

1      Supplementary for

2      **On the use of reference mass spectra for reducing uncertainty in source apportionment of solid**  
3      **fuel burning in ambient organic aerosol**

4      Chunshui Lin<sup>1,2,3</sup>, Darius Ceburnis<sup>1</sup>, Anna Trubetskaya<sup>4</sup>, Wei Xu<sup>1</sup>, William Smith<sup>5</sup>, Stig Hellebust<sup>6</sup>, John Wenger<sup>6</sup>,  
5      Colin O'Dowd<sup>1\*</sup>, and Jurgita Ovadnevaite<sup>1\*</sup>

6      <sup>1</sup>School of Physics, Ryan Institute's Centre for Climate and Air Pollution Studies, National University of Ireland  
7      Galway, University Road, Galway, H91 CF50, Ireland

8      <sup>2</sup>State Key Laboratory of Loess and Quaternary Geology and Key Laboratory of Aerosol Chemistry and Physics,  
9      Chinese Academy of Sciences, 710061, Xi'an, China

10     <sup>3</sup>Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy  
11     of Sciences, Xi'an 710061, China

12     <sup>4</sup>Department of Chemical Engineering, Aalto University, 02150 Espoo, Finland

13     <sup>5</sup>School of Electrical, Electronic and Mechanical Engineering, University College Dublin, D04V1W8 Dublin,  
14     Ireland

15     <sup>6</sup>School of Chemistry and Environmental Research Institute, University College Cork, T23XE10 Cork, Ireland

19     This document includes four supplementary figures:

20     Figure S1. Relative difference at each m/z for the mass spectral profile of wood, peat, and smoky coal  
21     burning.

22     Figure S2. Relative difference at each m/z for the mass spectral profile of biomass briquettes and  
23     smokeless coal burning.

24     Figure S3. Scatter plot between OA and temperature (left panel); and wind speed (right panel), color-  
25     coded by date.

26     Figure S4. Mass spectra (left axis) of the OA factors of peat, wood, coal, HOA, and OOA.

27

28

29

30

31

32

33

34

35



36

37 Figure S1. Relative difference at each  $m/z$  for the mass spectral profile of wood, peat and smoky coal  
38 burning in the boiler versus the conventional stove.

39



40

41 Figure S2. Relative difference at each  $m/z$  for the mass spectral profile of biomass briquettes and  
42 smokeless coal burning in the conventional versus Ecodesign stove.

43

44



45

46 Figure S3. Scatter plot between OA and temperature (left panel); and wind speed (right panel), color-coded by date.  
47



48

49 Figure S4. Mass spectra (left axis) of the OA factors of peat, wood, coal, HOA, and OOA. The dots  
50 shown for the peat, wood, coal OA factors were the upper/lower limits allowed to vary. Also shown is  
51 the reference HOA profile (great sticks in Fourth row) from Crippa et al. (2013)

52

### 53 Reference:

54 Crippa, M., Canonaco, F., Slowik, J. G., El Haddad, I., Decarlo, P. F., Mohr, C., Heringa, M. F., Chirico,  
55 R., Marchand, N., Temime-Roussel, B., Abidi, E., Poulain, L., Wiedensohler, A., Baltensperger, U., and  
56 Prévôt, A. S. H.: Primary and secondary organic aerosol origin by combined gas-particle phase source  
57 apportionment, *Atmos. Chem. Phys.*, 13, 8411-8426, 10.5194/acp-13-8411-2013, 2013.

58