
Reconstruction of the mass and geometry of snowfall particles from
multi angle snowflake camera (MASC) images
Jussi Leinonen*,1,2, Jacopo Grazioli*,1, and Alexis Berne1

1Environmental Remote Sensing Laboratory, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
2Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
*Equal contribution to this work

Correspondence: Jacopo Grazioli (jacopo.grazioli@epfl.ch)

Abstract. This paper presents a method named 3D-GAN, based on a generative adversarial network (GAN), to retrieve the

total mass, 3D structure and the internal mass distribution of snowflakes. The method uses as input a triplet of binary sil-

houettes of particles, corresponding to the triplet of stereoscopic images of snowflakes in free fall captured by a Multi-Angle

Snowflake Camera (MASC). 3D-GAN is trained on simulated snowflakes of known characteristics whose silhouettes are sta-

tistically similar to real MASC observations and it is evaluated by means of snowflake replicas printed in 3D at 1 : 1 scale.5

The estimation of mass obtained by 3D-GAN has a normalized RMSE (NRMSE) of 40%, a mean normalized bias (MNB) of

8% and largely outperforms standard relationships based on maximum size and compactness. The volume of the convex hull

of the particles is retrieved with MNRSE of 35% and MNB of +19%. In order to illustrate the potential of 3D-GAN to study

snowfall microphysics and highlight its complementarity with existing retrieval algorithms, some application examples and

ideas are provided, using as showcases the large available datasets of MASC images collected worldwide during various field10

campaigns. The combination of mass estimates (from 3D-GAN) and hydrometeor classification or riming degree estimation

(from independent methods) allows for example to obtain mass-to-size power law parameters stratified on hydrometeor type

or riming degree. The parameters obtained in this way are consistent with previous findings, with exponents overall around 2

and increasing with the degree of riming.

1 Introduction15

Cloud and precipitation microphysics refer to the interactions and processes that are relevant at the scale of individual par-

ticles. Microphysics and microstructure, namely the distribution of particle properties like size, shape, number density and

mass, define together the state and the evolution of clouds and precipitation at this scale (Pruppacher and Klett, 2000). The

parametrization of microphysics in numerical weather models has a major impact on how accurately the links within the wa-

ter cycle are depicted (Thompson et al., 2008; Liu et al., 2011; Morrison et al., 2020). Research on ice-phase precipitation20

(snowfall) microphysics and microstructure is complicated by the complex geometry of individual or aggregate crystals (see

Magono and Lee, 1966; Ford, 2014, for visual examples) and by the multitude of processes influencing the density, size and

fall speed of the hydrometeors: riming, aggregation, melting, vapor deposition, sublimation, secondary ice production, only to

cite a few. Not only is the complex three dimensional structure of snowflakes poorly understood, but there is also an active
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debate on the range of validity and applicability of mass-size relations (Dunnavan et al., 2019; Karrer et al., 2020) as well as25

on the appropriate shape approximation of snowflakes as oblate or prolate spheroids or ellipsoids (Jiang et al., 2017, 2019;

Dunnavan et al., 2019). It seems established that the model of snowflakes as spheroids of constant density is oversimplified and

outdated (Dunnavan et al., 2019) as this assumption affects significantly the interpretation or retrievals of active remote-sensing

measurements of snowfall (Leinonen et al., 2013; Leinonen and Szyrmer, 2015).

Among the challenges in the field of snowfall microphysics, a key role is played by the difficulty to conduct undisturbed30

observations of snowflakes in free fall. Garrett and Yuter (2014) underlined how currently used size-fall speed relations still

rely on experiments performed on a limited number of snowflakes (Locatelli and Hobbs, 1974). Particle habits and shapes are

even more complicated to study and much of the current knowledge on individual ice crystals is based on controlled laboratory

experiments rather than outdoor real-world observations (Takahashi, 2014). The commercialization of a few ground-based

instruments designed to collect actual images of falling hydrometeors and estimate at the same time their fall speed has given35

a noticeable momentum to this field of research. An example is the two-dimensional video disdrometer (2DVD, Kruger and

Krajewski, 2002) providing orthogonal silhouettes and speed of falling particles. More recently, accurate and high-resolution

depictions of snowflakes could be obtained with imagers like the Snow Video Imager/Particle Image Probe (Newman et al.,

2009) or with the Multi-Angle Snowflake Camera (MASC Garrett et al., 2012). The availability of actual images has promoted

the development and rapid improvement of several automatic hydrometeor classification techniques (Grazioli et al., 2014;40

Gavrilov et al., 2015; Praz et al., 2017; Leinonen and Berne, 2020) adapted to the data of these sensors. While the accuracy

of the measurements of fall velocity provided by those instruments is often hampered by wind and turbulence (Nešpor et al.,

2000; Garrett and Yuter, 2014; Fitch et al., 2021), the added value in terms of microphysical characterization is significant.

Unlike other instruments, MASC captures simultaneously three pictures of falling hydrometeors from three distinct coplanar

viewpoints, opening the conceptual possibility to perform a 3D reconstruction of the observed snowflakes. To date, the only45

documented effort to perform this retrieval has been proposed by the visual hull (VH hereafter) approach of Kleinkort et al.

(2017). VH has been shown to produce good retrievals of multi-dimensional shapes from the combination of single-view

cameras, especially for a modified version of MASC mounting 5 cameras instead of 3. VH performs an accurate retrieval of

volumes and it does not tackle directly the retrieval of the mass of individual snowflakes, which is one of the focuses and

motivations of the method proposed in the present paper. The need to obtain simultaneous measurements or estimates of mass50

and shape of individual particles has been in fact declared urgent for the scientific community by Jiang et al. (2019).

