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Abstract. Ice and mixed phase clouds play a key role in our climate system, because of their strong controls on global 

precipitation and radiation budget. Their microphysical properties have been characterized commonly by polarimetric radar 

measurements. However, there remains a lack of robust estimates of microphysical properties of concurrent pristine ice and 

aggregates, because larger snow aggregates often dominate the radar signal and mask contributions of smaller pristine ice 20 

crystals. This paper presents a new method that separates the scattering signals of pristine ice embedded in snow aggregates 

in scanning polarimetric radar observations and retrieves their respective abundances and sizes for the first time. This 

method, dubbed ENCORE-ice, is built on an iterative stochastic ensemble retrieval framework. It provides number 

concentration, ice water content, and effective mean diameter of pristine ice and snow aggregates with uncertainty estimates. 

Evaluations against synthetic observations show that the overall retrieval biases in the combined total microphysical 25 

properties are within 5%, and that the errors with respect to the truth are well within the retrieval uncertainty. The 

partitioning between pristine ice and snow aggregates also agrees well with the truth. Additional evaluations against in-situ 

cloud probe measurements from a recent campaign for a stratiform cloud system are promising. Our median retrievals have a 

bias of 98% in total ice number concentration and 44% in total ice water content. This performance is generally better than 

the retrieval from empirical relationships. The ability to separate signals of different ice species and to provide their 30 

quantitative microphysical properties will open many research opportunities, such as secondary ice production studies and 

model evaluations for ice microphysical processes. 
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1 Introduction  

Ice-containing clouds play an important role in Earth’s radiation budget and global precipitation (Baran, 2009; Field and 35 

Heymsfield, 2015; Mulmenstadt et al., 2015; Li et al., 2014). Their formation and evolution involve processes of ice 

nucleation, ice multiplication, aggregation, and riming, which are closely linked to atmospheric conditions and dynamics 

(DeMott et al., 2011; Gultepe et al., 2017; Field et al., 2017; Korolev et al., 2020). Such complex interactions make it 

challenging to complete our understanding of these ice microphysical processes and represent them well in models (Korolev 

et al., 2017; Morrison et al., 2020).  40 

Polarimetric radar measurements contain information on ice properties and have been proven useful for studying ice 

microphysical processes (e.g., Kennedy and Rutledge, 2011; Grazioli et al. 2015; Moisseev et al., 2015). Many empirical 

relationships were developed to provide important bulk properties such as ice water content (e.g., Ryzhkov et al., 1998; Lu et 

al., 2015), median volume diameter and number concentration (e.g., Murphy et al., 2020), but they cannot inform the 

partitioning between ice species. The ability of the partitioning is of particular importance for studying the aggregation 45 

process, because it provides information on size and number concentration of pristine ice and aggregates. 

However, separating signals of pristine ice from aggregates in polarimetric radar data is challenging, because larger 

snow aggregates often dominate the radar reflectivity and mask contributions of smaller pristine ice crystals (Hogan et al., 

2002; Keat and Westbrook, 2017). As a result, information from horizontal reflectivity (𝑍! ) alone is insufficient to 

characterize mixtures of ice hydrometeors (Oue et al., 2018), and it is necessary to incorporate other radar observables in 50 

retrieval methods. By exploiting distinct fall behaviours between pristine ice and aggregates, Spek et al. (2008) used 𝑍!, 

differential reflectivity (𝑍"#) and Doppler spectrum to retrieve particle size distribution (PSD) parameters of pristine ice and 

snow aggregates. Without the use of Doppler spectrum, Schrom et al. (2016) used 𝑍!, 𝑍"#, and specific differential phase 

shift (𝐾"$) to estimate the PSD of pristine ice in the dendritic growth zone of Colorado winter storms. 𝐾"$ is a great addition 

in their approach, since it is mainly determined by ice number concentration. Unfortunately, these three radar observables 55 

remain insufficient, and their partitioning between pristine ice and aggregates was weakly constrained. To improve the 

partitioning, Keat and Westbrook (2017) showed that the relative radar signal contributions of pristine ice embedded in snow 

aggregate populations can be quantified using 𝑍!, 𝑍"#, and copolar correlation coefficient (𝜌%&), but they have not attempted 

to use their partitioning to provide quantitative retrievals of pristine ice number concentration, water content and particle 

size.  60 

The objective of the paper is to present an ensemble cloud retrieval method (dubbed ENCORE-ice) for simultaneously 

retrieving the number concentrations, sizes and ice water contents of concurrent pristine ice and snow aggregates from 

measurements of 𝑍!, 𝑍"#, 𝐾"$ and 𝜌%&. This framework provides full error statistics and characterizes sub species from 

radar signals, which is an advance to the existing methods. The polarimetric radar observations and the retrieval method are 

detailed in Section 2. The ancillary data sets for evaluations are introduced in Section 3. Section 4 presents evaluation results 65 
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using synthetic datasets and actual observations from Chilbolton, United Kingdom in 2018. Finally, section 5 summarises 

the key finding and discusses potential applications. 

2 Radar observations and ENCORE-ice 

2.1 Polarimetric radar data  75 

Our retrieval method uses four polarimetric observables. The first observable is the horizontal reflectivity 	𝑍! , which 

provides information on particle size and concentration, but its dependence on size is much stronger. As such, 𝑍!  is 

dominated by contributions from snow aggregates because their sizes, and thus their backscatter cross-sections, are typically 

much larger than those of pristine ice crystals. The second observable is the differential reflectivity 𝑍"#, which provides 

information on particle shape and orientation. A 𝑍"# of 0 dB indicates spherical particles because of equal backscattered 80 

power in each polarization. Snow aggregates yield low 𝑍"# (about 0–0.6 dB; see Hogan et al., 2012) as a result of their 

sparse and irregular morphology, with the component crystals oriented at a wide range of angles. In contrast, pristine ice 

particles can yield 𝑍"# of several dB because of their aspect ratios and preferential horizontal orientation when falling. 

Heterogenous regions with concurrent pristine ice and snow aggregates are therefore associated with higher 𝑍"# than if only 

snow aggregates were present. The third observable is the co-polar correlation coefficient 𝜌%&, the correlation coefficient 85 

between horizontally and vertically backscattered power, which provides information on the diversity of particle shape in a 

radar sample volume (Kumjian, 2013; Keat et al., 2016). 𝜌%& is unity in homogenous regions but tends towards lower values 

(e.g., ~0.97) in the presence of heterogenous hydrometeor types. Finally, the fourth observable is the specific differential 

phase shift 𝐾"$, which provides information on particle number concentration, shape, and orientation.  

Our case study is based on polarimetric radar data (Bennett, 2020) from the Parameterizing Ice Clouds using Airborne 90 

obServationS and triple-frequency dOppler radar data (PICASSO) field campaign in Chilbolton, UK in 2018–2019. During 

the campaign, the National Centre for Atmospheric Science mobile X-band dual-polarization Doppler weather radar (NXPol; 

Neely III et al., 2018) operated with 0.98° beam width, 150 m range resolution, and a maximum range of 150 km. The radar 

performed two back-to-back, fixed-azimuth range-height indicator (RHI) scans every 7 mins, and each scan completed in 18 

s. Throughout February 13, 2018, RHI scans were performed along the 243° radial and intercepted by the NCAS-managed 95 

Facility for Airborne Atmospheric Measurements (FAAM) aircraft on several occasions, providing a unique opportunity for 

evaluation. Key characteristics of NXPol are summarized in Table 1. 
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Table 1. Characteristics of the NXPol polarimetric radar. Further specifications and details can be found in Neely III et al. (2018). 105 
Parameter NXPol 

Center wavelength (mm) 31.98 

Transmit/receive polarization H+V/H+V 

Beamwidth (°) 0.98 

Pulse width (µs) 1 

Scan rate (° s–1) 5 

Sensitivity (dBZ) –11 (at 100 km) 

Maximum range (km) 150 

Gate Resolution (m) 150 

 

2.2 ENCORE-ice  

ENCORE is an ensemble-based retrieval method that has previously been used to retrieve three-dimensional cloud 

microphysical properties (Fielding et al., 2014) and one-dimensional cloud and drizzle properties (Fielding et al., 2015), but 

several key components are modified here for ice retrieval. 110 

2.2.1 Particle size distribution 

We approximate the PSD of pristine ice and aggregates by normalized Gamma distributions, given as (Testud et al., 2001):  

𝑛(𝐷) = 𝑁'𝑓((𝐷;𝐷'),  (1) 

where 𝑁' is the normalized number concentration, and 𝑛(𝐷)𝑑𝐷 is the number of particles in the range of the maximum 

particle dimensions (𝐷,𝐷 + 𝑑𝐷). The choice of the size descriptor in equation (1) is because in-situ cloud probe data and the 115 

ice scattering database are both given based on the maximum particle dimension. The function 𝑓( is defined as: 

𝑓((𝐷;𝐷') =
)

*.),!
∙ (*.),.()

!"#

0(1.() 1
2
2$2

(
∙ exp 3−(3.67 + 𝜇)

2
2$:, (2) 

where 𝜇 is the shape parameter of the PSD, and 𝐷' is the diameter used for normalizing 𝐷. Following Mason et al. (2018), 

we assume a constant shape parameter of 𝜇 = 2. Several studies have shown that the retrieved ice water content is relatively 

insensitive to the choice of shape parameter (e.g., Delanoë et al., 2005; Spek et al., 2008); we also found that our number 120 

concentration retrieval is not sensitive to 𝜇 either.  

From the PSD, the total ice number concentration (𝑁3) and the total ice water content (𝑞3) can be respectively computed 

by: 

𝑁3 = ∫ 𝑛(𝐷)𝑑𝐷
4
' = ∫ [𝑛$(𝐷) + 𝑛5(𝐷)]𝑑𝐷 =4

' ∫ 𝑁',$𝑓(@𝐷;𝐷',$A𝑑𝐷
4
' + ∫ 𝑁',5𝑓(@𝐷;𝐷',5A𝑑𝐷

4
' = 𝑁$ +𝑁5, and (3) 

Deleted: 𝑛125 

Deleted: concentration at a given maximum particle dimensions 𝐷

Deleted: !

Deleted: !



