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Abstract. Ice and mixed phase clouds play a key role in our climate system, because of their strong controls on global
precipitation and radiation budget. Their microphysical properties have been characterized commonly by polarimetric radar
measurements. However, there remains a lack of robust estimates of microphysical properties of concurrent pristine ice and
aggregates, because larger snow aggregates often dominate the radar signal and mask contributions of smaller pristine ice
crystals. This paper presents a new method that separates the scattering signals of pristine ice embedded in snow aggregates
in scanning polarimetric radar observations and retrieves their respective abundances and sizes for the first time. This
method, dubbed ENCORE-ice, is built on an iterative stochastic ensemble retrieval framework. It provides number
concentration, ice water content, and effective mean diameter of pristine ice and snow aggregates with uncertainty estimates.
Evaluations against synthetic observations show that the overall retrieval biases in the combined total microphysical
properties are within 5%, and that the errors with respect to the truth are well within the retrieval uncertainty. The
partitioning between pristine ice and snow aggregates also agrees well with the truth. Additional evaluations against in-situ
cloud probe measurements from a recent campaign for a stratiform cloud system are promising. Our median retrievals have a
bias of 98% in total ice number concentration and 44% in total ice water content. This performance is generally better than
the retrieval from empirical relationships. The ability to separate signals of different ice species and to provide their
quantitative microphysical properties will open many research opportunities, such as secondary ice production studies and

model evaluations for ice microphysical processes.



35

40

45

50

55

60

65

1 Introduction

Ice-containing clouds play an important role in Earth’s radiation budget and global precipitation (Baran, 2009; Field and
Heymsfield, 2015; Mulmenstadt et al., 2015; Li et al., 2014). Their formation and evolution involve processes of ice
nucleation, ice multiplication, aggregation, and riming, which are closely linked to atmospheric conditions and dynamics
(DeMott et al., 2011; Gultepe et al., 2017; Field et al., 2017; Korolev et al., 2020). Such complex interactions make it
challenging to complete our understanding of these ice microphysical processes and represent them well in models (Korolev
et al., 2017; Morrison et al., 2020).

Polarimetric radar measurements contain information on ice properties and have been proven useful for studying ice
microphysical processes (e.g., Kennedy and Rutledge, 2011; Grazioli et al. 2015; Moisseev et al., 2015). Many empirical
relationships were developed to provide important bulk properties such as ice water content (e.g., Ryzhkov et al., 1998; Lu et
al., 2015), median volume diameter and number concentration (e.g., Murphy et al., 2020), but they cannot inform the
partitioning between ice species. The ability of the partitioning is of particular importance for studying the aggregation
process, because it provides information on size and number concentration of pristine ice and aggregates.

However, separating signals of pristine ice from aggregates in polarimetric radar data is challenging, because larger
snow aggregates often dominate the radar reflectivity and mask contributions of smaller pristine ice crystals (Hogan et al.,
2002; Keat and Westbrook, 2017). As a result, information from horizontal reflectivity (Zy) alone is insufficient to
characterize mixtures of ice hydrometeors (Oue et al., 2018), and it is necessary to incorporate other radar observables in
retrieval methods. By exploiting distinct fall behaviours between pristine ice and aggregates, Spek et al. (2008) used Zy,
differential reflectivity (Zpg) and Doppler spectrum to retrieve particle size distribution (PSD) parameters of pristine ice and
snow aggregates. Without the use of Doppler spectrum, Schrom et al. (2016) used Zy, Zpg, and specific differential phase
shift (Kpp) to estimate the PSD of pristine ice in the dendritic growth zone of Colorado winter storms. Kpp is a great addition
in their approach, since it is mainly determined by ice number concentration. Unfortunately, these three radar observables
remain insufficient, and their partitioning between pristine ice and aggregates was weakly constrained. To improve the
partitioning, Keat and Westbrook (2017) showed that the relative radar signal contributions of pristine ice embedded in snow
aggregate populations can be quantified using Zy, Zpg, and copolar correlation coefficient (py,,), but they have not attempted
to use their partitioning to provide quantitative retrievals of pristine ice number concentration, water content and particle
size.

The objective of the paper is to present an ensemble cloud retrieval method (dubbed ENCORE-ice) for simultaneously
retrieving the number concentrations, sizes and ice water contents of concurrent pristine ice and snow aggregates from
measurements of Zy, Zpr, Kpp and py,,. This framework provides full error statistics and characterizes sub species from
radar signals, which is an advance to the existing methods. The polarimetric radar observations and the retrieval method are

detailed in Section 2. The ancillary data sets for evaluations are introduced in Section 3. Section 4 presents evaluation results
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using synthetic datasets and actual observations from Chilbolton, United Kingdom in 2018. Finally, section 5 summarises

the key finding and discusses potential applications.

2 Radar observations and ENCORE-ice
2.1 Polarimetric radar data

Our retrieval method uses four polarimetric observables. The first observable is the horizontal reflectivity Zy, which
provides information on particle size and concentration, but its dependence on size is much stronger. As such, Zy is
dominated by contributions from snow aggregates because their sizes, and thus their backscatter cross-sections, are typically
much larger than those of pristine ice crystals. The second observable is the differential reflectivity Zpg, which provides
information on particle shape and orientation. A Zpgr of 0 dB indicates spherical particles because of equal backscattered
power in each polarization. Snow aggregates yield low Zpg (about 0—0.6 dB; see Hogan et al., 2012) as a result of their
sparse and irregular morphology, with the component crystals oriented at a wide range of angles. In contrast, pristine ice
particles can yield Zpg of several dB because of their aspect ratios and preferential horizontal orientation when falling.
Heterogenous regions with concurrent pristine ice and snow aggregates are therefore associated with higher Zpg than if only
snow aggregates were present. The third observable is the co-polar correlation coefficient py,,, the correlation coefficient
between horizontally and vertically backscattered power, which provides information on the diversity of particle shape in a
radar sample volume (Kumjian, 2013; Keat et al., 2016). py,, is unity in homogenous regions but tends towards lower values
(e.g., ~0.97) in the presence of heterogenous hydrometeor types. Finally, the fourth observable is the specific differential
phase shift Kpp, which provides information on particle number concentration, shape, and orientation.

Our case study is based on polarimetric radar data (Bennett, 2020) from the Parameterizing Ice Clouds using Airborne
obServationS and triple-frequency dOppler radar data (PICASSO) field campaign in Chilbolton, UK in 2018-2019. During
the campaign, the National Centre for Atmospheric Science mobile X-band dual-polarization Doppler weather radar (NXPol;
Neely III et al., 2018) operated with 0.98° beam width, 150 m range resolution, and a maximum range of 150 km. The radar
performed two back-to-back, fixed-azimuth range-height indicator (RHI) scans every 7 mins, and each scan completed in 18
s. Throughout February 13, 2018, RHI scans were performed along the 243° radial and intercepted by the NCAS-managed
Facility for Airborne Atmospheric Measurements (FAAM) aircraft on several occasions, providing a unique opportunity for

evaluation. Key characteristics of NXPol are summarized in Table 1.
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Table 1. Characteristics of the NXPol polarimetric radar. Further specifications and details can be found in Neely III et al. (2018).