In this article we present a method, based on a generative adversarial network (GAN), to retrieve the three-dimensional

distribution of mass of individual snowflakes using as input the two-dimensional triplet of images collected by a MASC.

GANs are nowadays finding application in the field of environmental and atmospheric sciences (e.g. Leinonen and Berne,

2020; Leinonen et al., 2020), thanks to their versatility and their ability to perform 3D reconstruction of images has been55

already explored, for example, in the medical field (Yang et al., 2017). The GAN presented here is trained on a set of simulated

snowflakes (generated using the technique of Leinonen et al., 2013; Leinonen and Moisseev, 2015; Leinonen and Szyrmer,

2015; Karrer et al., 2020) and evaluated on 3D-printed 1 : 1 scale snowflake replicas repeatedly dropped into the MASC

sampling area.
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This article is organized as follows. Section 2 describes the MASC, the instrument used in the present study. Section 3 details60

the methods, data and the novel mass and shape estimation algorithm. Section 4 is devoted to the evaluation of the retrieval,

while Sec. 5 provides examples of applications and potential future studies. Section 6 draws the main conclusions of this work.

2 The multi-angle snowflake camera (MASC)

The method presented here is built and designed for the data collected by the multi-angle snowflake camera (MASC). We

briefly recall here the most important technical characteristics of the instrument and the known limitations, and we refer the65

interested reader to more detailed literature on the subject at the end of this section.

A MASC is composed of three high resolution co-planar cameras pointed to a common focal point. Each camera is separated

by 36° with respect to the next one (rotation around the vertical axis) such that a picture of a given snowflake can be obtained

simultaneously at an angle of 0° and ±36°. Two infrared (IR) emitter-detector pairs are triggering the cameras and three

associated spotlights. The IR arrays are separated vertically by 32 mm, providing in this way an estimate of particle fall70

velocity. For the data shown here, the MASC system is composed of three 2448× 2048 pixels cameras and the maximum

acquisition rate is about 2 Hz (as in Praz et al., 2017).

The data processing steps employed in this study are the same as in Praz et al. (2017), although only a minor part of the

information generated is used as actual input of the method described in the following section, while another part can be

used to interpret and complement the output (as illustrated in Sec. 5). The preprocessing involves snowflake identification75

(and matching) in the three images, calculation of geometrical and textural descriptors, image quality evaluation, hydrometeor

classification and riming degree estimation.

Although the MASC is a relatively recent instrument, the interested reader can find a fair amount of relevant literature about

it. Its measurement principle is detailed in Garrett et al. (2012). Several works exploited MASC data to investigate geometry

and fall speed characteristics of hydrometeors (Garrett and Yuter, 2014; Garrett et al., 2015; Jiang et al., 2019), and others were80

devoted to hydrometeor classification techniques as Praz et al. (2017); Hicks and Notaros (2019); Leinonen and Berne (2020).

Recent work tackled the challenge of automatic discrimination of precipitation, wind-blown snow and their mixtures (Schaer

et al., 2020). The limitations of the instrument and noteworthy wind-related data degradation issues are well summarized in

Garrett and Yuter (2014); Fitch et al. (2021). Finally, an upgraded version of the MASC equipped with 5 cameras is described

in Kleinkort et al. (2017).85

3 Methods

3.1 Generative adversarial networks

GANs, belonging to the family of deep learning techniques (Alom et al., 2019), are generative models that are trained as a

combination of two neural networks: the discriminator and the generator. The discriminator is trained to distinguish samples

that belong to the training dataset from those that do not, while at the same time the generator is trained to produce outputs90
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that the discriminator considers to be real. This results in the two training processes competing against each other, which is

referred to as adversarial training. Since the discriminator is a powerful image recognition network, the generator must learn

to produce highly realistic outputs in order to successfully “fool” the discriminator. The generator is able to produce diverse

outputs because it is fed random noise as an input, and the generator learns to map the distribution of the noise to the distribution

of the input data. In a conditional GAN, both the discriminator and the generator additionally receive a condition as input data,95

and therefore the generator learns the conditional probability distribution of the input data.

In the original GAN formulation of Goodfellow et al. (2014), the discriminator is a binary classifier, but it was found by

Arjovsky et al. (2017) that some of the instability problems of GANs are remedied by reformulating the objective using a dual

of the Wasserstein distance of probability distributions. Gulrajani et al. (2017) then combined this approach with a constraint

on the gradient of the weights with respect to the training objective; this combination is referred to as a Wasserstein GAN with100

gradient penalty (WGAN-GP). Given its superior stability with respect to the original GAN, a WGAN-GP is employed in the

present study.

3.2 3D reconstruction GAN

Our 3D reconstruction GAN, named 3D-GAN hereafter, is formulated as a conditional WGAN-GP, where the desired data is

the 3D structure of the snowflake and the condition is a set of three binary images (silhouettes) captured from the angles at105

which the MASC sees the snowflake. The objective for the generator is thus to generate a 3D structure that the discriminator

considers as appropriate for the image triplet.

The generator network is shown in Fig. 1a. The inputs are three snowflake silhouettes of 128×128 pixels. The first part of the

processing passes the inputs through a series of residual downsampling blocks followed by a fully connected layer, resulting in

a set of descriptors for each image. Following the “Siamese network” approach (Chicco, 2021), this step is implemented using110

the same weights for each image. The descriptors are then concatenated and processed through several fully connected layers,

resulting in a set of descriptors for the image triplet. At this stage, the noise is also included in the model by multiplying the input

of the second fully connected layer with the noise vector. These descriptors are then passed through one more fully connected

layer to produce 2048 variables, which are then reshaped to 32 3D feature maps of 4× 4× 4 pixel size. In the final stage of

processing, the 3D feature maps are passed through upsampling blocks, eventually producing a 3D grid of 32× 32× 32 grid115

volume elements (voxels). The size of the produced grid was selected as a compromise between resolution and computational

requirements.