5 
 

𝑞3 = ∫ 𝑚(𝐷)𝑛(𝐷)𝑑𝐷
4
' = ∫ 𝑚$(𝐷)𝑛$(𝐷)𝑑𝐷

4
' + ∫ 𝑚5(𝐷)𝑛5(𝐷)𝑑𝐷

4
' = 𝑞$ + 𝑞5, (4) 

where 𝑛(𝐷) is the combined PSD from	𝑛$(𝐷) + 𝑛5(𝐷), and the subscripts 𝑃 and 𝐴 denote contributions from pristine ice 130 

and snow aggregates, respectively. 𝑚(𝐷) is the mass at a given maximum particle dimensions 𝐷. The mass-size relationship 

can be formulated as:  

𝑚(𝐷) = 𝑎𝐷7, (5) 

where 𝑎 and 𝑏 are the pre-factor and exponent, respectively. These coefficients depend on ice habit and have been estimated 

from past aircraft in-situ and surface observation as shown in Table 2. From the PSD, we also define and calculate the 135 

effective mean diameters (𝐷899) as: 

𝐷899 = ∫ ;(2)2!<2
%
$

∫ ;(2)2&<2
%
$

,  (6) 

which is the ratio of the 4th to the 3rd moment of PSD. To compare our retrieval with the empirical estimates (as discussed 

in Section 3), we also calculate an effective mean diameter using the equivalent melted diameter (𝐷=>?) as the size descriptor, 

defined as: 140 

𝐷899,=>? = ∫ ;(2'())2'()
! <2'()

%
$

∫ ;(2'())2'()
& <2'()

%
$

, (7) 

where  

𝐷=>? = 3
)@(2)
AB* :

+
& = 3

)C2,

AB* :

+
&
, and  (8) 

𝜌D is water density. 

 145 
Table 2. Examples of mass-size relationships (taken from Mason et al., 2018).  

Habit 𝒂 (g cm–b) 𝒃 Reference 

Stellar 0.00027 1.67 Mitchell (1996) 

Hexagonal columns 0.000907 1.74  

Broad branches 0.000516 1.80  

Sector-like branches 0.00142 2.02  

Bullet rosettes 0.00308 2.26  

Side planes 0.00419 2.3  

Hexagonal plates 0.00739 2.45  

Aggregates 0.0028 2.1  

Aggregates 0.0039 1.9 Szyrmer and Zawadzki (2010) 

Unrimed dendrites 0.001263 1.912 Erfani and Mitchell (2017) 
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Mixed (large-scale and convectively generated ice clouds) 0.007 2.2 Heymsfield et al. (2010) 

 150 

2.2.2 The basis of ENCORE-ice 

The state vector (𝒙, i.e., variables to be retrieved) for each ensemble member is defined as: 

𝒙 = @logE'𝑁',$
(FGE…I) , logE' 𝐷',$(

FGE…I) , logE'𝑁',5(
FGE…I) , logE' 𝐷',5(

FGE…I)  A, (9) 

where the superscript 𝑖 represents the index of the range gate, and the total number of gates to be retrieved is 𝐺. Let us use 𝑄 

members to form an ensemble, i.e.,  155 

𝐗 = P𝒙E,  … ,  𝒙JR  (10) 

such that the mean of 𝐗 represents the best estimate of the state vector, and the spread of the ensemble members around the 

mean represents the uncertainty in the best estimate.  

Using the Iterative Stochastic Ensemble Kalman Filter approach (Evensen et al., 2019), each ensemble member is 

updated based on: 160 

𝒙KC = 𝒙K
L + 𝑬K

L𝐰K,  (11) 

in which 𝒙K
L	and 𝒙KC are the prior and posterior ensemble member 𝑘, respectively, and  

𝑬K
L = V𝒙𝟏

𝒇 − 𝐗W𝒇, … , 𝒙𝑸
𝒇 − 𝐗W𝒇X  (12) 

is the initial ensemble matrix with the prior mean (𝐗W𝒇) subtracted, and 𝐰K  are weight vectors that are calculated from 

iteratively minimizing the following cost function:   165 

𝑱(𝒘K) =
𝟏
𝟐
𝒘K
Q	𝒘K 		+	

𝟏
𝟐 @𝒚 − 𝒉(𝒙K

L + 𝑬K
L𝒘K) − 𝜀KA

𝑻
	𝑹–𝟏	@𝒚 − 𝒉(𝒙K

L + 𝑬K
L𝒘K) − 𝜀KA. (13)  

In equation (13), the observation vector 𝒚 is defined as gate-by-gate radar observables: 

𝒚 = @𝑍!
(FGE,… ,I),  𝑍"#

(FGE,… ,I),  − ln𝐾"$(
FGE,… ,I) , − ln 𝜌!T(

FGE,… ,I)  A, (14) 

where 𝑍! and 𝑍"# are in dB. Radar observations at one range gate will influence the estimation of the state vector at another 

gate, if these two gates are within the pre-defined radius, which will be explained in more detail in Section 2.3. 𝒉(𝒙) 170 

represents the forward model for simulating polarimetric radar observables from the state vector 𝒙, and 𝜀K  is a random 

perturbation vector drawn from the observation error distribution, which is estimated to be Gaussian with mean zero and 

covariance matrix R (Evensen et al., 2019, with modification from Van Leeuwen, 2020). The covariance matrix 𝑹 is 

diagonal with standard deviations given in Table 3. 
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As detailed later in Section 2.3, the prior is assumed Gaussian, and there is no prior correlation between variables 𝑁',$, 

𝐷',$, 𝑁',5, and 𝐷',5. But there is correlation in the vertical (i.e., between gates) for each variable in our setup. We have also 

used a prior with large uncertainty, approximately 1–2 orders of magnitude in the state variables, such that the influence of 

the prior is minimal. In contrast to the prior, no Gaussian assumption is made in the posterior ensemble members, although 

the retrieval statistics are largely focused on their means and standard deviations. 180 
 

Table 3. Estimated observational errors for X-band observables based on standard and benchmark procedures, adapted from Bringi and 

Chandrasekar (2004; pp 359–376) and Wang and Chandrasekar (2009).  

Observable Description Uncertainty 

𝑍! Horizontal reflectivity  0.5 dBZ 

𝑍"# Differential reflectivity 0.05 dB 

𝐾"$ Specific differential phase shift *10% 

𝜌!% Co-polar correlation coefficient #1 %  

* estimated by the uncertainty of 0.05 ° km–1 for a typical value of 𝐾"$ = 0.5 ° km–1. 

# estimated by the uncertainty of 0.01 for 𝜌!% = 0.95. 185 
 

 

2.2.3 Simulating radar observables for 𝒉(𝒙) 

To model polarimetric radar observables from the assumed PSD, knowledge of the single scattering properties of ice 

particles is required. Many scattering databases of realistically shaped ice particles at radar wavelengths are available and we 190 

used Lu et al. (2016) because of the following considerations. Several existing scattering databases assume total random 

orientation of the scatterers, e.g., Liu (2008), Hong et al. (2009), Kuo (2016) and Eriksson et al. (2018). Such assumption 

cannot explain polarimetric radar signals which are produced by non-spherical scatterers with preferred orientations with 

respect to the zenith direction. The database of Brath et al. (2020) assumes scatterers possess arbitrary fixed orientations 

relative to the zenith direction, but only includes hexagonal plates and aggregates consisting of hexagonal plates. We found 195 

that the database described in Lu et al. (2016) fits our needs in the current polarimetric radar study, since it contains all 

necessary polarimetric scattering data in many fixed orientations of a large variety of ice crystal species, including plates, 

columns, dendrites, and aggregates. The single scattering properties for each species are available for a range of crystal 

maximum dimensions, thickness ratios, and types. The pristine habits generally begin at ~0.1 mm and do not exceed 6 mm, 

whereas the aggregates begin at ~0.4 mm and extend to 18–45 mm approximately. Multiple morphological realizations per 200 

maximum dimension are available for dendrites and aggregates to account for their complexities. Note that for a given size, 

natural aggregates may have substantially different properties compared to the realizations available in the database. 

The scattering calculations were conducted using the generalized multi-particle Mie method (GMM; Xu, 1995) and the 

discrete dipole approximation (DDA; Yurkin and Hoekstra, 2011). We used properties calculated from GMM, because DDA 
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calculations are not available for aggregates. Specifically, we use the amplitude scattering matrix elements in the forward 205 

and backward direction for horizontally and vertically polarized radiation, denoted as 𝑆UU
L,7 and 𝑆VV

L,7 where the superscript and 

subscript respectively represent the scattering direction (i.e., forward or background) and the polarization status (horizontally 

or vertically). From the assumed PSD and the amplitude scattering matrix elements, radar observables for a single sample 

volume containing multiple ice particle habits can be derived as shown in Appendix A. 

2.3 Practical considerations  210 

There are several practical considerations for ENCORE-ice implementation. The first consideration is ice habit. The 

scattering database provides three habits (plates, dendrites, and columns) for pristine ice. Since the temperature found in 

PICASSO mostly ranged between –5°C and –25°C, all three types of pristine ice can be the preferred habit (see examples in 

Fig. 1). Currently, we do not predetermine the ice habit. Instead, we ran our retrieval algorithm for all three habits 

independently, and then selected the most appropriate one based on the agreement in the measured and forward simulated 215 

radar observables.   

Similarly, the scattering database provides five types of aggregates; two of them were constructed using ice columns 

(LD-N1e and HD-N1e), three of them using stellar ice crystals (LD-P1d, LDt-P1d and HD-P1d). Each aggregate in the 

database (Lu et al., 2016) was generated by first specifying a reference spheroid with a given horizontal maximum 

dimension and an aspect ratio of 0.6, defined as the ratio of the lengths of the polar axes to the equatorial axes. Then, small 220 

monomers were added to the reference spheroid one at a time; any parts of the monomer that were outside the reference 

spheroid were removed. This procedure was repeated until the mass of the aggregate reached the desired total mass. As a 

result, the aspect ratio of the aggregate generated in the database was not necessarily the same as the reference spheroid (0.6). 