Parameter NXPol
Center wavelength (mm) 31.98
Transmit/receive polarization H+V/H+V
Beamwidth (°) 0.98
Pulse width (ps) 1
Scan rate (° s71) 5
Sensitivity (dBZ) —11 (at 100 km)
Maximum range (km) 150
Gate Resolution (m) 150

2.2 ENCORE-ice

ENCORE is an ensemble-based retrieval method that has previously been used to retrieve three-dimensional cloud
microphysical properties (Fielding et al., 2014) and one-dimensional cloud and drizzle properties (Fielding et al., 2015), but
several key components are modified here for ice retrieval.

2.2.1 Particle size distribution

We approximate the PSD of pristine ice and aggregates by normalized Gamma distributions, given as (Testud et al., 2001):
n(D) = Nof,(D; Do), (D

where N, is the normalized number concentration, and n(D)dD is the number of particles in the range of the maximum
particle dimensions (D, D + dD). The choice of the size descriptor in equation (1) is because in-situ cloud probe data and the

ice scattering database are both given based on the maximum particle dimension. The function f, is defined as:

fu(DiDo) =

6 Ge7+w*H (D\H D
3.674 T(4+p) (_) exp [_(3'67+#) D_O]’ )

Do

where p is the shape parameter of the PSD, and D, is the diameter used for normalizing D. Following Mason et al. (2018),
we assume a constant shape parameter of u = 2. Several studies have shown that the retrieved ice water content is relatively
insensitive to the choice of shape parameter (e.g., Delanoé et al., 2005; Spek et al., 2008); we also found that our number
concentration retrieval is not sensitive to u either.

From the PSD, the total ice number concentration (N;) and the total ice water content (q;) can be respectively computed

by:

Ny = ["n(D)dD = [,"[np(D) + na(D)]dD = [," Nopf,(D; Dop)dD + [ Noafy,(D; Dop)dD = Np + Ny, and ~ (3)
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where n(D) is the combined PSD from np(D) + n, (D), and the subscripts P and A denote contributions from pristine ice
and snow aggregates, respectively. m(D) is the mass at a given maximum particle dimensions D. The mass-size relationship

can be formulated as:
m(D) = aD?, (%)

where a and b are the pre-factor and exponent, respectively. These coefficients depend on ice habit and have been estimated
from past aircraft in-situ and surface observation as shown in Table 2. From the PSD, we also define and calculate the
effective mean diameters (D) as:

Do — Jo> n(D)D*dD
eff = [®np)p3ap’

(6)

which is the ratio of the 4th to the 3rd moment of PSD. To compare our retrieval with the empirical estimates (as discussed
in Section 3), we also calculate an effective mean diameter using the equivalent melted diameter (D) as the size descriptor,

defined as:

0 4
Jo n(Pm1)Dm1tdDmit

D =% 2 7
eff,mlt fo n(Dmlt)Dfnlthmlt ( )
where
1 b 1
6m(D)]3 6aD”]3
D 1 = [ = [ ] , and 8
mlt Tow TTow ( )
D,y 1s water density.
Table 2. Examples of mass-size relationships (taken from Mason et al., 2018).
Habit a (g em™) b Reference
Stellar 0.00027 1.67 Mitchell (1996)
Hexagonal columns 0.000907 1.74
Broad branches 0.000516 1.80
Sector-like branches 0.00142 2.02
Bullet rosettes 0.00308 2.26
Side planes 0.00419 23
Hexagonal plates 0.00739 2.45
Aggregates 0.0028 2.1
Aggregates 0.0039 1.9 Szyrmer and Zawadzki (2010)
Unrimed dendrites 0.001263 1.912 Erfani and Mitchell (2017)
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Mixed (large-scale and convectively generated ice clouds) 0.007 2.2 Heymsfield et al. (2010)

2.2.2 The basis of ENCORE-ice

The state vector (x, i.e., variables to be retrieved) for each ensemble member is defined as:

(i=1..G) (i=1..G) (i=1..G) (i=1..G)
x = (10g10 No,LP ,1ogyo Do,lP ,log1o No,lA slogyg DO.lA ’ ©)

where the superscript i represents the index of the range gate, and the total number of gates to be retrieved is G. Let us use Q

members to form an ensemble, i.e.,

X ={x;, .., xg} (10)

such that the mean of X represents the best estimate of the state vector, and the spread of the ensemble members around the
mean represents the uncertainty in the best estimate.
Using the Iterative Stochastic Ensemble Kalman Filter approach (Evensen et al., 2019), each ensemble member is

updated based on:

x¢ = x| + Elw,, an
in which x£ and x} are the prior and posterior ensemble member k, respectively, and

El =[] -X/, .., 2, -X/] (12)

is the initial ensemble matrix with the prior mean (X/) subtracted, and w,, are weight vectors that are calculated from

iteratively minimizing the following cost function:

Jwy) = %wi w, + %(y — h(x] + Elw,) — sk)T R (y - h(x] + Elw,) — &). (13)
In equation (13), the observation vector y is defined as gate-by-gate radar observables:

y= (Zlgi=1,...,c)’ Z]()i;l,...,c)’ —In Klgip=1,...,c) —In pg;L...,G))’ (14)

where Zy; and Zpg are in dB. Radar observations at one range gate will influence the estimation of the state vector at another
gate, if these two gates are within the pre-defined radius, which will be explained in more detail in Section 2.3. h(x)
represents the forward model for simulating polarimetric radar observables from the state vector x, and &, is a random
perturbation vector drawn from the observation error distribution, which is estimated to be Gaussian with mean zero and
covariance matrix R (Evensen et al., 2019, with modification from Van Leeuwen, 2020). The covariance matrix R is

diagonal with standard deviations given in Table 3.
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As detailed later in Section 2.3, the prior is assumed Gaussian, and there is no prior correlation between variables Ny p,
Dy p, Ny a, and Dy 4. But there is correlation in the vertical (i.e., between gates) for each variable in our setup. We have also
used a prior with large uncertainty, approximately 1-2 orders of magnitude in the state variables, such that the influence of
the prior is minimal. In contrast to the prior, no Gaussian assumption is made in the posterior ensemble members, although

the retrieval statistics are largely focused on their means and standard deviations.

Table 3. Estimated observational errors for X-band observables based on standard and benchmark procedures, adapted from Bringi and
Chandrasekar (2004; pp 359-376) and Wang and Chandrasekar (2009).

Observable Description Uncertainty
Zy Horizontal reflectivity 0.5dBZ
Zpr Differential reflectivity 0.05 dB
Kpp Specific differential phase shift *10%
Puv Co-polar correlation coefficient 1%

* estimated by the uncertainty of 0.05 © km™! for a typical value of Kpp = 0.5 ° km.
# estimated by the uncertainty of 0.01 for pgy = 0.95.

