measurement systems, the systematic error estimates can be maintained, although

this is, admittedly, no proof of the correctness of the error estimates. But as long as severe tests as545

described above are executed and the error estimates cannot be refuted, it is rational to believe that

they are sufficiently complete.

We have mentioned above that the uncertainty concept depends on the acceptance of the sub-

jective probability in the sense of degree of rational belief. Without that, an error budget including

systematic effects would make no sense because systematic effects cannot easily be conceived as550

probabilistic in a frequentist sense; that is to say, the resulting error cannot be conceived as a ran-

dom variable in a frequentist sense. Being forced to adopt the concept of probability as a degree of

rational belief, it makes perfectly sense to conceive, after consideration of the Bayes theorem (see

Section 5.2) the distribution with expectation x̂ and covariance σx,total as the probability distribution

which tells the rational agent the probability of any value to be the true value.555

6 The applicability of GUM to remote sensing of the atmosphere

In this Section we identify issues where GUM08 clashes with the needs of error or uncertainty

estimation in the field of remote sensing of atmospheric constituents and temperature. These issues

are (1) since the atmospheric state varies quasi-continuously in space and time, the measurand is

not well defined; (2) there are applications of atmospheric data where the total uncertainty estimate560

alone does not help; (3) Eq 11 in GUM08 is in conflict with the causal arrow, and (4) some GUM08

interpretations commit one to Bayesianism but some assumptions Bayesianism is based on cannot

be logically inferred from generally accepted axioms nor traced back to observations.

6.1 What if the measurand is not well-defined?

On macroscopic scales, atmospheric state variables vary continuously in space on time. On mir-565

croscopic scales, the typical target quantities, concentrations or temperature, are not even defined.
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A typical example of this problem is be the volume mixing ratio (VMR) of a certain species at a

point in the atmosphere (See also, von Clarmann, 2014). The determination of a quantity like this

requires a canonical ensemble of air but in the real, inhomogenous, atmosphere, this quantity does

not exist. It is an uninstantiated ideal. Due to these inhomogeneities the air volume sounded must570

be infinitesimally small, i.e., it must approach a point. In the real atmosphere there is either a target

molecule at this point (VMR = 1) or another molecule (VMR = 0) or no molecule at all (unde-

fined VMR due to division by zero). Thus, one measures only averages over finite inhomogeneous

air volumes. This approach, supposedly the only possible approach, clashes with the premise of

GUM0810 that the measurand needs to be well defined. Measuring atmospheric state variables re-575

quires the specification of the region the average is made over. The relevant toolbox of atmospheric

data characterization includes concepts like resolution, averaging kernels etc. (see Rodgers, 2000 for

detail). Since this type of measurements is apparently out of the scope of GUM08, the latter is very

silent with respect to solutions to the problem of the characterization of measurements of quantities

that are not well defined. Broadening the scope and applicability of the GUM08 framework to in-580

clude less than ideally defined measurands and measurements that demand inverse methods would

significantly increase the value and utility of GUM08 approach. Relevant recommendations on data

characterization developed within the TUNER activity (von Clarmann et al., 2020) aim at helping to

reach this goal.

6.2 The combined error585

One of the positive aspects of GUM08 is that it breaks with the misled concept of characterizing

systematic errors with ‘safe bounds’ (Kaarls, 1980; Kacker et al., 2007; Bich, 2012). This concept

was sometimes endorsed by error statisticians subscribing to frequentism. Within a frequentist con-

cept of probability, a probabilistic treatment of systematic errors was not easily possible because

due to its systematic nature a systematic error cannot easily11 be characterized by a frequency or590

probability distribution. The concept of subjective probability solves this problem. With the subjec-

tivist’s toolbox, it is no longer a problem to assign probability density functions, standard deviations

and so forth when characterizing systematic errors. This possibility is a precondition for aggregating

systematic and random errors to give the total error. GUM08, however, goes a step further and even

denies the necessity to report random and systematic errors independently. Here we have to urge595

severe objections.