Figure 2 shows the average aspect ratios for aggregate types available in the database, which were calculated by 

averaging ratios of the maximum vertical dimension to the maximum horizontal dimension for all realizations within one 225 

size bin. Compared to Garrett et al. (2015) and Jiang et al. (2017) that reported an aspect ratio range between 0.3 to 0.6 from 

observations of falling aggregates at the surface, we found that LDt-P1d and HD-P1d exhibit a similar aspect ratio range. In 

the mass-size relationship for LDt-P1d we used a= 0.000482 and b= 1.97 in units of cgs as in Table 2, based on aggregates 

composed of ordinary dendritic crystal (Kajikawa, 1989; Botta et al., 2011), whereas for HD-P1d we used a=  0.00145 and b 

= 1.80 in units of cgs, based on aggregates of thin plate (Mitchell and Heymsfield, 2005; Botta et al., 2011). The mass-size 230 

relationship of HD-P1d is very close to unrimed aggregates (Erfani and Mitchell, 2017) and more aligned to values in the 

recent literature listed in Table 2. Hence, we select HD-P1d as the prescribed choice for aggregates.  
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Figure 1. Examples of particle images from the Stratton Park Engineering Company Two-Dimension Stereo (2DS) probe, showing the 
presence of (a) column, (b) plate and (c) aggregates of dendrites on 13 February 2018. Each image frame is 1.28 mm high, taken from one 
of the probe channels only since the other channel was not working properly on this day.  255 
 

 
Figure 2. Aspect ratios of various aggregate types available in the scattering database as a function of their maximum dimensions. Aspect 
ratio is defined as the ratio of the sizes of the minor axes to the major axes. The grey shading between 0.3 and 0.6 represents the typical 
range of snow aggregate aspect ratios observed in nature (Garrett et al. 2015; Jiang et al. 2017). 260 
 

The second consideration is the prior used to generate the first guess for ensemble members. Using over 70 hours of in-

situ aircraft observations from a wide range of field campaigns spanning diverse cloud and temperature regimes, Delanoë et 

al. (2014) characterized the PSDs of ice particles by the normalized Gamma distribution. They found that 𝑁' ranged between 

1 L–1 mm–1 and 10,000 L–1 mm–1 with a mean 100 L–1 mm–1, and the median volume diameter (MVD) ranged between 0.2–265 

0.8 mm with a mean of 0.5 mm for the temperature zone of –10°C to –20°C. Additionally, Tiira et al. (2016) analysed 

surface measurements of ice particle number concentration from the Precipitation Imaging Package during the Biogenic 
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Aerosols – Effects on Clouds and Climate field campaign. They found that 𝑁' ranged mainly from 1 L–1 mm–1 to 100 L–1 270 

mm–1 and MVD ranged from 0.5 mm to 5 mm. As these were surface based, the measured PSDs from Tiira et al. (2016) are 

more representative of the characteristics of snow aggregates. Note that these values were derived using the equivalent 

melted diameter as the size descriptor, not the maximum particle dimension. Hence, these values are used only to point out a 

possible range and serve as a starting point for us to construct the prior.  

Based on these observational ranges mentioned above, our prior is designed as follows. We started with the lowest radar 275 

gate, randomly assigning (𝑁',$, 𝐷',$, 𝑁',5, 𝐷',5) from normal distributions with the means and standard deviations listed in 

Table 4. Next, we applied a slope for each ray to provide initial guesses for other radar gates. The slope was randomly 

selected from a normal distribution described in Table 4. Because the prevalence of active ice nuclei is a function of 

temperature and thus a function of height as well (DeMott et al., 2010), 𝑁',$ likely increases with height and thus the slopes 

in the prior are assumed to have a positive mean. In contrast, the dependence of 𝐷',$, 𝑁',5, and 𝐷',5 on height is less clear 280 

(e.g., Field et al., 2005). For practical reasons, the slopes applied for 𝐷',$, 𝑁',5, and 𝐷',5 are assumed to have a slightly 

negative mean. The slightly negative slope avoids unrealistic priors for radar gates at higher altitudes since we used the 

logarithm form in the state vector. Finally, red (AR1) noise was added over the vertical with a correlation coefficient of 

0.999 and a zero-mean random perturbation with a standard deviation that is half that of the lowest radar gate. Note that 

without this noise term each ensemble member would be a straight line in the vertical for each variable with a different 285 

slope. Since the fundamental idea behind ensemble retrievals is that the true atmospheric profile is drawn from the same 

distribution as the prior ensemble members, and we know the true atmospheric profile is not a straight line, we add random 

noise with non-zero vertical correlation to each ensemble member profile to make each of them more realistic.  

 
Table 4. The prior and uncertainty used in ENCORE-ice. The means at lowest radar gate are given in the physical state space, and the rest 290 
are in the transformed state space (i.e., log&'). Retrieval is performed using two different sets of the prior; the second set uses values in the 

parenthesis and the rest remain unchanged. All radar gates above the lowest gates are perturbed by an AR1 red noise process with a 

vertical correlation of 0.999 and a standard deviation that is half of the standard deviation at lowest gates.     

 Pristine Ice Aggregate 

Variable 𝑁',$ 𝐷',$ 𝑁',) 𝐷',) 

Value at lowest radar gate     

Mean 50 (or 5) L–1 mm–1 1 mm 5 L–1 mm–1 4 (or 1) mm 

Standard deviation 0.15 0.3 0.15 0.3 

Slope in the vertical     

Mean (km–1) 1 –0.5 –0.5 –0.5 

Standard deviation (km–1) 0.2 0.02 0.2 0.02 
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Compared to values reported in Delanoë et al. (2014) and Tiira et al. (2016), we have chosen lower means for 𝑁',$ and 

𝑁',5 to start with. This is because the state vector space is the logarithm of 𝑁'. Positive slopes make the changes of 𝑁' much 

more dramatic in the vertical than those with negative slopes. As a result, large starting values of 𝑁',$ and 𝑁',5 will lead to 325 

unrealistic high concentrations at higher altitudes in the prior. In contrast, we choose larger means for  𝐷',$ and 𝐷',5, because 

of the assumed negative slopes in both 𝐷',$ and 𝐷',5. In general, the range in our prior is large, approximately 1–2 orders of 

magnitude across all ensemble members over the entire vertical profiles. For such a wide-spread prior the solution will be 

dominated by the observations. 

The third consideration is the number of the ensemble members used in the ENCORE-ice. Ideally, a large ensemble size 330 

is needed to ensure that the sampled prior is representative and so is the solution. However, a large ensemble size is 

computationally expensive. Therefore, we applied a localization scheme to reduce the required number of ensemble 

members so that we shorten the computational time while achieving the same mean retrieval and associated uncertainty. The 

localization scheme operates on each gate and takes only observations close to that gate into account to find the solution. 

This is implemented by multiplying the observation error variance of each observation with an exponential function of the 335 

distance between that observation and the gate that is being updated, such that observations far from the gate have less 

influence. The influence radii vary linearly with height, one gate at the lower level and about five gates at the upper level. 

Using our synthetic datasets, we have found that 50 ensemble members with the localization scheme is able to produce 

similar mean retrievals and associated uncertainty as a non-localized ensemble of size 500. The number of iterations is set to 

20, although the solutions often have converged at the 10th iteration.   340 

Finally, all radar data underwent the following quality checks and corrections before being used for retrieval: 

• 𝑍!  and 𝑍"#  were corrected for attenuation due to liquid water, using the method described in Bringi and 

Chandrasekar (2001, Page 490–512). The attenuation due to ice at X-band is negligible and thus ignored here 

(Vivekanandan et al., 1999).  

• Systematic biases in 𝑍"# were identified using zenith-pointing 𝑍"# observations. As hydrometeors produce 𝑍"# of 345 

0 dB when viewed at zenith due to their spherical symmetry (e.g., for raindrops) or lack of preferential azimuthal 

orientation (e.g., for ice particles), any residual 𝑍"# can be treated as bias and removed (Seliga et al., 1981). We 

have found the 𝑍"# correction factors to be 0.2 dB for the PICASSO cases.  

• 𝐾"$ is calculated using the method of Wang and Chandrasekar (2009). 

• Once all corrections are applied, measurement noises were removed using a cubic spline approach (Craven and 350 

Wahba, 1979). 

Additionally, to ensure that gates are associated with sufficient information for our method, we exclude gates that exhibit one 

or more of the following: 

• Gates within 500 m of the 0°C level, avoiding contamination from liquid hydrometeors in the radar sample 

volume, because our state vector is not designed for that.  355 
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• Gates where 𝜌!T exceeds 1.0, because these values are unphysical.  

• Gates with a signal-to-noise ratio (SNR) less than 20 dB, because of a lack of detectable hydrometeors. This 

threshold is chosen because the precipitating region and its surrounding area typically have SNR values larger than 

30–40 dB.  360 

• Radar rays with elevation angles greater than 50°,  because 𝑍"# tends towards 0 dB at higher elevation angles and 

polarimetric information becomes ambiguous.  

• Gates with 𝑍"# below 0.25 dB, regardless of their elevation angles, because the relative contributions of pristine 

ice and aggregates become ambiguous at lower values, as indicated in Keat and Westbrook (2015).  

• Gates with 𝐾"$ below 0.1 ° km–1 to ensure a sufficient number concentration of pristine ice. Note that negative 365 

𝐾"$ values indicate the presence of conical graupel (Aydin and Seliga 1984) or the vertical reorientation of 

pristine ice crystals in the presence of thunderstorm electric fields (Hubbert et al. 2014). Since our state vector only 

includes aggregates and horizontally orientated pristine ice, we exclude such gates as well.  

3 Independent observations and retrievals for evaluations 

3.1 In-situ aircraft measurements from PICASSO 370 

During PICASSO, the FAAM aircraft performed multiple transects from Chilbolton to Dorset (50.82 °N, 2.56 °W) at varied 

altitudes. Figure 3 depicts the flight path for 13 February 2018, which was a typical pattern during the campaign.  

 
Figure 3. Flight paths on 13 February 2018 between 3:26 UTC and 10:21 UTC. The red dot denotes the location of NXPol in Chilbolton, 
UK, while the path in cyan denotes the path during 6–9 UTC in which retrievals are evaluated in Section 4.2. 375 
 

To evaluate our cloud retrieval, we use in-situ measurements of liquid water content and total water content (i.e., the 

sum of ice and liquid water contents) from a Nevzorov probe, and PSD measurements from a High-Volume Precipitation 

Spectrometer (HVPS, SPEC Inc, USA). The HVPS is an optical array particle imaging probe, which collects images of ice 

crystals with a pixel resolution of 150 μm. Size distributions of particles between 75 and 19275 μm were derived from their 380 
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images and reported here using the maximum particle dimension as the size descriptor. A description of the data processing 385 

and quality control can be found in Crosier et al. (2011), and the sources of uncertainties were discussed in O’Shea et al. 

(2021). All in-situ datasets were averaged to 5 s intervals for statistical reliability (Protat et al., 2007). We only use in-cloud 

samples, defined as having an ice water content (IWC) greater than 0.01 g m–3. Additionally, although our retrieval provides 

microphysical properties of pristine ice and aggregates separately, we focus on evaluating bulk properties to avoid the 

ambiguity introduced by applying a threshold to separate these two species in observed PSDs. 390 

Three bulk properties are used for evaluations. Firstly, the total ice number concentration (denoted as 𝑁3,!T$W ) is 

calculated by integrating the observed PSD. The associated counting uncertainty is estimated as: 

E''%

YZ-,/012	∙	]/012	∙	∆_
, (15) 

where ∆𝑡 is the HVPS sampling time resolution, and 𝑉!T$W is the sample volume, approximately 310 L s–1. Secondly, IWC, 

denoted as 𝑞3,`aT , was derived by taking the difference between the total and liquid water contents measured by the 395 

Nevzorov probe. Similar to Abel et al. (2014), both the total and liquid water contents were corrected for changes in aircraft 

altitude and environmental conditions. Finally, effective mean diameters from HVPS PSDs, 𝐷899,!T$W, defined as: 

 𝐷899,!T$W = ∫ ;/012(2)2!<2
%
$

∫ ;/012(2)2&<2
%
$

. (16) 

were calculated, using the same definition as equation (6). 

