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Abstract Deriving large-scale and high-quality precipitation products from satellite remote sensing spectral data is always 

challenging in quantitative precipitation estimation (QPE), and limited studies have been conducted even using the China’s 

latest Fengyun-4A (FY-4A) geostationary satellite. Taking three rainstorm events over South China as examples, a Random 

Forest (RF) model framework for FY-4A QPE during daytime/nighttime is established by using FY-4A multi-band spectral 15 

information, cloud parameters, high-density precipitation observations, and physical quantities from reanalysis data. During 

daytime (nighttime), the probability of detection of the RF model for precipitation is 0.99 (0.99), while the correlation 

coefficient and root-mean-square error between the retrieved and observed precipitation are 0.77 (0.82) and 1.84 (2.32) 

mm/h, respectively, indicating that the RF model of FY-4A QPE has high precipitation retrieval accuracy. In particular, the 

RF model exhibits good spatiotemporal predictive ability for precipitation intensities within the range of 0.5–10 mm/h. For 20 

the retrieved accumulated precipitation, the precipitation intensity exhibits a greater impact on the predictive ability of the 

QPE algorithm than the precipitation duration. Due to the higher density of automatic stations in urban areas, the accuracy of 

FY-4A QPE over such areas is higher compared with rural areas. Both the accumulated precipitation and the distribution 

density of automatic stations are more important factors for the predictive ability of the RF model of FY-4A QPE. In general, 

our proposed FY-4A QPE algorithm has advantages for near-real-time monitoring of summer precipitation over East Asia. 25 

1 Introduction 

Precipitation is an important element of weather and climate systems, as well as the global cycling of water and energy 

(Hobbs, 1989; Fu et al., 2017; Yang et al., 2021). Accurate precipitation observations are important to industrial and 
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agricultural production, water use, and flood and drought monitoring(Behrangi et al., 2014; Gan et al., 2016; Lolli et al., 

2020). Traditional ground-station observations of precipitation possess extremely high measurement accuracy on the point 30 

scale, but they cannot accurately reflect the precipitation on the surface scale owing to the sparse distribution and network 

density of stations (Li et al., 2013; Liu et al., 2013). Ground-based radar observations can give the spatial and temporal 

distribution of precipitation within a 300-km radius range, but their spatial coverage cannot be scaled up to the global scale 

(Lee et al., 2015). With the rapid development of remote sensing, meteorological satellites have become the only viable way 

to observe precipitation globally at both high spatial and temporal resolution (Tang et al., 2016; Hou et al., 2014). However, 35 

large-scale and high-quality precipitation products derived from satellite remote sensing spectral data have always been a 

challenging issue in satellite quantitative precipitation estimation (QPE) (Lensky and Rosenfeld, 1995; Min et al., 2019). 

With the constant improvement of meteorological satellites, satellite-based QPE technology has developed greatly. QPE 

satellite spectrum precipitation retrieval algorithms can be divided into visible/infrared (VIS/IR), microwave, and multi-

combined spectral signals (Kidd, 2010; Levizzani et al., 2007). VIS/IR precipitation retrieval algorithms mainly include the 40 

Geostationary Operational Environmental Satellite (GOES) Precipitation Index algorithm (Arkin and Meisner, 2009), the 

GOES Multispectral Precipitation Algorithm (Ba et al., 2001), the Griffith–Woodley algorithm (Griffith et al., 1978), and the 

Climate Prediction Center Merged Analysis of Precipitation algorithm (Xie and Arkin, 2001). Microwave precipitation 

retrieval algorithms include passive microwave (PMW) precipitation retrieval methods such as the Ferraro algorithm 

(Ferraro and Ralph, 1997), Goda profile algorithm (Kummerow et al., 2001), and the Passive Microwave Neural Network 45 

Precipitation Retrieval (Sano' et al., 2014), as well as active precipitation retrieval methods based on the Precipitation Radar 

(PR) carried onboard the Tropical Precipitation Measuring Mission satellite (Iguchi et al., 2000). Based on the higher 

temporal sampling frequency of geostationary satellites, VIS/IR algorithms are suitable for retrieving continuous 

precipitation (Kidd, 2010), while PMW algorithms are better for retrieving instantaneous precipitation with higher accuracy 

(Ebert and Manton, 1996; Bauer et al., 1995), although PR also has the disadvantage of a limited observation range and 50 

uncertain parameters (Iguchi et al., 2009). Therefore, the development of multi-spectral joint precipitation inversion 

algorithms can make up for the shortcomings of single-sensor algorithms (Michaelides et al., 2009; Holl et al., 2010). For 

example, Rosenfeld and Gutman (1994) explored the relationship between the effective radius of cloud retrieved by NOAA 

satellites and precipitation, and proposed that an effective radius greater than 14 μm should be the threshold for precipitation 

in the cloud. Previous studies have shown that different cloud microphysical parameters are closely related to the ground-55 

level precipitation intensity, such as the substantially positive correlation between cloud optical thickness/cloud liquid water 

content/cloud effective radius and the surface rain rate, while there is basically a negative correlation between the cloud-top 

temperature and surface rain rate (Fu and I, 2014; Nauss et al., 2008; Rosenfeld and Gutman, 1994; Rosenfeld et al., 2012; 

Yang et al., 2018). 

