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Abstract. Ice and mixed phase clouds play a key role in our climate system, because of their strong controls on global 

precipitation and radiation budget. Their microphysical properties have been characterized commonly by polarimetric radar 

measurements. However, there remains a lack of robust estimates of microphysical properties of concurrent pristine ice and 

aggregates, because larger snow aggregates often dominate the radar signal and mask contributions of smaller pristine ice 20 

crystals. This paper presents a new method that separates the scattering signals of pristine ice embedded in snow aggregates 

in scanning polarimetric radar observations and retrieves their respective abundances and sizes for the first time. This 

method, dubbed ENCORE-ice, is built on an iterative stochastic ensemble retrieval framework. It provides number 

concentration, ice water content, and effective mean diameter of pristine ice and snow aggregates with uncertainty estimates. 

Evaluations against synthetic observations show that the overall retrieval biases in the combined total microphysical 25 

properties are within 5%, and that the errors with respect to the truth are well within the retrieval uncertainty. The 

partitioning between pristine ice and snow aggregates also agrees well with the truth. Additional evaluations against in-situ 

cloud probe measurements from a recent campaign for a stratiform cloud system are promising. Our median retrievals have a 

bias of 98% in total ice number concentration and 44% in total ice water content. This performance is generally better than 

the retrieval from empirical relationships. The ability to separate signals of different ice species and to provide their 30 

quantitative microphysical properties will open many research opportunities, such as secondary ice production studies and 

model evaluations for ice microphysical processes. 

  

https://doi.org/10.5194/amt-2021-168
Preprint. Discussion started: 23 June 2021
c© Author(s) 2021. CC BY 4.0 License.



2 
 

1 Introduction  

Ice-containing clouds play an important role in Earth’s radiation budget and global precipitation (Baran, 2009; Field and 35 

Heymsfield, 2015; Mulmenstadt et al., 2015; Li et al., 2014). Their formation and evolution involve processes of ice 

nucleation, ice multiplication, aggregation, and riming, which are closely linked to atmospheric conditions and dynamics 

(DeMott et al., 2011; Gultepe et al., 2017; Field et al., 2017; Korolev et al., 2020). Such complex interactions make it 

challenging to complete our understanding of these ice microphysical processes and represent them well in models (Korolev 

et al., 2017; Morrison et al., 2020).  40 

Polarimetric radar measurements contain information on ice properties and have been proven useful for studying ice 

microphysical processes (e.g., Kennedy and Rutledge, 2011; Grazioli et al. 2015; Moisseev et al., 2015). Many empirical 

relationships were developed to provide important bulk properties such as ice water content (e.g., Ryzhkov et al., 1998; Lu et 

al., 2015), median volume diameter and number concentration (e.g., Murphy et al., 2020), but they cannot inform the 

partitioning between ice species. The partitioning is of particular importance for pristine ice crystals because it not only 45 

influences snow aggregation rates (Hobbs et al., 1974; Barrett et al., 2019), which impact precipitation production and cloud 

lifetime (Schmitt and Heymsfield, 2014), but also acts as a major control on cloud phase partitioning (Fusina et al., 2007; 

Matus and L’Ecuyer, 2017). 

However, separating signals of pristine ice from aggregates in polarimetric radar data is challenging, because larger 

snow aggregates often dominate the radar reflectivity and mask contributions of smaller pristine ice crystals (Hogan et al., 50 

2002; Keat and Westbrook, 2017). As a result, information from horizontal reflectivity (𝑍! ) alone is insufficient to 

characterize mixtures of ice hydrometeors (Oue et al., 2018), and it is necessary to incorporate other radar observables in 

retrieval methods. By exploiting distinct fall behaviours between pristine ice and aggregates, Spek et al. (2008) used 𝑍!, 

differential reflectivity (𝑍"#) and Doppler spectrum to retrieve particle size distribution (PSD) parameters of pristine ice and 

snow aggregates. Without the use of Doppler spectrum, Schrom et al. (2016) used 𝑍!, 𝑍"#, and specific differential phase 55 

shift (𝐾"$) to estimate the PSD of pristine ice in the dendritic growth zone of Colorado winter storms. 𝐾"$ is a great addition 

in their approach, since it is mainly determined by ice number concentration. Unfortunately, these three radar observables 

remain insufficient, and their partitioning between pristine ice and aggregates was weakly constrained. To improve the 

partitioning, Keat and Westbrook (2017) showed that the relative radar signal contributions of pristine ice embedded in snow 

aggregate populations can be quantified using 𝑍!, 𝑍"#, and copolar correlation coefficient (𝜌%&), but they have not attempted 60 

to use their partitioning to provide quantitative retrievals of pristine ice number concentration, water content and particle 

size.  

The objective of the paper is to present an ensemble cloud retrieval method (dubbed ENCORE-ice) for simultaneously 

retrieving the number concentrations, sizes and ice water contents of concurrent pristine ice and snow aggregates from 

measurements of 𝑍!, 𝑍"#, 𝐾"$ and 𝜌%&. This framework provides full error statistics and characterizes sub species from 65 

radar signals, which is an advance to the existing methods. The polarimetric radar observations and the retrieval method are 

https://doi.org/10.5194/amt-2021-168
Preprint. Discussion started: 23 June 2021
c© Author(s) 2021. CC BY 4.0 License.



3 
 

detailed in Section 2. The ancillary data sets for evaluations are introduced in Section 3. Section 4 presents evaluation results 

using synthetic datasets and actual observations from Chilbolton, United Kingdom in 2018. Finally, section 5 summarises 

the key finding and discusses potential applications. 

2 Radar observations and ENCORE-ice 70 

2.1 Polarimetric radar data  

Our retrieval method uses four polarimetric observables. The first observable is the horizontal reflectivity 	𝑍! , which 

provides information on particle size and concentration, but its dependence on size is much stronger. As such, 𝑍!  is 

dominated by contributions from snow aggregates because their sizes, and thus their backscatter cross-sections, are typically 

much larger than those of pristine ice crystals. The second observable is the differential reflectivity 𝑍"#, which provides 75 

information on particle shape and orientation. A 𝑍"# of 0 dB indicates spherical particles because of equal backscattered 

power in each polarization. Snow aggregates yield low 𝑍"#  (about 0–0.6 dB) due to their spheroidal morphology. In 

contrast, pristine ice particles can yield 𝑍"#  of several dB because of their aspect ratios and preferential horizontal 

orientation when falling. Heterogenous regions with concurrent pristine ice and snow aggregates are therefore associated 

with higher 𝑍"# than if only snow aggregates were present. The third observable is the co-polar correlation coefficient 𝜌%&, 80 

the correlation coefficient between horizontally and vertically backscattered power, which provides information on the 

diversity of particle shape in a radar sample volume (Kumjian, 2013; Keat et al., 2016). 𝜌%& is unity in homogenous regions 

but tends towards lower values (e.g., ~0.97) in the presence of heterogenous hydrometeor types. Finally, the fourth 

observable is the specific differential phase shift 𝐾"$, which provides information on particle number concentration, shape, 

and orientation. Compared to the first two observables that have been widely used in many remote sensing applications, the 85 

measurements of 𝜌%& and 𝐾"$ are more advanced and their applications remain to be explored more widely. 