2.2.3 Simulating radar observables for h(x)

To model polarimetric radar observables from the assumed PSD, knowledge of the single scattering properties of ice
particles is required. Many scattering databases of realistically shaped ice particles at radar wavelengths are available and we
used Lu et al. (2016) because of the following considerations. Several existing scattering databases assume total random
orientation of the scatterers, e.g., Liu (2008), Hong et al. (2009), Kuo (2016) and Eriksson et al. (2018). Such assumption
cannot explain polarimetric radar signals which are produced by non-spherical scatterers with preferred orientations with
respect to the zenith direction. The database of Brath et al. (2020) assumes scatterers possess arbitrary fixed orientations
relative to the zenith direction, but only includes hexagonal plates and aggregates consisting of hexagonal plates. We found
that the database described in Lu et al. (2016) fits our needs in the current polarimetric radar study, since it contains all
necessary polarimetric scattering data in many fixed orientations of a large variety of ice crystal species, including plates,
columns, dendrites, and aggregates. The single scattering properties for each species are available for a range of crystal
maximum dimensions, thickness ratios, and types. The pristine habits generally begin at ~0.1 mm and do not exceed 6 mm,
whereas the aggregates begin at ~0.4 mm and extend to 18—45 mm approximately. Multiple morphological realizations per
maximum dimension are available for dendrites and aggregates to account for their complexities. Note that for a given size,
natural aggregates may have substantially different properties compared to the realizations available in the database.

The scattering calculations were conducted using the generalized multi-particle Mie method (GMM; Xu, 1995) and the
discrete dipole approximation (DDA; Yurkin and Hoekstra, 2011). We used properties calculated from GMM, because DDA

7
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calculations are not available for aggregates. Specifically, we use the amplitude scattering matrix elements in the forward

and backward direction for horizontally and vertically polarized radiation, denoted as S ,{,’f’ and S,{f where the superscript and
subscript respectively represent the scattering direction (i.e., forward or background) and the polarization status (horizontally
or vertically). From the assumed PSD and the amplitude scattering matrix elements, radar observables for a single sample

volume containing multiple ice particle habits can be derived as shown in Appendix A.

2.3  Practical considerations

There are several practical considerations for ENCORE-ice implementation. The first consideration is ice habit. The
scattering database provides three habits (plates, dendrites, and columns) for pristine ice. Since the temperature found in
PICASSO mostly ranged between —5°C and —25°C, all three types of pristine ice can be the preferred habit (see examples in
Fig. 1). Currently, we do not predetermine the ice habit. Instead, we ran our retrieval algorithm for all three habits
independently, and then selected the most appropriate one based on the agreement in the measured and forward simulated
radar observables.

Similarly, the scattering database provides five types of aggregates; two of them were constructed using ice columns
(LD-Nle and HD-Nle), three of them using stellar ice crystals (LD-P1d, LDt-P1d and HD-P1d). Each aggregate in the
database (Lu et al., 2016) was generated by first specifying a reference spheroid with a given horizontal maximum
dimension and an aspect ratio of 0.6, defined as the ratio of the lengths of the polar axes to the equatorial axes. Then, small
monomers were added to the reference spheroid one at a time; any parts of the monomer that were outside the reference
spheroid were removed. This procedure was repeated until the mass of the aggregate reached the desired total mass. As a
result, the aspect ratio of the aggregate generated in the database was not necessarily the same as the reference spheroid (0.6).

Figure 2 shows the average aspect ratios for aggregate types available in the database, which were calculated by
averaging ratios of the maximum vertical dimension to the maximum horizontal dimension for all realizations within one
size bin. Compared to Garrett et al. (2015) and Jiang et al. (2017) that reported an aspect ratio range between 0.3 to 0.6 from
observations of falling aggregates at the surface, we found that LDt-P1d and HD-P1d exhibit a similar aspect ratio range. In
the mass-size relationship for LDt-P1d we used a= 0.000482 and b= 1.97 in units of cgs as in Table 2, based on aggregates
composed of ordinary dendritic crystal (Kajikawa, 1989; Botta et al., 2011), whereas for HD-P1d we used a= 0.00145 and b
= 1.80 in units of cgs, based on aggregates of thin plate (Mitchell and Heymsfield, 2005; Botta et al., 2011). The mass-size
relationship of HD-P1d is very close to unrimed aggregates (Erfani and Mitchell, 2017) and more aligned to values in the

recent literature listed in Table 2. Hence, we select HD-P1d as the prescribed choice for aggregates.
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Figure 1. Examples of particle images from the Stratton Park Engineering Company Two-Dimension Stereo (2DS) probe, showing the
presence of (a) column, (b) plate and (c) aggregates of dendrites on 13 February 2018. Each image frame is 1.28 mm high, taken from one
of the probe channels only since the other channel was not working properly on this day.
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Figure 2. Aspect ratios of various aggregate types available in the scattering database as a function of their maximum dimensions. Aspect
ratio is defined as the ratio of the sizes of the minor axes to the major axes. The grey shading between 0.3 and 0.6 represents the typical
range of snow aggregate aspect ratios observed in nature (Garrett et al. 2015; Jiang et al. 2017).
225 The second consideration is the prior used to generate the first guess for ensemble members. Using over 70 hours of in-

situ aircraft observations from a wide range of field campaigns spanning diverse cloud and temperature regimes, Delanoé et
al. (2014) characterized the PSDs of ice particles by the normalized Gamma distribution. They found that N, ranged between
1 L' mm™ and 10,000 L™! mm™ with a mean 100 L™! mm™, and the median volume diameter (MVD) ranged between 0.2—
0.8 mm with a mean of 0.5 mm for the temperature zone of —10°C to —20°C. Additionally, Tiira et al. (2016) analysed

230 surface measurements of ice particle number concentration from the Precipitation Imaging Package during the Biogenic

9
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Aerosols — Effects on Clouds and Climate field campaign. They found that N, ranged mainly from 1 L' mm™! to 100 L!
mm~' and MVD ranged from 0.5 mm to 5 mm. As these were surface based, the measured PSDs from Tiira et al. (2016) are
more representative of the characteristics of snow aggregates. Note that these values were derived using the equivalent
melted diameter as the size descriptor, not the maximum particle dimension. Hence, these values are used only to point out a
possible range and serve as a starting point for us to construct the prior.

Based on these observational ranges mentioned above, our prior is designed as follows. We started with the lowest radar
gate, randomly assigning (Nop, Do p, Noa, Dg o) from normal distributions with the means and standard deviations listed in
Table 4. Next, we applied a slope for each ray to provide initial guesses for other radar gates. The slope was randomly
selected from a normal distribution described in Table 4. Because the prevalence of active ice nuclei is a function of
temperature and thus a function of height as well (DeMott et al., 2010), N p likely increases with height and thus the slopes
in the prior are assumed to have a positive mean. In contrast, the dependence of Dy p, Ny 4, and D, 4 on height is less clear
(e.g., Field et al., 2005). For practical reasons, the slopes applied for Dy p, Ny o, and D 4 are assumed to have a slightly
negative mean. The slightly negative slope avoids unrealistic priors for radar gates at higher altitudes since we used the
logarithm form in the state vector. Finally, red (AR1) noise was added over the vertical with a correlation coefficient of
0.999 and a zero-mean random perturbation with a standard deviation that is half that of the lowest radar gate. Note that
without this noise term each ensemble member would be a straight line in the vertical for each variable with a different
slope. Since the fundamental idea behind ensemble retrievals is that the true atmospheric profile is drawn from the same
distribution as the prior ensemble members, and we know the true atmospheric profile is not a straight line, we add random

noise with non-zero vertical correlation to each ensemble member profile to make each of them more realistic.