Von Clarmann et al. (2020) explicitly demand that error estimates be classified as random or

systematic, In contrast, GUM08 (E.3.3 / E3.7) state: “In fact, as far as the calculation of the combined

standard uncertainties [...] is concerned, there is no need to classify uncertainty components and thus

10In GUM08 this problem is recognized but no solution is offered, since the term ’definitional uncertainty’ is introduced in

this context but not applied in practice.
11The qualification not easily was chosen because frequentists still might sample over multiple universes or apply other

measures to squeeze systematic errors in a frequentist concept.
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no real need for any classificational scheme.” If indeed meant as written, we challenge the claim that600

a total combined error budget is sufficient and therefore no classificational scheme is needed at all.

Characterizing the measurement of a unique quantity, e.g. the value of a natural constant ageed upon

by the calibration authorities, by a single error margin might be sufficient. But most measurements,

and particularly those of atmospheric state variables such as temperature, concentrations of trace

species, and so forth, deal with quantities varying as function of time and space. Any sensible use of605

the resulting datasets requires a clear distinction between statistical and systematic error budgets. For

example, for time series analysis targeted at the determination of trends, the total error budget is of

no use but the random error budget is needed instead. This is because any purely additive systematic

error component cancels out in this application and their consideration would unduely distort the

weights of the data points available. In summary, the denial of the importance of distinguishing610

between random errors and systematic errors does not provide proper guidance, and altogether is a

strong misjudgement.

Benevolent readers of GUM08 take the GUM authors to be saying only that the aggregation

of estimated errors to give the total error budget follows the same rules for systematic and random

errors, and that the criticized statement is not meant to deny the importance of distinguishing between615

random and systematic errors beyond the mere aggregation process. If this reading is correct, we

agree, but here GUM08 leaves room for interpretation.

6.3 The causal arrow

Putting quantum effects aside, the measured value is unambiguously determined by the true value

via causal processes plus a given but unknown error term. In other words, the causal arrow points620

from the atmospheric state to the measured value. The inverse direction, however, is ambiguous even

if we set the problem of the unknown error term aside. Many atmospheric states can cause the same

measurement, even if the noise term is exactly the same. Thus, it seems more adequate to us to

formulate the measurement problem using a function that describes the measurement as a function

of the atmospheric state, viz., the measurand (Eq. 1) and not vice versa. The inverse measurement625

equation (Eq. 2) which describes the dependence of the atmospheric state variables on the measured

values is not unambigously defined because the regularization term used to solve ill-posed problems

or the norm chosen to provide a solution for over-determined problems, all contained in the term

F̃−1, are based on assumptions, depend on the personal preference of the person performing the

inversion, and need to be considered in the data and uncertainty characterization (See, Section 2,630

and von Clarmann et al., 2020 for details). Thus we think that it is essential to appreciate the inverse

nature of the problem, and this is much easier if the measurement equation describes the forward

problem and thus does not suggest an unambiguous determination of the measurand from the mea-

sured quantity. An argument along this line of thought, but in a context wider than that of remote

sensing of the atmosphere, has been put forward by Possolo and Toman (2007).635
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6.4 Bayesian versus non-Bayesian

Some interpretations of GUM08 (e.g. White, 2016; Kacker et al., 2007) associate it with a Bayesian

conception of probability. Thus one might suspect that ‘uncertainty’ is simply the Bayesian replace-

ment of error. But things seem not to be so simple, for two reasons.

(1) It is, however, not quite clear which of Bayes’ methods and principles a statistician has to use to640

be a Bayesian (c.f., e.g., Fienberg, 2006), since the Bayes theorem is accepted also by non-Bayesians,

and the use of maximum likelihood methods, introduced by the almost ‘militant’ frequentist R. A.

(Fisher, 1922) does, as far as we can judge, not commit one to use a frequentist definition of the term

‘probability’.

(2) Interestingly enough, Willink and White (2012) use the term ‘uncertainty’ also in a frequentist645

framework, report that the turn to the new terminology happened already in 1980/81, and make a

strong case that various allegedly purely Bayesian concepts of GUM08 can be given a valid frequen-

tist interpretation.

Defenders of the doctrine that ‘error’ and ‘uncertainty’ have a different meaning and that the error

concept is a purely frequentist concept may refer to (Mayo, 1996, Ch. 13), who admits to frequentism650

and indeed proposes an ‘error-statistical philosophy of science’. Her concept, however, does not deal

with measurement errors but with errors in the acceptance or rejection of hypotheses. Thus it cannot

be interpreted in a way that measurement errors are a purely frequentist concept.

