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Abstract Deriving large-scale and high-quality precipitation products from satellite remote sensing spectral data is always 

challenging in quantitative precipitation estimation (QPE), and limited studies have been conducted even using the China’s 

latest Fengyun-4A (FY-4A) geostationary satellite. Taking three rainstorm events over South China as examples, a machine-

learned regression model was established using the Random Forest (RF) method to derive QPE from FY-4A observations, in 15 

conjunction with cloud parameters and physical quantities. The cross validation results indicate that both daytime (DQPE) 

and nighttime (NQPE) RF algorithms performed well in estimating QPE, with the bias score, correlation coefficient and 

root-mean-square error of DQPE (NQPE) of 2.17 (2.42), 0.79 (0.83) and 1.77mm/h (2.31mm/h), respectively. Overall, the 

algorithm has a high accuracy in estimating precipitation under heavy rain level or below. Nevertheless, the positive bias still 

implies an overestimation of precipitation by the QPE algorithm, in addition to certain misjudgements from non-precipitation 20 

pixels to precipitation events. Also, the QPE algorithm tends to underestimate the precipitation at the rainstorm or even 

above levels. Compared to single-sensor algorithm, the developed QPE algorithm can better capture the spatial distribution 

of land-surface precipitation, especially the centre of strong precipitation. Marginal difference between the data accuracy 

over sites in urban and rural areas indicate that the model performs well over space and has no evident dependence on 

landscape. In general, our proposed FY-4A QPE algorithm has advantages for quantitative estimation of summer 25 

precipitation over East Asia. 
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1 Introduction 

Precipitation is an important element of weather and climate systems, as well as the global cycling of water and energy 

(Hobbs, 1989; Fu et al., 2017; Yang et al., 2021). Accurate precipitation observations are important to industrial and 

agricultural production, water use, and flood and drought monitoring (Behrangi et al., 2014; Gan et al., 2016; Lolli et al., 30 

2020). Traditional ground-station observations of precipitation possess extremely high measurement accuracy on the point 

scale, but they cannot accurately reflect the precipitation on the surface scale owing to the sparse distribution and network 

density of stations (Li et al., 2013; Liu et al., 2013). Ground-based radar observations can give the spatial and temporal 

distribution of precipitation within a 300-km radius range, but their spatial coverage cannot be scaled up to the global scale 

(Lee et al., 2015). With the rapid development of remote sensing, meteorological satellites have become the only viable way 35 

to observe precipitation globally at both high spatial and temporal resolution (Tang et al., 2016; Hou et al., 2014). However, 

large-scale and high-quality precipitation products derived from satellite remote sensing spectral data have always been a 

challenging issue in satellite quantitative precipitation estimation (QPE) (Lensky and Rosenfeld, 1995; Min et al., 2019). 

With the constant improvement of meteorological satellites, satellite-based QPE technology has developed greatly. QPE 

satellite spectrum precipitation retrieval algorithms can be divided into visible/infrared (VIS/IR), microwave, and multi-40 

combined spectral signals (Kidd, 2010; Levizzani et al., 2007). VIS/IR precipitation retrieval algorithms mainly include the 

Geostationary Operational Environmental Satellite (GOES) Precipitation Index algorithm (Arkin and Meisner, 2009), the 

GOES Multispectral Precipitation Algorithm (Ba et al., 2001), the Griffith–Woodley algorithm (Griffith et al., 1978), and the 

Climate Estimation Centre Merged Analysis of Precipitation algorithm (Xie and Arkin, 2001). Rosenfeld and Gutman 

(Rosenfeld and Gutman, 1994) explored the relationship between the effective radius of cloud retrieved by NOAA satellites 45 

and precipitation, and proposed that an effective radius greater than 14 μm should be the threshold for precipitation in the 

cloud. Previous studies have shown that different cloud microphysical parameters are closely related to the ground-level 

precipitation intensity, such as the substantially positive correlation between cloud optical thickness/cloud liquid water 

content/cloud effective radius and the surface rain rate, while there is basically a negative correlation between the cloud-top 

temperature and surface rain rate (Fu, 2014; Nauss et al., 2008; Rosenfeld and Gutman, 1994; Rosenfeld et al., 2012; Yang et 50 

al., 2018). Microwave precipitation retrieval algorithms include passive microwave (PMW) precipitation retrieval methods 

such as the Ferraro algorithm (Ferraro and Ralph, 1997), Goda profile algorithm (Kummerow et al., 2001), and the Passive 

Microwave Neural Network Precipitation Retrieval approach for The EUMETSAT Satellite Application Facility on Support 

to Operational Hydrology and Water Management (H-SAF) (Mugnai et al., 2013), as well as active precipitation retrieval 

methods based on the Precipitation Radar (PR) carried onboard the Tropical Precipitation Measuring Mission satellite 55 

(Iguchi et al., 2000) and The Global Precipitation Measurement (GPM) Core Observatory spacecraft (Sharifi et al., 2016; 

Tan and Duan, 2017). Based on the higher temporal sampling frequency of geostationary satellites, VIS/IR algorithms are 

suitable for retrieving continuous precipitation (Kidd, 2010), while PMW algorithms are better for retrieving instantaneous 

precipitation with higher accuracy (Ebert and Manton, 1996; Bauer et al., 1995), although PR also has the disadvantage of a 

limited observation range and uncertain parameters (Iguchi et al., 2009). Therefore, the development of multi-spectral joint 60 
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precipitation inversion algorithms can make up for the shortcomings of single-sensor algorithms (Michaelides et al., 2009; 

Holl et al., 2010).  