The evaluations in the total ice number concentration, ice water content, and effective mean diameter all together allow 400 

us to indirectly examine whether the partitioning between pristine ice and aggregates is appropriate. A more direct 

comparison would be ideal but requires classifying each individual particle in image data, which is not trivial and beyond the 

scope of this work.  

3.2 Bulk ice properties from empirical relationships 

As mentioned in Sec. 1, several studies have proposed empirical relationships for estimating IWC, particle size, and ice 405 

number concentration. In this study, we compare our retrieval with estimates from Ryzhkov and Zrnic (2019), because of 

their availability of the ice number concentration estimates. The relationships in Ryzhkov and Zrnic (2019) were based on 

theoretical calculations, using an assumed exponential size distribution for twelve ice habits. Their method takes advantage 

of the features that the reflectivity difference between horizontal and vertical polarization (𝑍"$) is proportional to the third 

moment of PSD and that 𝐾"$ is proportional to the first moment of PSD. As a result, the ratio of 𝑍"$ to 𝐾"$ is proportional 410 

to the second moment of the PSD and can be used to estimate the mean volume diameter of ice particles (Murphy et al. 

(2020): 

𝐷8=b = −0.1 + 21
c31
d31e2

+
4. (17) 
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where 𝐷8=b is the mean volume diameter in mm with the subscript emp denoting empirical estimates; 𝑍"$ is in units of mm6 

m–3; and  𝐾"$ is in ° km–1. Murphy et al. (2020) also estimated the number concentration and IWC using:  

logE'𝑁8=b = 0.1𝑍! − 2 logE'
c31
d31e

− 1.11;  (18) 

𝑞3,8=b = 0.0041
d31e

Efc356+2.  (19) 

where 𝑁8=b and 𝑞3,8=b are in units of L–1 and g m–3, respectively; 𝑍! is in units of dBZ; 𝑍"# is unitless, and l is the radar 425 

wavelength in mm. For convenience, we refer to retrievals from these empirical relationships as “Murphy20” hereafter. 

Based on the evaluation conducted by Murphy et al. (2020) for a stratiform region of a mesoscale convective system over 

Oklahoma, 𝑁8=b  scatters significantly with respect to in-situ measurements; 𝑞3,8=b  and 𝐷8=b  tends to be systematically 

biased low, but outperformed other empirical relationships. Since, in theory, these derived relationships are not sensitive to 

ice particle shape and orientation, they remain a good starting point for intercomparisons. 430 

Note that these empirical relationships are designed for radar volumes that only include one species. Hence, if a radar 

volume is known to include a mixture of different species, caution should be exercised when interpretating their results. 

Additionally, equation (17) was derived using equivalent volume diameter as the size descriptor in PSD, and thus 𝐷8=b 

cannot be used directly for comparisons to our retrieval that is based on maximum particle dimension as the size descriptor. 

Instead, we need to trace back their derivations to find their retrieved PSD, convert the equivalent volume diameter to the 435 

equivalent melted diameter (𝐷=>? ), and then calculate the effective mean diameter (𝐷899,=>? ) using equation (7) for 

intercomparisons. The details can be found in Appendix B. 

4 Results 

4.1 Evaluation using synthetic data 

In this section we use synthetic polarimetric radar data to evaluate our retrieval and identify any potential issues. The 440 

synthetic dataset was generated as follows. We first generated 501 profiles from the prior used in the ENCORE-ice, and then 

randomly selected a profile that has a relatively wide range of 𝑍!  and 𝑍"#  for testing. Along with the forward model 

described in Section 2.2.3, this selected profile is used to generate synthetic radar measurements and serves as the “truth” in 

this evaluation experiment. Because the truth profile and the initial ensemble members were generated from the same prior 

and used the exact same forward models, any retrieval error found in this experiment is due to the combination of the 445 

observed uncertainty and the retrieval method itself only. Hence, the design of this experiment does not allow us to evaluate 

errors due to the representativeness of forward models or the prior, which likely exist in real world applications.  

Figure 4 shows the synthetic radar measurements over 20 gates with a resolution of 50 m at a given elevation angle of 

30°, based on the truth profile shown in Fig. 5. The chosen number of gates is arbitrary but represents a frequent scenario in 
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the radar scans collocated with in-situ data during PICASSO. In this scenario, the total ice number concentration is 450 

dominated by pristine ice, and the total ice water content is dominated by aggerates. The truth has a 𝑁$ range between 5–20 

L–1, and a 𝑁5 range between 1–3 L–1; 𝐷',$ ranges between 0.4–1 mm, while 𝐷',5 ranges ~2–5 mm. The combined 𝐷899 varies 

from 1.5 mm to ~5 mm, generally close to 𝐷',5 as expected, since it is weighted by size to the third power and mainly 

controlled by the species with large particle sizes. 

The forward-modelled observables of the ENCORE-ice solution in Fig. 4 agree well within the uncertainty of the 455 

synthetic values, providing confidence in retrievals. As shown in Fig. 5, the retrieval captures the vertical trend of the truth; 

the retrieval uncertainty estimated from the spread of the ensemble members also appear reasonable, since the truth falls 

within the retrieval uncertainty. Because many combinations of 𝑁',5  and 𝐷',5  could lead to the same 𝑍! , we see some 

compensating effects between 𝑁',5 and 𝐷',5 in aggregates at the lower layer. The errors are compensated so that the error in 

the total ice water content is not enhanced, as shown in Table 5. Overall, the retrieval biases in the combined total number 460 

concertation, water content, and effective diameter properties are within 5%, and the root-mean-square-errors are small (see 

Table 5).  

To conclude, this evaluation experiment demonstrates that the combination of these four radar observables is appropriate 

and the current observational uncertainty is sufficient for us to separate signals of pristine ice from aggregates. The errors in 

retrieved pristine ice properties are small, and thus further physical interpretation based on the associated vertical profiles 465 

can be made to understand the underlying microphysical processes. For aggregates, the errors in retrieved size diameter and 

water content are small, but the vertical variations of retrieved number concentration may not follow the truth exactly due to 

the possible compensating effects between number concentration and particle size.  
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 470 
Figure 4. Profiles of (a) 𝑍!, (b) 𝑍"#, (c) 𝐾"$ and (d)	𝜌!% for synthetic observations (black line) calculated from the ice cloud properties 
given in Fig. 5, and for the mean of forward simulations from the ensemble (red dots). Grey shading denotes the observational 
uncertainties given in Table 3, while error bars in orange denote retrieval uncertainty calculated as the one-standard deviation spread of the 
ensemble simulations. 
 475 
 
 
Table 5. Truth means, and the means, root-mean-square-error (RMSE), and biases in retrieval in the synthetic dataset experiment.  

 Ice number concentration 

(𝑁$,	𝑁*; L–1) 

Normalization diameter    

(𝐷',$, 𝐷',*; mm) 

Total number 

concentration 

(𝑁+; L–1) 

Total ice 

water content 

(𝑞+;	g m–3) 

Combined 

effective diameter 

(𝐷,--;	mm)  Pristine ice Aggregate Pristine ice Aggregate 

True mean 13.270  0.882 0.677 3.165 14.152 0.139 2.965 

Ret. mean 12.836  0.988 0.692 3.127 13.824 0.145 2.927 

RMSE 0.87  0.22 0.03 0.14 0.74 0.01 0.12 

Bias (%) –3.3  12.0 2.2 –1.2 –2.3 4.3 –1.3 
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 480 
Figure 5. Profiles of (a) normalized number concentration and (b) normalization diameter for pristine ice, (c) normalized number 
concentration and (d) normalization diameter for aggregates. (e) represents the total number concentrations and (f) represents ice water 
contents of pristine ice and aggregates. Truth is denoted by black solid lines in (a)–(d), and by dashed lines in (e) and (f). The retrieved 
ensemble means are denoted by solid blue and red lines with shading that represents the one-standard deviation spread of the ensemble 
members. The habit of pristine ice is plate in this experiment.  485 
 

4.2 Evaluation using PICASSO data  

The case of 13 February 2018 from the PICASSO campaign represents a stratiform precipitating cloud system 

associated with a frontal passage. Using a radar scan at 8:37 UTC as an example, Fig. 6 shows a significant area with 

reduced 𝜌!T, and enhanced 𝑍"# and 𝐾"$ at ~3 km height, which suggests the presence of enhanced pristine ice embedded in 490 

snow aggregates. Based on the temperatures measured by the aircraft (Fig. 7), this area is in a temperature zone 

approximately between –12°C and –18°C, and thus the preferred ice habit is likely to be dendrite and plate for this radar 

scan. During this radar scan, FAAM was too far away to provide meaningful comparison, but cloud images showed that 

dendrites were present most of time during this period. 

Figure 8 shows detailed retrieval performance for a ray taken from the radar scan in Fig. 6. For this case, retrievals using 495 

the dendrite habit perform best; the habit suggested by our retrieval is consistent with observed particle images. As shown in 

Figs. 8(a)–(d), the forward modelled radar observables agree well with the observed vertical profiles. The normalization 

diameters for pristine ice and aggregates (𝐷',$, 𝐷',*) are about 2.5 mm and 5–6 mm, respectively. Retrieved 𝑁3 is relatively 
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constant at ~5 L–1, due to the opposite vertical variations between 𝑁$  (increasing with height) and 𝑁5  (decreasing with 

height). In contrast, 𝑞3 decreases with height from 1 g m–3 to 0.2 g m–3, because both 𝑁5	and 𝐷',5 decrease with height.   

 

 
Figure 6. Height-range plots of observed (a) 𝑍!, (b) 𝑍"#, (c) 𝐾"$ and (d) 𝜌!% from the RHI scan at 8:37 UTC on 13 February 2018 during 505 
the PICASSO field campaign. The red dashed line denotes the 0°C level, while the black dashed line denotes the approximate flight 
altitude of FAAM during the scan. The black polygon denotes the region that has enhanced 𝑍"# and 𝐾"$, and reduced 𝜌!%. 
 