Because precipitation is a highly complex process, however, there is a nonlinear relationship between the surface 60 

precipitation intensity and cloud-top optical physical variables, resulting in certain limitations in the precipitation-estimation 

equation constructed with statistical methods (Atkinson and Tatnall, 1997). Machine learning is widely used in satellite QPE 

(Kühnlein et al., 2014; Min et al., 2019; Chen et al., 2019; Zhang et al., 2019; Sanò et al., 2015), and the Random Forest (RF) 
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model is a modern machine-learning technique for classification and regression, as well as a combined self-learning 

technique, which can easily capture the complex nonlinear relationship between observational and meteorological elements 65 

(Breiman, 2001). It has been widely applied to QPE. For instance, (Kühnlein et al., 2014) divided data from the Spinning 

Enhanced Visible and Infrared Imager carried onboard the Meteosat Second Generation satellite into day, dusk and 

nighttime to establish an RF model and carry out QPE research, the results of which demonstrated a good effect on the 

prediction of rain area and convective precipitation. Min et al. (2019) used Himawari-8 real-time multi-band infrared 

brightness temperature and the Global Precipitation Measurement product to establish a QPE method based on the RF model, 70 

from which it was found that the accuracy of distinguishing the precipitation area reached 0.87 and its average absolute error 

and mean square error were 0.51 mm/h and 2.0 mm/h, respectively. Thus, there is strong evidence that the RF model can be 

applied effectively in precipitation monitoring and forecasting. The Fengyun-4 satellite (FY-4A), launched in December 

2016, is China’s second-generation geostationary meteorological satellite, and carried onboard is the Advanced 

Geostationary Radiation Imager (AGRI) with 14 spectrum detection bands, covering the visible light, shortwave infrared, 75 

midwave infrared, and longwave infrared bands. Thus far, QPE-based research using FY-4A remains limited, especially in 

terms of the lack of an RF-based FY-4A QPE framework. 

South China is one of the regions in the country with the longest rainy season, the most abundant precipitation, and frequent 

heavy rains. Affected by the westerly wind system and the East Asian subtropical monsoon, the period from April to June 

each year is the first rainy season (or the first flood season) in South China. Therefore, it is important to strengthen the study 80 

of precipitation monitoring methods in the first flood season in South China. In the present work, taking South China (109°–

118°E, 20°–26°N) as the research area, a QPE RF algorithm model for FY-4A is propsoed by using the spectral reflectance 

observations of FY-4A/AGRI, meteorological environmental physical quantities from the fifth major global reanalysis 

produced by the European Centre for Medium-Range Weather Forecasts (ERA5), and a precipitation dataset observed by a 

high-density automatic station network with hourly resolution. The aims of this study are to further improve the multi-85 

spectral monitoring level of the FY-4A satellite and provide a scientific basis for improving the disaster prevention and 

mitigation capabilities of the FY-4A satellite. 

2 Data and methods 

2.1 Rainstorm cases 

Rainstorms occurred frequently during the first flood season in South China in 2019, causing huge losses of life and property. 90 

We selected three rainstorms in South China during 2019 that had a long period of precipitation with a large coverage area, 

as follows: Case 1: April 11–12, 2019 (Beijing time; if not specified, Beijing time is used); Case 2: June 12–13, 2019; Case 3: 

June 23–24, 2019. For the high-density automatic station precipitation data in the range of 109°–118°E and 20°–26°N, after 

filtering and deleting the missing and misdetected data, the number of automatic stations for the three cases was 4263, 4610 

and 4623, respectively. The distribution of high-density automatic stations throughout the country and in the research area is 95 
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shown in Figure 1, and the spatial distributions of precipitation during the three South China rainstorms are shown in Figure 

2. 

In Case 1, large-scale heavy precipitation mainly occurred in the southern coastal area of Guangdong Province. From north 

to south, there were three bands of precipitation extremes, and the accumulated precipitation gradually decreased from 

southwest to northeast. In total, 159 automatic stations recorded precipitation exceeding 100 mm within 48 h, and the 100 

maximum precipitation in Jiujiang Town, Foshan City (112.99°E, 22.83°N), on the order of 192 mm, reached rainstorm 

levels.  

In Case 2, there was a belt of accumulated heavy precipitation in the northwest mountainous area, and a large area of heavy 

precipitation in the northeast of the central urban area. The 48-h automatic station precipitation amounts in these two 

concentrated heavy precipitation areas both exceeded 100 mm, which meant that the precipitation range and precipitation 105 

intensity both met the levels for large-scale heavy precipitation. The precipitation of 492 automatic stations exceeded 100 

mm within 48 h, and the maximum precipitation was 318.7 mm in Fogang County, Qingyuan City (113.93°E, 23.91°N).  