The inputs to the discriminator (Fig. 1b) are a 3D grid (either from the training dataset or from the generator) and a triplet of

images. The images are processed to descriptors using a Siamese network in a manner identical to the generator. Meanwhile,

the grid is passed through a set of downsampling 3D convolution blocks, the result of which is flattened into descriptors. The120

descriptors for both the 3D grid and the images are processed through multiple fully connected blocks. The descriptors for the

grid and the images are then combined by multiplying them with each other. The result of this is passed through more fully

connected blocks, eventually producing a single scalar as the discriminator output.
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While the silhouettes are binary images, the value of each voxel in the 3D grid is proportional to the average density of the

ice-air mixture within that voxel, scaled such that the mean density of the nonzero voxels is approximately 1. It is therefore125

possible to compute the snowflake mass from the outputs of the GAN. We however found that we can achieve better mass

estimation with a separate neural network trained specifically to predict the mass. For this, we used a network architecture

similar to that of the discriminator (Fig. 1b) except without the 3D grid input and processing branch. This network gives us the

total mass m; to estimate the mass mi in each voxel i in the 3D grid output of the generator, we scale the voxel value as

mi =





yi
m∑

j,yj>0

yj
, yi > 0

0, yi ≤ 0

(1)130

where yi is the generator output at voxel i.

3.3 Training

Training the 3D reconstruction GAN requires large training datasets of 3D structures and MASC imagery. As it is extremely

difficult to accurately map the 3D structure of a snowflake, such datasets are currently not available from measurements of

real snowflakes. Thus, we train the GAN using synthetic observations from modeled snowflakes created with the snowflake135

generation model described in Leinonen et al. (2013), Leinonen and Moisseev (2015) and Leinonen and Szyrmer (2015). This

model creates volumetric 3D models of snowflakes, and is capable of modeling single crystals, aggregation and riming. The

degree of riming is indirectly prescribed by the liquid water path (LWP, in kg m−2) parameter (Leinonen and Szyrmer, 2015).

The generated snowflake models are defined by a set of volume elements of 40 µm size, each either entirely filled with solid

ice of density ρice = 917 kg m−3 or empty. For each snowflake generated with the model, we calculated the silhouettes that140

would be seen by the MASC from the three different camera angles; the silhouettes were artificially blurred by a randomized

amount to simulate conditions where the snowflakes are out of focus.

In order to fully utilize the 3D grid and the projection image in the training process and at the same time operate with data

of fixed dimensions, the voxels and the projection pixels can correspond to different physical sizes for different snowflakes.

Thus, for example, a snowflake of 5 mm maximum dimension would have a grid element size of approximately 5 mm/32 =145

0.156 mm and a silhouette pixel size of approximately 5 mm/128 = 0.0391 mm.

The training samples of the GAN are loaded from data files that contain, for each snowflake: the 3D grid, the grid voxel

size, 12 simulated projection silhouettes, and the projection pixel size. The 12 silhouettes comprise four image triplets; the

images in each triplets are 36◦ apart corresponding to the MASC camera separation, while the four triplets are spaced 90◦

from each other. When training the GAN, we increase sample diversity by selecting one of the four triplets at random for each150

training sample and training step and then rotating the grid correspondingly. We also randomly apply mirroring for further data

augmentation.

As mentioned above, we adopt the approach of using a model instead of real observations in the training process out of

necessity, while acknowledging that it has a number of potential drawbacks and uncertainties:
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1. The model algorithms may not be representative of the physics of real snowflake formation.155

2. Although the model can accept any input parameters, the distribution of the model parameters may not match that of real

conditions in nature.

3. The simulation of the image formation is not necessarily accurate.

4. By using the silhouettes instead of the gray-scale images captured by the real MASC, we lose the texture information

contained in the real MASC images.160

For point 1, regarding the realism of the physics of the model, we note that although the model does not implement a fully

physical simulation of snowflake formation, it has been found to produce realistic mass–dimensional relations of both unrimed

(Leinonen and Moisseev, 2015) and rimed (Leinonen and Szyrmer, 2015) snowflakes, and has been used successfully for

modeling snowflake microphysics (Seifert et al., 2019) and remote sensing signals from snowflakes (e.g. Leinonen et al., 2018;

Tridon et al., 2019).165

To mitigate issue 2, we forced the distribution of parameters closer to that found in nature using the following strategy. First,

we identified a selection of morphological image features that Praz et al. (2017) found important for identifying snowflakes,

and which did not use texture information and therefore could be calculated also for the silhouettes. We then extracted these

features from the dataset of Praz et al. (2017), collected in Davos, Switzerland during 2016–2017, and computed principal

component analysis (PCA) of the feature distribution. We kept the three most important PCA components. Then, while gener-170

ating snowflakes, we applied a realistic range of parameters such as snow crystal type, number of crystals per aggregate, and

amount of riming, and calculated the same features and PCA components. After generating a large number of crystals, we then

accepted the generated snowflakes to the final dataset only when they made the distribution of the PCA components for the

generated snowflakes closer to that of the real snowflakes, rejecting the others. Thus, we obtained a distribution of snowflake

samples that is close to real ones at least in terms of visual descriptors. After this filtering step, the final training set included175

20472 samples.

For issue 3, we attempted to simulate the main features of image formation such as randomly blurring the images to simulate

situations where they are out of focus. The primary manner in which we attempted to determine if our simulation of the MASC

silhouettes is adequate was to use MASC observations of artificial snowflakes 3D-printed from our models, thus using the real

MASC rather than a simulation to produce the images. This method is far too labor-intensive and expensive to create large180

training datasets, but we use it for evaluating the model, as described in Sect. 4.