Because precipitation is a highly complex process, however, there is a nonlinear relationship between the surface 

precipitation intensity and cloud-top optical physical variables, resulting in certain limitations in the precipitation-estimation 

equation constructed with statistical methods (Atkinson and Tatnall, 1997). Machine learning is widely used in satellite QPE 65 

(Kühnlein et al., 2014; Min et al., 2019; Chen et al., 2019; Zhang et al., 2019; Sanò et al., 2015), and the Random Forest (RF) 

model is a modern machine-learning technique for classification and regression, as well as a combined self-learning 

technique, which can easily capture the complex nonlinear relationship between observational and meteorological-

environmental elements (Breiman, 2001; Bai et al., 2019a, 2019b). It has been widely applied to QPE. For instance, 

Kühnlein et al. (2014)divided data from the Spinning Enhanced Visible and Infrared Imager carried onboard the Meteosat 70 

Second Generation satellite into day, dusk and nighttime to establish an RF model and carry out QPE research, the results of 

which demonstrated a good effect on the estimation of rain area and convective precipitation. Min et al. (2019) used 

Himawari-8 real-time multi-band infrared brightness temperature and the Global Precipitation Measurement product to 

establish a QPE method based on the RF model, from which it was found that the accuracy of distinguishing the 

precipitation area reached 0.87 and its average absolute error and mean square error were 0.51 mm/h and 2.0 mm/h, 75 

respectively. Thus, there is strong evidence that the RF model can be applied effectively in precipitation monitoring and 

forecasting. The Fengyun-4 satellite (FY-4A), launched in December 2016, is China’s second-generation geostationary 

meteorological satellite, and carried onboard is the Advanced Geostationary Radiation Imager (AGRI) with 14 spectrum 

detection bands, covering the visible light, shortwave infrared, midwave infrared, and longwave infrared bands. Thus far, 

QPE-based research using FY-4A remains limited, especially in terms of the lack of an RF-based FY-4A QPE framework. 80 

South China is one of the regions in the country with the longest rainy season, the most abundant precipitation, and frequent 

heavy rains. Affected by the westerly wind system and the East Asian subtropical monsoon, the period from April to June 

each year is the first rainy season (or the first flood season) in South China. Therefore, it is important to strengthen the study 

of precipitation estimation and monitoring methods in the first flood season in South China. In the present work, taking 

South China (109°–118°E, 20°–26°N) as the research area, a RF algorithm model for FY-4A QPE is proposed by using the 85 

spectral reflectance observations of FY-4A/AGRI, meteorological environmental physical quantities from the fifth major 

global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5), and a precipitation 

dataset observed by a high-density automatic station network with hourly resolution. The aims of this study are to further 

improve the multi-spectral monitoring level of the FY-4A satellite and provide a scientific basis for improving the disaster 

prevention and mitigation capabilities of the FY-4A satellite. 90 
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2 Data and methods 

2.1 Rainstorm cases 

Rainstorms occurred frequently during the first flood season in South China in 2019, causing huge losses of life and property. 

We selected three rainstorms in South China during 2019 that had a long period of precipitation with a large coverage area, 

as follows: Case 1: April 11–12, 2019 (Beijing time; if not specified, Beijing time is used); Case 2: June 12–13, 2019; Case 3: 95 

June 23–24, 2019. In addition to 215 national operated meteorological stations, there are also 4,706 automatic stations over 

the study region, with a mean distance between them less than 10 km (Figure 1). Also, stations are deployed with higher 

density in the urban built-up area with relative to the rural area. For the high-density automatic station precipitation data in 

the range of 109°–118°E and 20°–26°N, after filtering and deleting the missing and misdetected data, the number of 

automatic stations for the three cases was 4263, 4610 and 4623, respectively. The distribution of high-density automatic 100 

stations throughout the country and in the research area is shown in Figure 1, and the spatial distributions of precipitation 

during the three South China rainstorms are shown in Figure 2. The red shading area in Figure 1 shows the build-up area in 

South China, which was extracted using nighttime light (NTL) data obtained by the Visible Infrared Imaging Radiometer 

Suite (VIIRS) on board the Suomi National Polar Orbiting Partnership (NPP) satellite. In Case 1 (Figure 2a), large-scale 

heavy precipitation mainly occurred in the southern coastal area of Guangdong Province. From north to south, there were 105 

three bands of precipitation extremes, and the accumulated precipitation gradually decreased from southwest to northeast. In 

total, 159 automatic stations recorded precipitation exceeding 100 mm within 48 h, and the maximum precipitation in 

Jiujiang Town, Foshan City (112.99°E, 22.83°N), on the order of 192 mm, reached rainstorm levels (The specific rainfall 

classification of was supplied in table S1 in the supplementary materials).  

In Case 2 (Figure 2b), there was a belt of accumulated heavy precipitation in the northwest mountainous area, and a large 110 

area of heavy precipitation in the northeast of the central urban area. The 48-h automatic station precipitation amounts in 

these two concentrated heavy precipitation areas both exceeded 100 mm, which meant that the precipitation intensity met the 

heavy rain level (see table S1, so does the following description of precipitation level). The precipitation of 492 automatic 

stations exceeded 100 mm within 48 h, and the maximum precipitation was 318.7 mm in Fogang County, Qingyuan City 

(113.93°E, 23.91°N).  115 

In Case 3 (Figure 2c), there were three heavy precipitation areas that met the heavy rain level. The heavy precipitation area 

on the west side extended from Yulin City to the southeast to the north of Maoming City. The distribution of high-density 

automatic stations in this area is sparse. The longitude and latitude of the maximum precipitation station were 111.04°E, 

22.59°N, and the precipitation in 48 hours was 149.3mm. A central heavy precipitation area covered Guangzhou and its 

surrounding urban areas with high population density, where the distribution of automatic stations is extremely dense. The 120 

longitude and latitude of the maximum precipitation station were 113.57°E，23.28°N, and the precipitation in 48 hours was 

220.5mm. On the east side, a strong precipitation centre formed in the southwest of Longyan City and connected with 

Meizhou City to the west. The underlying surface is mountainous, meaning that the distribution of automatic stations in this 

area is sparse. The longitude and latitude of the maximum precipitation station were 116.17°E，24.65°N, and the 
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precipitation in 48 hours was 239.4 mm. Three strong rainfall areas obviously met the heavy rain levels. The precipitation of 125 

644 automatic stations exceeded 100 mm within 48 h, and the maximum precipitation was 239.4 mm in Haizhu District of 

Guangzhou (113.30°E, 23.10°N). 