In Case 3, there were three obvious heavy precipitation areas that met the heavy rain level. The heavy precipitation area on 

the west side extended from Yulin City to the southeast to the north of Maoming City. The distribution of high-density 

automatic stations in this area is sparse. A central heavy precipitation area covered Guangzhou and its surrounding urban 110 

areas with high population density, where the distribution of automatic stations is extremely dense. On the east side, a strong 

precipitation center formed in the southwest of Longyan City and connected with Meizhou City to the west. The underlying 

surface is mountainous, meaning that the distribution of automatic stations in this area is sparse. The precipitation of 644 

automatic stations exceeded 100 mm within 48 h, and the maximum precipitation was 239.4 mm in Haizhu District of 

Guangzhou (113.30°E, 23.10°N). 115 

Among the three cases, Case 1 had a small distribution of heavy precipitation, and the accumulated precipitation was the 

smallest among the three cases. Case 2 had 29 stations with a 48-h accumulated precipitation exceeding 200 mm, and with 

more extreme heavy precipitation. Case 3 had the largest number of stations meeting the rainstorm level and had a wide 

distribution. The types of underlying surface covered by the precipitation were diverse, and the center of the rainstorm was 

located in the central urban agglomeration and densely populated areas, which meant that the threat to human life and 120 

property was high, so Case 3 is more typical and representative to be as a study case with respect to other two cases. This 

paper therefore takes the heavy rain process of June 23–24 as an example to discuss the QPE method of FY-4A based on the 

RF model and physical quantities. The prediction and validation results of the RF model for Case 1 and Case 2 are provided 

in the supporting information. 

2.2 Data 125 

The 14 bands of FY-4A/AGRI have different detection purposes and can identify different spectral characteristics of 

different surfaces, clouds or atmospheres (Table S1 in the supporting information). FY-4A/AGRI has a temporal resolution 

of 15 min and a spatial resolution of 4 km. It meets the requirements for the spatial and temporal resolution of satellite 

monitoring of rainstorms. In order to train the RF model, we used the FY-4A/AGRI full disk data with a temporal resolution 
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of 1 h and spatial resolution of 4 km × 4 km during the study period, which contains 14 bands of radiation brightness 130 

temperature and reflectance information. At the same time, the combined channel information was constructed based on the 

level-1 data.  

Due to the indirect link between the surface rain rate and the cloud-top brightness temperature (Boris et al., 2008), the 

inversion accuracy is limited. To ensure stability of training and forecasting, as well as improve the forecasting accuracy, 

according to existing research (Kühnlein et al., 2014; Min et al., 2019), four level-2 cloud parameter products [cloud-top 135 

temperature (CTT), cloud-top height (CTH), cloud type (CLT), and cloud phase (CLP)] observed in real-time from FY-4A 

were selected. For each cloud parameter product, the temporal resolution is 1 h and the spatial resolution 4 km × 4 km, 

which is consistent with the 1-level data. CTT and CTH are the cloud-top temperature and height information of cloud pixels 

obtained by inversion of AGRI infrared channel data, which can be used to determine the likelihood of cloud growth, 

extinction, and precipitation. CLT is four different cloud phases generated from AGRI infrared channel data—namely, warm 140 

liquid water (> 0℃), supercooled liquid water, mixed, and ice. CLP uses data from multiple infrared channels of AGRI to 

obtain six different cloud types through a series of spectral and spatial tests: water, supercooled water, mixed, thick ice, thin 

ice, and multi-layer ice. CLT and CLP are commonly used to detect and track changes in water vapor composition in clouds 

and extreme weather forecasts to improve extreme weather warning capabilities. 

In addition to the FY-4A/AGRI observation data, this paper also uses physical quantities from ERA5 to further improve the 145 

performance of the QPE algorithm. These data have a horizontal resolution of 0.25° × 0.25°, a vertical resolution of 37 

layers, and a temporal resolution of up to 1 h. ERA5 is widely used in the study of weather and climate change. According to 

previous studies (Min et al., 2019; Kanamitsu and Masao, 1989), we introduce some ERA5 reanalysis data to further and 

better support QPE, including six physical weather indexes, which can effectively describe the atmospheric heat (K-Index), 

dynamics [convective available potential energy (CAPE); eastward turbulent surface stress (EWSS)], humidity [total column 150 

water vapour (TCWV); total column water (TCW)] and topographic features [anisotropy of sub-gridscale orography (ISOR)]. 

These indexes are closely associated with the initiation and development of clouds that produce rain (Zhang and Guang, 

2003; Roman et al., 2016). 

2.3 RF model design 

A data-driven regression model was established between the observed precipitation and satellite spectrum as well as cloud 155 

parameters using the RF method. The establishment of the RF model needs to determine two important parameters—namely, 

the number of input variables of tree nodes, mtry, and the number of decision trees, ntree.The essence of the RF data packet 

estimation is as follows: Randomly create mtry pieces of variables for the binary tree on the node, and the choice of the 

binary tree variables still meets the principle of minimum node impurity. The Bootstrap self-help method is applied to 

randomly select ntree sample sets from the original dataset to form a decision tree of ntree, and the unsampled samples are 160 

used for the prediction of a single decision tree. Samples are classified or predicted according to the RF composed of ntree 

decision trees. The principle of classification is the voting method, and the principle of prediction is the simple average. 

Besides, the larger the mtry, the smaller the overfitting effect of the RF algorithm; while the larger the ntree, the smaller the 
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difference between the submodels. The value of mtry should be smaller than the value of the input variable. In general, mtry 

values are 1, k / 2, √��
 and log�(�) + 1 etc., where k is the number of variables input into the model. We selected k / 2 as the 165 

number of input variables of the tree node; that is, mtry = 6. The number of decision trees, ntree, is ideally classified when 

the value of ntree is between 500 and 800. We set it to 550. 

According to previous studies (Yang et al., 2020; Zeng et al., 2020), a ten-fold cross-validation (10-fold cv) method was 

used to to test the model estimation performance. The 10-fold cv method makes maximum use of the existing sample data 

and ensures that each sample is used as a training sample and a test sample respectively, effectively avoiding the result of 170 

over-fitting. 