Our case study is based on polarimetric radar data from the Parameterizing Ice Clouds using Airborne obServationS and 

triple-frequency dOppler radar data (PICASSO) field campaign in Chilbolton, UK in 2018–2019. During the campaign, the 

National Centre for Atmospheric Science mobile X-band dual-polarization Doppler weather radar (NXPol; Neely III et al., 

2018) operated with 0.98° beam width, 150 m range resolution, and a maximum range of 150 km. The radar performed two 90 

back-to-back, fixed-azimuth range-height indicator (RHI) scans every 7 mins, and each scan completed in 18 s. Throughout 

February 13, 2018, RHI scans were performed along the 243° radial and intercepted by the NCAS-managed Facility for 

Airborne Atmospheric Measurements (FAAM) aircraft on several occasions, providing a unique opportunity for evaluation. 

Key characteristics of NXPol are summarized in Table 1. 

 95 
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Table 1. Characteristics of the NXPol polarimetric radar. Further specifications and details can be found in Neely III et al. (2018). 

Parameter NXPol 

Center wavelength (mm) 31.98 

Transmit/receive polarization H+V/H+V 

Beamwidth (°) 0.98 

Pulse width (µs) 1 

Scan rate (° s–1) 5 

Sensitivity (dBZ) –11 (at 100 km) 

Maximum range (km) 150 

Gate Resolution (m) 150 

 

2.2 ENCORE-ice  

ENCORE is an ensemble-based retrieval method that has previously been used to retrieve three-dimensional cloud 100 

microphysical properties (Fielding et al., 2014) and one-dimensional cloud and drizzle properties (Fielding et al., 2015), but 

several key components are modified here for ice retrieval. 

2.2.1 Particle size distribution 

We approximate the PSD of pristine ice and aggregates by normalized Gamma distributions, given as (Testud et al., 2001):  

𝑛(𝐷) = 𝑁'𝑓((𝐷),  (1) 105 

where 𝑁'  is the normalized number concentration, and 𝑛  is the number concentration at a given maximum particle 

dimensions 𝐷. The choice of the size descriptor in equation (1) is because in-situ cloud probe data and the ice scattering 

database are both given based on the maximum particle dimension. The function 𝑓( is defined as: 

𝑓((𝐷) =
)

*.),!
∙ (*.),.()

!"#

0(1.()
- 2
2$
.
(
∙ exp /−(3.67 + 𝜇) 2

2$
7,  (2) 

where 𝜇 is the shape parameter of the PSD, and 𝐷' is the diameter used for normalizing 𝐷. Following Mason et al. (2018), 110 

we assume a constant shape parameter of 𝜇 = 2. Several studies have shown that the retrieved ice water content is relatively 

insensitive to the choice of shape parameter (e.g., Delanoë et al., 2005; Spek et al., 2008); we also found that our number 

concentration retrieval is not sensitive to 𝜇 either.  

From the PSD, the total ice number concentration (𝑁3) and the total ice water content (𝑞3) can be respectively computed 

by: 115 

𝑁3 = ∫ 𝑛(𝐷)𝑑𝐷4
' = 𝑁$ +𝑁5, and  (3) 
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𝑞3 = ∫ 𝑚(𝐷)𝑛(𝐷)𝑑𝐷4
' = 𝑞$ + 𝑞5,  (4) 

where the subscripts 𝑃 and 𝐴 denote contributions from pristine ice and snow aggregates, respectively, and 𝑚(𝐷) is the mass 

at a given maximum particle dimensions 𝐷. The mass-size relationship can be formulated as:  

𝑚(𝐷) = 𝑎𝐷6, (5) 120 

where 𝑎 and 𝑏 are the pre-factor and exponent, respectively. These coefficients depend on ice habit and have been estimated 

from past aircraft in-situ and surface observation as shown in Table 2. From the PSD, we also define and calculate the 

effective mean diameters (𝐷788) as: 

𝐷788 =
∫ :(2)2!;2%
$
∫ :(2)2&;2%
$

,  (6) 

which is the ratio of the 4th to the 3rd moment of PSD. To compare our retrieval with the empirical estimates (as discussed 125 

in Section 3), we also calculate an effective mean diameter using the equivalent melted diameter (𝐷<=>) as the size descriptor, 

defined as: 

𝐷788,<=> =
∫ :(2'())2'()

! ;2'()
%
$
∫ :(2'())2'()

& ;2'()
%
$

, (7) 

where  

𝐷<=> = /)@(2)
AB*

7
+
& = /)C2

,

AB*
7
+
&
, and  (8) 130 

𝜌D is water density. 

 
Table 2. Examples of mass-size relationships (taken from Mason et al., 2018).  

Habit 𝒂 (g cm–b) 𝒃 Reference 

Stellar 0.00027 1.67 Mitchell (1996) 

Hexagonal columns 0.000907 1.74  

Broad branches 0.000516 1.80  

Sector-like branches 0.00142 2.02  

Bullet rosettes 0.00308 2.26  

Side planes 0.00419 2.3  

Hexagonal plates 0.00739 2.45  

Aggregates 0.0028 2.1  

Aggregates 0.0039 1.9 Szyrmer and Zawadzki (2010) 

Unrimed dendrites 0.001263 1.912 Erfani and Mitchell (2017) 

Mixed (large-scale and convectively generated ice clouds) 0.007 2.2 Heymsfield et al. (2010) 
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2.2.2 The basis of ENCORE-ice 135 

The state vector (𝒙, i.e., variables to be retrieved) for each ensemble member is defined as: 

𝒙 = BlogE'𝑁',$
(FGE…I) , logE' 𝐷',$

(FGE…I) , logE'𝑁',5
(FGE…I) , logE' 𝐷',5

(FGE…I)  H, (9) 

where the superscript 𝑖 represents the index of the range gate, and the total number of gates to be retrieved is 𝐺. Let us use 𝑄 

members to form an ensemble, i.e.,  

𝐗 = M𝒙E,  … ,  𝒙JO  (10) 140 

such that the mean of 𝐗 represents the best estimate of the state vector, and the spread of the ensemble members around the 

mean represents the uncertainty in the best estimate.  

Using the Iterative Stochastic Ensemble Kalman Filter approach (Evensen et al., 2019), each ensemble member is 

updated based on: 

𝒙KC = 𝒙K
L + 𝑬K

L𝐰K,  (11) 145 

in which 𝒙K
L	and 𝒙KC are the prior and posterior ensemble member 𝑘, respectively, and  

𝑬K
L = S𝒙𝟏

𝒇 − 𝐗T𝒇, … , 𝒙𝑸
𝒇 − 𝐗T𝒇U  (12) 

is the initial ensemble matrix with the prior mean (𝐗T𝒇) subtracted, and 𝐰K  are weight vectors that are calculated from 

iteratively minimizing the following cost function:   

𝑱(𝒘K) =
𝟏
𝟐
𝒘K
Q	𝒘K 		+	

𝟏
𝟐
B𝒚 − 𝒉(𝒙K

L + 𝑬K
L𝒘K) − 𝜀KH

𝑻
	𝑹–𝟏	B𝒚 − 𝒉(𝒙K

L + 𝑬K
L𝒘K) − 𝜀KH. (13)  150 

In equation (13), the observation vector 𝒚 is defined as gate-by-gate radar observables: 

𝒚 = B𝑍!
(FGE,… ,I),  𝑍"#

(FGE,… ,I),  − ln𝐾"$
(FGE,… ,I) , − ln 𝜌!T

(FGE,… ,I)  H, (14) 

where 𝑍! and 𝑍"# are in dB. 𝒉(𝒙) represents the forward model for simulating polarimetric radar observables from the state 

vector 𝒙, and 𝜀K is a random perturbation vector drawn from the observation error distribution, which is estimated to be 

Gaussian with mean zero and covariance matrix R (Evensen et al., 2019, with modification from Van Leeuwen, 2020). The 155 

covariance matrix 𝑹 is diagonal with standard deviations given in Table 3. 

