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Abstract.

Satellite estimates of surface UV irradiance have been available since 1978 from TOMS UV spectrometer and continued

with significantly improved ground resolution using Ozone Monitoring Instrument (OMI 2004-current) and Sentinel 5 Precur-

sor (S5P 2017-current). The surface UV retrieval algorithm remains essentially the same: it first estimates the clear-sky UV

irradiance based on measured ozone and then accounts for the attenuation by clouds and aerosols applying two consecutive5

correction factors. When estimating the total aerosol effect in surface UV irradiance, there are two major classes of aerosols

to be considered: 1) aerosols that only scatter UV radiation and 2) aerosols that both scatter and absorb UV radiation. The

former effect is implicitly included in the measured effective Lambertian Equivalent scene reflectivity (LER), so the scattering

aerosol influence is estimated through cloud correction factor. Aerosols that absorb UV radiation attenuate the surface UV ra-

diation more strongly than non-absorbing aerosols of the same extinction optical depth (AOD). Moreover, since these aerosols10

also attenuate the outgoing satellite-measured radiance, the cloud correction factor that treats these aerosols as purely scattering

underestimates their AOD causing underestimation of LER and overestimation of surface UV irradiance. Therefore, for correc-

tion of aerosol absorption additional information is needed, such as the UV absorbing Aerosol Index (UVAI) or a model-based

monthly climatology of aerosol absorption optical depth (AAOD). A correction for absorbing aerosols was proposed almost

a decade ago and later implemented in the operational OMI and TROPOMI UV algorithms. In this study, however, we show15

that there is still room for an improvement to better account for the solar zenith angle
:::::
(SZA)

:
dependence and non-linearity

in the absorbing aerosol attenuation and as a result we propose an improved correction scheme. There are two main differ-

ences between the new proposed correction and the one that is currently operational in OMI and TROPOMI UV-algorithms.

First, the currently operational correction for absorbing aerosols is a function of AAOD only, while the new correction takes

additionally the solar zenith angle dependence into account. Second, the 2nd order polynomial of the new correction takes20

better into account the non-linearity in the correction as a function of AAOD, if compared to the currently operational one, and

thus better describes the effect by absorbing aerosols over larger range of AAOD. To illustrate the potential impact of the new
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correction in the global UV estimates, we applied the current and new proposed correction for global fields of AAOD from the

aerosol climatology currently used in OMI UV algorithm, showing a typical differences of ±5%. This new correction is easy

to implement operationally using information of solar zenith angle and existing AAOD climatology.25

1 Introduction

Exposure to UV radiation has both beneficial and harmful effects for humans, animals and plant life (Juzeniene et al. , 2011).

Human overexposure to UV has a number of negative implications, such as the acute erythema, the risk of skin cancer with

accumulated UV dose and a number of eye diseases (snow blindness, cataract). On the other hand, UVB solar radiation is

linked with Vitamin D synthesis (Webb et al. , 2011). Low levels of Vitamin D are associated with a number of medical30

problems (Lucas et al. , 2015). Most recently also the UV radiation and risk of COVID-19 have been connected (Jain et al. ,

2020; Herman et al. , 2020).

Solar UV radiation reaching the Earth’s surface can be measured from the surface or can be estimated globally using satel-

lite measurements combined with radiative transfer modeling. There are ground-based UV instruments in many places, many of

them were installed in the 90’s when the ozone depletion problem became a serious environmental issue
::::::::::::::::::::::
(Schmalwieser et al. , 2017)35

. Nevertheless, the coverage of these sites has remained notably sparse and the number of active sites has even been decreasing

recently, when the issue of ozone depletion has been considered being under control. Therefore, accurate satellite estimates of

surface UV are of great importance for health and biological impact studies, and the continuous global monitoring of surface

UV levels is essential in the future. According to Bais et al. (2019) higher values of UV are expected by the end of 21st century

relative to the present decade for latitudes around tropics and lower values for the rest of the world.
:::
The

::::::
current

::::::::::::
satellite-based40

::::::
surface

:::
UV

::::
data

:::
are

:::::
from

:::::
polar

:::::::
orbiting

::::::::
satellites,

:::::
while

::::
new

:::::::::
generation

::
of

::::::::::::
geostationary

:::::::::
UV-visible

::::::::::::
spectrometers,

::::
such

:::
as

::::::
GEMS

:::::::::::::::
(Kim et al. , 2020)

:
,
:::::::
TEMPO

::::::::::::::::::
(Chance et al. , 2019)

:::
and

:::::::::
European

::::::::
Sentinel-4

::::
will

:::::
offer

::
an

:::::::
exciting

::::
new

:::::::::
possibility

:::
of

:::::
hourly

::::::
surface

::::
UV

::::::::
estimates

:::::::::
accounting

:::
for

::::::
diurnal

:::::::
changes

::
in

::::::
clouds,

:::::::
aerosols

::::
and

:::::
ozone

:::::::::
absorption.