The input variables to the RF model are shown in Table 1, including geographic information, channel information, combined 

channel information, cloud parameter products, and ERA5 data. A Daytime Quantitative Precipitation Estimate (DQPE) 

algorithm and a Nighttime Quantitative Precipitation Estimate (NQPE) algorithm were constructed separately，due to 

different input variables between daytime and nighttime.The DQPE algorithm is used to predict the precipitation from 8:00 175 

to 16:00, and the NQPE algorithm is uesd to predict the remaining time periods. The visible light channel at nighttime cannot 

produce valid observational information, so the NQPE algorithm removes these variables. The CTT gradient in the combined 

channel information is closely related to the rain rate, defined as follows Eq. (1): 

Gradient =  ��T(i + 1, j) − T(i − 1, j)�� + �T�i, j + 1 − T(i, j − 1)� �!"�
，                                                                       (1) 

where T represents the spectral brightness temperature of 10.7 μm, and i and j represent the pixel position. 180 

Figure 3 shows the flowchart for the QPE algorithm using the RF model. We selected the 1-h temporal resolution high-

density automatic station geographic and precipitation information, satellite observation data and ERA5 reanalysis data to 

input into QPE algorithm for precipitation prediction. The spatial resolution of FY-4A/AGRI is 4 km × 4 km, while that of 

ERA5 is 0.25° × 0.25°. Due to this difference in spatial resolution, the abovementioned data needed to be interpolated to 

construct a dataset that was synchronized in time and space. According to previous study (Liu et al., 2020), the differences 185 

between a diverse of interpolation methods are small for high-density automatic stations, with the effect of interpolation 

depending mainly on the station distribution rather than the interpolation method itself. In this paper, for matching input 

variables with precipitation data, we employed spline interpolation on the satellite data to match the in-situ precipitation 

measurement, while used the averaged value of four nearest grids of ERA5 data around each weather station to match the in-

situ precipitation measurement/ satellite data at each pixel. The training set was input into the RF model, and the QPE 190 

algorithm with the highest prediction accuracy was constructed by performing 10-fold cv. The testing set was input into the 

RF model to obtain the precipitation prediction of each pixel and judge whether the pixel was a precipitation pixel. For a 

pixel with a precipitation intensity greater than 0.1 mm/h, it was judged as a precipitation pixel; otherwise, it was judged as a 

non-precipitation pixel. 

Table 2 defines four indicators to judge the accuracy of the QPE algorithm. POD and FAR respectively represent the 195 

probability of detection and false-alarm ratio. The optimal value of POD is 1, and the worst value is 0. On the contrary, the 

optimal value of FAR is 1, and the worst value is 0. These two indicators can be used to quantitatively evaluate the 
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classification results of precipitation and non-precipitation pixels. R and RMSE respectively represent the correlation 

coefficient and root-mean-square error between the precipitation observation value of the high-density automatic stations and 

the prediction result of the QPE algorithm. The optimal value of R is 1, and the worst value is 0. Since RMSE represents the 200 

mean-square error between two types of data, the smaller the RMSE, the better. These two indicators can be used to 

quantitatively evaluate the accuracy of precipitation prediction based on the QPE algorithm. 

3 Results and discussion 

3.1 RF model evaluation 

This paper uses 10-fold cv to evaluate the accuracy of precipitation prediction. Figure 4 compares the measured precipitation 205 

of the high-density automatic stations in the training set and the testing set with the precipitation prediction of the QPE 

algorithm in the 10-fold cv of the DQPE algorithm and the NQPE algorithm, in which the color bar represents the 

occurrence frequency on a log scale with an interval of 0.5 mm/h. In the training set, both the measured precipitation and the 

predicted precipitation are concentrated within 10 mm/h, which reflects that the precipitation in this interval is accurately 

predicted. When the precipitation is greater than 20 mm/h, the algorithm tends to underestimate the precipitation. The 210 

evaluation indicators (POD, FAR, R and RMSE) of the DQPE algorithm are 1.00, 0.46, 0.97 and 0.83 mm/h, while those of 

the NQPE algorithm are 1.00, 0.48, 0.97 and 1.04 mm/h, respectively. 

In the testing set, when the measured rainfall value of pixels is less than 0.5 mm/h, and the predicted precipitation of a large 

number of pixel samples is less than 3.0 mm/h, it means that the precipitation intensity is overestimated to a certain extent 

for drizzle areas and non-precipitation areas. At the same time, there is still a large number of measured and predicted pixel 215 

samples with precipitation less than 10 mm/h close to the 1:1 line, reflecting the QPE algorithm’s strong ability with respect 

to the moderate rain level. The evaluation indicators of the DQPE algorithm (POD, FAR, R and RMSE) are 0.99, 0.56, 0.77 

and 1.84mm/h, while those of the NQPE algorithm are 0.99, 0.59, 0.82 and 2.32 mm/h, respectively. On the whole, based on 

the POD and FAR of the two algorithms, the DQPE algorithm has a stronger ability to classify precipitation and non-

precipitation pixels, and both algorithms can accurately identify precipitation pixels. However, the two algorithms both 220 

produce misjudgments, with a probability of about 50%, for non-precipitation pixels. Based on the R and RMSE of the two 

algorithms, the NQPE algorithm has a stronger ability to predict precipitation, but it is accompanied by greater uncertainty, 

possibly because of the increase in the number of heavy rain samples at nighttime.  

