
Reponses to referee(s) comments

Reviewer 1
The paper “Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 
geostationary observations and ground meteorological measurements”, by Li and co-workers, 
presents a preliminary application of a machine learning technique to retrieve precipitation hourly 
rate from geostationary VIS-IR data. A Random Forest classificator is applied to multispectral 
AGRI data on board the Chinese FY-4 satellite for 3 2-day storms occurred in Southern China: 
calibration and validation of the estimates are performed against hourly automatic weather station 
data.

The paper is interesting since there is very little published work on FY-4 data, however, I think the 
present manuscript needs a deep revision before to be published on AMT. Below, my suggestion 
to improve the quality of the manuscript.

RESPONSE: Thank you for giving us the opportunity to improve the quality of this 
manuscript. We have substantially revised this manuscript by following your insightful 
comments and constructive suggestions. Please find out our point-by-point responses below.

Introduction

Lines 51 and following: any introduction on multisensor precipitation estimation cannot forget 
international programmes that provides high quality and high resolution precipitation products at 
global or continental scale, such as NASA-GPM or H-SAF. Please, complete.
RESPONSE: Thanks for your valuable suggestion. More relevant literature has been 
reviewed and cited in the introduction section to bridge the readership gap, please see the 
added contents at lines 52-57 in our revised manuscript: 
“……,and the Passive Microwave Neural Network Precipitation Retrieval approach for The 
EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water 
Management (H-SAF) (Mugnai et al., 2013; Sanò et al., 2014, 2018), as well as active 
precipitation retrieval methods based on the Precipitation Radar (PR) carried onboard the 
Tropical Precipitation Measuring Mission satellite (Iguchi et al., 2000) and The Global 
Precipitation Measurement (GPM) Core Observatory spacecraft (Sharifi et al., 2016; Tan 
and Duan, 2017). ”

Line 85, and in many other parts of the paper, are mentioned high-density stations, without any 
quantitative indication on how the density is measured and how “high density” is defined. Please, 
give more quantitative details on the station distribution.
RESPONSE: Thanks for pointing out. More detailed descriptions have been provided to 
better introduce automatically operated meteorological stations. Please refer to lines 96-98 in 
the revised manuscript: 
“In addition to 215 national operated meteorological stations, there are also 4,706 automatic 
stations over the study region, with a mean distance between them less than 10 km (Figure 
1). Also, stations are deployed with higher density in the urban built-up area with relative to 



the rural area.”

Line 96. In Figure 1 please write the meaning of red areas (NPP_NTL?).
RESPONSE: Thanks for your constructive comment. NPP_NTL represents nighttime light 
(NTL) data obtained by the Visible Infrared Imaging Radiometer Suite (VIIRS) on board 
the Suomi National Polar Orbiting Partnership (NPP). We used this dataset to extract urban 
built-up areas in South China. To ease the readership, we have changed NPP_NTL to 
build-up area in the legend of Figure 1. We also explained this at lines 101-103 in the revised 
manuscript: 
“The red shading area in Figure 1 shows the build-up area in South China, which was 
extracted using nighttime light (NTL) data obtained by the Visible Infrared Imaging 
Radiometer Suite (VIIRS) on board the Suomi National Polar Orbiting Partnership (NPP) 
satellite.”

Figure 1: Distribution of automatically operated meteorological stations over the study area.

Lines 106 and line 108 mention levels: “met the levels for large-scale heavy precipitation” and 
“met the heavy rain level”. How are these levels defined?
RESPONSE: Thanks for your constructive comments. The rainfall levels used in this paper 
is defined according to the "Grade of Precipitation", a Chinese national standard 
implemented on August 1, 2012.  In this standard, rainfall is divided into seven grades: light 
rainfall, light rain, moderate rain, heavy rain, rainstorm, heavy rainstorm and 
extraordinary rainstorm. Detailed thresholds for rainfall classification were supplied in 
table S1 in the supplementary information. Since it is challenging to determine the coverage 
area of quantitative precipitation simply based on site-based precipitation data, so we 
deleted the qualitative description of “large-scale” in the revised manuscript.
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Table S1 Classification of rainfall levels in different periods (Unit: mm)
Rainfall in different periods