As for issue 4, we accept the lack of texture identification as a current shortcoming of the model. This is unfortunate because

the availability of high-resolution texture is one of the greatest advantages of the MASC; however, the radiative transfer of

light inside snowflakes is highly complicated and, to our knowledge, no simulation tools exist that could be used to accurately

model it and thereby generate proper simulated 2D images from our 3D models. On the other hand, using only the silhouette185

images may make our approach easier to adapt to silhouette-only instruments such as the 2DVD.
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4 Evaluation

4.1 Experiment with snowflake replicas

In order to evaluate the performance of 3D-GAN with real MASC data, we used a set a snowflakes printed in 3D. The snowflake

shape models were computer-generated with the technique described in Section 3.3.190

The printer used to generate the particles is a Nanoscribe Phototonic Professional GT+ (PPGT+)1 and the material used is

a polymer (IP-Q) supplied by Nanoscribe (Bagheri and Jin, 2019). Once polymerized, the material is similar to polymethyl

methacrylate (PMMA). The resolution used to generate the flakes is the 3D laser spot size of 1.5µm diameter (horizontal plane)

and 8µm height (vertical axis).

A few noteworthy limitations set the boundaries of what we could achieve with this approach:195

1. The maximum dimension of the printed snowflakes could not exceed 5 mm.

2. We could not successfully generate completely unrimed particles (LWP = 0 kg m−2) as they resulted in structures too

fragile to be manipulated without breaking.

3. Lightly rimed particles sometimes suffered damage while being handled in the MASC measurement area and could thus

be used only for a limited number of times.200

14 printed snowflakes were used in the evaluation; an overview of their characteristics is shown in Table 1. We dropped each

particle several times through the MASC measurement and after discarding physically damaged particles, a total of 198 MASC

triplets (and, accordingly, 198 GAN reconstructions) were obtained. Because the reconstruction is based on the silhouette of

MASC images it follows that, for particles of irregular shape and size, the reconstructed output will vary to a certain extent

with the orientation of the falling replicas. This is illustrated in Fig. 2 where one can observe how the reconstruction output205

varies over several consecutive experimental runs.

4.2 1D descriptors

A first evaluation of the ability of 3D-GAN to reconstruct realistic snowflakes can be obtained by looking at one-dimensional

descriptors. We selected for this purpose the total snowflake mass m, gyration radius rg , maximum size Dmax and volume

of convex hull VCH. Dmax and VCH are geometric quantities that define exactly the spatial extent of a snowflake. However,210

the mass distribution of the GAN output is continuously varying and therefore it is not straightforward to define the exact

boundaries of a hydrometeor. The way we tackled this limitation and obtained exact estimates of size and volume is detailed

in Appendix A. The evaluation of the descriptors discussed in this section is also summarized in Table 2.

1See https://www.nanoscribe.com/en/products/photonic-professional-gt2
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4.2.1 Mass estimation

Mass estimation is a major added value of the proposed method or at least, in response to the current needs of the scientific215

community (Jiang et al., 2019), a readily usable product. Figure 3 shows that mass is overall well reconstructed. As a reference,

3D-GAN reconstruction is compared with the methods of Matrosov et al., 2007, M07 and Baker and Lawson, 2006, BL06.

ML07 and BL06 are retrieval formulas designed for 2-dimensional images and we use them here as a benchmark. A large

number of mass-size relations exist in the literature, either fine-tuned for specific types of crystals, aggregates and riming

degree (e.g. Leinonen and Moisseev, 2015; Karrer et al., 2020) or obtained by combining the information of several sensors in220

dedicated field campaigns (e.g. von Lerber et al., 2017). M07 and BL06 are chosen because, like 3D-GAN, they do not require

prior knowledge about hydrometeor type and can be readily calculated from the 2-D views of the MASC from silhouette-

type images without exploiting textural information. M07 is an adaptive mass-size relation where the exponent and prefactor

take different values as the particle dimension (Dmax) increases and it is a relation in principle valid for unrimed snowflakes.

BL06 includes more advanced geometrical considerations and it uses the maximum dimensions in two orthogonal directions,225

projected area and perimeter.

3D-GAN largely outperforms both of these estimation approaches, as summarized in Table 2. The Normalized Root Mean

Square Error (NRMSE) is roughly 40% for 3D-GAN, 70% for BL06 and 103% for M07 while the Mean Normalized Bias

(MNB) is close to 10%, -40% and -72% respectively. BL06 is able to provide better estimates than M07 although they are

both affected by significant negative biases that become mostly evident for the heaviest snowflakes. In our evaluation data set,230

the snowflakes having the largest mass are also the ones with the highest degree of riming (See Table 1). In this sense, 3D-

GAN shows its ability to indirectly infer the riming degree and the related increase of mass by exploiting fully the information

embedded in the silhouettes. With this in mind it is also not surprising that BL06, which includes more information on particle

geometry and compactness, outperforms a simple mass-size relation as M07.