:

Satellite-based UV offer the only means to obtain global coverage of surface UV estimates. Surface UV estimates based

on Ozone Monitoring Instrument (OMI) satellite data have been used extensively in the last decade for many purposes. OMI45

is a Dutch-Finnish built wide swath push broom instrument on-board NASA’s EOS-Aura satellite that was launched in 2004

and has operated since then (Levelt et al. , 2019). There have been several validation studies carried out (e.g., Tanskanen

et al. (2007), Kazadzis et al. (2009), Bernhard et al. (2015), Zempila et al. (2018), Zhang et al. (2019), Lakkala et al.

(2020)) indicating a relatively good correspondence between satellite- and ground-based UV measurements. However, there

are limitations and uncertainties in the satellite-based estimates that data user needs to consider. The major limitations have50

been linked to the conditions of highly reflecting seasonal snow/ice cover and regions of strong loading and variability in

absorbing aerosols. For the latter problem, Krotkov et al. (2005) and Arola et al. (2009) proposed a correction for absorbing

aerosols exploiting monthly aerosol absorption climatology. This correction is included in the OMI surface UV data. This same

correction is applied also in the operational surface UV algorithm of Copernicus Sentinel 5 precursor (TROPOMI) (Lindfors

et al. , 2018). Therefore, although the following discussion is mainly related to the OMI surface UV algorithm, it is also worth55
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emphasizing that these issues and details in the aerosol corrections are applicable to other surface-UV algorithms as well, e.g.,

to the current TROPOMI UV algorithm (Lindfors et al. , 2018).

The OMI surface UV algorithm calculates first the clear-sky UV and then accounts for the attenuation by clouds/non-

absorbing aerosols and absorbing aerosols by separate correction factors. When estimating the total aerosol effect in surface

UV irradiance, there are two major classes of aerosols to be considered: 1) aerosols that only scatter UV radiation and 2)60

aerosols that both scatter and absorb UV radiation. The former effect is included in the measured Lambertian Equivalent re-

flectivity (LER) scene reflectivity, so the scattering aerosol attenuation is estimated through OMI cloud correction scheme,

approximating the aerosol reflectivity by clouds of equivalent reflectivity
::::::::::::::::::
(Krotkov et al. , 1998). On the other hand, for the

correction of absorbing aerosols, ancillary information is needed and currently a monthly climatology is used to obtain the

necessary information for the attenuation by absorbing aerosols. Aerosols that absorb UV radiation attenuate the surface UV65

radiation more strongly than non-absorbing aerosols of the same optical depth. Moreover, since these aerosols also attenuate

the outgoing satellite-measured radiance, the cloud correction algorithm that treats these aerosols as purely scattering under-

estimates their optical depth causing overestimation of UV irradiance (Krotkov et al. , 1998). Therefore, it is a complex and

difficult task to properly estimate the overall total effect by scattering and absorbing aerosols. In this study, however, we show

that there is still room for an improvement to better account for the solar zenith angle dependence and non-linearity in the ab-70

sorbing aerosol attenuation and we propose a modified correction scheme. And more specifically, the innovation is to explicitly

include the solar zenith angle dependence and moreover have a functional form for the correction, which can better account for

the true non-linearity in the correction over wider range in the aerosol absorption optical depth, if compared to the currently

operational correction.

This paper is organized as follows. Section 2.1 first introduces the background and principle in the correction for absorbing75

aerosols, which is currently operational in OMI and TROPOMI surface-UV algorithms. Then in the Section 2.2, the radiative

transfer simulations and assumptions are described, followed then by the specific details used to derive a new correction for

absorbing aerosols in the Section 2.3. In the Section 3 some examples of differences between new proposed correction and the

currently operational one are shown as global maps at noon-time conditions. Finally, Section 4 summarizes our study and main

findings.80

2 Methodology

2.1 Principle of the correction for absorbing aerosols

The OMI surface UV algorithm first estimates the clear–sky surface irradiance using the OMI-measured total column ozone,

climatological surface albedo (Tanskanen , 2004), elevation above sea level, solar zenith angle (SZA), and latitude–dependent

climatological ozone and temperatures profiles. In the next step, the clear–sky irradiance is multiplied by cloud correction Cc,85

which also accounts for scattering aerosolsand also by correction factor for aerosol absorption
:
.
::::::
Finally

:
a
:::::::
separate

:::::::::
correction

:::
for

::::::::
absorbing

:::::::
aerosols

::
is

::::::
applied. If we denote the clear-sky UV as UVclear, and the correction factors for cloud/scattering aerosol
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and absorbing aerosol as Cc and Ca, respectively, we can write the equation for the cloudy sky UVcloud :::::
“true”

::::::
surface

::::
UV

::::::::
irradiance,

:::::::
UVtrue as:

UV cloudtrue
:::

= Cc ∗Ca∗Cc
:::

∗UVclear (1)90

The wavelength dependence for all terms in Eq. (1) was omitted for clarity. In the OMI surface UV algorithm, effective cloud

and scattering aerosol optical depth (COD) is retrieved using 360nm channel reflectance. Although COD is assumed spectrally

constant, the Cc factor has characteristic spectral dependence with broad maximum at 330-340nm due to interaction between

Rayleigh scattering and cloud layer, decreasing at shorter UVB wavelengths due to ozone absorption. The cloud correction of

OMI surface UV is based on radiative transfer calculations for a homogeneous, plane-parallel water-cloud model embedded in95

a scattering molecular atmosphere with ozone absorption (Krotkov et al. , 2001). The cloud optical depth, which is assumed to

be spectrally constant with the angular scattering corresponding to the C1-cloud model (Deirmendjian , 1969), is derived from

OMI-measured 360 nm radiance assuming aerosol-free atmosphere.

Estimates of surface UV fluxes are further corrected for the effects of absorbing aerosols by applying an additional correction

factor Ca as described by Arola et al. (2009). This correction factor is based on monthly aerosol climatology of aerosol100

absorption optical depth (AAOD) by Kinne et al. (2013) at 1x1 degree latitude-longitude resolution. Different correction

factors are estimated for each wavelength of the surface UV product, using wavelength dependent aerosol absorption optical

depth (AAOD). In the following, however, we use 360nm to derive the new correction, since it is then consistent with the

wavelength of reflectance used for the scattering aerosol correction, as described in the above paragraph.

There is a new version of the aerosol climatology available and published recently (Kinne , 2019) and we plan to include it105

in the next operational version OMI surface UV algorithm. The main parameters required for correction are the aerosol optical

depth, τaer and the aerosol single scattering albedo, ω. These are needed to produce the global fields for aerosol absorption

optical depth, τabs [τabs = τaer ∗ (1−ω)] used in the parameterization proposed by Krotkov et al. (2005); Arola et al. (2009):

COMI
a =

1

1+K ∗ τabs
, (2)

where COMI
a is the post-correction factor, to account for absorbing aerosols in Equation 1. It is denoted here additionally110

by word “OMI” to distinguish it from the new parameterization developed in this study, which in turn is denoted hereafter as

CNEW
a . The part 1+K ∗ τabs of this equation, with a slope term K, describes the overestimation factor of satellite-based UV

due to aerosol absorption, i.e., (UVclear ∗Cc/UVcloud).

Previous studies (Arola et al. , 2005; Krotkov et al. , 2005) acknowledged that the slope K depends on solar zenith angle

(SZA) and τabs but neglected these dependencies using average value ofK = 3 with the Equation 2 as suggested by Krotkov et115

al. (2005) and Arola et al. (2009). This choice was mainly based on limited validation results that included ground UV mea-

suring stations with moderate level of absorbing aerosols. However, in this study we revisited this assumption and developed

a modified algorithm to account for both SZA and τabs dependency in the absorbing aerosol correction. This was considered
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as an important step to enhance the applicability of the correction globally, also in regions of high seasonal biomass burning
::
in

::::::::::::
South-America

::::
and

:::::::::::
South-Africa, for instance

::::
(e.g.

::::::::::::::::::::::
van der Werf et al. (2010)).120

The new correction scheme was developed with the aid of radiative transfer (RT) simulations with LibRadtran RT package

(Emde et al. , 2016) and compared to the current simpler correction. In the following sections, these simulations are described

and explained.

2.2 Radiative transfer simulations to build up the new correction

To establish a new correction for absorbing aerosols, which accounts for both SZA and AAOD dependencies, we carried out a125

comprehensive set of RT simulations.
::::::
Figure

:
1
:::::
shows

::
a
::::::::
simplified

:::::::::
illustration

:::
of

:::::::
different

:::
RT

:::::::::
simulations

::::
that

::::
were

::::::
carried

::::
out.

::
To

::::::
further

::::::
clarify

:::
the

::
set

::
of

::::::::
different

:::
RT

::::
runs

::
we

:::::::
needed

::
to

:::::::
simulate,

:::
let

::
us

:::::
write

:::
the

:::::::
Equation

::
1

::::::
slightly

:::::::::
differently

::
as

:::::::
follows:

:

UVtrue = Ca ∗Cc ∗UVclear ≡
UVtrue
UVcod

∗ UVcod
UVclear

∗UVclear
::::::::::::::::::::::::::::::::::::::::::::::::

(3)

:::::
where

::::::
UVcod ::

is
:::
the

::::::
surface

:::
UV

:::::::::
irradiance

:::::
when

::::::::
attenuated

:::
by

:
a
:::::

given
:::::
cloud

::::::
optical

::::::
depth.