Level
Rainfall in 1 hours Rainfall in 24 hours

light rainfall < 0.1 < 0.1
Light rain 0.1 ~ 1.5 0.1 ~ 9.9

Moderate rain 1.6 ~ 6.9 10.0 ~ 24.9
Heavy rain 7.0 ~ 14.9 25.0 ~ 49.9
Rainstorm 15.0 ~ 39.9 50.0 ~ 99.9

Heavy rainstorm 40.0 ~ 49.9 100.0 ~ 249.9
Extraordinary rainstorm ≥50.0 ≥250.0

Data

Line 128, very likely, 4km is the nominal resolution at nadir.
RESPONSE: Thanks for your kind suggestion. Indeed, 4km is the nominal resolution of 
FY-4A/AGRI at nadir. We have corrected this at lines 140-141 in the revised manuscript: 
“FY4A/AGRI provides level-1 dataset with resolutions of 500 m, 1 km, 2 km and 4 km at 
nadir, and 4 km at nadir for level-2 dataset.”

Lines 145-154. ERA5 fields come with significant latency (5 days for the “preliminary daily 
updates” and 3 months for the “quality-assured data”. Are these times compliant to the Authors’ 
aim to “monitor flood” (line 81)?  Moreover, how could be possible the “the real-time 
monitoring and prediction of summer precipitation over East Asia” (lines 383-384)? Please 
discuss the temporal applicability of the proposed technique.
RESPONSE: Thanks for your insightful comments. The main goal of this paper is to develop 
a random forest model framework to estimate QPE from FY-4A. We agree with you that 
there is large time lag for ERA5 fields. However, for practical applications of the RF model 
framework in the future, instead of ERA5 reanalysis data, the meteorological physical 
quantity forecast fields of the global forecast system from China T639, ECMWF or GFS can 
be combined with real-time FY-4A satellite spectral information and high-density automatic 
station observations to quantitatively estimate real-time, large-scale, and dynamic 
continuous precipitation over East Asia. Therefore, our proposed FY-4A QPE 
algorithm  has important potentials and broad application value for precipitation 
monitoring in real-time, as well as rainstorm disaster prevention and reduction. We have 
added the above discussion in the last section.
Sorry for the misunderstanding on the lines 81, and 383-384. We have revised it accordingly, 
and reorganized as followings:
 “……, the FY-4A QPE algorithm established in the present work offers important 
scientific support and application value for the real-time monitoring and prediction of 
summer precipitation over East Asia” has been changed to “……, the FY-4A QPE algorithm 
established in the present work offers important scientific support and application value for 
quantitative estimation of summer precipitation over East Asia”
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Lines 155-171. Please, improve this description. First try to clearly separate different steps of the 
algorithm (e.g. with bullet points), then use different fonts to define variables in the text (mtray, 
ntray...).
RESPONSE: We are grateful to your valuable comments. We have rewritten this section to 
ease the readership. We have corrected this at lines 171-227 in the revised manuscript: 
“A data-driven regression model was established between the observed precipitation and 
satellite data as well as cloud parameters using the RF method. The essence of the RF data 
estimation model is as follows: 
1) The input variables to the RF model are shown in Table 1, including geographic 

information, channel information, combined channel information, cloud parameter 
products, and ERA5 data. A Daytime Quantitative Precipitation Estimate (DQPE) 
algorithm and a Nighttime Quantitative Precipitation Estimate (NQPE) algorithm were 
constructed separately，due to different input variables between daytime and nighttime. 
The DQPE algorithm is used to estimate the precipitation from 8:00 to 16:00, and the 
NQPE algorithm is used to estimate the remaining time periods. The visible light 
channel at nighttime cannot produce valid observational information, so the NQPE 
algorithm removes these variables. The CTT gradient(CTTG) in the combined channel 
information is closely related to the rain rate, defined as follows Eq. (1):

 𝑪𝑻𝑻𝑮 =  {[𝑻(𝒊 + 𝟏,𝒋) ― 𝑻(𝒊 ― 𝟏,𝒋)]𝟐 + [𝑻(𝒊,𝒋 + 𝟏) ― 𝑻(𝒊,𝒋 ― 𝟏)]𝟐}
𝟏
𝟐，         (1)

where T represents the spectral brightness temperature of 10.7 μm, and i and j 
represent the pixel position.