 
Figure 7.  A temperature profile composited from aircraft in-situ data during 6–9 UTC on 13 February 2018. Data between 6:33:30 – 510 
6:39:20 UTC were unphysical (see Fig. 9b) and thus excluded. The error bars represent one standard deviation of sampled observations. 
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Figure 8. Retrieval performance for a radar ray at 8:37:39 UTC. Observed and forward simulated profiles of (a) 𝑍!, (b) 𝑍"#, (c) 𝐾"$ and 
(d) 𝜌!%. The shading in (a)–(d) represent the observational uncertainty. The red dots represent the mean of the ensemble simulations, and 515 
the error bars represent one standard-deviation in forward simulations. (e)–(j) represent the retrieved mean normalized pristine ice number 
concentration, pristine ice normalization diameter, normalized aggregate number concentration, aggregate normalization diameter, the total 
number concentrations, and the total ice water content, respectively. (k) and (l) represent the individual and combined effective mean 
diameters using the maximum particle dimension and the equivalent melted particle size as the size descriptor, respectively. The shading in 
(e)–(l) represent one standard deviation uncertainty in retrieval. For comparisons, retrievals from Murphy20 are co-plotted in (i), (j) and 520 
(l). 

 

Compared to Murphy20 retrievals, a few findings stand out. Firstly, retrieved 𝑞3 profiles from two methods follow each 

other closely. This is not surprising, because both 𝑞3  are largely constrained by the same 𝑍!  observations. Secondly, 

retrieved 𝑁3 from Murphy20 is much larger than that from ENCORE-ice. These results suggest that Murphy20 has attributed 525 

all radar signals to one species like our pristine ice. Due to the smaller size of pristine ice compared to aggregates, retrieved 

𝑁3 from Murphy20 must be much larger than ENCORE-ice to make up for the same 𝑞3. This also explains why 𝑁3 and  𝑞3 in 

Murphy20 retrievals have similar profile shapes. Considering that the observed 𝜌!T is not close to 1, the attribution to single 

species is likely inappropriate, leading to a large error in ice number concentration, even though 𝑞3 may seem reasonable. 
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Finally, 𝐷899,=>?, the effective mean diameter using the equivalent melted diameter as the size descriptor, from Murphy20 

tends to be larger than that from ENCORE-ice. This is partly because Murphy et al. (2020) have used denser ice particle, i.e., 535 

the pre-factor and the exponent in their mass-size relationship are both slightly larger than our aggregates. Since 𝐷899,=>? 

depends on the assumed mass-size relationship, Fig. 8(l) is used for a qualitative comparison only.     

Extending the evaluation from one ray to collocated data, a set of thresholds for matching space and time is needed. 

Since the enhanced area in Fig. 6 is about 15-km wide and 1-km deep, we use this scale as one of our criteria and consider 

in-situ observations and radar gates collocated if their distance is within 15 km in the horizontal and 1 km in the vertical. The 540 

time difference threshold for collocation is set to be within 3.5 mins, because a pair of back-to-back radar RHI scans were 

performed every 7 mins (see Sec. 2). These spatial and temporal thresholds lead to six clusters of radar scans for 

intercomparison, which comprises 105 rays with a total of 1675 gates. For a given ray, if the root-mean-square-difference 

between the measured and the forward simulated radar observable is greater than 0.1 dB in 𝑍"#, 0.1 ° km–1 in 𝐾"$ , or 0.01 

in 𝜌!T, we consider that the retrieval quality for the entire ray is poor and exclude all the retrievals. After this exclusion, 81 545 

rays with 1237 radar gates remain for the evaluation. Most unsuccessful retrievals are likely due to an inappropriate prior. To 

make the retrieval method work for those unsuccessful cases, we may need to assume priors with different shapes of vertical 

profiles. Unfortunately, we do not have good knowledge of those shapes and will need to rely on future campaigns to help 

gather this information by taking frequent multiple-layer flights around the radar site. 

Figure 9 shows the time series of in-situ observations and collocated retrievals. We expect column ice crystals in the 550 

beginning and very end of the time series, because of the measured temperature zones higher than –10°C. The flight height 

was maintained at ~2 km from 6:30 to 6:40 UTC, suggesting that the missing temperatures due to a data glitch at ~6:40 UTC 

are likely to be about –5°C. During 7:10–8:45 UTC, the temperatures are between –10°C and –20°C and likely favour the 

presence of both dendrite and plate. These expectations about prevalent ice habits are confirmed by visually checking the in-

situ cloud particle images (see Fig. 1 for examples).  555 

In our retrievals, 40% of the collocated radar observables are best fit with plate as the pristine ice habit, 20% with 

dendrite, and 40% with columns. In general, when the cloud particle images were dominated by columns, indeed, we have 

also found that retrievals with columns as the pristine ice habit provide the best agreement between the measured and 

forward-simulated radar observables. In the period between 7UTC –8:45 UTC when dendrites appeared much more 

frequently than plates in cloud particle images, our retrievals suggest the opposite, because 40% of best-fit retrievals are 560 

associated with plates and only 20% of best-fit retrievals are associated with dendrite. Therefore, we consider there remains a 

large uncertainty in distinguishing plate and dendrites using our retrievals. Note that even with this habit uncertainty, the 

choice of plate and dendrite does not lead to significantly different retrievals in 𝑁3 and 𝑞3. 

The collocated retrievals in Fig. 9c and 9d show that 𝑁3 retrieved from ENCORE-ice is approximately in the same order 

of magnitude as observations, and that the retrieved 𝑞3 values are close to the Nevzorov probe observations. 𝑁3 and 𝑞3 from 565 

ENCORE-ice generally perform better than those from Murphy20, but they are both overestimated as indicated by the box 
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plots in Fig. 10. The overestimations in the median of 𝑁3  and 𝑞3  are respectively 98% and 44% for ENCORE-ice, and 

respectively 445% and 187% for Murphy20. Note that Murphy20 retrievals in 𝑁3 and 𝑞3 are based empirical relationships 

derived from size bins between zero and infinity, while HVPS- and ENOCRE-ice-based estimates are derived using HVPS 

size bins from between 75 and 19275 μm. This difference in size ranges is not a concern for comparisons in 𝑞3, but it 

contributes to part of the overestimation in 𝑁3 in Murhpy20 retrievals. Using our retrieved PSD, we have found that the 590 

median 𝑁3 derived from zero and infinity size bins is ~3% larger than that derived from the HVPS size range. This suggests 

that the difference in the size range for integration calculations is not the main cause for the 445% overestimation in 

Murphy20 𝑁3  retrievals. Additionally, similar to Fig. 8(l), Murphy20 𝐷899,=>?  tends to be larger than our 𝐷899,=>?  from 

aggregates by 0.3 mm in the overall median, as shown in Fig. 9(f) and 10(d). 
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 595 
Figure 9.  Time series of (a) flight altitude, (b) temperature, observed and retrieved (c) total ice number concentration, (d) ice water 
content, (e) effective mean diameter using the maximum particle dimension as the size descriptor, and (f) effective mean diameter using 
the equivalent melted diameter as the size descriptor. Retrieval from ENCORE-ice and Murphy20 empirical relationships are denoted by 
dots, explained by detailed legends. The dots represent the median of retrieval from all collocated gates, and the vertical bars denote the 
range between the 25th and 75th percentiles. Note that the counting uncertainty in total ice number concentration in (c) is plotted but too 600 
small to see. All calculations are based on the size range of HVPS observations, except Murphy20 retrievals in (c) and (d). For 
convenience, we index six retrieval clusters from 1 to 6 as shown in (d).  
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Figure 10.  Box plots of in-situ observations and retrievals from ENCORE-ice and Murphy20 for (a) total ice number concentration, (b) 605 
ice water content, (c) effective mean diameter using the maximum particle dimension as the size descriptor, and (d) effective mean 
diameter using the equivalent melted diameter as the size descriptor. The bottom and top of each box represent the 25% and 75% quartiles, 
and the line inside the box represents the median. The whiskers mark represents the range of data points within 1.5 times the interquartile 
distance. The included sample sizes for in-situ data and radar gates are 347 and 1237, respectively. 

 610 

Recall per equations (6) that the effective mean diameter is weighted by size and thus strongly influenced by large 

particles. When observations sample both pristine ice and aggregates, the combined mean particle size is expected to be 

close to the size of aggregates, not pristine ice. The results in Fig. 9(e) generally match this expectation, showing a 

reasonable agreement between the observed and the combined mean diameter, except three data clusters during the period 

between 7:30 and 8:45 UTC. For Cluster 5 around at 8:45 UTC, 𝐷899 from HVPS has a large variation, ranging between 1.4 615 

and ~5 mm with a median of 2.8 mm. This range is in the same order of median 𝐷899 of pristine ice (1.5 mm) and of 

aggregates (~5 mm), though the median combined 𝐷899 of 4.7 mm is significantly larger than the observed median. For 

Clusters 3 and 4 between 7:30 and 7:45 UTC, the observed effective mean diameter is closer to the retrieved pristine ice 

diameter. This unexpected behaviour might suggest a few scenarios, which are discussed in detail next.  

The first scenario is that the radar volume might include pristine ice only or aggregates only. However, as shown in 620 

Murphy20 retrievals, assuming single species leads to a large error in 𝑁$. The observed 	𝜌!T is also too low to support this 

scenario. The second scenario is that the separation between pristine ice and aggregates in our retrieval is inappropriate. To 

assess this possibility, we tested various combinations of 𝑁' and 𝐷', and found that the following two conditions must be 

met for the combined size to be close to the size of pristine ice. The first is that 𝑁$ needs to be at least one order of the 

magnitude larger than 𝑁5, and the second is that 𝐷',$ cannot be much smaller than 𝐷',5. To meet the first condition, let us 625 

assume that our retrieved 𝑁5 is supposed to be 10 times smaller, because our retrieved 𝑁$ from ENCORE-ice is already 
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overestimated compared to the in-situ observations and should not be even higher. Under that assumption, 𝐷',5 needs to 635 

increase by a factor of 1.5 to maintain the same radar reflectivity observation. An increase in 𝐷',5, however, would make the 

difference between 𝐷',$ and 𝐷',5 even larger, which violates the second required condition. The combination of reduced 𝑁5 

and increased 𝐷',5 by the factors used above would also reduce 𝑞3 by a factor of 3. Then, to make up for the reduction of 𝑞3, 

one can increase 𝐷',$ to remediate the second required condition. This eventually leads to a scenario that two species are 

alike, as the first scenario, which is not supported by the observations.  640 

The third scenario is that the discrepancy in 𝐷899  is due to a sampling issue. Figure 11 shows two-dimensional 

histograms of occurrences of the vertical and horizontal distance in the collocated in-situ and radar dataset. The distance was 

calculated with respect to radar gate, i.e., the positive vertical distance represents that the flight altitude is higher than the 

radar gate of interest. Interestingly, for Clusters 1, 2 and 6, in-situ samples were taken largely at radar scan heights or below.  