4.2.2 Geometry estimation235

We evaluate here two geometrical quantities: Dmax and VCH (Fig. 3, bottom panels). Both quantities are reconstructed in

a satisfactory manner, with NRMSE of 12% and 35% respectively and MNB of 7% and 19%. The estimation of Dmax is

compared with what can be achieved using individual 2D images, selecting the maximum of the three estimates of Dmax,

one for each camera view, as for example in Praz et al. (2017). Dmax is slightly better reconstructed using the 2D images

directly due to the fact that the 3D-GAN mass distribution output varies smoothly and the exact boundaries can only be240

approximated with the approach detailed in Appendix A. The retrieval of Dmax from 2D images is practically unbiased: a

result in itself interesting for MASC users. Riming has no major impact on the quality of Dmax, while it affects the retrieval of

VCH : particles with LWP greater than 1 are overall better reconstructed (improvements of 15% in terms of NRMSE while no

significant differences in terms of bias, not shown). It is not surprising that heavily rimed particles, are better reconstructed in

terms of geometry because their geometry is significantly less complex. In Kleinkort et al. (2017), the performance of the VH245

reconstruction algorithm for what concerns volume reconstruction (using a standard 3-camera MASC) is quantified to be 27%
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in terms of absolute error, for a simple spherical test object. The mean absolute error of 3D-GAN for all the printed replicas,

thus for significantly more complex shapes, is 30%. If only heavily rimed particles, thus less complex shapes, are considered

(LWP> 1 kg m−2), the error is further reduced down to 26%. The 3D structure of even heavily rimed particles is certainly

more complex than a sphere and thus it is reasonable and conservative to assume that 3D-GAN performs at least as good as250

VH for what concerns volume reconstruction, with the significant added value to provide at the same time an estimate of mass

m.

The effect of the smooth variation of mass of the 3D-GAN output, without sharp edges, is evident when looking at the

gyration radius: rg (Fig. 3), defined in this case as:

rg =

√√√√√
N∑

i=1

(di
CM )2mi

m
(2)255

where N is the number of voxels, di
CM is the distance of each voxel with respect to the center of mass of the snowflake

and mi is the voxel mass content. rg is overestimated by 3D-GAN (overall by 13%), indicating that the mass contents of

the reconstructed snowflakes have a larger spread around the respective centers of mass in comparison to the structure of the

reference snowflakes.

4.3 3D mass distribution evaluation260

With the evaluation setup described above, the 3D distribution of mass is available. In principle this allows one to compare

the reconstructed and reference snowflakes with a voxel by voxel approach. Although this 1 : 1 comparison is undoubtedly

ambitious and not straightforward, it is worth to show here some results in this direction. There are two main preliminary

issues to be considered:

1. The orientations of the reconstructed snowflakes depend on the orientation of the printed replicas themselves, as they265

were falling in the MASC measurement area.

2. The grid resolution of reference snowflakes is fixed at 40 µm while the grid resolution of the GAN output varies from

flake to flake, as mentioned in Sec. 3.3 and it is generally lower (100 µm or more).

In order to address point 1, a preliminary alignment of each snowflake pair (reconstructed vs reference) is performed.

The snowflakes are considered as point clouds and their best alignment is found with the (rigid-body) point cloud alignment270

technique implemented in the OPEN3D package of Zhou et al. (2018). Issue 2, grid resolution, is tackled by computing voxel by

voxel performance indicators of mass distribution at various grid resolutions, by first down-scaling the data of both snowflakes

into a common grid.

Several performance descriptors can be used to evaluate the reconstruction in terms of overlap or quantitative error. We can

define here the following two descriptors. Given a pair of 3-dimensional snowflakes, one being the 3D-GAN reconstruction275
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and one the reference, let the Matched Mass Ratio (MMR) be:

MMR(∆V ) =

N ′∑
i=1

(
mi

3D-GAN +mi
REF

)

m3D-GAN +mREF
(3)

where ∆V is a given voxel size (resolution of the regular grid), mi
3D-GAN (mi

REF) is the content of mass of the ith voxel of

the GAN reconstructed snowflake (reference true snowflake). m3D-GAN (mREF) is the total mass, invariant across scales, of

3D-GAN (reference) snowflake and N ′ defines the set of voxels where the mass content is both nonzero for the GAN and280

the reference. MMR varies between 0 (worse) and 1 (best) and it evaluates how well the mass of the reconstructed snowflake

and the mass of the reference overlap, independently whether the total mass itself is correctly estimated. A MMR close to 1

indicates that as a whole the combined mass of the two snowflakes occupies the same voxels. A second, significantly more

severe and quantitative, indicator is the normalized sum of errors (NSE):

NSE = 100×

M∑
i=1

|mi
3D-GAN−mi

REF|

mREF
(4)285

where M is the entire set of voxels where the mass content of 3D-GAN or the reference is nonzero. NSE does not allow for

error compensation and it can in principle be as low as 0% only if the estimate of total mass of the GAN is perfect.

Figure 4 illustrates the behavior of MMR and NSE across scales. The distribution of mass is overall well matched (mean

MRR above 0.8), while the sum of individual errors accumulates, in mean terms of mean NSE, from 100% to about 50% over

the range of grid scales. It must be underlined, however, that (i) the best achievable results of NSE are limited to a minimum290

mean NSE of about 40%, due to the error in the mass estimation itself and (ii) the alignment of the two objects is assumed to

be optimal. No real adversary method exists to compute the 3D mass distribution of snowflakes from MASC images, so we

decided to show a comparison with an idealized reference as illustrated in the red curves of Fig. 4. This reference correspond

to an ellipsoidal approximation of the reference snowflake with two major competitive advantages with respect to 3D-GAN:

– The ellipsoid is fitted directly on the original 3D model of the reference snowflake and not from the MASC captures.295

The orientation and overlap is thus optimal and no complications and uncertainties due to the realization of an actual

measurement can play a role here.

– The density of the ellipsoid is adapted in order to perfectly match the total mass of the reference snowflake.