 
 

 

 160 
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Table 3. Estimated observational errors for X-band observables based on standard and benchmark procedures, adapted from Bringi and 

Chandrasekar (2004; pp 359–376) and Wang and Chandrasekar (2009).  

Observable Description Uncertainty 

𝑍! Horizontal reflectivity  0.5 dBZ 

𝑍"# Differential reflectivity 0.05 dB 

𝐾"$ Specific differential phase shift *10% 

𝜌!% Co-polar correlation coefficient #1 %  

* estimated by the uncertainty of 0.05 ° km–1 for a typical value of 𝐾"$ = 0.5 ° km–1. 

# estimated by the uncertainty of 0.01 for 𝜌!% = 0.95. 165 
 

 

2.2.3 Simulating radar observables for 𝒉(𝒙) 

To model polarimetric radar observables from the assumed PSD, knowledge of the single scattering properties of ice 

particles is required. Many scattering databases of realistically shaped ice particles at radar wavelengths are available and we 170 

used Lu et al. (2016) because of the following considerations. Several existing scattering databases assume total random 

orientation of the scatterers, e.g., Liu (2008), Hong et al. (2009), Kuo (2016) and Eriksson et al. (2018). Such assumption 

cannot explain polarimetric radar signals which are produced by non-spherical scatterers with preferred orientations with 

respect to the zenith direction. The database of Brath et al. (2020) assumes scatterers possess arbitrary fixed orientations 

relative to the zenith direction, but only includes hexagonal plates and aggregates consisting of hexagonal plates. We found 175 

that the database described in Lu et al. (2016) fits our needs in the current polarimetric radar study, since it contains all 

necessary polarimetric scattering data in many fixed orientations of a large variety of ice crystal species, including plates, 

columns, dendrites, and aggregates. The single scattering properties for each species are available for a range of crystal 

maximum dimensions, thickness ratios, and types. The pristine habits generally begin at ~0.1 mm and do not exceed 6 mm, 

whereas the aggregates begin at ~0.4 mm and extend to 18–45 mm approximately. Multiple morphological realizations per 180 

maximum dimension are available for dendrites and aggregates to account for their complexities.  

The scattering calculations were conducted using the generalized multi-particle Mie method (GMM; Xu, 1995) and the 

discrete dipole approximation (DDA; Yurkin and Hoekstra, 2011). We used properties calculated from GMM, because DDA 

calculations are not available for aggregates. Specifically, we use the amplitude scattering matrix elements in the forward 

and backward direction for horizontally and vertically polarized radiation, denoted as 𝑆UU
L,6 and 𝑆VV

L,6 where the superscript and 185 

subscript respectively represent the scattering direction (i.e., forward or background) and the polarization status (horizontally 

or vertically). From the assumed PSD and the amplitude scattering matrix elements, radar observables for a single sample 

volume containing multiple ice particle habits can be derived as shown in Appendix A. 
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2.3 Practical considerations  

There are several practical considerations for ENCORE-ice implementation. The first consideration is ice habit. The 190 

scattering database provides three habits (plates, dendrites, and columns) for pristine ice. Since the temperature found in 

PICASSO mostly ranged between –5°C and –25°C, all three types of pristine ice can be the preferred habit, as shown in Fig. 

1. Currently, we ran our retrieval algorithm for all three habits, and then selected the most appropriate one based on the 

agreement in the measured and forward simulated radar observables. Similarly, the scattering database provides five types of 

aggregates; two of them were constructed using ice columns (LD-N1e and HD-N1e), three of them using stellar ice crystals 195 

(LD-P1d, LDt-P1d and HD-P1d). The aspect ratios of aggregates in nature are known to vary depending on the pristine 

habits that comprise them. Defining an aspect ratio as the ratio of the lengths of the minor axes to the major axes, Garrett et 

al. (2015) and Jiang et al. (2017) observed aspect ratios ranging from 0.3 to 0.6 for falling aggregates at the surface. As 

shown in Fig. 2, among the aggregates available in the scattering database, LDt-P1d and HD-P1d exhibit aspect ratios within 

the observed range. The mass-size relationship for LDt-P1d is based on ordinary dendritic crystal with coefficient a of 200 

0.000482 and coefficient b of 1.97 (Kajikawa, 1989; Botta et al., 2011) in units of cgs same as Table 2, whereas the mass-

size relationship for HD-P1d is based on aggregates of thin plate with coefficient a of 0.00145 and coefficient b of 1.80 in 

units of cgs (Mitchell and Heymsfield, 2005; Botta et al., 2011). The mass-size relationship of HD-P1d is very close to 

unrimed aggregates (Erfani and Mitchell, 2017) and more aligned to values in the recent literature listed in Table 2. Hence, 

we select HD-P1d as the prescribed choice for aggregates.  205 

 

 
Figure 1. Examples of particle images from the Stratton Park Engineering Company Two-Dimension Stereo (2DS) probe, showing the 
presence of (a) column, (b) plate and (c) dendrite on 13 February 2018. Each image frame is 1.28 mm high, taken from one of the probe 
channels only since the other channel was not working properly on this day.  210 
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Figure 2. Aspect ratios of various aggregate types available in the scattering database as a function of their maximum dimensions. Aspect 
ratio is defined as the ratio of the sizes of the minor axes to the major axes. The grey shading between 0.3 and 0.6 represents the typical 
range of snow aggregate aspect ratios observed in nature (Garrett et al. 2015; Jiang et al. 2017). 215 
 

The second consideration is the prior used to generate the first guess for ensemble members. Using over 70 hours of in-

situ aircraft observations from a wide range of field campaigns spanning diverse cloud and temperature regimes, Delanoë et 

al. (2014) characterized the PSDs of ice particles by the normalized Gamma distribution. They found that 𝑁' ranged between 

1 L–1 mm–1 and 10,000 L–1 mm–1 with a mean 100 L–1 mm–1, and the median volume diameter (MVD) ranged between 0.2–220 

0.8 mm with a mean of 0.5 mm for the temperature zone of –10°C to –20°C. Additionally, Tiira et al. (2016) analysed 

surface measurements of ice particle number concentration from the Precipitation Imaging Package during the Biogenic 

Aerosols – Effects on Clouds and Climate field campaign. They found that 𝑁' ranged mainly from 1 L–1 mm–1 to 100 L–1 

mm–1 and MVD ranged from 0.5 mm to 5 mm. As these were surface based, the measured PSDs from Tiira et al. (2016) are 

more representative of the characteristics of snow aggregates. Note that these values were derived using the equivalent 225 

melted diameter as the size descriptor, not the maximum particle dimension. Hence, these values are used only to point out a 

possible range and serve as a starting point for us to construct the prior.  

Based on these observational ranges mentioned above, our prior is designed as follows. We started with the lowest radar 

gate, randomly assigning (𝑁',$, 𝐷',$, 𝑁',5, 𝐷',5) from normal distributions with the means and standard deviations listed in 

Table 4. Next, we applied a slope for each ray to provide initial guesses for other radar gates. The slope was randomly 230 

selected from a normal distribution described in Table 4. Among 𝑁',$, 𝐷',$, 𝑁',5, and 𝐷',5, 𝑁',$ likely increases with height, 

because the prevalence of active ice nuclei is a function of temperature and thus a function of height as well (DeMott et al., 

2010); however, the rest lack a clear dependence on height (e.g., Field et al., 2005). Hence, the slopes applied for 𝑁',$ in the 

prior are assumed to have a positive mean, while the slopes applied for 𝐷',$, 𝑁',5, and 𝐷',5 have a slightly negative mean. 