It is likely that both in-situ and radar have sampled the same regime with notable aggregations, which explains why the 645 

observed 𝐷899 is close to the retrieved 𝐷899 of aggregates. In contrast, in-situ samples were taken at higher altitudes over the 

radar scans for Clusters 3–5. In these cases, aircraft may have sampled a pristine ice growth zone aloft, but the radar gates 

below sampled the subsequent aggregations, which explains why the observed 𝐷899 is closer to the retrieved 𝐷899 of pristine 

ice, rather than aggregates. Further studies using more datasets and retrievals would be needed to assess the third scenario. 

Overall, when including Clusters 1, 2 and 6, the difference between the observed and the retrieved combined median 𝐷899 is 650 

about 0.55 mm. 

 

 
Figure 11. 2D histograms of occurrences of distances in the vertical and horizontal between in-situ measurements and radar gates for 
Cluster 1–6 in (a)–(f), respectively. Note that occurrences are counted for all pairs of in-situ data point and radar gate. In calculations of 655 
retrieval errors, selected in-situ data points and radar gates are only used once with equal weights. 
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5 Summary  

We have introduced a new method for retrieving microphysical properties of concurrent pristine ice and snow aggregates 665 

from X-band polarimetric radar observations. The radar observables used here include horizontal reflectivity, differential 

reflectivity, co-polar correlation coefficient, and specific differential phase shift. The first observable provides constraints on 

the combined aggregate and pristine ice population, while the last three observables provide constraints on the partitioning 

between aggregates and pristine ice, as well as on the ice number concentration and size of pristine ice. The observations are 

combined with our prior knowledge via an ensemble retrieval framework to find the best estimates of microphysical 670 

properties. Since properties of pristine ice and snow aggregates vary significantly in nature, we apply a wide-spread prior 

and thus the retrieval is mainly dominated by the observations. 

Based on the evaluation using synthetic observations, we have found that the current observational uncertainty is 

sufficient for quantifying properties of pristine ice and snow aggregates. The retrieval was able to reproduce vertical profiles 

similar to the truth, and the root-mean-square-error with respect to the truth is within the retrieval uncertainty. The biases in 675 

the combined total ice number concentration, ice water content, and effective mean diameter are all within 5%. This exercise 

demonstrates that our retrieval method works well, if the prior and the forward models for simulating radar observables are 

chosen appropriately and representative of reality. In general, the appropriateness and representativeness of the prior and 

forward model can be confirmed by examining the agreement between the observations and the forward simulations. 

We have also evaluated our retrieval against in-situ cloud probe observations taken from a recent field campaign in 680 

Chilbolton, UK, which was coordinated to have collocated X-band radar scans and aircraft flights. We analysed a three-hour 

long case that had 1237 collocated radar gates. Although the period was not particularly long, the aircraft sampled ice 

particles in temperature zones from –5°C to –35°C, allowing us to assess the retrieval performance for cases that are 

dominated by column, plate, or dendrite. The collocated in-situ data has a median number concentration of 5.6 L–1, ice water 

content of 0.2 g m–3, and 2.7 mm effective mean diameter. Compared to in-situ medians, our retrieved total number 685 

concentration and ice water content are overestimated by 98% and 44%, respectively. This performance is generally better 

than that from empirical relationships, which has differences of 445% and 187% in total number concentration and ice water 

content, respectively with respect to the in-situ medians. For effective mean diameter, the in-situ observations agree with our 

effective mean diameter combined from pristine ice and aggregate in three data clusters with a difference of 0.55 mm. In 

other clusters, the observed effective mean diameters agree better with the retrieved size of pristine ice, likely because the 690 

aircraft sampled pristine ice growth zones aloft instead of aggregation zones that radar sampled. Since planar crystal growth 

and subsequent aggregation can lead to zones with distinct ice bulk properties, taking frequent aircraft measurements at 

multiple vertical layers around the radar location would be particularly helpful to improve collocations and allow us to 

analyse individual rays in more detail. 

Currently, our method is designed to work for conditions with a mixture of pristine ice and aggregates. In the presence 695 

of rimed particles, the state vector should be expanded to include additional variables that can accommodate and inform the 
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degree of rimming, e.g., the riming factor described in Masson et al. (2018), or to include appropriate rimed species 

explicitly. When triple-frequency measurements are available and can be used to distinguish particle types effectively (e.g., 705 

Kneifel et al., 2015; Barrett et al., 2019), such information on particle types can also be incorporated into our method to 

provide retrievals for off-zenith radar scans that are more challenging for triple-frequency techniques. It is also possible to 

expand the observation vector with other radar observables at multiple wavelengths, providing further constraints on 

retrieval if added information exists.     

This work is the first step toward quantifying microphysical properties of concurrent ice species, using a framework that 710 

considers our prior knowledge and the observational uncertainties. Since we have focused on radar signals with reduced co-

polar correlation coefficient and enhanced differential reflectivity and specific differential phase shift (i.e., cases with 

potentially high ice number concentration), the immediate application will be on studying dendritic growth zones commonly 

found in thick stratiform clouds. In particular, the Atmospheric Radiation Measurement (ARM) Program User Facility has 

operated X-band polarimetric radars at a fixed site at Barrow, Alaska, and in the Biogenic Aerosols–Effects on Clouds and 715 

Climate field campaign in Finland back in 2014. These rich datasets will allow us to study formation of new crystals either 

via primary nucleation or a secondary ice process, their growth into planar crystals and dendrites, and the subsequent 

aggregations. The retrieved ice properties can be further compared to model simulations to understand what controls the ice 

number productions.  

 720 

Appendix A 

Radar equations for a single sample volume containing multiple ice particle habits are given as (Jung et al., 2010): 
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where	𝑍U, 𝑍V, and 𝑍UV are in units of mm6 m–3; 𝐷 is the maximum particle dimension; 	𝜆 is the radar wavelength; 𝐾D is the 

dielectric factor of water and |𝐾D|i = 0.93; and the amplitude scattering matrix elements (S) are in units of mm. The vertical 730 
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bars represent the magnitude of the terms within, while 𝑅𝑒 represents the real part of the complex number and the asterisk 735 

indicates its complex conjugate. The index i represents the species existing in the radar volume, and the index J represents 

the number of species. Note that the amplitude scattering matrix elements in the database are tabulated for various elevation 

angles, azimuth angles, and habit realizations. To apply these amplitude elements to the equations (A1)–(A6), 𝑆UU
L,7 and 𝑆VV

L,7 

are first linearly interpolated with respect to elevation angles for radar rays. The interpolated 𝑆UU
L,7 and 𝑆VV

L,7 are then used to 

calculate the terms in the parentheses for all azimuth angles and habit variations. Because the azimuthal orientation of 740 

hydrometeors relative to the radar is random and unknown, and because the exact morphological characteristics of these 

particles at any given time in nature are also unknown, the terms in the parentheses are averaged over azimuth angles and 

habit realizations, which are represented by the horizontal bar over the parentheses. 

Coefficients A, B, C, and Ck are included to account for the effects of canting on the polarimetric radar moments. 

Following Jung et al. (2010) and Ryzhkov et al. (2011), the canting angle distributions are assumed to be Gaussian, and their 745 

effects can be parameterized using the mean and standard deviation of the distribution. Supposing that all oblate species fall 

with their major axes preferentially oriented in the horizontal plane, the mean canting angle can be set to zero (Ryzhkov et 

al. 2011). The width of the canting angle distribution is set to 10° for pristine ice crystals and 60° for snow aggregates, 

similar to Ryzhkov et al. (2011) and Matsui et al. (2019). All detailed equations and coefficients can be found in Jung et al. 

(2010). 750 

Appendix B 

Ryzhkov et al. (2018) used a power-law dependence to describe particle density, given as: 

𝜌 = 𝛼𝐷qfE, (B1) 

where the density 𝜌 is in g cm–3, coefficient 𝛼 is in g cm–2, and 𝐷! is the equivalent volume diameter. They also assumed  

an exponential particle size distribution, i.e.,  755 

𝑁(𝐷!) = 𝑁",$𝑒%∧':, (B2) 

with an intercept 𝑁",$ and the exponent ∧. From their equations (3) and (4) in Ryzhkov et al. (2018), we can calculate 

these two parameters by: 
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where the exponent ∧ in mm–1, 𝑁",$ in m–3 mm–1, 𝛼 is in g cm–2, 𝑍 is the radar reflectivity in mm6 m–3, 𝑞1,234 is the 

retrieved ice water content from equation (19) in g m–3, and 𝐷234 is the retrieved diameter from equation (17) in mm.  

Once 𝑁",$ and ∧ are known in equation (B2), we further convert the size descriptor 𝐷! to the equivalent melted 

dimeter (denoted as 𝐷=>?)  by  765 

𝐷=>? = 1
t
B*
𝐷qi2

+
&, (B6) 

and then calculate the effective mean diameter 𝐷899,=>? using equation (7).  

 

Data availability. FAAM aircraft observations from PICASSO are available at the Centre for Environmental Data Analysis 

archive (https://www.ceda.ac.uk/). NxPol radar observations from PICASSO are publicly available via 770 

https://catalogue.ceda.ac.uk/uuid/ffc9ed384aea471dab35901cf62f70be. The ice crystal scattering database used to compute 

radar moments is available at https://www.arm.gov/data/data-sources/icepart-mod-120. The retrieval will be available freely 

in the ARM Archive as a PI product. 

 

Author contributions. All authors contribute to the work presented here and manuscript editing. NK analysed the radar and 775 

aircraft observations, coded the algorithm, performed the retrievals, and provided the initial draft. JC supervised the project, 

conceptualized the idea, developed the methodology, analysed the retrievals, and revised the manuscript. SB, SJ, and VC 

quality controlled the radar observations and contextualized observed polarimetric features. YL provided guidance in 

constructing the radar forward model. PJvL introduced the most recent development in the Iterative Stochastic Ensemble 

Kalman approach and assisted in improving the retrieval algorithm. CW provided and contextualized the PICASSO 780 

observations. YB assisted in data analysis and retrieval preparation. SO provided and quality controlled the in-situ cloud 

probe data. 

 

Competing interests.  The authors declare that they have no conflict of interest. 

 785 

Acknowledgements. This research was supported by the Office of Science (BER), DOE under grants DE‐SC0018930. PJvL 

was sponsored by the European Research Council via the CUNDA project under number 694509. CW and SO were 

supported by the Natural Environment Research Council (NERC) under grant number NE/P012426/1. Airborne data were 

obtained using the BAe-146-301 Atmospheric Research Aircraft (ARA) flown by Directflight Ltd and managed by the 

Facility for Airborne Atmospheric Measurements (FAAM), which is a joint entity of NERC and the Met Office. This work 790 

would not be possible without the efforts of the FAAM group and the PICASSO research team led by Jonathan Crosier. We 

also thank Ryan Neely III and Lindsay Bennett at NCAS/University of Leeds for collection of the NXPOL radar data. 