::
It

::
is

::::::::
illustrated

::::::
among

:::
the

:::::
other

::::
cases

:::
of

::::::::
simulated

:::::::
surface

::::::::
irradiance

::::::::
(UVclear::::

and
:::::::
UVtrue)

:::
in

:::
the

::::::
Figure

::
1.

:::
Let

:::
us

::::::
further

::::::
define

:::::
“true

::::::::
correction

:::::::
factor”130

:::::
Ctrue,

::::::
which

:::::::
includes

::::
both

::::::::
scattering

::::
and

::::::::
absorbing

::::::
aerosol

:::::::
effects,

::
as

::::::::::::::
UVtrue/UVclear.

:::
As

:::
has

::::
been

:::::::::
mentioned

::::::
above,

:::
Cc::

is

:
a
:::::::::
correction

:::::
factor

:::
not

::::
only

:::
for

::::::
clouds

:::
but

::::
also

:::
for

::::::::
scattering

:::::::
aeosols.

:::::::::
Therefore,

:::
we

:::::
want

::
to

::::::
clarify

:::
and

:::::::::
emphasize

::::
that

::::
now

:::
and

:::::::::
throughout

::::
our

:::::
study

:::
we

::::::::
simulated

:::::::::
cloud-free

:::::
cases

:::
of

::::::
various

:::::::
aerosol

:::::::::
conditions,

::::::::
therefore

::
in

::::
our

::::::::::
simulations

:::
Cc :

(
::
=

:::::::::::::
UVcod/UVclear)

::::::::
describes

:::
the

::::::::::
contribution

::
of

:::::::::
scattering

:::::::
aerosols

::::
only. Since the aerosol correction is divided into two separate

terms in the satellite-UV algorithm (corrections for aerosol scattering by Cc and for aerosol absorption by Ca), we needed to135

estimate “OMI-like” COD and thus estimate Cc that the satellite-UV algorithm would assume for any given aerosol conditions.

In addition, “true correction” of full aerosol effect (effect of both aerosol scattering and absorption), Ctrue, was estimated as

a ratio of surface UV flux from two RT model runs: run with aerosols and UVclear (see Equation 1).
::::
This

::
is

::::::::
illustrated

:::
by

:::
the

::::
cases

::
A

::::
and

:
B
::
in
:::
the

::::::
Figure

::
1,

::
in

:::::
other

:::::
words

::::
such

::
a
::::
COD

::
is
:::::
found

::::
that

::::::
results

::
in

:::
the

::::
same

:::::::::::::::
satellite-measured

::::::::
radiance

::
Ic ::::

than

::::::::
simulated

:::
for

::::
given

:::::::
aerosol

:::::::::
conditions

::
(of

:::::
AOD

::::
and

:::::
SSA),

:::
Ia.140

:::::
Based

::
on

:::
the

::::::::
Equation

::
3,

::
to

:::::::
estimate

:::
the

:::::::::
proportion

:::
for

::::::::
absorbing

::::::
aerosol

:::::::::
correction

::::
(Ca),

:::
we

::::
need

::
to
::::::::
simulate

:::
the

::::::::
following

::::
ratio

::
of

::::::::::
irradiances,

::::::::::::
UVtrue/UVcod::::::

(which
::
is

::::::
exactly

:::
the

:::::
same

::::
ratio

::::
than

:::::::::
Ctrue/Cc).

::
It

:::
was

:::::
done

:::
for

::::::
several

::::::
aerosol

:::::::::
conditions

:::
and

:::::
these

:::
RT

::::::::
simulated

:::::
ratios

::::::
formed

:::
the

:::::
basic

::::::
source

::
of

::::::::::
information

::
to
::::
find

::
a

::::::
suitable

::::
new

::::::::::::::
parameterization

::
to
::::::::

describe
:::
the

::::::::
correction

:::::
factor

:::
for

::::::::
absorbing

::::::::
aerosols

::
as

:
a
:::::::
function

::
of

:::::
SZA

:::
and

:::::::
AAOD,

:::::::
CNEW

a .

Since our goal was to derive a new correction for absorbing aerosols, which should be directly applicable in those surface-145

UV algorithms that use a similar principle than OMI and TROPOMI (described by the Equation 1), the following should be

emphasized. It was indeed crucial that for our Cc :::::
UVcod:::

and
::::

thus
::::

for
::
Cc:

estimation we included water clouds only, to be

consistent with the scattering aerosol treatment in those algorithms. Moreover, although these algorithms do not distinguish

between water clouds, haze, ice clouds and non-absorbing aerosols, sensitivity studies have shown that for AOD of 0.5 at
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360 nm for instance, the error in estimating the CC ::
Cc:::

(=
::::::::::::::
UVcod/UVclear) for these varying conditions through water cloud150

assumption is relatively small, about 1% (Krotkov et al. , 2002).