Table 4. The prior and uncertainty used in ENCORE-ice. The means at lowest radar gate are given in the physical state space, and the rest
are in the transformed state space (i.e., log;). Retrieval is performed using two different sets of the prior; the second set uses values in the
parenthesis and the rest remain unchanged. All radar gates above the lowest gates are perturbed by an ARI1 red noise process with a

vertical correlation of 0.999 and a standard deviation that is half of the standard deviation at lowest gates.

Pristine Ice Aggregate

Variable Nop Dy p No,a Dy 4
Value at lowest radar gate

Mean 50 (or 5) L' mm™! 1 mm 5L mm™ 4 (or 1) mm

Standard deviation 0.15 0.3 0.15 0.3
Slope in the vertical

Mean (km™) 1 -0.5 -0.5 0.5

Standard deviation (km™") 0.2 0.02 0.2 0.02

10
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Compared to values reported in Delanoé et al. (2014) and Tiira et al. (2016), we have chosen lower means for N, p and
Ny a to start with. This is because the state vector space is the logarithm of N,,. Positive slopes make the changes of N, much
more dramatic in the vertical than those with negative slopes. As a result, large starting values of N, p and Ny 5 will lead to
unrealistic high concentrations at higher altitudes in the prior. In contrast, we choose larger means for Dy p and Dy 4, because
of the assumed negative slopes in both Dy p and Dy 4. In general, the range in our prior is large, approximately 1-2 orders of
magnitude across all ensemble members over the entire vertical profiles. For such a wide-spread prior the solution will be
dominated by the observations.

The third consideration is the number of the ensemble members used in the ENCORE-ice. Ideally, a large ensemble size
is needed to ensure that the sampled prior is representative and so is the solution. However, a large ensemble size is
computationally expensive. Therefore, we applied a localization scheme to reduce the required number of ensemble
members so that we shorten the computational time while achieving the same mean retrieval and associated uncertainty. The
localization scheme operates on each gate and takes only observations close to that gate into account to find the solution.
This is implemented by multiplying the observation error variance of each observation with an exponential function of the
distance between that observation and the gate that is being updated, such that observations far from the gate have less
influence. The influence radii vary linearly with height, one gate at the lower level and about five gates at the upper level.
Using our synthetic datasets, we have found that 50 ensemble members with the localization scheme is able to produce
similar mean retrievals and associated uncertainty as a non-localized ensemble of size 500. The number of iterations is set to
20, although the solutions often have converged at the 10th iteration.

Finally, all radar data underwent the following quality checks and corrections before being used for retrieval:

e 7y and Zpr were corrected for attenuation due to liquid water, using the method described in Bringi and
Chandrasekar (2001, Page 490-512). The attenuation due to ice at X-band is negligible and thus ignored here
(Vivekanandan et al., 1999).

e Systematic biases in Zpg were identified using zenith-pointing Zpy observations. As hydrometeors produce Zpg of
0 dB when viewed at zenith due to their spherical symmetry (e.g., for raindrops) or lack of preferential azimuthal
orientation (e.g., for ice particles), any residual Zpg can be treated as bias and removed (Seliga et al., 1981). We
have found the Zpi correction factors to be 0.2 dB for the PICASSO cases.

e Kpp is calculated using the method of Wang and Chandrasekar (2009).

e Once all corrections are applied, measurement noises were removed using a cubic spline approach (Craven and
Wahba, 1979).

Additionally, to ensure that gates are associated with sufficient information for our method, we exclude gates that exhibit one
or more of the following:

e Qates within 500 m of the 0°C level, avoiding contamination from liquid hydrometeors in the radar sample

volume, because our state vector is not designed for that.

11
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o QGates where pyy exceeds 1.0, because these values are unphysical.

o Qates with a signal-to-noise ratio (SNR) less than 20 dB, because of a lack of detectable hydrometeors. This
threshold is chosen because the precipitating region and its surrounding area typically have SNR values larger than
30-40 dB.

e Radar rays with elevation angles greater than 50°, because Zpg tends towards 0 dB at higher elevation angles and
polarimetric information becomes ambiguous.

o Gates with Zpg below 0.25 dB, regardless of their elevation angles, because the relative contributions of pristine
ice and aggregates become ambiguous at lower values, as indicated in Keat and Westbrook (2015).

e Gates with Kpp below 0.1 © km! to ensure a sufficient number concentration of pristine ice. Note that negative
Kpp values indicate the presence of conical graupel (Aydin and Seliga 1984) or the vertical reorientation of
pristine ice crystals in the presence of thunderstorm electric fields (Hubbert et al. 2014). Since our state vector only

includes aggregates and horizontally orientated pristine ice, we exclude such gates as well.

3 Independent observations and retrievals for evaluations
3.1 In-situ aircraft measurements from PICASSO

During PICASSO, the FAAM aircraft performed multiple transects from Chilbolton to Dorset (50.82 °N, 2.56 °W) at varied

altitudes. Figure 3 depicts the flight path for 13 February 2018, which was a typical pattern during the campaign.

e Chilbolton/NXPol

Figure 3. Flight paths on 13 February 2018 between 3:26 UTC and 10:21 UTC. The red dot denotes the location of NXPol in Chilbolton,
UK, while the path in cyan denotes the path during 69 UTC in which retrievals are evaluated in Section 4.2.

To evaluate our cloud retrieval, we use in-situ measurements of liquid water content and total water content (i.e., the
sum of ice and liquid water contents) from a Nevzorov probe, and PSD measurements from a High-Volume Precipitation
Spectrometer (HVPS, SPEC Inc, USA). The HVPS is an optical array particle imaging probe, which collects images of ice

crystals with a pixel resolution of 150 um. Size distributions of particles between 75 and 19275 pm were derived from their
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images and reported here using the maximum particle dimension as the size descriptor. A description of the data processing
and quality control can be found in Crosier et al. (2011), and the sources of uncertainties were discussed in O’Shea et al.
(2021). All in-situ datasets were averaged to 5 s intervals for statistical reliability (Protat et al., 2007). We only use in-cloud
samples, defined as having an ice water content (IWC) greater than 0.01 g m™. Additionally, although our retrieval provides
microphysical properties of pristine ice and aggregates separately, we focus on evaluating bulk properties to avoid the
ambiguity introduced by applying a threshold to separate these two species in observed PSDs.

Three bulk properties are used for evaluations. Firstly, the total ice number concentration (denoted as Njyyps) is

calculated by integrating the observed PSD. The associated counting uncertainty is estimated as:

100%

1
VNiavps - Vuvps - At (15)

where At is the HVPS sampling time resolution, and Viyyps is the sample volume, approximately 310 L s!. Secondly, IWC,
denoted as q; gy, Was derived by taking the difference between the total and liquid water contents measured by the
Nevzorov probe. Similar to Abel et al. (2014), both the total and liquid water contents were corrected for changes in aircraft
altitude and environmental conditions. Finally, effective mean diameters from HVPS PSDs, D¢ yyps, defined as:

(o)
Jy nuvps(D)D*dD

D = .
eff, HVPS f:o nyyps(D)D3dD

(16)

were calculated, using the same definition as equation (6).