Among the three cases, Case 1 had a small distribution of heavy precipitation, and the accumulated precipitation was the 

smallest among the three cases. Case 2 had 29 stations with a 48-h accumulated precipitation exceeding 200 mm, and with 

more extreme heavy precipitation. Case 3 had the largest number of stations meeting the rainstorm level and had a wide 130 

distribution. The types of underlying surface covered by the precipitation were diverse, and the centre of the rainstorm was 

located in the central urban agglomeration and densely populated areas, which meant that the threat to human life and 

property was high, so Case 3 is more typical and representative to be as a study case with respect to other two cases. This 

paper therefore takes the heavy rain process of June 23–24 as an example to discuss the QPE method of FY-4A based on the 

RF model and physical quantities. Theestimation and validation results of the RF model for Case 1 and Case 2 are provided 135 

in the supporting information. 

2.2 Data 

The 14 bands of FY-4A/AGRI have different detection purposes and can identify different spectral characteristics of 

different surfaces, clouds or atmospheres (Table S2 in the supporting information). FY4A/AGRI  takes about 15 minutes to 

perform a full-disk image observation and has a maximum spatial resolution of 500 m. FY4A/AGRI provides level-1 dataset 140 

with resolutions of 500 m, 1 km, 2 km and 4 km at nadir, and 4 km at nadir for level-2 dataset, which meet the requirements 

for the spatial and temporal resolution of satellite monitoring of rainstorms. In order to train the RF model, we used the FY-

4A/AGRI full disk data with a temporal resolution of 1 h and spatial resolution of 4 km × 4 km during the study period, 

which contains 14 bands of radiation brightness temperature and reflectance information. At the same time, the combined 

channel information was constructed based on the level-1 data.  145 

Due to the indirect link between the surface rain rate and the cloud-top brightness temperature (Boris et al., 2008), the 

inversion accuracy is limited. To ensure stability of training and estimation, as well as improve the estimation accuracy, 

according to existing research (Kühnlein et al., 2014; Min et al., 2019), four level-2 cloud parameter products [cloud-top 

temperature (CTT), cloud-top height (CTH), cloud type (CLT), and cloud phase (CLP)] observed in real-time from FY-4A 

were selected. For each cloud parameter product, the temporal resolution is 1 h and the spatial resolution 4 km × 4 km, 150 

which is consistent with the 1-level data. CTT and CTH are the cloud-top temperature and height information of cloud pixels 

obtained by inversion of AGRI infrared channel data, which can be used to determine the likelihood of cloud growth, 

extinction, and precipitation. CLT is four different cloud phases generated from AGRI infrared channel data—namely, warm 

liquid water (> 0℃), supercooled liquid water, mixed, and ice. CLP uses data from multiple infrared channels of AGRI to 

obtain six different cloud types through a series of spectral and spatial tests: water, supercooled water, mixed, thick ice, thin 155 

ice, and multi-layer ice. CLT and CLP are commonly used to detect and track changes in water vapor composition in clouds 

and extreme weather estimation to improve extreme weather warning capabilities. 
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In addition to the FY-4A/AGRI observation data, this paper also uses physical quantities from ERA5 to further improve the 

performance of the QPE algorithm. These data have a horizontal resolution of 0.25° × 0.25°, a vertical resolution of 37 

layers, and a temporal resolution of up to 1 h. ERA5 is widely used in the study of weather and climate change. According to 160 

previous studies (Min et al., 2019; Kanamitsu and Masao, 1989), we introduce some ERA5 reanalysis data to further and 

better support QPE, including six physical weather indexes, which can effectively describe the atmospheric heat (K-Index), 

dynamics [convective available potential energy (CAPE); eastward turbulent surface stress (EWSS)], humidity [total column 

water vapour (TCWV); total column water (TCW)] and topographic features [anisotropy of sub-gridscale orography (ISOR)]. 

These indexes are closely associated with the initiation and development of clouds that produce rain (Zhang and Guang, 165 

2003; Roman et al., 2016). In order to improve the generalization ability of the algorithm precipitation estimation and solve 

the difference of algorithm precipitation estimation in plain and mountain areas, this paper introduces the Digital Elevation 

Model (DEM) as one of the input variables. It is the digital expression of surface morphology and contains rich topographic 

and geomorphic information.   

2.3 RF model design 170 

A data-driven regression model was established between the observed precipitation and satellite data as well as cloud 

parameters using the RF method. The essence of the RF data estimation model is as follows:  

1) The input variables to the RF model are shown in Table 1, including geographic information, channel information, 

combined channel information, cloud parameter products, and ERA5 data. A Daytime Quantitative Precipitation 

Estimate (DQPE) algorithm and a Nighttime Quantitative Precipitation Estimate (NQPE) algorithm were constructed 175 

separately，due to different input variables between daytime and nighttime. The DQPE algorithm is used to estimate the 

precipitation from 8:00 to 16:00, and the NQPE algorithm is used to estimate the remaining time periods. The visible 

light channel at nighttime cannot produce valid observational information, so the NQPE algorithm removes these 

variables. The CTT gradient (����) in the combined channel information is closely related to the rain rate, defined as 

follows Eq. (1): 180  ���� =  ����	 + 1, 
� − ��	 − 1, 
��� + ���	, 
 + 1� − ��	, 
 − 1������，                                                                       (1) 

where T represents the spectral brightness temperature of 10.7 μm, and i and j represent the pixel position. 