According to the Equation 1, with a perfect algorithm Cc ∗Ca = Ctrue, in which case Ca = Ctrue/Cc: ratio between the

“true correction” and the correction if only the scattering aerosol correction was applied (Cc only, as in OMI cloud correction

algorithm). These RT simulated ratios of Ca = Ctrue/Cc formed the basic source of information to find a suitable new

parameterization to describe the correction factor for absorbing aerosols as a function of SZA and AAOD, CNEW
a .155

The assumption in the cloud correction, Cc, is that it also accounts for scattering aerosols. However, scattering aerosols

and cloud droplets differ by size and thus also by their scattering angular dependence, cloud droplets being more forward-

scattering. This means that, for instance, for a scene of purely scattering aerosols in cloud-free conditions OMI-retrieved

effective COD should be larger than the true AOD
:::
(e.g

:::::::::::::::::::::
Moosmüller et al. (2018)

:
). To put this slightly differently: in cloud-free

conditions with scattering aerosols of a given aerosol optical depth (AOD), the effective cloud optical depth must be larger160

than the AOD to cause the same reflectance at top of the atmosphere. In general, this difference between COD and true AOD

depends on the aerosol optical properties, most strongly on single scattering albedo (SSA)
::::::::::::::::::
(Krotkov et al. , 2002). In order

to properly estimate Cc::::::::::
contribution, we created a following simulation set up. First, we simulated top-of-atmosphere (TOA)

radiance measurements at 360nm for clear-sky (no clouds) atmosphere that nadir-looking satellite instrument would measure

from varying aerosol conditions (so varying AOD and SSA, and assuming a constant value of 0.7 for the aerosol asymmetry165

parameter at 360nm).
:::
This

::
is

::::::::
illustrated

:::
by

::
Ia::

in
:::
the

::::::
Figure

::
1. Then in the second step, radiancies were similarly simulated, but

for the case of aerosol-free atmosphere with clouds (and varying COD in this case). The latter case corresponds to the OMI

cloud correction, which assumes homogeneous C1 cloud model without aerosols. Therefore, we can find effective COD that

OMI would retrieve for a given cloud-free scene including aerosols with varying AOD and SSA. We can then estimate Cc

:::::::
UVcloud as a ratio of simulated surface UV flux with “OMI-like” CODand UVclear. This correction factor then reduces the170

surface UV .
::
In

::::
this

::::
case

:::
the

::::::
surface

::::::::
irradiance

::
is
:::::::
reduced to the extent that is due to the aerosol scattering.

Similarly to OMI, we assume only water clouds in our simulations. We also evaluated the influence of the satellite viewing

zenith angle (VZA) on the correction factor, but found only a minor influence.
:::
For

:::::::
instance,

:::::
when

:::
we

:::::::
repeated

:::
the

::::::::::
simulations

::::
with

::::
VZA

::
of

:::
30

:::::::
degrees,

::
in

::::
most

::::::
typical

:::::
cases

:::
the

::::::::
difference

::
of

:::
the

:::::::::
correction

:::::
factor

::
if

::::::::
compared

::
to

:::
the

:::::
nadir

:::::::::
simulations

:::::
were

:::
less

::::
than

:::::
0.5%.

:::::
Only

:::
for

:
a
:::::::::::

combination
::
of

:::::
AOD

:::
of

:::
1.5

:::
and

::::::
higher

:::
and

:::::
SSA

::::
very

:::::
close

::
to

::
1,

:::
the

:::::::::
difference

::
in

:::
the

:::::::::
correction175

:::::
factor

::::::
reached

:::::
about

:::::
1.5%

::
at

:::
the

:::::::::
maximum. In these nadir view simulations, we then only varied solar zenith angle (SZA )

::::
SZA

and used fixed atmospheric profile of AFGL (Air Force Geophysical Laboratory) mid-latitude summer from the LibRadtran

library and disort with 16 streams as the RT solver. The cloud layer was placed between 2 and 4km and default aerosol profile

of LibRadtran was used, therefore placing the main fraction of aerosols close to surface and in the boundary layer. In addition,

fixed surface albedo of 0.03 was assumed. The main goal in our work here was to develop a new correction that properly180

accounts for both SZA and AAOD dependence, while preserving the level of sophistication regarding the secondary factors

similar to the previous method.

To develop a new correction for absorbing aerosols, the actual total aerosol effect on surface UV needs to be taken into

account. In other words, two-fold effect by absorbing aerosols needs to be considered, to account for both the possible influence
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of absorbing aerosols in the satellite-measured TOA radiance (thus for the possible low bias in COD) and also for the impact of185

aerosol absorption in atmospheric attenuation of surface UV
:
.
:::::
First,

::::
since

::::::
aerosol

:::::::::
absorption

:::::::::
diminishes

:::
the

::::::::
radiance

::::::::
measured

::
by

:::
the

::::::::
satellite,

:
it
::::::
results

::
in
:::

an
::::::::::::::
underestimation

::
of

:::::
COD

:::
by

:::
the

:::::
cloud

::::::::
algorithm

::::
that

:::::::
assumes

:::
an

::::::::::
aerosol-free

:::::
case.