It can be found that the R of the testing set of the algorithm decreases significantly compared with the training set. The main 

reasons are as follows: Precipitation is a very complex physical process, although the 10-fold cv method is used to increase 225 

the sample size, the number of sample is still small, which leads to the over-utilization of certain sample data, so there is a 

over-fitting phenomenon. In summary, both the DQPE algorithm and the NQPE algorithm have strong precipitation 

prediction capabilities, especially for precipitation intensities less than 10 mm/h. When the precipitation intensities more 

than 10 mm/h, the predicted precipitation is often underestimated for most samples，this is because there are fewer training 
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samples to achieve rainstorm level and above. This kind of prediction error can be reduced by secondary training.The 230 

predictive effect of the QPE algorithm on Case 1 and Case 2 is shown in Figure S1 of the supporting information. 

 

3.2 Application of the RF model to QPE 

Figure 5 shows the hourly precipitation distribution as predicted by the DQPE algorithm, and Figure 6 shows the actual 

precipitation observations at high-density automatic stations in the daytime, with a temporal resolution of 1 h. Comparison of 235 

Figures 5 and 6 shows that the precipitation prediction of the DQPE algorithm is consistent with the actual precipitation 

observations at high-density automatic stations, and the DQPE algorithm can capture the precipitation range well. However, 

when the precipitation exceeds 20 mm/h, the algorithm obviously underestimates the precipitation. At the same time, the 

algorithm tends to overestimate the precipitation when the precipitation is about 0.5 mm/h. This means that the algorithm can 

only roughly predict the location and range of extreme precipitation pixels, but cannot accurately and quantitatively predict 240 

extreme precipitation. This is similar to the results of previous studies (Kühnlein et al., 2014; Min et al., 2019). At 11:00–

16:00 on June 24, the precipitation center gradually moved to the sea surface. Due to the lack of geographic information 

provided by the high-density automatic stations for training at the sea surface, the accuracy of the prediction is low. However, 

for land-surface precipitation, the size, location and coverage of the precipitation predicted by the DQPE algorithm is highly 

consistent with the actual precipitation observations. The algorithm has a good prediction effect and high applicability and 245 

promotional value. The precipitation prediction of Case 1 and Case 2 by the DQPE algorithm is shown in Figure S2 of the 

supporting information. The distribution of the measured precipitation in the daytime from the high-density automatic 

stations in Case 1 and Case 2 is shown in Figure S3 of the supporting information. 

Figure 7 shows the hourly distribution of precipitation as predicted by the NQPE algorithm, and Figure 8 shows the actual 

precipitation observed at the high-density automatic stations at nighttime. Comparing Figures 7 and 8, a conclusion similar 250 

to that from the DQPE algorithm can be obtained. The precipitation prediction of Case 1 and Case 2 by the NQPE algorithm 

is shown in Figure S4 of te supporting information. The distribution of precipitation at nighttime observed by the high-

density automatic stations in Case 1 and Case 2 is shown in Figure S5 of the supporting information. In general, the 

prediction ability of the QPE algorithm is strong over the land surface, especially for moderate and light rain with 

precipitation intensity less than 10 mm/h, with extremely high accuracy. This proves the applicability and feasibility of 255 

establishing an RF model and training the QPE algorithm based on the model variables in Table 1. 

3.2 Verification of the QPE results 

In order to further analyse the factors that affect the prediction accuracy of the QPE algorithm, we selected three city stations 

as research targets: Guangzhou (113.28°E, 23.11°N), Shantou (116.46°E, 23.22°N), and Zhuhai (113.57°E, 22.27°N). At the 

same time, we selected three rural stations as research targets: Baoshan Mountain (117.94°E, 25.70°N), Lianshan Mountain 260 

(112.09°E, 24.57°N), and Jinxiu (110.11°E, 24.09°N). Figure 9 shows the actual precipitation observations of these six 

stations and the accumulated precipitation predicted by the QPE algorithm for 48 consecutive hours.  
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For the city stations of Guangzhou, Shantou and Zhuhai, the absolute errors of the precipitation prediction are 3.41 mm, 0.40 

mm and 3.76 mm, and the relative errors are 2.77%, 0.66% and 33.60%, respectively. For the rural stations of Baoshan, 

Lianshan and Jinxiu, the absolute errors are 39.15 mm, 8.79 mm and 30.60 mm, and the relative errors are 117.91%, 13.39% 265 

and 186.61%, respectively. The prediction error of the city stations is much lower than that of the rural stations, indicating 

that the QPE algorithm for city stations is more reliable. In the QPE algorithm, geographic information is an important 

parameter. The distribution of stations in rural areas is less dense than that of the city (Figure 1), meaning that the training 

provided by the geographic information of the rural stations is insufficient. Therefore, the QPE algorithm has a lower 

prediction accuracy than the rural stations. The 48-hour accumulated precipitation at Guangzhou Station is 123.2 mm, 270 

reaching the rainstorm level, while that at Shantou Station is 60.50 mm, reaching the heavy rain level (Figure 9(a,b)). The 

precipitation prediction accuracy of the two stations is far better than that of Zhuhai Station, whose 48-hour accumulated 

precipitation is 14.9 mm in the moderate rain level (Figure 9(c)). The 48-hour accumulated precipitation at Lianshan Station 

is 65.5 mm, reaching the heavy rain level, the precipitation prediction accuracy of which is far better than that of the other 

rural stations with accumulated precipitation at the moderate rain level (Figure 9(c, d, f)). This shows that the influence of 275 

the rain level on the precipitation prediction accuracy of the QPE algorithm is greater than that of the density of the station 

distribution. Moreover, Figure 9 reflects the tendency to overestimate weak precipitation (Figure 9(c, d, f)) and 

underestimate heavy precipitation (Figure 9(a, e)), which is consistent with the conclusions drawn from Figures 5 and 6 and 

from Figures 7 and 8. 