2) We selected the 1-h temporal resolution high-density automatic station geographic and precipitation information, 

satellite observation data and ERA5 reanalysis data to input into QPE algorithm for precipitation estimation. The spatial 

resolution of FY-4A/AGRI is 4 km × 4 km, the spatial resolution of ERA5 is 0.25° × 0.25°, the spatial resolution of 185 

DEM is 1 km × 1 km. Due to this difference in spatial resolution, the abovementioned data needed to be interpolated to 

construct a dataset that was synchronized in time and space. According to previous study (Liu et al., 2020), the 

differences between a diverse of interpolation methods are small for high-density automatic stations, with the effect of 

interpolation depending mainly on the station distribution rather than the interpolation method itself. In this paper, for 

matching input variables with precipitation data, we employed spline interpolation on the satellite data to match the in-190 
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situ precipitation measurement, while used the averaged value of four nearest grids of ERA5 data and DEM data around 

each weather station to match the in-situ precipitation measurement/ satellite data at each pixel.  

3) Ten indicators are defined to judge the accuracy of the QPE algorithm (Table 2). In order to quantitatively evaluate the 

classification results of precipitation and non-precipitation pixels, we introduce eight classical metrics: bias score (Bias, 

Bias = 1 unbiased, Bias < 1 underestimation, Bias > 1 overestimation), probability of detection (POD, optimal = 1), 195 

false alarm ratio (FAR, optimal = 0), accuracy (ACC, optimal = 1), Critical Success Index (CSI, optimal = 1), Heidke 

Skill Score (HSS, optimal = 1), Hanssen and Kuiper (HK, optimal = 1), and Equitable Threat Score (ETS, optimal = 1). 

Among them, when POD or FAR take the optimal value, the algorithm cannot be determined as the optimal estimation. 

When ACC or CSI take the optimal value, the algorithm can be determined as the optimal estimation. HSS, HK and ETS 

are all commonly used to evaluate the estimated ability of algorithms as skill scores. HSS compares the accuracy 200 

between the algorithm and a random estimation as reference by the accuracy score ACC, and ETS  compares the 

accuracy between the algorithm and another random estimation as reference by the accuracy score CSI. When HSS > 0 

or ETS > 0, the algorithm is skillful and its estimation ability is better than random estimation as reference.   HK is 

defined as the difference between POD and probability of false detection (POFD).  When HK > 0, the algorithm is 

skillful, and when HK = HSS, the algorithm is unbiased estimation. The other two indicators can be used to 205 

quantitatively evaluate the accuracy of precipitation estimation based on the QPE algorithm. They are correlation 

coefficient (R, optimal = 1), and root-mean-square error (RMSE, optimal = 0). 

4) The establishment of the RF model needs to determine two important parameters—namely, the number of input 

variables of tree nodes, mtry, and the number of decision trees, ntree. Besides, the larger the mtry, the smaller the 

overfitting effect of the RF algorithm; while the larger the ntree, the smaller the difference between the submodels. The 210 

value of mtry should be smaller than the value of the input variable. In general, mtry values are 1, k / 2, √��
 and log���� + 1 etc., where k is the number of variables input into the model. We selected k / 2 as the number of input 

variables of the tree node; that is, mtry = 17. The number of decision trees, ntree, is ideally classified when the value of 

ntree is between 500 and 800. We set it to 550. 

5) Randomly create mtry pieces of variables for the binary tree on the node, and the choice of the binary tree variables still 215 

meets the principle of minimum node impurity. The Bootstrap self-help method is applied to randomly select ntree 

sample sets from the original dataset to form a decision tree of ntree, and the unsampled samples are used for the 

estimation of a single decision tree. Samples are classified or predicted according to the RF composed of ntree decision 

trees. The principle of classification is the voting method, and the principle of estimation is the simple average.” 

Finally, figure 3 summarizes the flowchart for the QPE algorithm using the RF model. According to previous studies (Yang 220 

et al., 2020; Zeng et al., 2020), a ten-fold cross-validation (10-fold CV) method was used to test the model estimation 

performance. The 10-fold CV method makes maximum use of the existing sample data and ensures that each sample is used 

as a training sample and a test sample respectively, effectively avoiding the result of over-fitting. The training set was input 

into the RF model, and the QPE algorithm with the highest estimation accuracy was constructed by performing 10-fold CV. 

The testing set was input into the RF model to obtain the precipitation estimation of each pixel and judge whether the pixel 225 
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was a precipitation pixel. For a pixel with precipitation intensity greater than 0.1 mm/h, it was judged as a precipitation pixel; 

otherwise, it was judged as a non-precipitation pixel. 

3 Results 

3.1 RF model evaluation 

This paper uses 10-fold CV to evaluate the accuracy of precipitationestimation. Figure 4 compares the precipitation 230 

observations of the high-density automatic stations in the training set and the testing set with the precipitation estimation of 

the QPE algorithm in the 10-fold CV of the DQPE algorithm and the NQPE algorithm, in which the color bar represents the 

occurrence frequency on a log scale with an interval of 0.5 mm/h. In the training set, the Bias, R and RMSE of the DQPE 

(NQPE) algorithm are 1.75 (1.95), 0.97 (0.98) and 0.77mm/h (1.00mm/h), respectively. In the testing set, the Bias, R and 

RMSE of the DQPE (NQPE) algorithm are 2.17 (2.42), 0.79 (0.83) and 1.77mm/h (2.31mm/h) respectively. For the heavy 235 

rain level and below precipitation observation samples, the large amount of precipitation observations and estimations are 

close to the 1:1 line. It reflects that the algorithm has a high quantitative estimation ability for precipitation of heavy rain 

level and below. Bias are all greater than 1, reflecting that the QPE algorithm tends to overestimation precipitation events. 