:::::::
Second,

::::::
aerosol

:::::::::
absorption

:::
also

:::::::::
attenuates

::
the

:::::::
surface

:::
UV

::::::::
irradiance

:::
and

::::
both

:::::
these

::::::
effects

::::
need

::
to

::
be

::::::::
accounted

:::
for

::
in

:::
the

::::::::
correction

::::
Ca,

::
as

:::
will

::
be

:::::::::
explained

:
in
:::::
more

:::::
detail

:::::
below. For this reason, the impact in total transmission is assessed byCtrue::::::

UVtrue/Cc:::::
UVcod.

This is the quantity, for which the new correction for absorbing aerosols, is to be developed. However, it is illustrative to show190

first the ratio of true correction and the current correction for absorbing aerosols, which was suggested in Arola et al. (2009),

COMI
a . The Figure 1

:
2
:
shows the error involved in the current correction, i.e the ratio of Ctrue/(Cc * COMI

a ) as a function of

AOD and SSA, where COMI
a was calculated according to the Equation 2 with the constant K of 3.

In these simulations, there were a small number of cases when negative COD was retrieved. In other words, these are cases

when the aerosol absorption was so strong, relative to the aerosol scattering, that it diminished the TOA reflectance to such a195

low level that the signal by aerosol scattering vanished. These few cases were in the left bottom corner of the plot, when both

AOD and SSA were very low
:
,
::::
thus

::::
these

:::
are

::::
not

:::::::
realistic

::::
cases

:::
in

:::::
reality. In the Figure 1

:
2
:
these cases are now included as

zero COD and thus with Cc of 1. Moreover, it is to be noted that the range covers very high cases of aerosol absorption, up

to AAOD of about 0.35. Those absorption levels do not occur often but are nonetheless possible in some regions during the

seasons of biomass burning or dust aerosols, for instance.200

As mentioned above, in
::
In case of ideal perfect algorithm Ca ∗Cc would equal Ctrue, thus with such an algorithm the ratios

shown in the Figure 1
:
2 would be always one. However, since COMI

a is a rather simple parameterization, Figure 1
:
2
:
illustrates

both the apparent SZA and AAOD dependency of “true correction”, if compared to the current operational one. On the other

hand, these results also confirm that for purely scattering aerosols (SSA=1), the current version of the algorithm properly

accounts for the overall aerosol effect for all SZA. In the current correction, there is no SZA dependence and the constant205

slope of 3 has been estimated using a data set including a range of SZA values, and as a result it over-corrects (under-corrects)

at low SZA (at high SZA). This SZA dependency is the reason why the ratios shown are mostly larger than 1 in the upper

plot, while they are lower than 1 in the lower plot when SZA is higher. There is also another major influence to be considered

when interpreting the results in the Figure 1
:
2, that is the AAOD dependence in the correction, which in turn includes two types

of effects. First, absorbing aerosols cause attenuation in the surface irradiance. Second, the satellite-measured reflectance is210

decreased due to the aerosol absorption, which leads to the underestimation of COD and Cc. Both effects are increasing with

increasing AAOD and are not fully accounted for by the current correction (Equation 2) in higher AAOD. In the conditions of

SZA of 20◦ (lower plot), there is an overall over-correction due to the SZA effect by the Equation 2, however when AAOD

is increasing (AOD increasing and/or SSA decreasing), there is simultaneously increasing under-correction due to the true

non-linear AAOD dependence, and as a result the overall effect maximum maximizes around AOD of 1 and diminishes then215

for larger AOD. On the other hand, with the case of SZA of 60◦, both the neglected SZA dependence and AAOD influence

are responsible for under-correction, as can be interpreted also from the lower plot. Both SZA and AAOD impacts are further

illustrated later by Figure 2
:
3, when new correction is compared against current correction.
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2.3 Derivation of the new enhanced correction for absorbing aerosols

Our RT simulations covered a wide range of SZAs from 0 to 80◦, as well as a broad range of AOD and SSA, as discussed220

above. The ultimate objective was to establish a new correction, Ctrue/Cc as a function of AAOD and SZA. The current

operational formula (Equation 2) is a function of AAOD only. Moreover, the denominator (1+K*AAOD) is linear with respect

to AAOD, while in our analysis we found that it does not properly describe the non-linearity of the actual correction factor with

respect to AAOD. Moreover, clear SZA dependency exists in the correction factor that the earlier approach did not take into

account. Therefore, our goal was two-fold: to keep the formula still as simple as possible, but to account for AAOD and SZA225

dependencies.The final parameterization was found after an extensive search for the most appropriate form , so essentially by

an “trial and error” approach
:::
and

::::
with

:::
the

:::::::::
parameter

:::::::::
estimation

::::::
carried

:::
out

:::
by

:::
the

::::::::
non-linear

:::::::::::
least-squares

:::
fit, resulting in the

following equation:

CNEW
a = 1+ c1 ∗ f + c2 ∗ f2 + c3 ∗ f3, (4)

where f describes the SZA dependent part in the correction factor, for which the suitable form was the following: f=(1.27+ sin(SZA)) ∗ τabs:::::::::::::::::::::
(1.23+ sin(SZA)) ∗ τabs.230

This formula provides the best fit for the overall range of SZA, AOD, and SSA of our simulations for the true correction factor,

Ctrue/Cc. In addition, the following constants were found to best describe the correction factor for these various conditions of

AAOD and SZA: c1=-1.43
::::
-1.40, c2=1.20

::::
1.09, c3=-0.56

:::::
-0.44.

:::
Our

:::::::::::
optimization

::::::
method

::::::::
provided

::
us

::::
also

::::
with

:::
the

::::::::::
uncertainty

:::::::
estimates

:::
(1

:::::::
standard

:::::::::
deviation)

:::
for

:::::
these

::::::::::
coefficients

::
as

:::::::::
following:

::::::
0.021,

::::::
0.0568,

:::::::
0.0570,

:::
for

:::
c1,

:::
c2,

:::
c3,

:::::::::::
respectively.

::::
The

:::::::::
uncertainty

::::::::
estimated

::::::::
similarly

:::
for

:::
the

::::::::
coefficient

:::
of

::::
1.23

::
in

:::::::
“f-term”

::::
was

::::::
0.0223.235

The upper plot of the Figure 2
:
3
:
shows the performance of this proposed new method at two SZA values (20 and 60◦) and

the current operational OMI correction, which does not depend on SZA. The red and green solid lines show the corrections

that are based on the suggested formula (Equation 3) at SZA of 20 and 60◦, respectively. The red and green points, on the other

hand, show the RT simulations of Ctrue/Cc (as in the Figure 1
:
2) as a function of AAOD. The current operational correction of

Arola et al. (2009) is shown by blue line. Similar features are apparent in this plot that were already discussed above, that is240

the current algorithm is overestimating the absorption effect at low SZA values and underestimates at high enough SZA. Also

the true AAOD dependency is better captured by the new approach. The lower plot, on the other hand, shows the ratio of the

new proposed correction and currently operational correction for absorbing aerosols at these two SZA values, indicating that

the difference is most pronounced at low SZA conditions and with substantial aerosol absorption.

3 Comparison of new correction against the previous version245

It is possible that one would interpret the results in the Figure 1
:
2
:

so that the differences between new and current aerosol

corrections do not appear significant. Indeed, the differences are in the range of ±5% for realistic conditions. They can be larger

in rather extreme SZA, for instance, but then the UV intensities themselves are small and the correction factor itself becomes

less relevant. Also, the differences can be larger for some exceptionally high AAOD levels that are not unusual seasonally
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(e.g., biomass burning events in South-America or South-Africa). However, it is emphasized that these are systematic errors250

(biases). For instance, the current correction overestimates the absorption effect in the noontime UV index (thus underestimates

the surface UV) in regions where noontime SZA values are below 40-50◦. Therefore, it is of importance to correct also for

these systematic AAOD and SZA effects.

To illustrate the potential impact of the new correction in the global UV estimates, we applied the current and new proposed

correction for global fields of AAOD from the aerosol climatology currently used in OMI UV algorithm (Kinne et al. , 2013). In255

the following Figures 3 and 4
:::
and

:
5, we show the ratio of the corrections at noon time and for two example months of January

and June. It is obvious that the difference is in the range of ±5%. It illustrates how systematic over- and underestimation of

absorbing aerosol influence can be reduced by the new proposed algorithm, which is planned to be included in the new OMI

UV re-processing, planned for early 2021. The relatively sharp change from over- to under-correction in the current OMI

correction close to Sahel region, where there is a very strong spatial gradient in COMI
a and thus in AAOD, is an interesting260

spatial feature to demonstrate how both AAOD and SZA indeed influence the CNEW
a .

In addition to these two months shown, other months were investigated (not shown). For instance in September and October

during the biomass burning season both in South-America and South-Africa, when climatological AAOD levels are quite

high, similar differences of ±5% were observed when comparing the new correction and the current operational correction for

absorbing aerosols in the OMI surface UV algorithm. However, since now these examples were produced by using monthly265

climatology, it is obvious that the impact would be larger in episodic cases of higher true AAOD. Moreover, as illustrated by

the Figure 2
:
3
:
above, the influence can be also larger, in particular for cases of higher SZA than shown here at local solar noon.