The small negative slope means are necessary to cover an appropriate range of state variables for radar gates at higher 235 
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altitudes. Finally, red (AR1) noise was added over the vertical with a correlation coefficient of 0.999 and a zero-mean 

random perturbation with a standard deviation that is half that of the lowest radar gate.   

Compared to values reported in Delanoë et al. (2014) and Tiira et al. (2016), we have chosen lower means for 𝑁',$ and 

𝑁',5 to start with. This is because the state vector space is the logarithm of 𝑁'. Positive slopes make the changes of 𝑁' much 

more dramatic in the vertical than those with negative slopes. As a result, large starting values of 𝑁',$ and 𝑁',5 will lead to 240 

unrealistic high concentrations at higher altitudes in the prior. In contrast, we choose larger means for  𝐷',$ and 𝐷',5, because 

of the assumed negative slopes in both 𝐷',$ and 𝐷',5. In general, the range in our prior is large, approximately two orders of 

magnitude in state vector variables. For such a wide-spread prior the solution will be dominated by the observations. 

 
Table 4. The prior and uncertainty used in ENCORE-ice. The means at lowest radar gate are given in the physical state space, and the rest 245 
are in the transformed state space (i.e., log&'). Retrieval is performed using two different sets of the prior; the second set uses values in the 

parenthesis and the rest remain unchanged. All radar gates above the lowest gates are perturbed by an AR1 red noise process with a 

vertical correlation of 0.999 and a standard deviation that is half of the standard deviation at lowest gates.     

 Pristine Ice Aggregate 

Variable 𝑁',$ 𝐷',$ 𝑁',) 𝐷',) 

Value at lowest radar gate     

Mean 50 (or 5) L–1 mm–1 1 mm 5 L–1 mm–1 4 (or 1) mm 

Standard deviation 0.15 0.3 0.15 0.3 

Slope in the vertical     

Mean (km–1) 1 –0.5 –0.5 –0.5 

Standard deviation (km–1) 0.2 0.02 0.2 0.02 

 

 250 

The third consideration is the number of the ensemble members used in the ENCORE-ice. Ideally, a large ensemble size 

is needed to ensure that the sampled prior is representative and so is the solution. However, a large ensemble size is 

computationally expensive. Therefore, we applied a localization scheme to reduce the required number of ensemble 

members so that we shorten the computational time while achieving the same mean retrieval and associated uncertainty. The 

localization scheme operates on each gate and takes only observations close to that gate into account to find the solution. 255 

This is implemented by multiplying the observation error variance of each observation with an exponential function of the 

distance between that observation and the gate that is being updated, such that observations far from the gate have less 

influence. The influence radii vary linearly with height, one gate at the lower level and about five gates at the upper level. 

Using our synthetic datasets, we have found that 50 ensemble members with the localization scheme is able to produce 

similar mean retrievals and associated uncertainty as a non-localized ensemble of size 500. The number of iterations is set to 260 

20, although the solutions often have converged at the 10th iteration.   

Finally, all radar data underwent the following quality checks and corrections before being used for retrieval: 
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• 𝑍!  and 𝑍"#  were corrected for attenuation due to liquid water, using the method described in Bringi and 

Chandrasekar (2001, Page 490–512). The attenuation due to ice at X-band is negligible and thus ignored here 

(Vivekanandan et al., 1999).  265 

• Systematic biases in 𝑍"# were identified using zenith-pointing 𝑍"# observations. As hydrometeors produce 𝑍"# of 

0 dB when viewed at zenith due to their spherical symmetry (e.g., for raindrops) or lack of preferential azimuthal 

orientation (e.g., for ice particles), any residual 𝑍"# can be treated as bias and removed (Seliga et al., 1981). We 

have found the 𝑍"# correction factors to be 0.2 dB for the PICASSO cases.  

• 𝐾"$ is calculated using the method of Wang and Chandrasekar (2009). 270 

• Once all corrections are applied, measurement noises were removed using a cubic spline approach (Craven and 

Wahba, 1979). 

Additionally, to ensure that gates are associated with sufficient information for our method, we exclude gates that exhibit one 

or more of the following: 

• Gates within 500 m of the 0°C level, avoiding contamination from liquid hydrometeors in the radar sample 275 

volume, because our state vector is not designed for that.  

• Gates where 𝜌!T exceeds 1.0, because these values are unphysical.  

• Gates with a signal-to-noise ratio (SNR) less than 20 dB, because of a lack of detectable hydrometeors. This 

threshold is chosen because the precipitating region and its surrounding area typically have SNR values larger than 

30–40 dB.  280 

• Radar rays with elevation angles greater than 50°,  because 𝑍"# tends towards 0 dB at higher elevation angles and 

polarimetric information becomes ambiguous.  

• Gates with 𝑍"# below 0.25 dB, regardless of their elevation angles, because the relative contributions of pristine 

ice and aggregates become ambiguous at lower values, as indicated in Keat and Westbrook (2015).  

• Gates with 𝐾"$ below 0.1 ° km–1 to ensure a sufficient number concentration of pristine ice. Negative 𝐾"$, 285 

indicative of conical graupel (Aydin and Seliga 1984) or the vertical reorientation of pristine ice crystals in the 

presence of thunderstorm electric fields (Hubbert et al. 2014). Since the state vector only includes pristine ice and 

aggregates, we exclude such gates as well.  

3 Independent observations and retrievals for evaluations 

3.1 In-situ aircraft measurements from PICASSO 290 

During PICASSO, the FAAM aircraft performed multiple transects from Chilbolton to Dorset (50.82 °N, 2.56 °W) at varied 

altitudes. Figure 3 depicts the flight path for 13 February 2018, which was a typical pattern during the campaign.  
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Figure 3. Flight paths on 13 February 2018 between 3:26 UTC and 10:21 UTC. The red dot denotes the location of NXPol in Chilbolton, 
UK, while the path in cyan denotes the path during 6–9 UTC in which retrievals are evaluated in Section 4.2. 295 
 

To evaluate our cloud retrieval, we use in-situ measurements of liquid water content and total water content (i.e., the 

sum of ice and liquid water contents) from a Nevzorov probe, and PSD measurements from a High-Volume Precipitation 

Spectrometer (HVPS, SPEC Inc, USA). The HVPS is an optical array particle imaging probe, which collects images of ice 

crystals with a pixel resolution of 150 μm. Size distributions of particles between 75 and 19275 μm were derived from their 300 

images; see Crosier et al. (2011) for a description of the data processing and quality control procedures used, and O’Shea et 

al. (2021) for discussions of the sources of uncertainties. All in-situ datasets were averaged to 5 s intervals for statistical 

reliability (Protat et al., 2007). We only use in-cloud samples, defined as having an ice water content (IWC) greater than 0.01 

g m–3. Additionally, although our retrieval provides microphysical properties of pristine ice and aggregates separately, we 

focus on evaluating bulk properties to avoid the ambiguity introduced by applying a threshold to separate these two species 305 

in observed PSDs. 