Figure 10(a) presents the 48-h accumulated precipitation predicted by the QPE algorithm. Compared with Figure 2(c), all 280 

three heavy precipitation centers are predicted, and the area and intensity in the precipitation prediction and in the actual 

observations are basically the same. This shows that the algorithm has strong potential in accurately predicting the intensity 

and range of precipitation. Figures 10(b) and 10(c) respectively represent the actual precipitation frequency observed by the 

high-density automatic stations and that predicted by the QPE algorithm. The results indicate that the frequency of 

precipitation in the northeast of the study area is relatively greater, and vice versa in the southwest. The 285 

precipitation frequency predicted by the QPE algorithm is generally greater than observed. This is because there are more 

non-precipitation events for most stations and the algorithm often incorrectly judges non-precipitation areas as weak 

precipitation stations owing to the FAR of about 0.5, resulting in a positive bias in the precipitation frequency predicted by 

the QPE algorithm at each station. The spatial distribution of accumulated precipitation in Case 1 and Case 2 is shown in 

Figure S6 of the supporting information. 290 

Figure 11 shows the spatial distribution of evaluation indicators of the QPE algorithm for all stations. In Figure 11(a), 3817 

stations have a POD of 1.00, accounting for 82.57% of all stations; and 4220 stations have a POD of over 0.90, accounting 

for 91.28% of all stations. In Figure 11(b), the spatial distribution of FAR has a significant negative correlation with 

accumulated precipitation. FAR is often lower in areas with more accumulated precipitation, such as the three heavy 

precipitation centers in the precipitation process mentioned above. On the contrary, the FAR is higher in areas with less 295 

accumulated precipitation, such as the southwest coastal area. According to the FAR calculation formula (Table 2), this 

reduces the FAR by reducing the number of precipitation pixels that are not detected by the stations but are detected by the 
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QPE algorithm. There is a low-FAR zone in the mountainous area in the northwest of the study area, which does not meet 

the above characteristics. Combined with the results shown in Figures 8(a) to 8(h), we can see that there has been weak 

precipitation in the area for at least eight consecutive hours. According to the FAR calculation formula (Table 2), this 300 

reduces the FAR by increasing the number of precipitation pixels detected by both stations and the QPE algorithm, which 

also leads to a decrease in POD. Therefore, FAR is negatively correlated with precipitation intensity and duration. When the 

precipitation intensity is greater and the duration is longer, the FAR of the QPE algorithm is lower and the QPE algorithm’s 

ability to accurately distinguish between precipitation and non-precipitation pixels is stronger. 

For Figure 11(c), there are 2577 stations with R > 0.8, accounting for 55.74%, and 658 stations with R < 0.6, accounting for 305 

14.23%. Comparing Figures 11(b) and 11(c), the stations with lower R have relatively higher FAR. The 48-h accumulated 

precipitation of these stations is less than 12.5 mm, and the accumulated precipitation is less than 5 h. This basically means 

that, during this precipitation process, these stations are in atypical stratus cloud or a convective precipitation process, and 

the precipitation efficiency is extremely low. For non-precipitation areas in a heavy precipitation process, the QPE algorithm 

tends to judge them as weak precipitation areas, resulting in high FAR and low R in these areas. Although the QPE algorithm 310 

tends to overestimate the weak (non-) precipitation area and underestimate the heavy precipitation area, the absolute error for 

the underestimated heavy precipitation area is much larger than the overestimated weak (non-) precipitation area. Therefore, 

the spatial distribution of RMSE in Figure 11(d) is highly consistent with the spatial distribution of 48-h accumulated 

precipitation in Figure 2(c). The stations with an RMSE greater than 1.2 mm/h in Figure 11(d) are basically connected 

together, and their coverage is basically the same as the area covered by the stations with a 48-h accumulated precipitation 315 

exceeding 50 mm/h in Figure 2(c). 

In summary, the predictive ability of the QPE algorithm is as follows: (1) For convective precipitation or stratus convective 

mixed precipitation with long duration, high intensity and high efficiency, such as in Guangzhou and nearby urban areas in 

Case 3, the algorithm has a very high POD, low FAR, and R is close to 1. Its RMSE is affected by the precipitation intensity. 