The evaluations in the total ice number concentration, ice water content, and effective mean diameter all together allow
us to indirectly examine whether the partitioning between pristine ice and aggregates is appropriate. A more direct
comparison would be ideal but requires classifying each individual particle in image data, which is not trivial and beyond the

scope of this work.

3.2 Bulkice properties from empirical relationships

As mentioned in Sec. 1, several studies have proposed empirical relationships for estimating IWC, particle size, and ice
number concentration. In this study, we compare our retrieval with estimates from Ryzhkov and Zrnic (2019), because of
their availability of the ice number concentration estimates. The relationships in Ryzhkov and Zrnic (2019) were based on
theoretical calculations, using an assumed exponential size distribution for twelve ice habits. Their method takes advantage
of the features that the reflectivity difference between horizontal and vertical polarization (Zpp) is proportional to the third
moment of PSD and that Kpp is proportional to the first moment of PSD. As a result, the ratio of Zpp to Kpp is proportional
to the second moment of the PSD and can be used to estimate the mean volume diameter of ice particles (Murphy et al.
(2020):
1

Demp = —0.1 + 2 (222)°, (17)

Kppa
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where Dep,p, is the mean volume diameter in mm with the subscript emp denoting empirical estimates; Zpp is in units of mm®

m=3; and Kpp is in ® km!. Murphy et al. (2020) also estimated the number concentration and IWC using:

Z
10810 Nemp = 0.1Zy; — 2 logwﬁ -1.11; (18)
Kppad
Qremp = 0.004 (#) (19)

where Nep,p, and g emp are in units of L' and g m™3, respectively; Zy is in units of dBZ; Zpy is unitless, and A is the radar
wavelength in mm. For convenience, we refer to retrievals from these empirical relationships as “Murphy20” hereafter.
Based on the evaluation conducted by Murphy et al. (2020) for a stratiform region of a mesoscale convective system over
Oklahoma, Nep,, scatters significantly with respect to in-situ measurements; qyemp and Demp tends to be systematically
biased low, but outperformed other empirical relationships. Since, in theory, these derived relationships are not sensitive to
ice particle shape and orientation, they remain a good starting point for intercomparisons.

Note that these empirical relationships are designed for radar volumes that only include one species. Hence, if a radar
volume is known to include a mixture of different species, caution should be exercised when interpretating their results.
Additionally, equation (17) was derived using equivalent volume diameter as the size descriptor in PSD, and thus Dep,y,
cannot be used directly for comparisons to our retrieval that is based on maximum particle dimension as the size descriptor.
Instead, we need to trace back their derivations to find their retrieved PSD, convert the equivalent volume diameter to the
equivalent melted diameter (D), and then calculate the effective mean diameter (Dggepm) using equation (7) for

intercomparisons. The details can be found in Appendix B.

4 Results
4.1 Evaluation using synthetic data

In this section we use synthetic polarimetric radar data to evaluate our retrieval and identify any potential issues. The
synthetic dataset was generated as follows. We first generated 501 profiles from the prior used in the ENCORE-ice, and then
randomly selected a profile that has a relatively wide range of Zy and Zpy for testing. Along with the forward model
described in Section 2.2.3, this selected profile is used to generate synthetic radar measurements and serves as the “truth” in
this evaluation experiment. Because the truth profile and the initial ensemble members were generated from the same prior
and used the exact same forward models, any retrieval error found in this experiment is due to the combination of the
observed uncertainty and the retrieval method itself only. Hence, the design of this experiment does not allow us to evaluate
errors due to the representativeness of forward models or the prior, which likely exist in real world applications.

Figure 4 shows the synthetic radar measurements over 20 gates with a resolution of 50 m at a given elevation angle of

30°, based on the truth profile shown in Fig. 5. The chosen number of gates is arbitrary but represents a frequent scenario in
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the radar scans collocated with in-situ data during PICASSO. In this scenario, the total ice number concentration is
dominated by pristine ice, and the total ice water content is dominated by aggerates. The truth has a Np range between 5-20
L™, and a N, range between 1-3 L™'; D p ranges between 0.4-1 mm, while D,  ranges ~2—5 mm. The combined D, varies
from 1.5 mm to ~5 mm, generally close to Dy 4 as expected, since it is weighted by size to the third power and mainly
controlled by the species with large particle sizes.

The forward-modelled observables of the ENCORE-ice solution in Fig. 4 agree well within the uncertainty of the
synthetic values, providing confidence in retrievals. As shown in Fig. 5, the retrieval captures the vertical trend of the truth;
the retrieval uncertainty estimated from the spread of the ensemble members also appear reasonable, since the truth falls
within the retrieval uncertainty. Because many combinations of Ny 4 and D 4 could lead to the same Zy;, we see some
compensating effects between Ny 4 and D, 4 in aggregates at the lower layer. The errors are compensated so that the error in
the total ice water content is not enhanced, as shown in Table 5. Overall, the retrieval biases in the combined total number
concertation, water content, and effective diameter properties are within 5%, and the root-mean-square-errors are small (see
Table 5).

To conclude, this evaluation experiment demonstrates that the combination of these four radar observables is appropriate
and the current observational uncertainty is sufficient for us to separate signals of pristine ice from aggregates. The errors in
retrieved pristine ice properties are small, and thus further physical interpretation based on the associated vertical profiles
can be made to understand the underlying microphysical processes. For aggregates, the errors in retrieved size diameter and
water content are small, but the vertical variations of retrieved number concentration may not follow the truth exactly due to

the possible compensating effects between number concentration and particle size.
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Figure 4. Profiles of (a) Zy, (b) Zpr, (¢) Kpp and (d) pyy for synthetic observations (black line) calculated from the ice cloud properties

given in Fig. 5, and for the mean of forward simulations from the ensemble (red dots). Grey shading denotes the observational

uncertainties given in Table 3, while error bars in orange denote retrieval uncertainty calculated as the one-standard deviation spread of the
395  ensemble simulations.

Table S. Truth means, and the means, root-mean-square-error (RMSE), and biases in retrieval in the synthetic dataset experiment.

Ice number concentration Normalization diameter Total number Total ice Combined
(Np, Ny; L (Do,p» Dy 5; mm) concentration ~ water content  effective diameter
Pristine ice Aggregate Pristine ice Aggregate (N;; LY (q; gm™) (Degr; mm)
True mean 13.270 0.882 0.677 3.165 14.152 0.139 2.965
Ret. mean 12.836 0.988 0.692 3.127 13.824 0.145 2.927
RMSE 0.87 0.22 0.03 0.14 0.74 0.01 0.12
Bias (%) -33 12.0 22 -1.2 23 43 -13

400
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Figure 5. Profiles of (a) normalized number concentration and (b) normalization diameter for pristine ice, (¢) normalized number
concentration and (d) normalization diameter for aggregates. (e) represents the total number concentrations and (f) represents ice water
contents of pristine ice and aggregates. Truth is denoted by black solid lines in (a)—(d), and by dashed lines in (e) and (f). The retrieved
ensemble means are denoted by solid blue and red lines with shading that represents the one-standard deviation spread of the ensemble
members. The habit of pristine ice is plate in this experiment.