It can be also concluded from these global maps that it will be likely challenging, if not entirely impossible, to see and

confirm this improved performance through the possible future validation studies against ground-based UV measurements for

two reasons. First, the differences are largest in those regions where there are no ground-based UV measurements available270

(dust-belt or regions with strong seasonal biomass burning), unfortunately. Second, even if the ground-based UV measurements

were available, the differences due to the different correction versions of absorbing aerosols are still likely smaller than the

typical uncertainty levels in ground-based UV measurements. However, it is re-stressed that the new correction accounts for

systematic effects by SZA and AAOD, as confirmed by our radiative transfer simulations, and thus should be considered in the

improved algorithm.275

4 Conclusions

Satellite estimates of surface UV irradiance have been available since 1978 from TOMS UV spectrometer and continued

with OMI instrument and most recently from TROPOMI. Initially, in these algorithms no correction for aerosol absorption

was included, while in Arola et al. (2009) a correction for absorbing aerosols was suggested based on monthly climatology

of Kinne et al. (2013). This correction was then applied in OMI algorithm and later also in the TROPOMI UV algorithm280

(Lindfors et al. , 2018). This correction was to large extent based on rather limited ground-based data not covering a very large

variations of SZA and AAOD. Although, the impact by SZA and AAOD was acknowledged, simpler approach was considered
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sufficient. In this study we revisited this formulation for the correction, as an objective to find a suitable modifications for the

correction to better account for various atmospheric conditions. The motivation was the following: although the differences

between new proposed and current operational corrections for absorbing aerosols are not very large, they are systematic and285

should therefore be taken into account to improve the accuracy of the surface UV products from satellite measurements.

The new correction was derived using RT simulations of varying conditions of aerosols and solar zenith angles and a new

correction is suggested. We also estimated the potential impact in future satellite UV products, after this new correction is

implemented, showing a typical differences of ±5%. This new correction is equally easy to implement and replace the current

correction in OMI and TROPOMI, essentially the only new information to include is SZA, since the earlier one was already290

based on AAOD.
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Figure 1.
:::::::
Simplistic

::::::::
illustration

::
of

:::::::
different

::::
cases

::
of
:::::::

radiative
::::::
transfer

::::::::::
simulations.

:::::::
Different

::::
cases

:::
are

:::::::
indicated

::
by

:::
red

:::::
letters

::
as
:::::::
follows:

::::::::
simulations

::
of

::::::
satellite

::::::::
measured

::::::
radiance

:::
by

:
A
::::

and
:
B
:::
and

:::::::::::
ground-based

:::::::
measured

::::::
surface

:::::::
irradiance

:::
by

::
C,

::
D

:::
and

::
E.

::
A:

::::::::::::::
satellite-measured

::::::
radiance

::::
from

::::
given

::::::
aerosol

::::::::
conditions

::
of

::::
AOD

:::
and

::::
SSA

:::
(and

::::
with

::
no

::::::
clouds);

::
B:

::::::::::::::
satellite-measured

::::::
radiance

::::
from

:::::::::
cloud-layer

::
of

::::
COD

::::
(and

:::
with

:::
no

:::::::
aerosols);

::
C:

:::::::::::
ground-based

:::::
surface

::::::::
irradiance

::
in

:::::
given

:::::
aerosol

:::::::::
conditions

::
of

::::
AOD

:::
and

::::
SSA

:::
(no

::::::
clouds);

:::
D:

::::::::::
ground-based

::::::
surface

:::::::
irradiance

::
in

::::
given

:::::
cloud

:::::::
condtions

::
of

:::::
COD

::
(no

:::::::
aerosols)

:
;
::
E:

:::::::::::
ground-based

:::::
surface

::::::::
irradiance

::
in

::::::::
cloud-free

:::
and

:::::::::
aerosol-free

::::::::
conditions.
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Figure 2. Ratio between the “true correction” and the correction of current operational OMI algorithm, Ctrue/(Cc * COMI
a ), as a function

of aerosol optical depth (AOD) and single scattering albedo (SSA). Two solar zenith angles are shown: 20◦ and 60◦ in the upper and lower

plots, respectively.
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Figure 3. Different corrections for absorbing aerosols, Ca, as a function of AAOD (in the upper plot). Two cases of new proposed correction

are shown, at 20◦ and 60◦ (by red and green colors, respectively) and the current operational correction
:::::
COMI

a :
(in blue). The lower plot

shows the ratio of the new proposed correction and currently operational correction for absorbing aerosols, CNEW
a /COMI

a ), at these same

two SZA values.
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Figure 4. The current operational OMI correction for absorbing aerosols, Ca :::::
COMI

a (upper panel). The ratio of the new proposed correction

and current operational correction for absorbing aerosols, CNEW
a /COMI

a (lower panel). Solar zenith angle corresponds to the noon time

conditions on January 15th and aerosol climatology of January is used.
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Figure 5. Same as Figure 3
:
4, but both SZA and aerosol climatology corresponds to June conditions
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