In this precipitation process, the QPE algorithm has the strongest predictive ability. (2) For precipitation with long duration 320 

and weak intensity per unit time, such as the northwest mountainous area in Case 3, the FAR of the QPE algorithm is 

equivalent to that of the previous type of precipitation. The POD declines slightly, but still exceeds 0.85, and the R also 

decline slightly, but is still near 0.8. The RMSE is greatly reduced. The predictive ability of the QPE algorithm is second to 

the previous precipitation process. (3) When the duration of precipitation is short and the intensity is only light to moderate 

rain, such as in the southwest coastal area in Case 3, the FAR predicted by the QPE algorithm is relatively high, the R is 325 

relatively low, and the reliability of the predictive ability of the QPE algorithm is low. For Case 1 and Case 2, the hourly 

spatial distribution of evaluation indicators for both QPE algorithms at each station is shown in Figure S7 of the supporting 

information. 

Figure 12 shows the time series of evaluation indicators of the QPE algorithm for all stations at each time. The red lines 

represent the average values of the evaluation indicators, from which we can see that the average values of POD, FAR, R and 330 

RMSE are 0.98, 0.60, 0.69 and 1.93 mm/h, respectively. From 01:00 to 14:00 on June 24, the POD, R and RMSE are high 

and the FAR is low. According to Figures 6(j) to 6(p) and Figures 8(q) to 8(w), the intensity of the precipitation center 
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during this period exceeds 16 mm/h, reaching rainstorm level. At this point, the prediction accuracy of the QPE algorithm is 

strong. Not only is the effect of the evaluation indicator good, but also the intensity of the precipitation center and the 

precipitation range of these periods fit with high accuracy, as can be seen by comparing Figure 5 with Figure 6(j–l) and 335 

Figure 7 with Figure 8(q–w). This proves that, for the strong convective process with a short precipitation duration and the 

precipitation intensity reaching rainstorm level, the evaluation indicators show similar characteristics to the first type of 

precipitation above. At the same time, this means that when the precipitation intensity is large enough, the precipitation 

duration is no longer the main factor influencing the predictive ability of the QPE algorithm. At 00:00–04:00 on June 23, the 

POD, R and RMSE are higher than their average values, while the FAR is lower than its average value. The characteristics of 340 

each evaluation indicator during this period are similar to the second type of precipitation above. Comparing Figure 7 with 

Figure 8(a–d), the precipitation intensity and range are basically successfully fitted, but the prediction of precipitation in 

localized areas is not good. This verifies the previous conclusion that the QPE algorithm’s predictive ability for long-

duration and weak-intensity precipitation is inferior to that of strong convective precipitation. From 17:00 to 20:00 on June 

23, the POD, R and RMSE are all lower than their average values, while FAR is higher than its average value. According to 345 

Figures 8(i) to 8(l), the precipitation duration during this period is short, the precipitation intensity is weak, and the 

precipitation process and characteristics are similar to the third type of precipitation above. For Case 1 and Case 2, the time 

series of evaluation indicators of the QPE algorithm for all stations at each time are shown in Figure S8 of the supporting 

information. 

4 Conclusions 350 

By using FY-4A/AGRI spectral observation data, cloud parameter products and physical quantities, a QPE RF model 

framework for FY-4A was established. The main conclusions are as follows: 

Both the DQPE and NQPE RF algorithms for FY-4A have high precipitation prediction accuracy. In detail, the evaluation 

indicators of POD, FAR, R and RMSE for the DQPE algorithm are 0.99, 0.56, 0.77 and 1.84 mm/h, respectively, while those 

for the NQPE algorithm are 0.99, 0.59, 0.82 and 2.32 mm/h, respectively. Comparatively, the DQPE algorithm has a 355 

stronger ability to classify precipitation and non-precipitation pixels, and the NQPE algorithm has a stronger ability to 

predict precipitation. The two algorithms have a strong ability to predict the precipitation process when the precipitation is 

0.5–10 mm/h. In addition, both algorithms overestimate the precipitation intensity in weak (non-) precipitation areas of 0–0.5 

mm/h and underestimate the precipitation intensity in heavy precipitation areas of > 10 mm/h. 

The density of the distribution and accumulated precipitation of high-density automatic stations are both important factors 360 

affecting the predictive ability of the QPE algorithm. The denser the distribution of high-density automatic stations, with 

more geographic information provided for model training, the stronger the predictive ability of the QPE algorithm. The 

stations in South China are densely distributed and provide a lot of geographic information for model training. Therefore, the 

QPE algorithm constructed in this paper can better capture the distribution range of land-surface precipitation and the center 

location of strong precipitation. However, due to the lack of high-density automatic stations over the ocean, the QPE 365 
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algorithm cannot accurately predict ocean-surface precipitation. Automatic stations are more densely distributed over urban 

areas than rural areas, resulting in a stronger ability of the QPE algorithm to predict precipitation over urban areas. The QPE 

algorithm can accurately estimate the trend of change in precipitation and the accumulated amount of precipitation in 

locations where heavy rain appears, exhibiting small prediction errors. In contrast, the prediction errors of the QPE algorithm 

become relatively larger when the accumulated precipitation is at the medium to light rain level. Generally, the accumulated 370 

precipitation level has a greater impact on the predictive ability of the QPE algorithm than the density of the distribution of 

automatic stations. 