In the community of remote sensing, both maximum likelihood and Bayesian retrieval schemes

are in use. Depending on the measurement type and the anticipated use of the data both have their655

pro’s and con’s. In order to avoid to make the rift between the Bayesian and non-Bayesian12 part of

the community even worse, the TUNER consortium has decided not to make a recommendation as

to which of these retrieval schemes is thought to be superior. It was considered as more important to

provide an adequate scheme for error or uncertainty estimation for any of these retrieval approaches.

As a consequence, it is not considered as adequate to custom-taylor uncertainty reporting to the660

Bayesian philosophy.

White (2016) reports that paradoxes shatter the bedrocks of Bayesian philosophy, namely the

likelihood principle that says that all relevant evidence about an unknown quantity obtained from an

experiment is contained in the likelihood. Others accept the theoretical validity of the Bayes theorem

but challenge its applicability in real life because of the unknown and unknowable prior probabilities.665

It has been recognized by (Hume, 2003/1739, 1748) that what was valid yesterday might not be

valid tomorrow. This implies that a statistic of past events might not provide a reliable prior for

future inverse problems. Also the use of the so-called non-informative prior can be challenged: The

12We challenge the dichotomy ‘Bayesian vs. frequentist’. Not every non-frequentist is a whole-hearted Bayesian; not

all objective probabilities are frequentist (see, e.g. Popper, 1959). Not everybody who endorses a subjective concept of

probability accepts Bayesian tenets on confirmation theory and test theory. Further, subjectivist and objectivist probability

concepts are not necessarily in contradiction but can be bridged (Lewis, 1980).

20

https://doi.org/10.5194/amt-2021-157
Preprint. Discussion started: 29 June 2021
c© Author(s) 2021. CC BY 4.0 License.



domain in which the prior is expressed is an ad hoc decision and any non-linear transformation will

render an informative prior. E.g., a flat, thus apparently non-informative velocity distribution goes670

along with a non-flat, thus informative distribution of kinetic energy. Similarly an equidistribution of

droplet diameters goes along with a non-flat, thus informative, distribution of droplet volumes, etc.

This is considered by some as an absurdity brought about by the concept of non-informative priors.

More generally speaking, the Bayesian philosophy relies on a couple of unwarranted assump-

tions, e.g., the likelihood principle and the indifference principle. The proof of the former has been675

challenged (Evans, 2013; Mayo, 2013, quoted after White, 2007), and the latter has been criticized

as not deducible from any accepted axioms. Thus a pro or contra Bayesian decision is a purely

philosophical decision, and it does not seem adequate to make such a decision generally binding.

While it is fully agreeable that the concept of error reporting has long relied and still relies on a

subjective, i.e., information-dependent concept of probability13, this does not commit one to accept680

Bayesianism in full.

Coming back to the title question whether error and uncertainty are different things and differ-

ent concepts, and accepting that traditional error analysis was compatible with a degree-of-belief

conception of probability, we are left with two possible interpretations. One is that it is only the en-

dorsement of a subjective concept of probability that allegedly makes uncertainty analysis Bayesian685

and defines the difference between error and uncertainty. If so, we raise the objection that classical

error analysis is not a purely frequentist approach. The other interpretation is that there is more to

it, and Bayesian uncertainty analysis is indeed something entirely different. The GUM08 does not

provide a clear reference to such a Bayesian uncertainty analysis method. GUM08 makes reference

to Jeffreys (1983) as an authority of the degree-of-belief-concept of probability. Jeffreys, however,690

offers no clue as to what the difference between ‘error’ and ‘uncertainty’ might be. In the context of

measurements or observations, Jeffreys always uses the term ‘error’ (e.g., op. cit., p. 72), and often

we find statements like “the probable error [...] is the uncertainty usually quoted” (op. cit., p. 72), “no

uncertainty beyond the sampling errors” (op. cit., p. 389), or “treat the errors as independent” (op.

cit., p. 443). With the statement that errors are not mistakes (op. cit., p. 13), Jeffreys explicitly con-695

tradicts the GUM pioneers (Kaarls, 1980) and GUM08 endorsers Merchant et al. (2017). Also Press

(1989) is referenced by GUM08 only to defend the use of a subjective concept of probability but not

in a context aiming at the clarification of the alleged difference between ‘error’ and ‘uncertainty’.