2) We selected the 1-h temporal resolution high-density automatic station geographic and 
precipitation information, satellite observation data and ERA5 reanalysis data to input 
into QPE algorithm for precipitation estimation. The spatial resolution of FY-4A/AGRI 
is 4 km × 4 km, the spatial resolution of ERA5 is 0.25° × 0.25°, the spatial resolution of 
DEM is 1 km × 1 km. Due to this difference in spatial resolution, the abovementioned 
data needed to be interpolated to construct a dataset that was synchronized in time and 
space. According to previous study (Liu et al., 2020), the differences between a diverse of 
interpolation methods are small for high-density automatic stations, with the effect of 
interpolation depending mainly on the station distribution rather than the interpolation 
method itself. In this paper, for matching input variables with precipitation data, we 
employed spline interpolation on the satellite data to match the in-situ precipitation 
measurement, while used the averaged value of four nearest grids of ERA5 data and 
DEM data around each weather station to match the in-situ precipitation measurement/ 
satellite data at each pixel. 

3) Ten indicators are defined to judge the accuracy of the QPE algorithm (Table 2). In 
order to quantitatively evaluate the classification results of precipitation and 
non-precipitation pixels, we introduce eight classical metrics: bias score (Bias, Bias = 1 
unbiased, Bias < 1 underestimation, Bias > 1 overestimation), probability of detection 
(POD, optimal = 1), false alarm ratio (FAR, optimal = 0), accuracy (ACC, optimal = 1), 
Critical Success Index (CSI, optimal = 1), Heidke Skill Score (HSS, optimal = 1), 



Hanssen and Kuiper (HK, optimal = 1), and Equitable Threat Score (ETS, optimal = 1). 
Among them, when POD or FAR take the optimal value, the algorithm cannot be 
determined as the optimal estimation. When ACC or CSI take the optimal value, the 
algorithm can be determined as the optimal estimation. HSS, HK and ETS are all 
commonly used to evaluate the estimated ability of algorithms as skill scores. HSS 
compares the accuracy between the algorithm and a random estimation as reference by 
the accuracy score ACC, and ETS  compares the accuracy between the algorithm and 
another random estimation as reference by the accuracy score CSI. When HSS > 0 or 
ETS > 0, the algorithm is skillful and its estimation ability is better than random 
estimation as reference.   HK is defined as the difference between POD and probability 
of false detection (POFD).  When HK > 0, the algorithm is skillful, and when HK = HSS, 
the algorithm is unbiased estimation. The other two indicators can be used to 
quantitatively evaluate the accuracy of precipitation estimation based on the QPE 
algorithm. They are correlation coefficient (R, optimal = 1), and root-mean-square error 
(RMSE, optimal = 0).

4) The establishment of the RF model needs to determine two important 
parameters—namely, the number of input variables of tree nodes, mtry, and the number 
of decision trees, ntree. Besides, the larger the mtry, the smaller the overfitting effect of 
the RF algorithm; while the larger the ntree, the smaller the difference between the 
submodels. The value of mtry should be smaller than the value of the input variable. In 
general, mtry values are 1, k / 2, 𝟐 𝒌 and 𝐥𝐨𝐠𝟐 (𝒌) + 𝟏 etc., where k is the number of 
variables input into the model. We selected k / 2 as the number of input variables of the 
tree node; that is, mtry = 17. The number of decision trees, ntree, is ideally classified 
when the value of ntree is between 500 and 800. We set it to 550.

5) Randomly create mtry pieces of variables for the binary tree on the node, and the choice 
of the binary tree variables still meets the principle of minimum node impurity. The 
Bootstrap self-help method is applied to randomly select ntree sample sets from the 
original dataset to form a decision tree of ntree, and the unsampled samples are used for 
the estimation of a single decision tree. Samples are classified or predicted according to 
the RF composed of ntree decision trees. The principle of classification is the voting 
method, and the principle of estimation is the simple average.”
Finally, figure 3 summarizes the flowchart for the QPE algorithm using the RF model. 