The feature of the algorithm overestimation precipitation events is mainly manifested in weak precipitation and non-

precipitation pixels. For example, there are obviously a large number of observation sample points without precipitation in 240 

Figure 4, and their precipitation estimation is too high.  When the precipitation observations reach the rainstorm level and 

above, the QPE algorithm tends to underestimate the precipitation. This kind of estimation error can be reduced by 

secondary training. In addition, it is found that there exists a notable difference in the performance between testing and 

training for the QPE algorithm. This gap is suspected to be caused by over-fitting that is possibly related to the high 

complexity of the RF model (Lao et al., 2021). The effect of the QPE algorithm on Case 1 and Case 2 is shown in Figure S1 245 

of the supplementary materials. 

Table 3 shows the evaluation metrics in training set and testing set of DQPE (NQPE) algorithm. The POD of the QPE 

algorithm are 0.98 and above, and the FAR are around 0.5. For the precipitation pixels, the QPE algorithm can accurately 

identify them; but for the precipitation pixels estimated by the QPE algorithm, the probability that the pixel has precipitation 

is about 50%. The ACC reach 0.6 and above, indicating that for more than 60% of the data samples, the QPE algorithm can 250 

accurately distinguish between precipitation and non-precipitation pixels. The CSI are 0.4 and above, which means that the 

accurately estimated precipitation pixel samples account for more than 40% of all observed and estimated precipitation pixel 

samples. HK reflects the difference between POD and probability of false detection (POFD). The HK of the QPE algorithm 

are around 0.5 and above, indicating that the proportions of correct estimations in all precipitation pixels are far greater than 

the proportions of incorrect estimations in all non-precipitation pixels. HSS (ETS) reach 0.3 and above (0.2 and above), 255 

reflecting that the QPE algorithm is skillful and better than random estimation as reference (����� and ����� in Table 2). The 

evaluation metrics of the QPE algorithm on Case 1 and Case 2 are shown in Table S2 of the supporting information. 
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3.2 Application of the RF model to QPE 

Figure 5 shows the hourly precipitation distribution as estimated by the DQPE algorithm, and Figure 6 shows the actual 

precipitation observations at high-density automatic stations in the daytime, with a temporal resolution of 1 h. Comparison of 260 

Figures 5 and 6 shows that the precipitation estimation of the DQPE algorithm is consistent with the actual precipitation 

observations at high-density automatic stations, and the DQPE algorithm can capture the precipitation range well. However, 

when the precipitation exceeds 20 mm/h, the algorithm obviously underestimates the precipitation. This means that the 

algorithm can only roughly estimate the location and range of extreme precipitation pixels, but cannot accurately and 

quantitatively estimate extreme precipitation. This is similar to the results of previous studies (Kühnlein et al., 2014; Min et 265 

al., 2019). At 11:00–16:00 on June 24, the precipitation centre gradually moved to the sea surface. Due to the lack of 

geographic information provided by the high-density automatic stations for training at the sea surface, the accuracy of the 

estimation is low. However, for land-surface precipitation, the size, location and coverage of the precipitation estimated by 

the DQPE algorithm is highly consistent with the actual precipitation observations. The precipitation estimation of Case 1 

and Case 2 by the DQPE algorithm is shown in Figure S2 of the supporting information. The distribution of the measured 270 

precipitation in the daytime from the high-density automatic stations in Case 1 and Case 2 is shown in Figure S3 of the 

supporting information. 

Figure 7 shows the hourly distribution of precipitation as estimated by the NQPE algorithm, and Figure 8 shows the actual 

precipitation observed at the high-density automatic stations at nighttime. Comparing Figures 7 and 8, a conclusion similar 

to that from the DQPE algorithm can be obtained. The precipitation estimation of Case 1 and Case 2 by the NQPE algorithm 275 

is shown in Figure S4 of te supporting information. The distribution of precipitation at nighttime observed by the high-

density automatic stations in Case 1 and Case 2 is shown in Figure S5 of the supporting information. In general, the 

estimation ability of the QPE algorithm is strong over the land surface. This proves the applicability and feasibility of 

establishing an RF model and training the QPE algorithm based on the model variables in Table 1. 

3.3 Verification of the QPE 280 

In order to further analyse the factors that affect the estimation accuracy of the QPE algorithm, we selected three city stations 

as research targets: Guangzhou (113.30°E, 23.13°N), Shantou (116.50°E, 23.38°N), and Zhuhai (113.57°E, 22.28°N). At the 

same time, we selected three rural stations as research targets: Datian (117.93°E, 25.80°N), Lianshan (112.03°E, 24.63°N), 

and Jinxiu (109.99°E, 24.09°N). Figure 9 shows the actual precipitation observations of these six stations and the 

accumulated precipitation estimated by the QPE algorithm for 48 consecutive hours. Based on the precipitation observations 285 

and estimations at each time of 48 hours, we used Bias, R and RMSE to evaluate the ability of the algorithm for precipitation 

estimation.  For the six research sites, Bias are all greater than 1, reflecting that the algorithm tends to overestimation 

precipitation events, which is consistent with the conclusion above.  Based on R and RMSE, there is no obvious difference 

between city sites and rural sites. The time and size of the cumulative precipitation changes in the six research sites are 

almost the same, reflecting that the algorithm has a strong quantitative estimation ability and does not change with city and 290 
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rural areas. We can think that the precipitation estimation ability of the algorithm is less affected by the difference between 

city and rural areas. 