Three bulk properties are used for evaluations. Firstly, the total ice number concentration (denoted as 𝑁3,!T$W ) is 

calculated by integrating the observed PSD. The associated counting uncertainty is estimated as: 

E''%
YZ-,/012	∙	]/012	∙	∆_

, (15) 

where ∆𝑡 is the HVPS sampling time resolution, and 𝑉!T$W is the sample volume, approximately 310 L s–1. Secondly, IWC, 310 

denoted as 𝑞3,`aT , was derived by taking the difference between the total and liquid water contents measured by the 

Nevzorov probe. Similar to Abel et al. (2014), both the total and liquid water contents were corrected for changes in aircraft 

altitude and environmental conditions. Finally, effective mean diameters from HVPS PSDs, 𝐷788,!T$W, defined as: 

 𝐷788,!T$W =
∫ :/012(2)2!;2
%
$
∫ :/012(2)2&;2
%
$

. (16) 

were calculated, using the same definition as equation (6). 315 
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These simultaneous evaluations allow us to indirectly examine whether the partitioning between pristine ice and 

aggregates is appropriate. A more direct comparison would be ideal but requires classifying each individual particle in image 

data, which is not trivial and beyond the scope of this work.  

3.2 Bulk ice properties from empirical relationships 

As mentioned in Sec. 1, several studies have proposed empirical relationships for estimating IWC, particle size, and ice 320 

number concentration. In this study, we compare our retrieval with estimates from Ryzhkov and Zrnic (2019), because of 

their availability of the ice number concentration estimates. The relationships in Ryzhkov and Zrnic (2019) were based on 

theoretical calculations, using an assumed exponential size distribution for twelve ice habits. Their method takes advantage 

of the features that the reflectivity difference between horizontal and vertical polarization (𝑍"$) is proportional to the third 

moment of PSD and that 𝐾"$ is proportional to the first moment of PSD. As a result, the ratio of 𝑍"$ to 𝐾"$ is proportional 325 

to the second moment of the PSD and can be used to estimate the mean volume diameter of ice particles (Murphy et al. 

(2020): 

𝐷7<b = −0.1 + 2- c31
d31e

.
+
4. (17) 

where 𝐷7<b is the mean volume diameter in mm with the subscript emp denoting empirical estimates; 𝑍"$ is in units of mm6 

m–3; and  𝐾"$ is in ° km–1. Murphy et al. (2020) also estimated the number concentration and IWC using:  330 

logE'𝑁7<b = 0.1𝑍! − 2 logE'
c31
d31e

− 1.11;  (18) 

𝑞3,7<b = 0.004- d31e
Efc356+

..  (19) 

where 𝑁7<b and 𝑞3,7<b are in units of L–1 and g m–3, respectively; 𝑍! is in units of dBZ; 𝑍"# is unitless, and l is the radar 

wavelength in mm. For convenience, we refer to retrievals from these empirical relationships as “Murphy20” hereafter. 

Based on the evaluation conducted by Murphy et al. (2020) for a stratiform region of a mesoscale convective system over 335 

Oklahoma, 𝑁7<b  scatters significantly with respect to in-situ measurements; 𝑞3,7<b  and 𝐷7<b  tends to be systematically 

biased low, but outperformed other empirical relationships. Since, in theory, these derived relationships are not sensitive to 

ice particle shape and orientation, they remain a good starting point for intercomparisons. 

Note that these empirical relationships are designed for radar volumes that only include one species. Hence, if a radar 

volume is known to include a mixture of different species, caution should be exercised when interpretating their results. 340 

Additionally, equation (17) was derived using equivalent volume diameter as the size descriptor in PSD, and thus 𝐷7<b 

cannot be used directly for comparisons to our retrieval that is based on maximum particle dimension as the size descriptor. 

Instead, we need to trace back their derivations to find their retrieved PSD, convert the equivalent volume diameter to the 
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equivalent melted diameter (𝐷<=> ), and then calculate the effective mean diameter (𝐷788,<=> ) using equation (7) for 

intercomparisons. The details can be found in Appendix B. 345 

4 Results 

4.1 Evaluation using synthetic data 

In this section we use synthetic polarimetric radar data to evaluate our retrieval and identify any potential issues. The 

synthetic dataset was generated as follows. We first generated 501 profiles from the prior used in the ENCORE-ice, and then 

randomly selected a profile that has a relatively wide range of 𝑍!  and 𝑍"#  for testing. Along with the forward model 350 

described in Section 2.2.3, this selected profile is used to generate synthetic radar measurements and serves as the “truth” in 

this evaluation experiment. Because the truth profile and the initial ensemble members were generated from the same prior 

and used the exact same forward models, any retrieval error found in this experiment is due to the combination of the 

observed uncertainty and the retrieval method itself only. Hence, the design of this experiment does not allow us to evaluate 

errors due to the representativeness of forward models or the prior, which likely exist in real world applications.  355 

Figure 4 shows the synthetic radar measurements over 20 gates with a resolution of 50 m at a given elevation angle of 

30°, based on the truth profile shown in Fig. 5. The chosen number of gates is arbitrary but represents a frequent scenario in 

the radar scans collocated with in-situ data during PICASSO. In this scenario, the total ice number concentration is 

dominated by pristine ice, and the total ice water content is dominated by aggerates. The truth has a 𝑁$ range between 5–20 

L–1, and a 𝑁5 range between 1–3 L–1; 𝐷',$ ranges between 0.4–1 mm, while 𝐷',5 ranges ~2–5 mm. The combined 𝐷788 varies 360 

from 1.5 mm to ~5 mm, generally close to 𝐷',5 as expected, since it is weighted by size to the third power and mainly 

controlled by the species with large particle sizes. 

The forward-modelled observables of the ENCORE-ice solution in Fig. 4 agree well within the uncertainty of the 

synthetic values, providing confidence in retrievals. As shown in Fig. 5, the retrieval captures the vertical trend of the truth; 

the retrieval uncertainty estimated from the spread of the ensemble members also appear reasonable, since the truth falls 365 

within the retrieval uncertainty. Because many combinations of 𝑁',5  and 𝐷',5  could lead to the same 𝑍! , we see some 

compensating effects between 𝑁',5 and 𝐷',5 in aggregates at the lower layer. The errors are compensated so that the error in 

the total ice water content is not enhanced, as shown in Table 5. Overall, the retrieval biases in the combined total number 

concertation, water content, and effective diameter properties are within 5%, and the root-mean-square-errors are small (see 

Table 5).  370 

To conclude, this evaluation experiment demonstrates that the combination of these four radar observables is appropriate 

and the current observational uncertainty is sufficient for us to separate signals of pristine ice from aggregates. The errors in 

retrieved pristine ice properties are small, and thus further physical interpretation based on the associated vertical profiles 

can be made to understand the underlying microphysical processes. For aggregates, the errors in retrieved size diameter and 
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water content are small, but the vertical variations of retrieved number concentration may not follow the truth exactly due to 375 

the possible compensating effects between number concentration and particle size.  

 

 
Figure 4. Profiles of (a) 𝑍!, (b) 𝑍"#, (c) 𝐾"$ and (d)	𝜌!% for synthetic observations (black line) calculated from the ice cloud properties 
given in Fig. 5, and for the mean of forward simulations from the ensemble (red dots). Grey shading denotes the observational 380 
uncertainties given in Table 3, while error bars in orange denote retrieval uncertainty calculated as the one-standard deviation spread of the 
ensemble simulations. 
 
 
 385 
Table 5. Truth means, and the means, root-mean-square-error (RMSE), and biases in retrieval in the synthetic dataset experiment.  