4.2  Evaluation using PICASSO data

The case of 13 February 2018 from the PICASSO campaign represents a stratiform precipitating cloud system
associated with a frontal passage. Using a radar scan at 8:37 UTC as an example, Fig. 6 shows a significant area with
reduced pyy, and enhanced Zpg and Kpp at ~3 km height, which suggests the presence of enhanced pristine ice embedded in
snow aggregates. Based on the temperatures measured by the aircraft (Fig. 7), this area is in a temperature zone
approximately between —12°C and —18°C, and thus the preferred ice habit is likely to be dendrite and plate for this radar
scan. During this radar scan, FAAM was too far away to provide meaningful comparison, but cloud images showed that
dendrites were present most of time during this period.

Figure 8 shows detailed retrieval performance for a ray taken from the radar scan in Fig. 6. For this case, retrievals using
the dendrite habit perform best; the habit suggested by our retrieval is consistent with observed particle images. As shown in
Figs. 8(a)—(d), the forward modelled radar observables agree well with the observed vertical profiles. The normalization

diameters for pristine ice and aggregates (Dyp, Dy o) are about 2.5 mm and 5-6 mm, respectively. Retrieved Nj is relatively
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420 constant at ~5 L', due to the opposite vertical variations between Np (increasing with height) and N, (decreasing with

height). In contrast, q; decreases with height from 1 g m™ to 0.2 g m™, because both Ny and D, 4 decrease with height.
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Figure 6. Height-range plots of observed (a) Zy, (b) Zpg, (¢) Kpp and (d) pgy from the RHI scan at 8:37 UTC on 13 February 2018 during
425  the PICASSO field campaign. The red dashed line denotes the 0°C level, while the black dashed line denotes the approximate flight
altitude of FAAM during the scan. The black polygon denotes the region that has enhanced Zpg and Kpp, and reduced pyy.
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Figure 7. A temperature profile composited from aircraft in-situ data during 6-9 UTC on 13 February 2018. Data between 6:33:30 —
430  6:39:20 UTC were unphysical (see Fig. 9b) and thus excluded. The error bars represent one standard deviation of sampled observations.
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Figure 8. Retrieval performance for a radar ray at 8:37:39 UTC. Observed and forward simulated profiles of (a) Zy, (b) Zpg, (¢) Kpp and
(d) pgy- The shading in (a)—(d) represent the observational uncertainty. The red dots represent the mean of the ensemble simulations, and
the error bars represent one standard-deviation in forward simulations. (e)—(j) represent the retrieved mean normalized pristine ice number
concentration, pristine ice normalization diameter, normalized aggregate number concentration, aggregate normalization diameter, the total
number concentrations, and the total ice water content, respectively. (k) and (1) represent the individual and combined effective mean
diameters using the maximum particle dimension and the equivalent melted particle size as the size descriptor, respectively. The shading in
(e)—(1) represent one standard deviation uncertainty in retrieval. For comparisons, retrievals from Murphy20 are co-plotted in (i), (j) and

.

Compared to Murphy20 retrievals, a few findings stand out. Firstly, retrieved q; profiles from two methods follow each
other closely. This is not surprising, because both gq; are largely constrained by the same Zj observations. Secondly,
retrieved N; from Murphy20 is much larger than that from ENCORE-ice. These results suggest that Murphy20 has attributed
all radar signals to one species like our pristine ice. Due to the smaller size of pristine ice compared to aggregates, retrieved
N; from Murphy20 must be much larger than ENCORE-ice to make up for the same q;. This also explains why N; and gy in
Murphy?20 retrievals have similar profile shapes. Considering that the observed pyy is not close to 1, the attribution to single

species is likely inappropriate, leading to a large error in ice number concentration, even though gq; may seem reasonable.
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Finally, Doyt the effective mean diameter using the equivalent melted diameter as the size descriptor, from Murphy20
tends to be larger than that from ENCORE-ice. This is partly because Murphy et al. (2020) have used denser ice particle, i.e.,
the pre-factor and the exponent in their mass-size relationship are both slightly larger than our aggregates. Since Degg ¢
depends on the assumed mass-size relationship, Fig. 8(1) is used for a qualitative comparison only.

Extending the evaluation from one ray to collocated data, a set of thresholds for matching space and time is needed.
Since the enhanced area in Fig. 6 is about 15-km wide and 1-km deep, we use this scale as one of our criteria and consider
in-situ observations and radar gates collocated if their distance is within 15 km in the horizontal and 1 km in the vertical. The
time difference threshold for collocation is set to be within 3.5 mins, because a pair of back-to-back radar RHI scans were
performed every 7 mins (see Sec. 2). These spatial and temporal thresholds lead to six clusters of radar scans for
intercomparison, which comprises 105 rays with a total of 1675 gates. For a given ray, if the root-mean-square-difference
between the measured and the forward simulated radar observable is greater than 0.1 dB in Zpg, 0.1 ° km™! in Kpp , or 0.01
in pyy, we consider that the retrieval quality for the entire ray is poor and exclude all the retrievals. After this exclusion, 81
rays with 1237 radar gates remain for the evaluation. Most unsuccessful retrievals are likely due to an inappropriate prior. To
make the retrieval method work for those unsuccessful cases, we may need to assume priors with different shapes of vertical
profiles. Unfortunately, we do not have good knowledge of those shapes and will need to rely on future campaigns to help
gather this information by taking frequent multiple-layer flights around the radar site.

Figure 9 shows the time series of in-situ observations and collocated retrievals. We expect column ice crystals in the
beginning and very end of the time series, because of the measured temperature zones higher than —10°C. The flight height
was maintained at ~2 km from 6:30 to 6:40 UTC, suggesting that the missing temperatures due to a data glitch at ~6:40 UTC
are likely to be about —5°C. During 7:10-8:45 UTC, the temperatures are between —10°C and —20°C and likely favour the
presence of both dendrite and plate. These expectations about prevalent ice habits are confirmed by visually checking the in-
situ cloud particle images (see Fig. 1 for examples).

In our retrievals, 40% of the collocated radar observables are best fit with plate as the pristine ice habit, 20% with
dendrite, and 40% with columns. In general, when the cloud particle images were dominated by columns, indeed, we have
also found that retrievals with columns as the pristine ice habit provide the best agreement between the measured and
forward-simulated radar observables. In the period between 7UTC -8:45 UTC when dendrites appeared much more
frequently than plates in cloud particle images, our retrievals suggest the opposite, because 40% of best-fit retrievals are
associated with plates and only 20% of best-fit retrievals are associated with dendrite. Therefore, we consider there remains a
large uncertainty in distinguishing plate and dendrites using our retrievals. Note that even with this habit uncertainty, the
choice of plate and dendrite does not lead to significantly different retrievals in Nj and gq;.