According to previous studies (Yang et al., 2020; Zeng et al., 2020), a ten-fold 
cross-validation (10-fold CV) method was used to test the model estimation performance. 
The 10-fold CV method makes maximum use of the existing sample data and ensures that 
each sample is used as a training sample and a test sample respectively, effectively avoiding 
the result of over-fitting. The training set was input into the RF model, and the QPE 
algorithm with the highest estimation accuracy was constructed by performing 10-fold CV. 
The testing set was input into the RF model to obtain the precipitation estimation of each 
pixel and judge whether the pixel was a precipitation pixel. For a pixel with precipitation 
intensity greater than 0.1 mm/h, it was judged as a precipitation pixel; otherwise, it was 
judged as a non-precipitation pixel. ”



Line 184 and elsewhere. Please, do not use the word “prediction” here and in the whole document 
to refer to the output of your algorithm, use “estimate”, instead.

RESPONSE: Thanks for your suggestion. It has been corrected in the revised manuscript.

Lines 195-200. Here is the main lack of the paper: POD and FAR cannot be used separately to 
assess the quality of an estimates. Besides an error in the sentence (“optimal value of FAR is 1, 
and the worst value is 0”, actually, the opposite is true), to measure the capability of the technique 
to correctly classify wet/dry pixel you need or to comment both POD and FAR number together 
(and avoid sentences as on line 17), or to compute synthetic indicators such as Equitable Threat 
Score (ETS), Hanssen and Kuiper or Heidke Skill Score, and do again the analysis looking at the 
values of these indicators as reference.

RESPONSE: Thank you so much for your constructive comments. Per your suggestions, we 
have defined ten indicators to evaluate the accuracy of the QPE algorithm in the revised 
manuscript. In order to quantitatively assess the classification results of precipitation and 
non-precipitation pixels, we introduced eight classical metrics: bias score (Bias, Bias = 1 
unbiased, Bias < 1 underestimation, Bias > 1 overestimation), probability of detection (POD, 
optimal = 1), false alarm ratio (FAR, optimal = 0), accuracy (ACC, optimal = 1), Critical 
Success Index (CSI, optimal = 1), Heidke Skill Score (HSS, optimal = 1), Hanssen and 
Kuiper (HK, optimal = 1), and Equitable Threat Score (ETS, optimal = 1). The other two 
indicators can be used to quantitatively evaluate the accuracy of precipitation estimation 
based on the QPE algorithm. They are correlation coefficient (R, optimal = 1), and 
root-mean-square error (RMSE, optimal = 0). We further evaluated the RF model of QPE 
by using these indicators in the revision.

Results

Line 205, figure 4, please, use a reasonable number of digits in the numbers reported on the 
panels. Moreover, POD and FAR should be <1.
RESPONSE: Thanks for your constructive suggestion. Due to increasing evaluation 
indicators, we only show Bias, R and RMSE in Figure 4, and put the remaining evaluation 
indicators in the Table 3. 

Table 3: Evaluation metrics in training set and testing set of DQPE (NQPE) algorithm 

Model name POD FAR ACC CSI HSS HK ETS

Training set of DQPE 1.00 0.43 0.78 0.57 0.57 0.69 0.39 

Testing set of DQPE 0.98 0.55 0.65 0.45 0.37 0.50 0.23 

Training set of NQPE 1.00 0.49 0.76 0.51 0.51 0.67 0.35 

Testing set of NQPE 0.98 0.59 0.63 0.40 0.33 0.49 0.20 

Lines 214-215. This sentence is a speculation not supported by evidence, please motivate it better 
or cancel.
RESPONSE: Thanks for your suggestion. We have deleted this sentence.



Lines 218-221. To better illustrate this issue, please, use the indicators I suggested few lines above 
(ETS, HK…)
RESPONSE: Thanks for your constructive suggestions. We have added new evaluation 
indicators in the revised manuscript.

Line 223. Again, an unsupported sentence, please, give evidence or remove.
RESPONSE: Thanks, it has been removed.