Figure 10(a) presents the 48-h accumulated precipitation estimated by the QPE algorithm. Compared with Figure 2(c), all 

three heavy precipitation centres are estimated, and the area and intensity in the precipitation estimations and in the actual 

observations are basically the same. It shows that the algorithm has strong potential in accurately estimating the intensity and 295 

range of precipitation. Figures 10(b) and 10(c) respectively represent the actual precipitation frequency observed by the 

high-density automatic stations and that estimated by the QPE algorithm. The results indicate that the frequency of 

precipitation in the northeast of the study area is relatively greater, and vice versa in the southwest. The 

precipitation frequency estimated by the QPE algorithm is generally greater than observed. This is because there are more 

non-precipitation events for most stations and the algorithm often incorrectly judges non-precipitation areas as weak 300 

precipitation stations as Bias is greater than 1, resulting in a positive bias in the precipitation frequency estimated by the QPE 

algorithm at each station. The spatial distribution of accumulated precipitation in Case 1 and Case 2 is shown in Figure S6 of 

the supporting information. 

Figure 11 shows the spatial distribution of evaluation indicators of the QPE algorithm for all stations. Except that the POD 

of almost all stations are close to 1 in Figure 11(a), the spatial distribution of the rest of the evaluation indicators has obvious 305 

correlation. In Figure 11(b) and Figure 11(i), the spatial distribution of FAR and Bias has a significant negative correlation 

with accumulated precipitation. FAR is often lower and Bias tends to 1 in areas with more accumulated precipitation, such as 

the three heavy precipitation centres in the precipitation process mentioned above. On the contrary, the FAR and Bias are 

higher in areas with less accumulated precipitation, such as the southwest coastal area. According to the FAR and Bias 

calculation formula (Table 2), this reduces the FAR and Bias by increasing the number of precipitation pixels detected by 310 

both stations and the QPE algorithm There is a low-FAR and low-Bias zone in the mountainous area in the northwest of the 

study area, which does not meet the above characteristics. Combined with the results shown in Figures 8(a) to 8(h), we can 

see that there has been weak precipitation in the area for at least eight consecutive hours. According to the FAR and Bias 

calculation formula (Table 2), this reduces the FAR by reducing the number of precipitation pixels that are not detected by 

the stations but are detected by the QPE algorithm. Therefore, FAR and Bias is negatively correlated with precipitation 315 

intensity and duration. When the precipitation intensity is greater and the duration is longer, the FAR of the QPE algorithm is 

lower, the Bias gets closer to 1, and the deviation that the QPE algorithm accurately distinguish precipitation and non-

precipitation pixels is smaller. 

The spatial distribution of ACC, CSI, HSS, HK and ETS has an obvious positive correlation with accumulated precipitation. 

According to Figure 11(c) and Figure 11(d), the QPE algorithm correctly estimated that the precipitation pixels accounted 320 

for a relatively high proportion in the three heavy precipitation centres and the northwest mountainous area, indicating that 

for heavy convective precipitation and long-lasting stratigraphic clouds precipitation, the QPE algorithm’s ability to 

accurately distinguish between precipitation and non-precipitation pixels is stronger. The higher value positions in Figure 

11(e), Figure 11(f) and Figure 11(g) are basically the same as Figure 11(c) and (d). However, for areas with heavy 

precipitation in the northeast, the values of HSS, HK and ETS are relatively low. This is because the heavy precipitation area 325 
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in the northeast has higher precipitation frequency during the study period (Figure 10(b)), which makes the random 

estimation improve the probability of accurately estimating the precipitation pixels, then the advantage of ACC and CSI over 

random estimation will be weakened, this results in low HSS and ETS values. The higher precipitation frequency in the 

northeast leads to a decrease in the number of imagery pixels identified by both the stations and the QPE algorithm as non-

precipitation. this results in high POFD values. When the POD remains unchanged (Figure 11(a)), the value of HK decreases. 330 

Comparing Figure 11(e) and Figure 11 (f), the heavy precipitation area in the northeast basically satisfies HSS = HK, which 

means that the algorithm in the northeast is an unbiased estimation . In summary, although the values of HSS, HK, and ETS 

in the northeast are relatively low, the algorithm still has a high ability to distinguish between precipitation and non-

precipitation pixels. 

For Figure 11(h), there are 2660 stations with R > 0.8, accounting for 59.45%, and 600 stations with R < 0.6, accounting for 335 

14.41%. Comparing Figures 11(b) to Figures 11(g), the stations with lower R have relatively higher FAR and Bias, lower 

ACC, CSI, HSS, HK and ETS. The 48-h accumulated precipitation of these stations is less than 12.5 mm, and the 

accumulated precipitation is less than 5 h. This basically means that, during this precipitation process, these stations are in 

atypical stratus cloud or a convective precipitation process, and the precipitation efficiency is extremely low. For non-

precipitation areas in a heavy precipitation process, the QPE algorithm tends to judge them as weak precipitation areas, this 340 

shows that the algorithm overestimations the precipitation areas. Although the QPE algorithm tends to overestimate the weak 

(non-) precipitation area and underestimate the heavy precipitation area, the absolute error for the underestimated heavy 

precipitation area is much larger than the overestimated weak (non-) precipitation area. Therefore, the spatial distribution of 

RMSE in Figure 11(j) is highly consistent with the spatial distribution of 48-h accumulated precipitation in Figure 2(c). The 

stations with an RMSE greater than 1.6 mm/h in Figure 11(j) are basically connected together, and their coverage is basically 345 

the same as the area covered by the stations with a 48-h accumulated precipitation exceeding 50 mm/h in Figure 2(c). 