 Ice number concentration 

(𝑁$,	𝑁*; L–1) 

Normalization diameter    

(𝐷',$, 𝐷',*; mm) 

Total number 

concentration 

(𝑁+; L–1) 

Total ice 

water content 

(𝑞+;	g m–3) 

Combined 

effective diameter 

(𝐷,--;	mm)  Pristine ice Aggregate Pristine ice Aggregate 

True mean 13.270  0.882 0.677 3.165 14.152 0.139 2.965 

Ret. mean 12.836  0.988 0.692 3.127 13.824 0.145 2.927 

RMSE 0.87  0.22 0.03 0.14 0.74 0.01 0.12 

Bias (%) –3.3  12.0 2.2 –1.2 –2.3 4.3 –1.3 
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Figure 5. Profiles of (a) normalized number concentration and (b) normalization diameter for pristine ice, (c) normalized number 
concentration and (d) normalization diameter for aggregates. (e) represents the total number concentrations and (f) represents ice water 390 
contents of pristine ice and aggregates. Truth is denoted by black solid lines in (a)–(d), and by dashed lines in (e) and (f). The retrieved 
ensemble means are denoted by solid blue and red lines with shading that represents the one-standard deviation spread of the ensemble 
members. The habit of pristine ice is plate in this experiment.  
 

4.2 Evaluation using PICASSO data  395 

The case of 13 February 2018 from the PICASSO campaign represents a stratiform precipitating cloud system 

associated with a frontal passage. Using a radar scan at 8:37 UTC as an example, Fig. 6 shows a significant area with 

reduced 𝜌!T, and enhanced 𝑍"# and 𝐾"$ at ~3 km height, which suggests the presence of enhanced pristine ice embedded in 

snow aggregates. Based on the temperatures measured by the aircraft (Fig. 7), this area is in a temperature zone of –15°C, 

and thus the preferred ice habit is likely to be dendrite and plate for this radar scan. During this radar scan, FAAM was too 400 

far away to provide meaningful comparison, but cloud images showed that dendrites were present most of time during this 

period. 

Figure 8 shows detailed retrieval performance for a ray taken from the radar scan in Fig. 6. For this case, retrievals using 

the dendrite habit perform best; the habit suggested by our retrieval is consistent with observed particle images. As shown in 

Figs. 8(a)–(d), the forward modelled radar observables agree well with the observed vertical profiles. The normalization 405 

diameters for pristine ice and aggregates (𝐷',$, 𝐷',*) are about 2.5 mm and 5–6 mm, respectively. Retrieved 𝑁3 is relatively 
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constant at ~5 L–1, due to the opposite vertical variations between 𝑁$  (increasing with height) and 𝑁5  (decreasing with 

height). In contrast, 𝑞3 decreases with height from 1 g m–3 to 0.2 g m–3, because both 𝑁5	and 𝐷',5 decrease with height.   

 

 410 
Figure 6. Height-range plots of observed (a) 𝒁𝐇, (b) 𝒁𝐃𝐑, (c) 𝑲𝐃𝐏 and (d) 𝝆𝐇𝐕 from the RHI scan at 8:37 UTC on 13 February 2018 
during the PICASSO field campaign. The red dashed line denotes the 0°C level, while the black dashed line denotes the approximate flight 
altitude of FAAM during the scan. The black polygon denotes the region that has enhanced 𝒁𝐃𝐑 and 𝑲𝐃𝐏, and reduced 𝝆𝐇𝐕. 
 

 415 
Figure 7.  A temperature profile composited from aircraft in-situ data during 6–9 UTC on 13 February 2018. Data between 6:33:30 – 
6:39:20 UTC were unphysical (see Fig. 9b) and thus excluded. The error bars represent one standard deviation of sampled observations. 
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Figure 8. Retrieval performance for a radar ray at 8:37:39 UTC. Observed and forward simulated profiles of (a) 𝒁𝐇, (b) 𝒁𝐃𝐑, (c) 𝑲𝐃𝐏 and 420 
(d) 𝝆𝐇𝐕. The shading in (a)–(d) represent the observational uncertainty. The red dots represent the mean of the ensemble simulations, and 
the error bars represent one standard-deviation in forward simulations. (e)–(j) represent the retrieved mean normalized pristine ice number 
concentration, pristine ice normalization diameter, normalized aggregate number concentration, aggregate normalization diameter, the total 
number concentrations, and the total ice water content, respectively. (k) represents the individual and combined effective mean diameters 
using the maximum particle dimension as the size descriptor, while (l) represents the individual and combined effective mean diameters 425 
using the equivalent melted particle as the size descriptor. The shading in (e)–(l) represent one standard deviation uncertainty in retrieval. 
For comparisons, retrievals from Murphy20 are co-plotted in (i), (j) and (l). 

 

Compared to Murphy20 retrievals, a few findings stand out. Firstly, retrieved 𝑞3 profiles from two methods follow each 

other closely. This is not surprising, because both 𝑞3  are largely constrained by the same 𝑍!  observations. Secondly, 430 

retrieved 𝑁3 from Murphy20 is much larger than that from ENCORE-ice. These results suggest that Murphy20 has attributed 

all radar signals to one species like our pristine ice. Due to the smaller size of pristine ice compared to aggregates, retrieved 

𝑁3 from Murphy20 must be much larger than ENCORE-ice to make up for the same 𝑞3. This also explains why 𝑁3 and  𝑞3 in 

Murphy20 retrievals have similar profile shapes. Considering that the observed 𝜌!T is not close to 1, the attribution to single 

species is likely inappropriate, leading to a large error in ice number concentration, even though 𝑞3 may seem reasonable. 435 
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Finally, 𝐷788,<=>, the effective mean diameter using the equivalent melted diameter as the size descriptor, from Murphy20 

tends to be larger than that from ENCORE-ice. This is partly because Murphy et al. (2020) have used denser ice particle, i.e., 

the pre-factor and the exponent in their mass-size relationship are both slightly larger than our aggregates. Since 𝐷788,<=> 

depends on the assumed mass-size relationship, Fig. 8(l) is used for a qualitative comparison only.     

Extending the evaluation from one ray to collocated data, a set of thresholds for matching space and time is needed. 440 

Since the enhanced area in Fig. 6 is about 15-km wide and 1-km deep, we use this scale as one of our criteria and consider 

in-situ observations and radar gates collocated if their distance is within 15 km in the horizontal and 1 km in the vertical. The 

time difference threshold for collocation is set to be within 3.5 mins, because a pair of back-to-back radar RHI scans were 

performed every 7 mins (see Sec. 2). These spatial and temporal thresholds lead to six clusters of radar scans for 

intercomparison, which comprises 105 rays with a total of 1675 gates. For a given ray, if the root-mean-square-difference 445 

between the measured and the forward simulated radar observable is greater than 0.1 dB in 𝑍"#, 0.1 ° km–1 in 𝐾"$ , or 0.01 

in 𝜌!T, we consider that retrieval quality for the entire ray is poor and exclude all the retrievals. After this exclusion, 81 rays 

with 1237 radar gates remain for the following evaluation. 

Figure 9 shows the time series of in-situ observations and collocated retrievals. Based on the measured temperatures, we 

expect column ice crystals in the beginning and very end of the time series, because of associated temperature zones warmer 450 

than –10°C. The flight height was maintained at ~2 km from 6:30 to 6:40 UTC, suggesting that the temperature dip at 6:40 

UTC is a data glitch, and that the temperature is likely to be about –5°C in reality. During 7:10–8:45 UTC, the temperatures 

are between –10°C and –20°C and likely favour the presence of both dendrite and plate. These expectations about prevalent 

ice habits are confirmed by in-situ cloud particle images (see Fig. 1 for examples), and generally consistent with our results. 

In our retrievals, 40% of the collocated radar observables are best fit with plate as the pristine ice habit, 20% with dendrite, 455 

and 40% with columns that occur more frequently in the beginning and the end of the time series. Between plate and 

dendrite habits, our retrievals have shown a dominance of plate. Unfortunately, this is inconsistent with particle images that 

show a dominance of dendrite over plate. Therefore, we consider there remains a large uncertainty when distinguishing plate 

and dendrites, although the examinations of agreement between the measured and forward simulated radar observables 

clearly indicate that the choice of plate was appropriate. Note that even with this habit uncertainty, the choice of plate and 460 

dendrite does not lead to significantly different retrievals in 𝑁3 and 𝑞3. 