Lines 224-230. This paragraph not clear: if the Authors have the feeling that the dataset is not 
large enough to carry on proper training/testing procedure (that was also my feeling at the 
beginning) why not to add some more case?
RESPONSE: We are sorry for the misleading. In fact, the number of training set samples 
during the daytime (nighttime) is 724680 (1230894), and the number of testing set samples is 
80520 (136766), which is adequate to initiate a machine learning practice. Our purpose is to 
explain the notable difference in the performance between testing and training, more 
specifically, the over-fitting issue. This issue is caused largely due to the complex 
relationships between the dependent variable and regressors, while the model fails to 
generalize well on unseen data (e.g., the testing dataset). To avoid misleading, we have 
rephrased the sentences to ease the readership. Overall, the main objective of this study is to 
present a machine learning framework that can be applied to estimate QPE from FY-4A 
with the involvement of meteorological physical quantities. For demonstration, we only 
employed three typical rainstorm cases in this study to illustrate the capability of the 
proposed method. A better regression could be established in the future by using data from 
more diverse cases to improve the generalization capacity of QPE estimation model. Again, 
thanks for pointing out this flaw.

Lines 245-246. I do not see this sentence comes out. Numerical indicators (POD, FAR, R, 
ETS….) tell us much more from the quantitative point of view with respect to simple visual 
comparisons of rain maps. Please, use numbers if you want to make quantitative assessments.
RESPONSE: Thanks for your constructive suggestions. We have revised this sentence and 
added new evaluation indicators in the revised manuscript.

Lines 263-264. Absolute and relative errors are not defined in the text.
RESPONSE: Thanks for your suggestion. We rephrased the verification of the QPE results 
and deleted the part of absolute and relative error.  

Lines 291-293. This sentence does not tell anything about the technique accuracy, since POD 
alone is considered.
RESPONSE: Thanks for your kind suggestion. We have cancelled this sentence in the 
revision.

In general, discussion and conclusion have to be rewritten once the new indictors I suggested will 
be implemented.



RESPONSE: Many thanks for your kind suggestion. We have rewritten the conclusion and 
discussion section as follows:
“In this study, a machine-learned regression model was established using the RF method to 
derive QPE from FY-4A observations, in conjunction with cloud parameters and physical 
quantities. The cross validation results indicate that both DQPE and NQPE RF algorithms 
performed well in estimating QPE, with the Bias, R and RMSE of DQPE (NQPE) of 2.17 
(2.42), 0.79 (0.83) and 1.77mm/h (2.31mm/h), respectively. Overall, the algorithm has a high 
accuracy in predicting precipitation under heavy rain level or below. Nevertheless, the 
positive bias still implies an overestimation of precipitation by the QPE algorithm, in 
addition to certain misjudgements from non-precipitation pixels to precipitation events. 
Also, the QPE algorithm tends to underestimate the precipitation at the rainstorm or even 
above levels. Compared to single-sensor algorithm, the developed QPE algorithm can better 
capture the spatial distribution of land-surface precipitation, especially the centre of strong 
precipitation. Marginal difference between the data accuracy over sites in urban and rural 
areas indicate that the model performs well over space and has no evident dependence on 
landscape.
Further investigations revealed that the estimation accuracy of the QPE algorithm is mainly 
affected by the rain rate and precipitation duration. More specifically: (1) With respect to 
strong precipitation at a high rain rate, the QPE algorithm has a high prediction accuracy, 
regardless of the duration. Nevertheless, the RMSE is mainly affected by the rain rate, 
implying when the rain rate is large enough (rainstorm level or above), the precipitation 
duration is no longer a factor affecting the accuracy of the QPE algorithm. (2) For 
precipitation processes with a long duration at a low rain rate, the algorithm shows a 
roughly similar accuracy as the previous type of precipitation, but with a slightly 
degradation in R whereas a significant increase in RMSE. (3) For precipitation with short 
duration at a small to moderate intensity, the QPE algorithm showed a relatively high FAR 
and Bias albeit a relatively low ACC, CSI, HSS, HK, ETS and R, implying a low accuracy of 
the QPE algorithm.
In general, by synergistically using high-density automatic station data and meteorological 
physical quantity fields, the QPE algorithm developed in this study provides a promising 
way for quantitative estimation of summer precipitation over East Asia from FY-4A satellite 
observations. Our results also highlight the beneficial effect of satellite cloud parameters and 
meteorological physical variables that were neglected in previous studies in improving the 
prediction accuracy of QPE. Moreover, by replacing the ERA5 reanalysis data that were 
used in this study with meteorological forecast fields such as global forecast system from 
China T639, ECMWF or GFS, this RF model framework can be easily adapted to 
quantitatively estimate QPE in near real-time.”
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