In summary, the estimated ability of the QPE algorithm is as follows: (1) For convective precipitation or stratus convective 

mixed precipitation with long duration, high intensity and high efficiency, such as in Guangzhou and nearby urban areas in 

Case 3, the algorithm has high POD, ACC, CSI, HSS, HK and ETS, low FAR, and R and Bias are close to 1. Its RMSE is 

affected by the precipitation intensity. In this precipitation process, the QPE algorithm has the strongest estimated ability. (2) 350 

For precipitation with long duration and weak intensity per unit time, such as the northwest mountainous area in Case 3, the 

POD, FAR, ACC, CSI, HSS, HK and ETS of the algorithm show roughly the same characteristics as the previous type of 

precipitation. The R also decline slightly, but is still near 0.8. The RMSE is greatly reduced. The estimatedability of the QPE 

algorithm is second to the previous precipitation process. (3) When the duration of precipitation is short and the intensity is 

only light to moderate rain, such as in the southwest coastal area in Case 3, the FAR and Bias estimated by the QPE 355 

algorithm is relatively high, the ACC, CSI, HSS, HK, ETS and R is relatively low, and the reliability of the estimated ability 

of the QPE algorithm is low. For Case 1 and Case 2, the hourly spatial distribution of evaluation indicators for both QPE 

algorithms at each station is shown in Figure S7 of the supporting information. 

Figure 12 shows the time series of evaluation indicators of the QPE algorithm for all stations at each time. The red lines 

represent the average values of the evaluation indicators, from which we can see that the average values of POD, FAR, ACC, 360 
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CSI, HSS, ETS, R, Bias and RMSE are 0.97、0.60、0.64、0.40、0.31、0.47、0.19、0.70、2.87 and 1.90mm/h, 

respectively. From 01:00 to 14:00 on June 24, the POD, ACC, CSI, HSS, HK, ETS, R and RMSE are high, the FAR is low, 

and the Bias tends to 1. According to Figures 6(j) to 6(p) and Figures 8(q) to 8(w), the intensity of the precipitation centre 

during this period exceeds 16 mm/h, reaching rainstorm level. At this point, the estimation accuracy of the QPE algorithm is 

strong. Not only is the effect of the evaluation indicator good, but also the intensity of the precipitation centre and the 365 

precipitation range of these periods fit with high accuracy, as can be seen by comparing Figure 5 with Figure 6(j–l) and 

Figure 7 with Figure 8(q–w). This proves that, for the strong convective process with a short precipitation duration and the 

precipitation intensity reaching rainstorm level, the evaluation indicators show similar characteristics to the first type of 

precipitation above. At the same time, this means that when the precipitation intensity is large enough, the precipitation 

duration is no longer the main factor influencing the estimated ability of the QPE algorithm. At 00:00–04:00 on June 23, the 370 

POD, ACC, CSI, HSS, HK, ETS, R and RMSE are higher than their average values, while the FAR and Bias are lower than 

their average values. The characteristics of each evaluation indicator during this period are similar to the second type of 

precipitation above. Comparing Figure 7 with Figure 8(a–d), the precipitation intensity and range are basically successfully 

fitted, but the estimation of precipitation in localized areas is not good. This verifies the previous conclusion that the QPE 

algorithm’s estimated ability for long-duration and weak-intensity precipitation is inferior to that of strong convective 375 

precipitation. From 17:00 to 20:00 on June 23, the POD, ACC, CSI, HSS, HK, ETS, R and RMSE are all lower than their 

average values, while FAR and Bias are higher than their average values. According to Figures 8(i) to 8(l), the precipitation 

duration during this period is short, the precipitation intensity is weak, and the precipitation process and characteristics are 

similar to the third type of precipitation above. For Case 1 and Case 2, the time series of evaluation indicators of the QPE 

algorithm for all stations at each time are shown in Figure S8 of the supporting information. 380 

4 Conclusions and discussions 

In this study, a machine-learned regression model was established using the RF method to derive QPE from FY-4A 

observations, in conjunction with cloud parameters and physical quantities. The cross validation results indicate that both 

DQPE and NQPE RF algorithms performed well in estimating QPE, with the Bias, R and RMSE of DQPE (NQPE) of 2.17 

(2.42), 0.79 (0.83) and 1.77mm/h (2.31mm/h), respectively. Overall, the algorithm has a high accuracy in estimating 385 

precipitation under heavy rain level or below. Nevertheless, the positive bias still implies an overestimation of precipitation 

by the QPE algorithm, in addition to certain misjudgements from non-precipitation pixels to precipitation events. Also, the 

QPE algorithm tends to underestimate the precipitation at the rainstorm or even above levels. Compared to single-sensor 

algorithm, the developed QPE algorithm can better capture the spatial distribution of land-surface precipitation, especially 

the centre of strong precipitation. Marginal difference between the data accuracy over sites in urban and rural areas indicate 390 

that the model performs well over space and has no evident dependence on landscape. 

Further investigations revealed that the estimation accuracy of the QPE algorithm is mainly affected by the rain rate and 

precipitation duration. More specifically: (1) With respect to strong precipitation at a high rain rate, the QPE algorithm has a 
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high estimation accuracy, regardless of the duration. Nevertheless, the RMSE is mainly affected by the rain rate, implying 

when the rain rate is large enough (rainstorm level or above), the precipitation duration is no longer a factor affecting the 395 

accuracy of the QPE algorithm. (2) For precipitation processes with a long duration at a low rain rate, the algorithm shows a 

roughly similar accuracy as the previous type of precipitation, but with a slightly degradation in R whereas a significant 

increase in RMSE. (3) For precipitation with short duration at a small to moderate intensity, the QPE algorithm showed a 

relatively high FAR and Bias albeit a relatively low ACC, CSI, HSS, HK, ETS and R, implying a low accuracy of the QPE 

algorithm. 400 

In general, by synergistically using high-density automatic station data and meteorological physical quantity fields, the QPE 

algorithm developed in this study provides a promising way for quantitative estimation of summer precipitation over East 

Asia from FY-4A satellite observations. Our results also highlight the beneficial effect of satellite cloud parameters and 

meteorological physical variables that were neglected in previous studies in improving the estimation accuracy of QPE. 