The collocated retrievals in Fig. 9c and 9d show that 𝑁3 retrieved from ENCORE-ice is approximately in the same order 

of magnitude as observations, and that the retrieved 𝑞3 values are close to the Nevzorov probe observations. 𝑁3 and 𝑞3 from 

ENCORE-ice generally perform better than those from Murphy20, but they are both overestimated as indicated by the box 

plots in Fig. 10. The overestimations in the median of 𝑁3  and 𝑞3  are respectively 98% and 44% for ENCORE-ice, and 465 

respectively 445% and 187% for Murphy20. Note that Murphy20 retrievals in 𝑁3 and 𝑞3 are based empirical relationships 

derived from size bins between zero and infinity, while HVPS- and ENOCRE-ice-based estimates are derived using HVPS 

size bins from between 75 and 19275 μm. This difference in size ranges is not a concern for comparisons in 𝑞3, but it 
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contributes to part of the overestimation in 𝑁3 in Murhpy20 retrievals. Using our retrieved PSD, we have found that the 

median 𝑁3 derived from zero and infinity size bins is ~3% larger than that derived from the HVPS size range. This suggests 470 

that the difference in the size range for integration calculations is not the main cause for the 445% overestimation in 

Murphy20 𝑁3  retrievals. Additionally, similar to Fig. 8(l), Murphy20 𝐷788,<=>  tends to be larger than our 𝐷788,<=>  from 

aggregates by 0.3 mm in the overall median, as shown in Fig. 9(f) and 10(d). 

 
Figure 9.  Time series of (a) flight altitude, (b) temperature, observed and retrieved (c) total ice number concentration, (d) ice water 475 
content, (e) effective mean diameter using the maximum particle dimension as the size descriptor, and (f) effective mean diameter using 
the equivalent melted diameter as the size descriptor. Retrieval from ENCORE-ice and Murphy20 empirical relationships are denoted by 
dots, explained by detailed legends. The dots represent the median of retrieval from all collocated gates, and the vertical bars denote the 
range between the 25th and 75th percentiles. Note that the counting uncertainty in total ice number concentration in (c) is plotted but too 
small to see. All calculations are based on the size range of HVPS observations, except Murphy20 retrievals in (c) and (d).  480 
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Figure 10.  Box plots of in-situ observations and retrievals from ENCORE-ice and Murphy20 for (a) total ice number concentration, (b) 
ice water content, (c) effective mean diameter using the maximum particle dimension as the size descriptor, and (f) effective mean 
diameter using the equivalent melted diameter as the size descriptor. The bottom and top of each box represent the 25% and 75% quartiles, 
and the line inside the box represents the median. The whiskers mark represents the range of data points within 1.5 times the interquartile 485 
distance. The included sample sizes for in-situ data and radar gates are 347 and 1237, respectively. 

 

Recall per equations (6) that the effective mean diameter is weighted by size and thus strongly influenced by large 

particles. When observations sample both pristine ice and aggregates, the combined mean particle size is expected to be 

close to the size of aggregates, not pristine ice. The results in Fig. 9(e) generally match this expectation, showing a 490 

reasonable agreement between the observed and the combined mean diameter, except three data clusters during the period 

between 7:30 and 8:45 UTC. For the cluster around at 8:45 UTC, 𝐷788 from HVPS has a large variation, ranging between 1.4 

and ~5 mm with a median of 2.8 mm. This range is in the same order of 𝐷788 of pristine ice (1.5 mm) and of aggregates (~5 

mm), though the median combined 𝐷788 of 4.7 mm is significantly larger than the observed median. This suggests that there 

may be a need to find a more robust way for size comparisons. For the clusters between 7:30 and 7:45 UTC, the observed 495 

effective mean diameter is closer to the retrieved pristine ice diameter. This unexpected behaviour might suggest a few 

scenarios. The first scenario is that the radar volume might include pristine ice only or aggregates only. However, as shown 

in Murphy20 retrievals, assuming single species leads to a large error in 𝑁$. The observed 	𝜌!T is also too low to support this 

scenario. The second scenario is that the separation between pristine ice and aggregates in our retrieval is inappropriate. To 

assess this possibility, we tested various combinations of 𝑁' and 𝐷', and found that the following two conditions must be 500 

met for the combined size to be close to the size of pristine ice. The first is that 𝑁$ needs to be at least one order of the 

magnitude larger than 𝑁5, and the second is that 𝐷',$ cannot be much smaller than 𝐷',5. To meet the first condition, let us 

assume that our retrieved 𝑁5 is supposed to be 10 times smaller, because our retrieved 𝑁$ from ENCORE-ice is already 
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overestimated compared to the in-situ observations and should not be even higher. Under that assumption, 𝐷',5 needs to 

increase by a factor of 1.5 to maintain the same radar reflectivity observation. An increase in 𝐷',5, however, would make the 505 

difference between 𝐷',$ and 𝐷',5 even larger, which violates the second required condition. The combination of reduced 𝑁5 

and increased 𝐷',5 by the factors used above would also reduce 𝑞3 by a factor of 3. Then, to make up for the reduction of 𝑞3, 

one can increase 𝐷',$ to remediate the second required condition. This eventually leads to a scenario that two species are 

alike, as the first scenario, which is not supported by the observations. The third scenario is that we have been focusing on 

radar rays with reduced 𝜌!T, and enhanced 𝑍"# and 𝐾"$, which may be only a portion of the samples that aircraft sampled. 510 

Further studies using more datasets and retrievals would be needed to better explain why the observed effective mean 

diameter is close to the retrieved size of pristine ice particle between 7:30 and 7:45 UTC. Overall, when including clusters 

before 7:30 and after 8:45 UTC, the difference between the observed and the retrieved combined median 𝐷788 is about 0.55 

mm. 

5 Summary  515 

We have introduced a new method for retrieving microphysical properties of concurrent pristine ice and snow aggregates 

from X-band polarimetric radar observations. The radar observables used here include horizontal reflectivity, differential 

reflectivity, co-polar correlation coefficient, and specific differential phase shift. The first observable provides constraints on 

aggregate properties, while the last three observables provide constraints on the partitioning between aggregates and pristine 

ice, as well as on the ice number concentration and size of pristine ice. The observations are combined with our prior 520 

knowledge via an ensemble retrieval framework to find the best estimates of microphysical properties. Since properties of 

pristine ice and snow aggregates vary significantly in nature, we apply a wide-spread prior and thus the retrieval is mainly 

dominated by the observations. 