The collocated retrievals in Fig. 9c and 9d show that N retrieved from ENCORE-ice is approximately in the same order
of magnitude as observations, and that the retrieved q; values are close to the Nevzorov probe observations. N; and q; from

ENCORE-ice generally perform better than those from Murphy20, but they are both overestimated as indicated by the box
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plots in Fig. 10. The overestimations in the median of N; and q; are respectively 98% and 44% for ENCORE-ice, and
respectively 445% and 187% for Murphy20. Note that Murphy20 retrievals in N and q; are based empirical relationships
derived from size bins between zero and infinity, while HVPS- and ENOCRE-ice-based estimates are derived using HVPS
size bins from between 75 and 19275 pum. This difference in size ranges is not a concern for comparisons in q;, but it
contributes to part of the overestimation in N; in Murhpy20 retrievals. Using our retrieved PSD, we have found that the
median N; derived from zero and infinity size bins is ~3% larger than that derived from the HVPS size range. This suggests
that the difference in the size range for integration calculations is not the main cause for the 445% overestimation in
Murphy20 N retrievals. Additionally, similar to Fig. 8(I), Murphy20 Dggf e tends to be larger than our Degry,e from
aggregates by 0.3 mm in the overall median, as shown in Fig. 9(f) and 10(d).
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Figure 9. Time series of (a) flight altitude, (b) temperature, observed and retrieved (c) total ice number concentration, (d) ice water
content, (e) effective mean diameter using the maximum particle dimension as the size descriptor, and (f) effective mean diameter using
the equivalent melted diameter as the size descriptor. Retrieval from ENCORE-ice and Murphy20 empirical relationships are denoted by
dots, explained by detailed legends. The dots represent the median of retrieval from all collocated gates, and the vertical bars denote the
range between the 25th and 75th percentiles. Note that the counting uncertainty in total ice number concentration in (c) is plotted but too
small to see. All calculations are based on the size range of HVPS observations, except Murphy20 retrievals in (c¢) and (d). For
convenience, we index six retrieval clusters from 1 to 6 as shown in (d).
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Figure 10. Box plots of in-situ observations and retrievals from ENCORE-ice and Murphy20 for (a) total ice number concentration, (b)
ice water content, (c) effective mean diameter using the maximum particle dimension as the size descriptor, and (d) effective mean
diameter using the equivalent melted diameter as the size descriptor. The bottom and top of each box represent the 25% and 75% quartiles,
and the line inside the box represents the median. The whiskers mark represents the range of data points within 1.5 times the interquartile
distance. The included sample sizes for in-situ data and radar gates are 347 and 1237, respectively.

Recall per equations (6) that the effective mean diameter is weighted by size and thus strongly influenced by large
particles. When observations sample both pristine ice and aggregates, the combined mean particle size is expected to be
close to the size of aggregates, not pristine ice. The results in Fig. 9(e) generally match this expectation, showing a
reasonable agreement between the observed and the combined mean diameter, except three data clusters during the period
between 7:30 and 8:45 UTC. For Cluster 5 around at 8:45 UTC, Dg¢ from HVPS has a large variation, ranging between 1.4
and ~5 mm with a median of 2.8 mm. This range is in the same order of median D of pristine ice (1.5 mm) and of
aggregates (~5 mm), though the median combined Dqs of 4.7 mm is significantly larger than the observed median. For
Clusters 3 and 4 between 7:30 and 7:45 UTC, the observed effective mean diameter is closer to the retrieved pristine ice
diameter. This unexpected behaviour might suggest a few scenarios, which are discussed in detail next.

The first scenario is that the radar volume might include pristine ice only or aggregates only. However, as shown in
Murphy?20 retrievals, assuming single species leads to a large error in Np. The observed pyy is also too low to support this
scenario. The second scenario is that the separation between pristine ice and aggregates in our retrieval is inappropriate. To
assess this possibility, we tested various combinations of Ny and D, and found that the following two conditions must be
met for the combined size to be close to the size of pristine ice. The first is that Np needs to be at least one order of the
magnitude larger than N,, and the second is that Dy p cannot be much smaller than D, 5. To meet the first condition, let us

assume that our retrieved N, is supposed to be 10 times smaller, because our retrieved Np from ENCORE-ice is already
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overestimated compared to the in-situ observations and should not be even higher. Under that assumption, D, 5 needs to
increase by a factor of 1.5 to maintain the same radar reflectivity observation. An increase in Dy 4, however, would make the
difference between Dy p and Dy, 4 even larger, which violates the second required condition. The combination of reduced Ny
and increased D, 4 by the factors used above would also reduce g by a factor of 3. Then, to make up for the reduction of q;,
one can increase D p to remediate the second required condition. This eventually leads to a scenario that two species are
alike, as the first scenario, which is not supported by the observations.

The third scenario is that the discrepancy in D is due to a sampling issue. Figure 11 shows two-dimensional
histograms of occurrences of the vertical and horizontal distance in the collocated in-situ and radar dataset. The distance was
calculated with respect to radar gate, i.e., the positive vertical distance represents that the flight altitude is higher than the
radar gate of interest. Interestingly, for Clusters 1, 2 and 6, in-situ samples were taken largely at radar scan heights or below.
It is likely that both in-situ and radar have sampled the same regime with notable aggregations, which explains why the
observed D is close to the retrieved Dyg of aggregates. In contrast, in-situ samples were taken at higher altitudes over the
radar scans for Clusters 3-5. In these cases, aircraft may have sampled a pristine ice growth zone aloft, but the radar gates
below sampled the subsequent aggregations, which explains why the observed D is closer to the retrieved Dgg of pristine
ice, rather than aggregates. Further studies using more datasets and retrievals would be needed to assess the third scenario.
Overall, when including Clusters 1, 2 and 6, the difference between the observed and the retrieved combined median Dy is

about 0.55 mm.
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Figure 11. 2D histograms of occurrences of distances in the vertical and horizontal between in-situ measurements and radar gates for
Cluster 1-6 in (a)—(f), respectively. Note that occurrences are counted for all pairs of in-situ data point and radar gate. In calculations of
retrieval errors, selected in-situ data points and radar gates are only used once with equal weights.
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5 Summary

We have introduced a new method for retrieving microphysical properties of concurrent pristine ice and snow aggregates
from X-band polarimetric radar observations. The radar observables used here include horizontal reflectivity, differential
reflectivity, co-polar correlation coefficient, and specific differential phase shift. The first observable provides constraints on
the combined aggregate and pristine ice population, while the last three observables provide constraints on the partitioning
between aggregates and pristine ice, as well as on the ice number concentration and size of pristine ice. The observations are
combined with our prior knowledge via an ensemble retrieval framework to find the best estimates of microphysical
properties. Since properties of pristine ice and snow aggregates vary significantly in nature, we apply a wide-spread prior
and thus the retrieval is mainly dominated by the observations.

Based on the evaluation using synthetic observations, we have found that the current observational uncertainty is
sufficient for quantifying properties of pristine ice and snow aggregates. The retrieval was able to reproduce vertical profiles
similar to the truth, and the root-mean-square-error with respect to the truth is within the retrieval uncertainty. The biases in
the combined total ice number concentration, ice water content, and effective mean diameter are all within 5%. This exercise
demonstrates that our retrieval method works well, if the prior and the forward models for simulating radar observables are
chosen appropriately and representative of reality. In general, the appropriateness and representativeness of the prior and
forward model can be confirmed by examining the agreement between the observations and the forward simulations.