The Ellipsoid method is an idealization of the best possible approximation of the snowflakes by means of an ellipsoid of

constant density, thus in principle largely superior to any ellipsoidal approximation that can be obtained using actual MASC300

measurements. The performance of 3D-GAN is close to the one of this idealized retrieval both in terms of MMR and of

NSE across all the scales and, most importantly, it is superior at the small scales: up to about 1.25 mm for MMR and up to

0.75 mm for NSE. Regarding NSE, as the scale of the comparison approaches the dimension of the snowflake, the ellipsoid

approximation obviously exploits the advantage of “knowing” the exact total mass. Given the idealized nature of the benchmark

and the complexity of the retrieval itself we consider the performance of 3D-GAN satisfactory.305
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5 Examples of application

The information provided by 3D-GAN is an important complement to what can be calculated or retrieved from MASC data (for

example size, shape, complexity, orientation, hydrometeor type or riming degree, as in Praz et al., 2017). We consider the

retrieval of mass an immediate added value of 3D-GAN and we want to provide in this section a few examples of application

on datasets collected in the past years at various geographical locations.310

The availability of both mass and size estimates can be used to construct m(Dmax) relationships using the measurements

of a single instrument, the MASC. These relations can then be stratified according to the identified hydrometeor type or as a

function of the riming degree, taking advantage of previous work in this direction (Praz et al., 2017). An example is shown in

the scatter plots of Fig. 5, for data collected in Switzerland in 2016 and 2017. Keeping in mind that 3D-GAN does not have

access to textural information other than binary particle silhouettes, it is reassuring to observe in these plots several features that315

make physical sense. For example: for a given particle maximum size, the riming degree increases the mass content; graupel

has the largest mass content (at a given size) while columns the lowest, except for the largest observed sizes that can only be

reached by aggregate snowflakes.

Table 5 and 4 provide the parameters of the m(Dmax) power laws calculated for various field campaigns conducted in the

Alps and in Antarctica over several years. While an in-depth microphysical interpretation of these results and their differences320

linked to season and geographical location is beyond the scope of this study, it is worth to briefly discuss these results and

hypothesize how they will be useful to support future research in this direction. Considering the entire datasets of individual

field campaigns, values of bm between 1.91 and 2.19 are obtained, in agreement both with studies based on multi-sensor field

measurements (e.g. von Lerber et al., 2017, and references therein) and on simulations (Leinonen and Szyrmer, 2015; Karrer

et al., 2020). Also prefactors am values reproduce well the range of values that are documented in the literature2.325

As shown in Fig. 3 and previously discussed, globally-representative m(Dmax) relations can generate very large errors for

particles of similar maximum size but different riming degree (i.e. moving along the y dimension of Fig. 5 for a given value

on the x axis). For this reason, the possibility to stratify and combine the output of 3D-GAN with hydrometeor classification

and riming degree information as shown in this chapter is very relevant for microphysical studies. As detailed in Leinonen and

Szyrmer (2015) and von Lerber et al. (2017), both am and bm increase with particle density (riming degree) and bm approaches330

values of 3 for fully-developed graupel. The sharp increase in am and bm for fully rimed particles is a good indication of the

change of dominant growth mechanism, switching from aggregation to rime accretion. It is also interesting to observe, in Fig. 6,

how them(Dmax) relations stratified on riming degree and hydrometeor type are relatively consistent from one field campaign

to the other, showing however a certain level of variability that may leave room to microphysical interpretations. In summary,

the availability of an estimate of particle mass from 3D-GAN, in combination with existing retrievals based on MASC data335

provides new possibilities for future studies. For example:

2Note that am is often given in cgs units in published research, while the SI convention is used in the present paper
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– Investigate how to relate estimates of riming degree based on the appearance of the particles, like Rc of (Praz et al.,

2017), with physically-based riming degree descriptors based on the liquid path encountered like LWP of von Lerber

et al. (2017) or Leinonen and Szyrmer (2015).

– Exploit the availability of mass estimates to find and explain the observed relations with size, shape, fall velocity and340

vertical structure of precipitation.

– Exploit the 3D mass distribution for scattering simulations and remote-sensing applications.

6 Summary, Conclusions, Outlook

The MASC instrument is a state-of-the art device to investigate and describe the habits and microphysical properties of solid-

phase precipitation particles. Large datasets of triplets of hydrometeor images have been gathered worldwide, with more to345

be collected during present and future field campaigns. MASC data provided already noteworthy contributions to studies of

snowfall microphysics and recent algorithms exist to estimate the hydrometeor type, riming degree as well as volume properties

of the particle pictured by the masc. With one exception (Kleinkort et al., 2017), limited effort has been conducted so far to

exploit the multi-dimensionality of MASC images to retrieve three-dimensional properties of the hydrometeors. We presented

here a method, based on machine learning and trained on synthetic data (with verified realistic properties), to retrieve the three-350

dimensional distribution of mass of individual snowflakes using a triplet of silhouettes as input, corresponding to the MASC

images. Unlike the pioneering work of Kleinkort et al. (2017), mass estimation is provided as a key output and not merely

shape and volume.

We have conducted a validation of 3D-GAN by means of 3D-printed replicas of realistic snowflakes of known characteristics.

Due to technical limitations and difficulties to handle small and fragile particles, the evaluation is limited to a range of values355

of sizes and masses that does not fully overlap the one of naturally occurring snowflakes. The mass content is estimated

with low bias (10% mean overestimation) and with a normalized RMSE of 40%. Concerning geometrical features, Dmax is

reconstructed with a mean overestimation of 7% (NRMSE 12%), the volume of the convex hull VCH is overestimated by

19% (NRMSE 35%) and the gyration radius rg by 13% (NRMSE 16%). The evaluation of 3D-GAN reconstructions was also

conducted on a voxel-by-voxel basis, after alignment of the reconstructed snowflakes and the original model by means of point360

cloud alignment (technically called ‘registration”). We have additionally shown that, in order to provide results comparable

to 3D-GAN with an ellipsoidal approximation one would need both be able to achieve the best possible 3D fit and to exactly

retrieve the mass of the snowflake: two requirements that are extremely unlikely to be fulfilled using MASC data as input.