29 
 

References 

Abel, S. J., Cotton, R. J., Barrett, P. A., and Vance, A. K.: A comparison of ice water content measurement techniques on the 

FAAM BAe-146 aircraft, Atmos. Meas. Tech., 7(9), 3007–3022, doi:10.5194/amt-7-3007-2014, 2014. 795 

Aydin, K. and Seliga,T. A.: Radar Polarimetric Backscattering Properties of Conical Graupel, J. Atmos. Sci., 41, 1887–1892, 

doi:10.1175/1520-0469(1984)041<1887:rpbpoc>2.0.co;2, 1984.  

Baran, A. J., Connolly, P., and Lee, C.: Testing an ensemble model of cirrus ice crystals using midlatitude in situ estimates 

of ice water content, volume extinction coefficient and the total solar optical depth, J. Quant. Spectrosc. Ra., 110, 1579–

1598, doi:10.1016/j.jqsrt.2009.02.021, 2009.  800 

Barrett, A. I., Westbrook, C. D., Nicol, J. C., and Stein, T. H. M.: Rapid ice aggregation process revealed through triple-

wavelength doppler spectrum radar analysis, Atmos. Chem. Phys., 19, 5753–5769, doi: 10.5194/acp-19-5753-2019, 

2019. 

Bennett, L.: NCAS mobile X-band radar scan data from 1st November 2016 to 4th June 2018 deployed on long-term 

observations at the Chilbolton Facility for Atmospheric and Radio Research (CFARR), Hampshire, UK. Centre for 805 

Environmental Data Analysis, doi:10.5285/ffc9ed384aea471dab35901cf62f70be, 2020. 

Botta, G., Aydin, K., Verlinde, J., Avramov, A. E., Ackerman, A. S., Fridlind, A. M., McFarquhar, G. M., and M. Wolde, 

M.: Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X‐ and 

Ka‐band radar measurements, J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909, 2011. 

Brath, M., Ekelund, R., Eriksson, P., Lemke, O., and Buehler S. A.: Microwave and submillimetre wave scattering of 810 

oriented ice particles, Atmos. Meas. Tech., 13, 2309–2333, doi: 10.5194/amt-13-2309-2020, 2020. 

Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather radar: principles and applications, Cambridge University 

Press, Cambridge, 2001. 

Craven, P. and Wahba, G.: Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the 

method of generalized cross-validation. Numerische Mathematik, 31, 377–403, 1979. 815 

Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., Crawford, I. P., Capes, G. L., 

Coe, H., Dorsey, J. R., Williams, P. I., Illingworth, A. J., Gallagher, M. W., and Blyth, A. M.: Observations of ice 

multiplication in a weakly convective cell embedded in supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257–

273, https://doi.org/10.5194/acp-11-257-2011, 2011. 

Delanoë, J., Protat, A., Testud, J., Bouniol, D., Heymsfield, A. J., Bansemer, A., Brown, P. R. A., and Forbes, R. M.: 820 

Statistical properties of the normalized ice particle size distribution, J. Geophys. Res.–Atmos., 110, 

doi:10.1029/2004jd005405, 2005. 

Delanoë, J. M. E., Heymsfield, A. J., Protat, A., Bansemer, A., and Hogan, R. J.: Normalized particle size distribution for 

remote sensing application, J. Geophys. Res.–Atmos., 119, 4204–4227, doi:10.1002/2013jd020700, 2014. 



30 
 

DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M., Eidhammer, T., and 825 

D. Rogers, D.: Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proc. Natl. Acad. Sci. 

U. S. A., 107(25), 11,217–11,222, 2010. 

Demott, P. J. et al.: Resurgence in ice nuclei measurement research, B. Am. Meteorol. Soc., 92, 1623–1635, 

doi:10.1175/2011bams3119.1, 2011.  

Erfani, E. and Mitchell, D. L.: Growth of ice particle mass and projected area during riming, Atmos. Chem. Phys., 17, 1241–830 

1257, doi:10.5194/acp-17-1241-2017, 2017. 

Eriksson, P., Ekelund, R., Mendrok, J., Brath, M., Lemke, O., and Buehler, S. A.: A general database of hydrometeor single 

scattering properties at microwave and sub-millimetre wavelengths, Earth Syst. Sci. Data, 10, 1301–1326, 

doi:10.5194/essd-10-1301-2018, 2018. 

Evensen, G., Raanes, P. N., Styrodal, A. S., and Hove, J.: Efficient implementation of an iterative Ensemble Smoother for 835 

data assimilation and reservoir history matching, Front. Appl. Math. Stat., doi 10.3389/fams.2019.00047, 2019. 

Field, P. R. and Heymsfield, A. J.: Importance of snow to global precipitation, Geophys. Res. Lett., 42, 9512–9520, 

doi:10.1002/2015gl065497, 2015. 

Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. J.: Parametrization of ice-

particle size distributions for mid-latitude stratiform cloud, Q. J. Roy. Meteor. Soc., 131, 1997–2017, 840 

doi:10.1256/qj.04.134, 2005. 

Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C., Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., 

Choularton, T., Connolly, P., Buehl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P., Flossman, A., Heymsfield, A., 

Huang, Y., Kalesse, H., Kanji, Z. A., Korolev, A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar, G., 

Phillips, V., Stith, J., and Sullivan, S.: Secondary ice production: current state of the science and recommendations for 845 

the future, Meteor. Mon., 58, 7.1–7.20, doi: 10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017. 

Fielding, M. D., Chiu, J. C., Hogan, R. J., and Feingold, G.: A novel ensemble method for retrieving properties of warm 

cloud in 3-D using ground-based scanning radar and zenith radiances, J. Geophys. Res.–Atmos., 119, 10912–10930, 

2014.  

Fielding, M. D., Chiu, J. C., Hogan, R. J., Feingold, G., Eloranta, E., O'connor, E. J., and Cadeddu, M. J.: Joint retrievals of 850 

cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances, Atmos. Meas. 

Tech., 8, 2663–2683, doi:10.5194/amt-8-2663-2015, 2015. 

Fusina, F., Spichtinger, P., and Lohmann. U.: Impact of ice supersaturated regions and thin cirrus on radiation in the 

midlatitudes, J. Geophys. Res., 112, doi:10.1029/2007jd008449, 2007. 

Garrett, T. J., Yuter, S. E., Fallgatter, C., Shkurko, K., Rhodes, S. R., and Endries, J. L.: Orientations and aspect ratios of 855 

falling snow, Geophys. Res. Lett., 42, 4617–4622, doi:10.1002/2015gl064040, 2015. 



31 
 

Grazioli, J., Lloyd, G., Panziera, L., Hoyle, C. R., Connolly, P. J., Henneberger, J., and Berne, A.: Polarimetric radar and in 

situ observations of riming and snowfall microphysics during CLACE 2014, Atmos. Chem. Phys., 15, 13787–13802, 

doi:10.5194/acp-15-13787-2015, 2015. 

Gultepe, I., Heymsfield, A. J., Field, P. R., and Axisa, D.: Ice-phase precipitation, Meteor. Mon., 58, 6.1–6.36, doi: 860 

10.1175/AMSMONOGRAPHS-D-16-0013.1, 2017. 
Heymsfield, A. J., Schmitt, C., Bansemer, A., and Twohy, C. H.: Improved representation of ice particle masses based on 

observations in natural clouds, J. Atmos. Scie., 67, 3303–3318, doi:10.1175/2010jas3507.1, 2010. 

Hobbs, P., Chang, S., and Locatelli, J. D.: The dimensions and aggregation of ice crystals in natural clouds, J. Geophys. Res., 

79, 2199–2206, doi: 10.1029/JC079i015p02199, 1974. 865 

Hogan, R. J., Field, P. R., Illingworth, A. J., Cotton, R. J., and Choularton, T. W.: Properties of embedded convection in 

warm-frontal mixed-phase cloud from aircraft and polarimetric radar, Q. J. Roy. Meteor. Soc., 128, 451–476, 

doi:10.1256/003590002321042054, 2002. 

Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C., Heymsfield, A. J. and Eastment, J. D.: Radar scattering from ice 

aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteorol. Clim., 51, 655–671, doi: 870 

https://doi.org/10.1175/JAMC-D-11-074.1, 2012. 

Hong, G., Yang, P., Baum, B. A., Heymsfield, A. J., Weng, F., Liu, Q., Heygster, G., and Buehler, S. A.: Scattering database 

in the millimeter and submillimeter wave range of 100–1000 GHz for nonspherical ice particles, J. Geophys. Res., 114, 

doi:10.1029/2008jd010451, 2009. 

Hubbert, J. C., Ellis, S. M., Chang, W.-Y., Rutledge, S., and Dixon, M.: Modeling and interpretation of S-Band ice crystal 875 

depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized 

fields, J. Appl. Meteorol. Clim., 53, 1659–1677, doi:10.1175/jamc-d-13-0158.1, 2014. 

Jiang, Z., Oue, M., Verlinde, J., Clothiaux, E. E., Aydin, K., Botta, G., and Lu, Y.: What can we conclude about the real 

aspect ratios of ice particle aggregates from two-dimensional images?, J. Appl. Meteorol. Clim., 56, 725–734, 

doi:10.1175/jamc-d-16-0248.1, 2017. 880 

Jung, Y., Xue, M., and Zhang, G.: Simulations of polarimetric radar signatures of a supercell storm using a two-moment 

bulk microphysics scheme, J. Appl. Meteorol. Clim., 49, 146–163, doi:10.1175/2009jamc2178.1, 2010. 
Kajikawa, M.: Observation of the falling motion of early snow- flakes. Part II: On the variation of falling velocity, J. 

Meteorol. Soc. Jpn., 67(5), 731–738, 1989. 

Keat, W. J. and Westbrook, C. D.: Revealing layers of pristine oriented crystals embedded within deep ice clouds using 885 

differential reflectivity and the copolar correlation coefficient, J. Geophys. Res.–Atmos., 122, 

doi:10.1002/2017jd026754, 2017. 

Keat, W. J., Westbrook, C. D., and Illingworth, A. J.: High-precision measurements of the copolar correlation coefficient: 

Non-Gaussian errors and retrieval of the dispersion parameter μ in rainfall, J. Appl. Meteorol. Clim., 55, 1615–1632, 

doi:10.1175/jamc-d-15-0272.1, 2016. 890 



32 
 

Kennedy, P. C. and Rutledge, S. A.: S-Band dual-polarization radar observations of winter storms, J. Appl. Meteorol. 

Clim., 50, 844–858, doi:10.1175/2010jamc2558.1, 2011. 