We have also evaluated our retrieval against in-situ cloud probe observations taken from a recent field campaign in
Chilbolton, UK, which was coordinated to have collocated X-band radar scans and aircraft flights. We analysed a three-hour
long case that had 1237 collocated radar gates. Although the period was not particularly long, the aircraft sampled ice
particles in temperature zones from —5°C to —35°C, allowing us to assess the retrieval performance for cases that are
dominated by column, plate, or dendrite. The collocated in-situ data has a median number concentration of 5.6 L™, ice water
content of 0.2 g m3, and 2.7 mm effective mean diameter. Compared to in-situ medians, our retrieved total number
concentration and ice water content are overestimated by 98% and 44%, respectively. This performance is generally better
than that from empirical relationships, which has differences of 445% and 187% in total number concentration and ice water
content, respectively with respect to the in-situ medians. For effective mean diameter, the in-situ observations agree with our
effective mean diameter combined from pristine ice and aggregate in three data clusters with a difference of 0.55 mm. In
other clusters, the observed effective mean diameters agree better with the retrieved size of pristine ice, likely because the
aircraft sampled pristine ice growth zones aloft instead of aggregation zones that radar sampled. Since planar crystal growth
and subsequent aggregation can lead to zones with distinct ice bulk properties, taking frequent aircraft measurements at
multiple vertical layers around the radar location would be particularly helpful to improve collocations and allow us to
analyse individual rays in more detail.

Currently, our method is designed to work for conditions with a mixture of pristine ice and aggregates. In the presence

of rimed particles, the state vector should be expanded to include additional variables that can accommodate and inform the

25



580

585

590

595

600

degree of rimming, e.g., the riming factor described in Masson et al. (2018), or to include appropriate rimed species
explicitly. When triple-frequency measurements are available and can be used to distinguish particle types effectively (e.g.,
Kneifel et al., 2015; Barrett et al., 2019), such information on particle types can also be incorporated into our method to
provide retrievals for off-zenith radar scans that are more challenging for triple-frequency techniques. It is also possible to
expand the observation vector with other radar observables at multiple wavelengths, providing further constraints on
retrieval if added information exists.

This work is the first step toward quantifying microphysical properties of concurrent ice species, using a framework that
considers our prior knowledge and the observational uncertainties. Since we have focused on radar signals with reduced co-
polar correlation coefficient and enhanced differential reflectivity and specific differential phase shift (i.e., cases with
potentially high ice number concentration), the immediate application will be on studying dendritic growth zones commonly
found in thick stratiform clouds. In particular, the Atmospheric Radiation Measurement (ARM) Program User Facility has
operated X-band polarimetric radars at a fixed site at Barrow, Alaska, and in the Biogenic Aerosols—Effects on Clouds and
Climate field campaign in Finland back in 2014. These rich datasets will allow us to study formation of new crystals either
via primary nucleation or a secondary ice process, their growth into planar crystals and dendrites, and the subsequent
aggregations. The retrieved ice properties can be further compared to model simulations to understand what controls the ice

number productions.

Appendix A

Radar equations for a single sample volume containing multiple ice particle habits are given as (Jung et al., 2010):

= e L 0y (Al + BISh|” + 2CRe[S}, 8L, T} n(D)dD: (A1)

= S {BISkul + ISkl + 2CRelSE, b, ]} n(D)AD; (A2)
Zno = e S [ {C 1Sl + 1880 ] + ALSEn S T+ B[SE By, T} (D) (A3)
Zar =3 (A4)
Phy = [(Zh'f(% and (A5)
Kop = 2230, f,7{CiRe[S],, — 51,1} n(D)dD, (A6)

where Z,, Z,,, and Z,,, are in units of mm® m™; D is the maximum particle dimension; A is the radar wavelength; K, is the
h> “v hv p g w

dielectric factor of water and |K,, |> = 0.93; and the amplitude scattering matrix elements (S) are in units of mm. The vertical
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bars represent the magnitude of the terms within, while Re represents the real part of the complex number and the asterisk
indicates its complex conjugate. The index i represents the species existing in the radar volume, and the index J represents
the number of species. Note that the amplitude scattering matrix elements in the database are tabulated for various elevation

angles, azimuth angles, and habit realizations. To apply these amplitude elements to the equations (A1)—(A6), S ,{,’lb and S,f,;b

are first linearly interpolated with respect to elevation angles for radar rays. The interpolated S ,{,’f’ and 5,{5’ are then used to
calculate the terms in the parentheses for all azimuth angles and habit variations. Because the azimuthal orientation of
hydrometeors relative to the radar is random and unknown, and because the exact morphological characteristics of these
particles at any given time in nature are also unknown, the terms in the parentheses are averaged over azimuth angles and
habit realizations, which are represented by the horizontal bar over the parentheses.

Coefficients 4, B, C, and C; are included to account for the effects of canting on the polarimetric radar moments.
Following Jung et al. (2010) and Ryzhkov et al. (2011), the canting angle distributions are assumed to be Gaussian, and their
effects can be parameterized using the mean and standard deviation of the distribution. Supposing that all oblate species fall
with their major axes preferentially oriented in the horizontal plane, the mean canting angle can be set to zero (Ryzhkov et
al. 2011). The width of the canting angle distribution is set to 10° for pristine ice crystals and 60° for snow aggregates,
similar to Ryzhkov et al. (2011) and Matsui et al. (2019). All detailed equations and coefficients can be found in Jung et al.
(2010).

Appendix B

Ryzhkov et al. (2018) used a power-law dependence to describe particle density, given as:

p=aD;?, (B1)

where the density p is in g cm™, coefficient « is in g cm2, and D,, is the equivalent volume diameter. They also assumed
an exponential particle size distribution, i.e.,

N(D.) = Nose™"P, (B2)

with an intercept Ny ; and the exponent A. From their equations (3) and (4) in Ryzhkov et al. (2018), we can calculate

these two parameters by:

4

A= Demp’ (B3)

a = 0.00309————, and (B4)
fII,emp'De]mp

Nos = — diemp (BS)

= 0.0003811-q~02206’
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3

where the exponent A in mm ™', Nos in m> mm™, ais in g cm 2, Z is the radar reflectivity in mm® m, Qiemp 18 the

retrieved ice water content from equation (19) in g m™, and Depp, is the retrieved diameter from equation (17) in mm.
Once N and A are known in equation (B2), we further convert the size descriptor D, to the equivalent melted
dimeter (denoted as D,;;) by

1

Dy = (% Dg)g, (B6)

and then calculate the effective mean diameter Dy ), using equation (7).

Data availability. FAAM aircraft observations from PICASSO are available at the Centre for Environmental Data Analysis
archive (https://www.ceda.ac.uk/). NxPol radar observations from PICASSO are publicly available via
https://catalogue.ceda.ac.uk/uuid/ffc9ed384acad471dab35901cf62f70be. The ice crystal scattering database used to compute
radar moments is available at https://www.arm.gov/data/data-sources/icepart-mod-120. The retrieval will be available freely

in the ARM Archive as a PI product.
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