The 3D-GAN method has still margin for improvement. For example, about the input (black-white silhouettes): future studies

may employ image simulation techniques in order to add the missing textural information (including lights and shadows) to365

the training set and thus to the input. Although we are aware that this is not a straightforward step, it would allow one to fully

exploit the MASC data. Our evaluation highlighted a positive bias for rg , VCH and Dmax suggesting that 3D-GAN could be

improved in terms of particle compactness.
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We have shown some examples of application of the novel method, by combining the retrieved mass with dimensional

information as well as hydrometeor type and riming degree and then fitting the coefficients of mass-to-size power laws. We370

obtained a set of values for the prefactor a and exponent b that are in line with previous theoretical or experimental studies,

both in absolute terms and in terms of variation according to riming degree: the increase of exponent with riming degree is well

observed in the data collected during various field campaigns. There are a number of future studies that can be conducted with

this new tool, including improved scattering simulations, microphysical characterization of the snowfall measured in various

locations worldwide as well as linking the riming degree as seen on rimed particle images with the actual liquid water content375

of the rime accretion.

Code and data availability. The code to generate simulated snowflakes is openly available at: https://github.com/jleinonen/aggregation. The

3D-GAN code is available at: https://github.com/jleinonen/masc3dgan. The codes and data to support the evaluation of the performances of

3D-GAN, including the models and shapefiles of the replica snowflakes are published and available at (10.5281/zenodo.4790962 Grazioli

et al., 2021). Raw or processed MASC data for any campaign mentioned in the paper, as well as a MATLAB code to pre-process the data380

according to the method of Praz et al. (2017) are available upon request to the authors.

Appendix A: Approximation of geometrical features

As discussed in the manuscript, the GAN output consists of a three-dimensional distribution of mass. These values vary

smoothly and do not generate a clear cutoff at the edges of the reconstructed snowflakes, artificially expanding their apparent

size. For practical purposes, quantities such as Dmax or the volume of the convex hull may be of interest and thus we propose385

a simple but conceptually-sound method to define the geometrical extent of each snowflake by means of an adaptive minimum

density threshold.

The goal is to obtain, for each individual snowflake, an optimal density threshold ρopt
th [kg m−3] such that only voxels having

ρ≥ ρopt
th are used to define the spatial extent of the particle. Let P be the three dimensional matrix defining the density of each

voxel of a given snowfake. As the maximum density can vary for each snowflake, it is normalized between 0 and 1. Let Pth390

be the same matrix, censored by zeroing the voxels having a lower density content than an arbitrary threshold ρth. Two scalar

quantities can be defined, given P and ρth:

1. ρth defines the mean density of non-zero voxels.

2. mth/m0 the residual total mass of the censored matrix with respect to the uncensored total mass.

The first scalar quantity increases with increasing threshold levels (as voxels of low density are removed), while the second395

one decreases. Let us then multiply the two scalars and define a simple weight W ∗ as a trade-off between increase of mean

density (and compactness), which we want to reward, and the associated loss of mass, which should be penalized.

W ∗ = ρth
mth

m0
(A1)
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The evolution ofW ∗ as a function of the threshold level has a behavior as illustrated in Fig. A1. We choose an optimal threshold

corresponding to the location of maximum W ∗ in order to balance the two errors. The final threshold is then applied to define400

the spatial extent assigned to the snowflake. In this work we used this approach to be able to evaluate the GAN output against

the 3D-printed replicas, exclusively for quantities as Dmax or the convex hull volume. The total mass as well as the gyration

radius are calculated on unfiltered data.
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Figure 1. Illustration of the architectures of the (a) generator and (b) discriminator of the GAN.
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Figure 2. Example of the reconstruction outcome obtained while releasing eight consecutive times the same snowflake replica in the MASC

measurement area. Top rows: actual photos of the replica and a pseudo-3D representation (every blue point represents a voxel filled with ice).

Bottom rows: reconstructions obtained with 3D-GAN. Every point is color-coded according to the density (ice mass content) of each voxel.
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Figure 3. Scatter plot of reference (3D printed replicas) and reconstructed characteristics of the snowflakes used in the evaluation. (top-left):

mass, (top-right) Dmax, (bottom-left): rg , (bottom-right): VCH . For the mass we display 3D-GAN reconstructions as well as mass-size

reconstructions of Matrosov et al., 2007, ML07 and Baker and Lawson, 2006, BL06. M07 and BL06 are calculated on individual MASC

views and the mean value over the three views is shown here in each marker. For Dmax the estimation obtained using the 2D MASC images

is highlighted in green.
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Figure 4. Distribution of matched mass ratio MMR (left) and normalized sum of errors NSE (right) values as a function of the grid volume

size at which the evaluation is conducted. Median values over the evaluation sample are indicated by the markers while the vertical lines

overlap the 25-75% percentile range. An artificial horizontal displacement is added to the data series to enhance readability. The reference

method (Ellipsoid) corresponds to an optimal ellipsoidal fit of the reference snowflake with perfect mass match, as described in the text.
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Figure 5. m(Dmax) scatter plots for the data of a field campaign, named Valais 2016, taking place in the Swiss Alps in 2016 and 2017.