Based on the evaluation using synthetic observations, we have found that the current observational uncertainty is 

sufficient for quantifying properties of pristine ice and snow aggregates. The retrieval was able to reproduce vertical profiles 525 

similar to the truth, and the root-mean-square-error with respect to the truth is within the retrieval uncertainty. The biases in 

the combined total ice number concentration, ice water content, and effective mean diameter are all within 5%. This exercise 

demonstrates that our retrieval method works well, if the prior and the forward models for simulating radar observables are 

chosen appropriately and representative of reality. In general, the appropriateness and representativeness of the prior and 

forward model can be confirmed by examining the agreement between the observations and the forward simulations. 530 

We have also evaluated our retrieval against in-situ cloud probe observations taken from a recent field campaign in 

Chilbolton, UK, which was coordinated to have collocated X-band radar scans and aircraft flights. We analysed a three-hour 

long case that had 1237 collocated radar gates. Although the period was not particularly long, the aircraft sampled ice 

particles in temperature zones from –5°C to –35°C, allowing us to assess the retrieval performance for cases that are 

dominated by column, plate, or dendrite. The collocated in-situ data has a median number concentration of 5.6 L–1, ice water 535 
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content of 0.2 g m–3, and 2.7 mm effective mean diameter. Compared to in-situ medians, our retrieved total number 

concentration and ice water content are overestimated by 98% and 44%, respectively. This performance is generally better 

than that from empirical relationships, which has differences of 445% and 187% in total number concentration and ice water 

content, respectively with respect to the in-situ medians. For effective mean diameter, the in-situ observations agree with our 

effective mean diameter combined from pristine ice and aggregate in three data clusters with a difference of 0.55 mm. 540 

However, in other clusters, the observed effective mean diameter can agree better with the retrieved size of pristine ice, 

which does not match the fact that the effective mean diameter should be dominated by larger aggregate particles. Further 

studies would be needed to explain why this occurs and to identify possible improvement in retrieved effective mean 

diameter.  

This work is the first step toward quantifying microphysical properties of concurrent ice species, using a framework that 545 

considers our prior knowledge and the observational uncertainties. Since we have focused on radar signals with enhanced 

differential reflectivity and specific differential phase shift (i.e., cases with potentially high ice number concentration), the 

immediate application will be on studying secondary ice production. In particular, the Atmospheric Radiation Measurement 

(ARM) Program User Facility has operated X-band polarimetric radars at a fixed site at Barrow, Alaska, and in the Biogenic 

Aerosols–Effects on Clouds and Climate field campaign in Finland back in 2014. These rich datasets will allow us to 550 

document how frequently high ice number concentrations occur, and how much larger these concentrations are compared to 

the number of primary ice particles. This can be further compared to model simulations to understand what controls the ice 

number productions.  

Appendix A 

Radar equations for a single sample volume containing multiple ice particle habits are given as: 555 

𝑍U =
1e!

A!|d*|4
∑ ∫ e𝐴f𝑆UU,h6 fi + 𝐵f𝑆VV,h6 fi + 2𝐶ReS𝑆UU,h6 𝑆VV,h6 ∗Ukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkl 𝑛(𝐷)𝑑𝐷∞

'
k
FGE ; (A1) 

𝑍V =
1e!

A!|d*|4
∑ ∫ e𝐵f𝑆UU,h6 fi + 𝐴f𝑆VV,h6 fi + 2𝐶ReS𝑆UU,h6 𝑆VV,h6 ∗Ukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkl 𝑛(𝐷)𝑑𝐷∞

'
k
FGE ; (A2) 

𝑍UV =
1e!

A!|d*|4
∑ ∫ e𝐶 /f𝑆UU,h6 fi + f𝑆VV,h6 fi7 + 𝐴S𝑆UU,h6 𝑆VV,h6 ∗U + 𝐵S𝑆VV,h6 𝑆UU,h6 ∗Ukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkl 𝑛(𝐷)𝑑𝐷∞

'
k
FGE ;  (A3) 

𝑍;l =
c7
c8

;  (A4) 

𝜌UV =
|c78|

[(c7)(c8)]+ 4⁄ ; and  (A5) 560 

𝐾2o =
'.Epe
A
∑ ∫ e𝐶KReS𝑆UU,h

L − 𝑆VV,h
L Ukkkkkkkkkkkkkkkkkkkkkkkl 𝑛(𝐷)𝑑𝐷∞

'
k
FGE ,  (A6) 
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where	𝑍U, 𝑍V, and 𝑍UV are in units of mm6 m–3; 𝐷 is the maximum particle dimension; 	𝜆 is the radar wavelength; 𝐾D is the 

dielectric factor of water and |𝐾D|i = 0.93; and the amplitude scattering matrix elements (S) are in units of mm. The vertical 

bars represent the magnitude of the terms within, while 𝑅𝑒 represents the real part of the complex number and the asterisk 

indicates its complex conjugate. The index i represents the species existing in the radar volume, and the index J represents 565 

the number of species. Note that the amplitude scattering matrix elements in the database are tabulated for various elevation 

angles, azimuth angles, and habit realizations. To apply these amplitude elements to the equations (A1)–(A6), 𝑆UU
L,6 and 𝑆VV

L,6 

are first linearly interpolated with respect to elevation angles for radar rays. The interpolated 𝑆UU
L,6 and 𝑆VV

L,6 are then used to 

calculate the terms in the parentheses for all azimuth angles and habit variations. Because the azimuthal orientation of 

hydrometeors relative to the radar is random and unknown, and because the exact morphological characteristics of these 570 

particles at any given time in nature are also unknown, the terms in the parentheses are averaged over azimuth angles and 

habit realizations, which are represented by the horizontal bar over the parentheses. 

Coefficients A, B, C, and Ck are included to account for the effects of canting on the polarimetric radar moments. 

Following Jung et al. (2010) and Ryzhkov et al. (2011), the canting angle distributions are assumed to be Gaussian, and their 

effects can be parameterized using the mean and standard deviation of the distribution. Supposing that all oblate species fall 575 

with their major axes preferentially oriented in the horizontal plane, the mean canting angle can be set to zero (Ryzhkov et 

al. 2011). The width of the canting angle distribution is set to 10° for pristine ice crystals and 60° for snow aggregates, 

similar to Ryzhkov et al. (2011) and Matsui et al. (2019). All detailed equations and coefficients can be found in Jung et al. 

(2010). 

Appendix B 580 

Ryzhkov et al. (2018) used a power-law dependence to describe particle density, given as: 

𝜌 = 𝛼𝐷qfE, (B1) 

where the density 𝜌 is in g cm–3, coefficient 𝛼 is in g cm–2, and 𝐷! is the equivalent volume diameter. They also assumed  

an exponential particle size distribution, i.e.,  

𝑁(𝐷!) = 𝑁",$𝑒%∧':, (B2) 585 

with an intercept 𝑁",$ and the exponent ∧. From their equations (3) and (4) in Ryzhkov et al. (2018), we can calculate 

these two parameters by: 

∧= (
';'<

, (B3) 

𝛼 = 0.00309 𝑍
)-,;'<∙𝐷emp

2 , and (B4) 
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𝑁",$ =
)-,;'<

"."""+,--∙/6$.40$.B
,  (B5) 590 

where the exponent ∧ in mm–1, 𝑁",$ in m–3 mm–1, 𝛼 is in g cm–2, 𝑍 is the radar reflectivity in mm6 m–3, 𝑞1,234 is the 

retrieved ice water content from equation (19) in g m–3, and 𝐷234 is the retrieved diameter from equation (17) in mm.  

Once 𝑁",$ and ∧ are known in equation (B2), we further convert the size descriptor 𝐷! to the equivalent melted 

dimeter (denoted as 𝐷<=>)  by  

𝐷<=> = - t
B*
𝐷qi.

+
&, (B6) 595 

and then calculate the effective mean diameter 𝐷788,<=> using equation (7).  

 

Data availability. FAAM aircraft observations from PICASSO are available at the Centre for Environmental Data Analysis 

archive (https://www.ceda.ac.uk/). NxPol radar observations from PICASSO are publicly available via 

https://catalogue.ceda.ac.uk/uuid/ffc9ed384aea471dab35901cf62f70be. The ice crystal scattering database used to compute 600 

radar moments is available at https://www.arm.gov/data/data-sources/icepart-mod-120. The retrieval will be available freely 

in the ARM Archive as a PI product. 
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