We concede that Bayesians and frequentists may use the error or uncertainty estimates in a dif-

ferent way. In situations where a hypothesis is to be tested on the basis of measurement data, the700

frequentist would rely on Fisherian p-values or Pearsonian rejection limits or a mixture of these ap-

proaches, while the Bayesian would assign a total probability to the hypothesis. The underlying error

or uncertainty estimates, however, are required to support both approaches. We think that a quan-

13We understand that subjective probability is related to the belief of a rational agent. Since two rational agents having

access to the same information will believe the save, this variant of subjective probability should better be called ‘inter-

subjective’ probability. This concept is often labelled ‘objective Bayesianism’
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tity for characterizing the error or uncertainty of a direct or indirect measurement which commits

the user to either a frequentist or a Bayesian use of the measurements is of little use. Reference to705

Bayesianism alone cannot explain the claimed difference between ‘error’ and ‘uncertainty’.

7 Conclusions

The denial that a valid connotation of the term ‘error’ is a statistical characterization between a

measured or estimated and the true value of the measurand would be an attempt to brush away

centuries of scientific literature. This is, however, a matter of stipulation or convention and thus710

beyond the reach of a scientific argument. We thus take GUM08 to be conceding that both the

concepts, error analysis and uncertainty assessment, aim at providing a statistical characteristic of the

imperfectness of a measurement or an estimate. We understand GUM08 in a sense that the problem

of the error concept is that it conceives the estimated error as a statistical measure of the difference

between the measured or estimated value and the true value. Since the true value is unknowable,715

according to GUM08 the term ’error’ can neither be defined nor can its value be known.

It has been shown that the problem of the unknown true value of the measurand is a problem for

the definition of terms like ‘error’ or ‘uncertainty’ only if the concept of an operational definition is

persued. This concept, however, has its own problems and is by no means without alternative. As

soon as the concept of an operational definition is given up, problems associated with defining the720

estimated error as a statistical estimate of the difference between the measurement or estimate and

the true value of the measurand disappear, and the problem remaining is only one of assigning a

reasonable value to this now well-defined quantity.

Since GUM08 did not provide many reasons why, in the context of indirect measurements, the

error allegedly cannot be estimated without knowledge of the true value, or why an uncertainty dis-725

tribution does not tell us anything about the true value, we list the most obvious ones one could put

forward to bolster this claim. These are the problem of the base rate fallacy, the problem of non-

linearity, and the problem that one can never know that the error budget is complete. The problem of

the base rate fallacy can be solved by either performing a Bayesian inversion, or by conceiving the

resulting distribution as a likelihood distribution. Astonishingly enough, the GUM08’s “dispersion or730

range of values that could be reasonably attributed to the measurand” is determined without explicit

consideration of prior probabilities and thus cannot be interpreted in terms of posterior probability.

The problem of nonlinearity can be solved by the error scientist either by assuming that the estimate

is close enough to the true value and linearizing around this poing or by Monte-Carlo-like studies.

The uncertainty scientist who has to avoid referring to the true value is at a loss in the case of nonlin-735

earity because any estimate of the uncertainty of the estimate will be correct only when evaluated at

the true value or an approximation of it. The problem of the unknown completeness of the error bud-

get can be tackled by performing comparisons between measurement systems. While this will never
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provide a positive proof of the completeness of the error budget, it still justifies rational belief in its

completeness, and if error or uncertainty distributions are conceived as subjective probabilities in the740

sense of degrees of rational belief, this is good enough. In summary, if (a) our reading of GUM08

is correct in the sense that the traditional error analysis can connotate a statistical quantity, and that

the key difference between the ‘error’ and ‘uncertainty’ concepts is their relation to the true value

of the target quantity and (b), that our list of arguments against the error concept is complete, and

finally, if (c) our refutation of these arguments is conclusive, then the claim that the ‘error’ concept745

and the ‘uncertainty’ concepts are fundamentally different is untenable14. Beyond this, reasons have

been identified that put the applicability of the GUM08 concept to atmospheric measurements into

question. At the very least we can state that GUM08, by presenting their terminological stipulation

about the terms ‘error’ and ‘uncertainty’ in the appearance of a factual statement, has triggered a

linguistic discussion that distracted the attention from the more important issues how the principles750

of error or uncertainty estimation, whatever one prefers to call it, could be made better applicable to

measurements beyond the idealized cases covered by their document.
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