The prediction accuracy of the QPE algorithm for accumulated precipitation is mainly affected by the rain rate, precipitation 

duration, and precipitation efficiency. More specifically: (1) For strong precipitation processes both long and short in 

duration and with a high rain rate, the QPE algorithm exhibits its strongest predictive ability, with extremely high POD and 375 

R and low FAR. The RMSE is mainly affected by the rain rate. This implies that when the rain rate is large enough, the 

precipitation duration is no longer affecting the accuracy of the QPE algorithm. (2) For precipitation processes in long 

duration and with a low rain rate, the POD declines slightly but still exceeds 0.85, the R declines slightly but is still near 0.8, 

and the RMSE is greatly reduced. (3) When the precipitation duration is short and the intensity is only small to moderate, the 

FAR of the QPE algorithm is relatively high and the R is relatively low, exhibiting low reliability of the QPE algorithm to 380 

predict the precipitation. 

In general, by combining high-density automatic station data and meteorological physical quantity fields, the FY-4A QPE 

algorithm established in the present work offers important scientific support and application value for the real-time 

monitoring and prediction of summer precipitation over East Asia, as well as rainstorm disaster prevention and reduction. 

Previous studies have tended only to include cloud-top information; whereas, in contrast, our findings show that it is helpful 385 

to improve the ability of inverting precipitation based on satellite cloud parameters through the introduction of 

meteorological physical variables. Especially, for practical applications in the future, the meteorological physical quantity 

forecast fields of the global forecast system from China T639, ECMWF or GFS can be combined with real-time FY-4A 

satellite spectral information and high-density automatic station precipitation information to quantitatively estimate real-time, 

large-scale, and dynamic continuous precipitation over East Asia by using the RF model framework, which has important 390 

implications and broad application value for precipitation monitoring.  

Code availability 

The model in this paper is based on the random Forest data package in the R language, and our implementation and analysis 

code are available upon request to the corresponding author (yyj1985@nuist.edu.cn). 
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Table 1: Variables used in the QPE algorithm. 

 
Variables 

Geographic information Longitude, Latitude 

Channel information of 

AGRI 

T0.47*, T0.65*, T0.825*, T1.375*, T1.61*, T2.25*, T3.75H, T3.75L, T6.25, 

T7.1, T8.5, T10.7, T12.0, T13.5 

Combined information of 

AGRI 

T6.25–T10.7, T8.5–T10.7, T7.1–T12.0, T12.0–T10.7, T3.75L–T7.1, 

T3.75L–T10.7, Gradient 

Cloud parameters of AGRI CTT, CTH, CLT, CLP 

ERA5 ISOR, CAPE, EWSS, K-Index, TCW, TCWV 

Notation: asterisk (*) indicates that the variable does not appear in the NQPE algorithm. 
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Table 2: Evaluation metrics used in this study. 565 

Evaluation metric Equation 

#$% #$% = && + ' 

(&) (&) = *& + * 

) ) = ∑ (,- − ,̅)(/- − /̅)0-12∑ (,- − ,̅)0-12 ∑ (/- − /̅)0-12  

)3/4 )3/4 = 516 7(,- − /-)�0
-12  

Notation: A represents the precipitation events detected by both stations and the QPE algorithm; B 

represents the precipitation events detected by the stations but not by the QPE algorithm; C represents 

the precipitation events not detected by the stations but detected by the QPE algorithm; ,-  is the 

precipitation observed by stations; /- represents the precipitation predicted by the QPE algorithm. 
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Figure 1: Distribution of high-density automatic stations throughout the country and in the research area. 570 
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Figure 2: Spatial distribution of precipitation during the three South China rainstorms: (a) April 11-12, 2019; (b) June 12-13, 2019; 

(c) June 23-24, 2019. 
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Figure 3: Flowchart for the QPE algorithm using the RF model. 
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 580 

 

 

Figure 4: Comparison of the precipitation measured by high-density automatic stations and that predicted by the QPE algorithm: 

(a) training set of DQPE; (b) testing set of DQPE; (c) training set of NQPE; (d) testing set of NQPE. Color bar: occurrence 

frequency (on a log scale) at intervals of 0.5 mm/h. 585 
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Figure 5: Predicted precipitation of the DQPE algorithm at (a–i)  0800–1600 BJT on June 23; (j–r) 0800–1600 BJT on June 24. 
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 590 

Figure 6: Actual precipitation based on high-density automatic stations at  (a–i)  0800–1600 BJT on June 23; (j–r) 0800–1600 BJT 

on June 24. 
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Figure 7: Predicted precipitation of the NQPE algorithm at (a–h) 0000–0700 BJT on June 23, (i–o) 1700–2300 BJT on June 23, (p–595 

w) 0000–0700 BJT on June 24, and (x) 1700 BJT on June 24. 
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Figure 8: Actual precipitation based on high-density automatic stations at (a–h) 0000–0700 BJT on June 23, (i–o) 1700–2300 BJT 

on June 23, (p–w) 0000-0700 BJT on June 24, and (x) 1700 BJT on June 24. 600 
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Figure 9: Accumulated precipitation in different areas: (a–c) city stations; (d–f) rural stations. 
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 605 

Figure 10: Spatial distribution of accumulated precipitation: (a) accumulated precipitation predicted by the QPE algorithm; (b) 

actual precipitation frequency observed by high-density automatic stations; (c) precipitation frequency predicted by the QPE 

algorithm. 
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 610 

Figure 11: Spatial distribution of evaluation indicators of the QPE algorithm for all stations: (a) POD; (b) FAR; (c) R; (d) RMSE. 
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Figure 12: Time series of evaluation indicators of the QPE algorithm for all stations at each time: (a) POD; (b) FAR; (c) R; (d) 

RMSE. 615 
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