Moreover, by replacing the ERA5 reanalysis data that were used in this study with meteorological forecast fields such as 405 

global forecast system from China T639, ECMWF or GFS, this RF model framework can be easily adapted to quantitatively 

estimate QPE in near real-time.  
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Table 1: Variables used in the QPE algorithm. 

 
Variables 

Geographic information Longitude, Latitude, DEM 

Channel information of 

AGRI 

T0.47*, T0.65*, T0.825*, T1.375*, T1.61*, T2.25*, T3.75H, T3.75L, T6.25, 

T7.1, T8.5, T10.7, T12.0, T13.5 

Combined information of 

AGRI 

T6.25–T10.7, T8.5–T10.7, T7.1–T12.0, T12.0–T10.7, T3.75L–T7.1, 

T3.75L–T10.7, CTT! 

Cloud parameters of AGRI CTT, CTH, CLT, CLP 

ERA5 ISOR, CAPE, EWSS, K-Index, TCW, TCWV 

Notation: asterisk (*) indicates that the variable does not appear in the NQPE algorithm. 
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Table 2: Evaluation metrics used in this study. 575 

Evaluation metric Equation 

"	#$ "	#$ = � + "� + �  

%&' %&' = �� + � 

(�) (�) = "� + " 

��� ��� = � + '� + B + � + ' 

�+, �+, = �� + B + � 

-++ -++ = ��� − �����1 − ����� , ����� = �� + "��� + �� + �� + '��" + '�� + " + � + '  

-. -. = %&' − %&(' = �' − "��� + ���" + '� , %&(' = "" + ' 

/�+ /�+ = �+, − ������ + " + �1 − ������ + " + � = � − ������ + " + � − ����� , ����� = �� + "��� + ��� + " + � + '  

) ) = ∑ �12 − 1̅��+2 − +̅�425�∑ �12 − 1̅�425� ∑ �+2 − +̅�425�  

)6+/ )6+/ = 718 9�12 − +2��4
25�  

Notation: A is the number of imagery pixels identified by both the stations and the QPE algorithm as 

precipitation; B is the number of imagery pixels identified by the QPE algorithm as precipitation but 

not by the stations; C is the number of imagery pixels identified by the stations as precipitation but not 

by the QPE algorithm; D is the number of imagery pixels identified by both the stations and the QPE 

algorithm as non-precipitation. 12  is the precipitation observed by stations; +2  represents the 

precipitation estimated by the QPE algorithm. 
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Table 3: Evaluation metrics in training set and testing set of DQPE (NQPE) algorithm  

Model name POD FAR ACC CSI HSS HK ETS 

Training set of DQPE 1.00  0.43  0.78  0.57  0.57  0.69  0.39  

Testing set of DQPE 0.98  0.55  0.65  0.45  0.37  0.50  0.23  

Training set of NQPE 1.00  0.49  0.76  0.51  0.51  0.67  0.35  

Testing set of NQPE 0.98  0.59  0.63  0.40  0.33  0.49  0.20  

 

  



22 

 580 

 

 

 

 

 585 

Figure 1: Distribution of automatically operated meteorological stations over the study area. 
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Figure 2: Spatial distribution of precipitation during the three South China rainstorms: (a) April 11-12, 2019; (b) June 12-13, 2019; 590 

(c) June 23-24, 2019. 

  



24 

 

 

 595 

Figure 3: Flowchart for the QPE algorithm using the RF model. 
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Figure 4: Comparison of the precipitation measured by high-density automatic stations and that estimated by the QPE algorithm: 

(a) training set of DQPE; (b) testing set of DQPE; (c) training set of NQPE; (d) testing set of NQPE. Color bar: occurrence 

frequency (on a log scale) at intervals of 0.5 mm/h. 
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Figure 5: Estimated precipitation of the DQPE algorithm at (a–i)  0800–1600 BJT on June 23; (j–r) 0800–1600 BJT on June 24. 
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Figure 6: Actual precipitation based on high-density automatic stations at  (a–i)  0800–1600 BJT on June 23; (j–r) 0800–1600 BJT 

on June 24. 

  615 



28 

 

 

Figure 7: Estimated precipitation of the NQPE algorithm at (a–h) 0000–0700 BJT on June 23, (i–o) 1700–2300 BJT on June 23, 

(p–w) 0000–0700 BJT on June 24, and (x) 1700 BJT on June 24. 
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Figure 8: Actual precipitation based on high-density automatic stations at (a–h) 0000–0700 BJT on June 23, (i–o) 1700–2300 BJT 

on June 23, (p–w) 0000-0700 BJT on June 24, and (x) 1700 BJT on June 24. 

  625 



30 

 

 

Figure 9: Accumulated precipitation in different areas: (a–c) city stations; (d–f) rural stations. 
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Figure 10: Spatial distribution of accumulated precipitation: (a) accumulated precipitation estimated by the QPE algorithm; (b) 

actual precipitation frequency observed by high-density automatic stations; (c) precipitation frequency estimated by the QPE 635 

algorithm. 
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 640 

Figure 11: Spatial distribution of evaluation indicators of the QPE algorithm for all stations: (a) POD; (b) FAR; (c) ACC; (d) CSI; 

(e) HSS; (f) HK; (g) ETS; (h) R; (i) Bias; (j) RMSE. 
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 645 

Figure 12: Time series of evaluation indicators of the QPE algorithm for all stations at each time: (a) POD; (b) FAR; (c) ACC; (d) 

CSI; (e) HSS; (f) HK; (g) ETS; (h) R; (i) Bias; (j) RMSE.  
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