Kneifel, S., vonLerber, A., Tiira, J., Moisseev, D., Kollias, P., and Leinonen, J.: Observed relations between snowfall 

microphysics and triple-frequency radar measurements, J. Geophys. Res. Atmos., 120, 6034–6055, 

doi:10.1002/2015JD023156, 2015. 895 

Korolev, A., McFarquhar, G., Field, P. R., Franklin, C., Lawson, P., Wang, Z., Williams, E., Abel, S. J., Axisa, D., 

Borrmann, S., Crosier, J., Fugal, J., Kramer, M., Lohmann, U., Schlenczek, O., Schnaiter, M., and Wendisch, M.: 

Mixed-phase clouds: progress and challenges, Meteor. Mon., 58, 5.1–5.50, doi: 10.1175/AMSMONOGRAPHS-D-17-

0001.1, 2017. 

Korolev, A., Heckman, I., Wolde, M., Ackerman, A. S., Fridlind, A. M., Ladino, L. A., Lawson, R. P., Milbrandt, J., and 900 

Williams, E.: A new look at the environmental conditions favorable to secondary ice production, Atmos. Chem. Phys., 

20, 1391–1429, doi: 10.5194/acp-20-1391-2020, 2020. 

Kumjian, M.: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar 

variables, J. Operational Meteor., 1, 226–242, doi:10.15191/nwajom.2013.0119, 2013. 

Kuo, K.-S., Olson, W. S., Johnson, B. T., Grecu, M., Tian, L., Clune, T. L., Aartsen, B. H. V., Heymsfield, A. J., Liao, L., 905 

and Meneghini, R.: The Microwave radiative properties of falling snow derived from nonspherical ice particle models. 

Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties, J. 

Appl. Meteorol. Clim., 55, 691–708, doi:10.1175/jamc-d-15-0130.1, 2016. 

Li, J.–L. F., Forbes, R. M., Waliser, D. E., Stephens, G., and Lee, S.: Characterizing the radiative impacts of precipitating 

snow in the ECMWF integrated forecast system global model, J. Geophys. Res.–Atmos., 119, 9626–9637, doi: 910 

10.1002/2014JD021450, 2014.  

Liu, G.: A database of microwave single-scattering properties for nonspherical ice particles, B. Am. Meteorol. Soc., 89, 

1563–1570, doi:10.1175/2008bams2486.1, 2008. 

Lu, Y., Aydin, K., Clothiaux, E. E., and Verlinde, J.: Retrieving cloud ice water content using millimeter– and centimeter–

wavelength radar polarimetric observables, J. Appl. Meteorol. Clim., 54, 596–604, doi: 10.1175/JAMC-D-14-0169.1, 915 

2015. 

Lu, Y., Jiang, Z., Aydin, K., Verlinde, J., Clothiaux, E. E., and Botta, G.: A polarimetric scattering database for non-

spherical ice particles at microwave wavelengths, Atmos. Meas. Tech., 9, 5119–5134, doi:10.5194/amt-9-5119-2016, 

2016. 

Mason, S. L., Chiu, C. J., Hogan, R. J., Moisseev, D., and Kneifel, S.: Retrievals of riming and snow density from vertically 920 

pointing Doppler radars. J. Geophys. Res.–Atmos., 123. https://doi.org/10.1029/2018JD028603, 2018. 

Matus, A. V. and L’Ecuyer, T. S.: The role of cloud phase in earth’s radiation budget, J. Geophys. Res.–Atmos., 122, 2559–

2578, doi: 10.1002/2016JD025951, 2017. 



33 
 

Matsui, T., Dolan, B., Rutledge, S. A., Tao, W. K., Iguchi, T., Barnum, J., and Lang, S. E.: POLARRIS: A POLArimetric 

Radar Retrieval and Instrument Simulator, J. Geophys. Res.–Atmos, 124, 4634–4657, doi:10.1029/2018jd028317, 2019. 925 

Mitchell, D. L.: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities, J. 

Atmos. Sci., 53, 1710–1723, doi:10.1175/1520-0469(1996)053<1710:uomaad>2.0.co;2, 1996. 

Mitchell, D. L., and Heymsfield, A. J.: Refinements in the treatment of ice particle terminal velocities, highlighting 

aggregates, J. Atmos. Sci., 62, 1637–1644, doi:10.1175/JAS3413.1, 2005: 

Moisseev, D. N., Lautaportti, S., Tyynela, J., and Lim, S.: Dual-polarization radar signatures in snowstorms: Role of 930 

snowflake aggregation, J. Geophys. Res.–Atmos., 120, 12644–12655, doi:10.1002/2015jd023884, 2015. 

Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, 

M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J., Prat, O. P., Reimel, K. J., Shima, S., van Diedenhoven, B., and 

Xue, L.: Confronting the challenge of modelling cloud and precipitation microphysics, J. Adv. Model. Earth Sy., 12, 

doi: 10.1029/2019MS001689, 2020. 935 

Mulmenstadt, J., Sourdeval, O., Delanoe, J., and Quass, J.: Frequency of occurrence of rain from liquid–, mixed–, and ice– 

phase clouds derived from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502–6509, doi: 

10.1002/2015GL064604, 2015. 

Murphy, A. M., Ryzhkov, A., and Zhang, P.: Columnar Vertical Profile (CVP) Methodology for validating polarimetric 

radar retrievals in ice using in situ aircraft measurements, J. Atmos. Ocean. Tech., 37, 1623–1642, doi:10.1175/jtech-d-940 

20-0011.1, 2020. 

Neely III, R. R. et al.: The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol), Atmos. Meas. Tech., 11, 

6481–6494, doi:10.5194/amt-11-6481-2018, 2018. 

O'Shea, S., Crosier, J., Dorsey, J., Gallagher, L., Schledewitz, W., Bower, K., Schlenczek, O., Borrmann, S., Cotton, R., 

Westbrook, C., and Ulanowski, Z.: Characterising optical array particle imaging probes: implications for small-ice-945 

crystal observations, Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, 2021. 

Oue, M., Kollias, P., Ryzhkov, A., and Luke, E. P.: Toward exploring the synergy between cloud radar polarimetry and 

Doppler spectral analysis in deep cold precipitating systems in the Arctic, J. Geophys. Res.–Atmos., 123, 2797–2815, 

doi:10.1002/2017jd027717, 2018. 

Protat, A., Delanoë, J., Bouniol, D., Heymsfield, A. J., Bansemer, A., and Brown, P.: Evaluation of ice water content 950 

retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database, J. Appl. 

Meteorol. Clim., 46, 557–572, doi:10.1175/jam2488.1, 2007. 

Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A.: Polarimetric radar observation operator for a cloud model with 

spectral microphysics, J. Appl. Meteorol. Clim., 50, 873–894, doi:10.1175/2010jamc2363.1, 2011. 

Ryzhkov, A. V., and Zrnic, D. S.: Polarimetric microphysical retrievals, in Radar Polarimetry for Weather Observations, 955 

Springer, 435–464, doi:10.1007/978-3-030-05093-1_11, 2019. 



34 
 

Ryzhkov, A. V., Zrnic, D. S., and Gordon, B. A.: Polarimetric method for ice water content determination, J. Appl. 

Meteorol. Clim., 37, 125–134, doi: 10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2, 1998. 

Ryzhkov, A. V., Bukovcic, P., Murphy, A., Zhang, P., and McFarquhar, G.: Ice microphysical retrievals using polarimetric 

radar data. 10th European Conf. on Radar in Meteorology and Hydrology, Wageningen, Netherlands, KNMI, 40, 960 

project- s.knmi.nl/erad2018/ERAD2018-extended-abstract-040.pdf, 2018. 

Schmitt, C. G. and Heymsfield, A. J.: Observational quantification of the separation of simple and complex atmospheric ice 

particles, Geophys. Res. Lett., 41, 1301–1307, doi: 10.1002/2013GL058781, 2014. 

Schrom, R. S., Kumjian, M. R., and Lu, Y.: Polarimetric radar signatures of dendritic growth zones within Colorado winter 

storms, J. Appl. Meteorol. Clim., 54, 2365–2388, doi: 10.1175/JAMC-D-15-0004.1, 2015. 965 

Seliga, T. A., Bringi, V. N., and Al-Khatib, H. H.: A preliminary study of comparative measurements of rainfall rate using 

the differential reflectivity radar technique and a rain gage Network, J. Appl. Meteorol., 20, 1362–1368, 1981. 

Spek, A. L. J., Unal, C. M. H., Moisseev, D. N., Russchenberg, H. W. J., Chandrasekar, V., and Dufournet, Y.: A new 

technique to categorize and retrieve the microphysical properties of ice particles above the melting layer using radar 

dual-polarization spectral analysis, J. Atmos. Ocean. Tech., 25, 482–497, doi:10.1175/2007jtecha944.1, 2008. 970 

Szyrmer, W. and Zawadzki, I.: Snow studies. part II: average relationship between mass of snowflakes and their terminal fall 

velocity, J. Atmos. Sci., 67, 3319–3335, doi: 10.1175/2010JAS3390.1, 2010. 

Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X.: The concept of “normalized” distribution to describe raindrop 

spectra: A tool for cloud physics and cloud remote sensing, J. Appl. Meteorol., 40, 1118–1140, doi:10.1175/1520-

0450(2001)040<1118:tcondt>2.0.co;2, 2001. 975 

Tiira, J., Moisseev, D. N., Lerber, A. V., Ori, D., Tokay, A., Bliven, L. F., and Petersen, W.: Ensemble mean density and its 

connection to other microphysical properties of falling snow as observed in Southern Finland, Atmos. Meas. Tech., 9, 

4825–4841, doi:10.5194/amt-9-4825-2016, 2016. 

Van Leeuwen, P. J.: A consistent interpretation of the stochastic version of the Ensemble Kalman Filter, Q. J. Royal Met. 

Soc., doi: 10.1002/qj.3819, 2020. 980 

Vivekanandan, J., Martner, B., Politovich, M., and Zhang, G.: Retrieval of atmospheric liquid and ice characteristics using 

dual-wavelength radar observations, IEEE T. Geosci. Remote, 37, 2325–2334, doi:10.1109/36.789629, 1999. 

Wang, Y. and Chandrasekar, V.: Algorithm for estimation of the specific differential phase, J. Atmos. Ocean. Tech., 26, 

2565–2578, doi:10.1175/2009jtecha1358.1, 2009. 

Xu, Y.-L.: Electromagnetic scattering by an aggregate of spheres, Appl. Optics, 34, 4573, doi:10.1364/ao.34.004573, 1995. 985 

Yurkin, M. A. and Hoekstra, A. G.: The discrete-dipole-approximation code ADDA: Capabilities and known limitations, J. 

Quant. Spectrosc. Ra., 112, 2234–2247, doi:10.1016/j.jqsrt.2011.01.031, 2011. 



Page 10: [1] Deleted   Microsoft Office User   9/6/21 3:26:00 PM 
 

 

 

Formatted

... [1]
Formatted

... [2]