Left: data color-coded according to riming index Rc of Praz et al. (2017). Right: data color-coded according to the hydrometeor classes, also

of Praz et al. (2017).
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Figure 6. m(Dmax) power law relations for the data of various field campaigns, as listed in Table 5 and 4. Left: data color-coded according

to riming index Rc of Praz et al. (2017). Right: data color-coded according to the hydrometeor classes, also of Praz et al. (2017). Different

curves of the same color correspond to different field campaigns.
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Figure A1. Example, for a reconstructed snowflake, of the distribution of the weight W ∗ as a function of the threshold on the voxel density

content ρ. The weight is displayed here as normalized between 0 and 1. The threshold maximizing W ∗ is considered as optimal and it is

used to censor the data to calculate geometric descriptors. A maximum could always been obtained for all the reconstructed snowflakes.
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Table 1. 3D printed snowflakes used for the evaluation of the 3D reconstruction

ID LWP # captures Dmax Mass∗ Image

1 1.8 kg m−2 17 4.91 mm 8.47 mg

2 2.0 kg m−2 19 4.78 mm 8.77 mg

3 1.15 kg m−2 19 3.12 mm 1.9 mg

4 0.5 kg m−2 16 4.65 mm 2.24 mg

5 0.5 kg m−2 14 4.14 mm 2.22 mg

6 0.1 kg m−2 3 4.84 mm 0.82 mg

7 0.2 kg m−2 15 4.42 mm 0.92 mg

8 0.1 kg m−2 1 4.67 mm 0.81 mg

9 2.0 kg m−2 19 4.46 mm 7.6 mg

10 1.3 kg m−2 19 4.50 mm 4.67 mg

11 1.1 kg m−2 19 4.11 mm 4.58 mg

12 0.3 kg m−2 6 4.96 mm 1.23 mg

13 2 kg m−2 20 3.95 mm 4.44 mg

14 0.2 kg m−2 11 3.91 mm 0.83 mg

∗ This is the (ice) mass of the simulated snowflake and not the actual mass of the (polymer) replica.25
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Table 2. Summary of Root Mean Square Error (RMSE), Normalized-RMSE (NRMSE, normalized on the mean value of reference data) and

Mean Normalized Bias (MNB) resulting from the comparison with the 3D-printed snowflake replicas.

RMSE NRMSE [%] MNB [%]

Mass [kg× 10−6]

3D-GAN 1.8 42 8

BL06 2.9 68 -39

M07 4.4 103 -72

Dmax [m× 10−3]

3D-GAN 0.5 12 7

2D views 0.3 6 1

VCH [m3 × 10−9]

3D-GAN 6.5 35 19

rg [m× 10−3]

3D-GAN 0.2 16 13

26

https://doi.org/10.5194/amt-2021-176
Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



Table 3. List of field installations of the MASC instrument, for which data are shown in Fig 6 and 5.

Name Location Period

Icegenesis 2020 Swiss Jura mountains Dec 2020 - Mar 2021

Davos 2015 Swiss Alps Oct 2015 - Jun 2016

APRES3 2015 East Antarctica Nov 2015 - Jan 2016

Valais 2016 Swiss Alps Dec 2016 - Apr 2017

Jura 2019 Swiss Jura mountains Nov 2019 - Apr 2020
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Table 4. Values of the parameters of the relation m= amDbm
max estimated on the datasets of different field campaigns for various degrees

of riming. m is estimated with 3D-GAN, while Rc is the normalized riming index as in Praz et al. (2017), averaged over the three camera

views. Dmax is the maximum dimension obtained from the triplet of images of the MASC.

Rc [-] 0.0−0.25 0.25−0.50 0.50−0.75 0.75−1.0 1.0 All

Icegenesis 2020

samples 705 409 591 304 571

am [kg m−bm ] 0.045 0.018 0.052 0.492 22.622 0.103

bm [-] 2.05 1.84 1.97 2.26 2.86 2.1

Davos 2015

samples 3584 4766 10288 6865 4965

am [kg m−bm ] 0.007 0.013 0.050 0.728 21.152 0.042

bm [-] 1.72 1.78 1.95 2.32 2.84 1.91

APRES3 2015

samples 1009 987 1761 1080 1761

am [kg m−bm ] 0.029 0.045 0.193 1.335 4.972 0.197

bm [-] 1.95 1.99 2.19 2.45 2.64 2.19

Valais 2016

samples 3331 3036 4962 3417 5508

am [kg m−bm ] 0.02 0.024 0.073 0.375 13.409 0.077

bm [-] 1.89 1.88 2.03 2.22 2.77 2.02

Jura 2019

samples 520 705 1797 1150 2762

am [kg m−bm ] 0.026 0.025 0.095 0.627 122.652 0.150

bm [-] 1.93 1.89 2.07 2.31 3.13 2.1
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Table 5. Values of the parameters of the relation m= amDbm
max estimated on the datasets of different field campaigns for various hydrom-

eteor types. m and is estimated with GAN-3D, while the hydrometeor type is obtained with the method of Praz et al. (2017). Dmax is the

maximum dimension obtained from the triplet of images of the MASC.

Type AG GR COL CPC PC

Icegenesis

samples 1148 762 397 8 167

am [kg m−bm ] 0.016 22.913 0.005 - 0.379

bm [-] 1.77 2.86 1.73 - 2.29

Davos 2015

samples 18130 7789 883 94 2204

am [kg m−bm ] 0.024 27.073 0.011 0.002 0.148

bm [-] 1.83 2.89 1.83 1.48 2.12

APRES3 2015

samples 2184 2841 541 301 317

am [kg m−bm ] 0.059 4.158 0.0147 0.023 0.213

bm [-] 1.99 2.62 1.87 1.88 2.2

Valais 2016

samples 9695 7450 959 98 1129

am [kg m−bm ] 0.035 13.560 0.009 0.002 0.213

bm [-] 1.9 2.78 1.8 1.55 2.21

Jura 2019

samples 2980 3399 191 14 169

am [kg m−bm ] 0.033 121.319 0.062 - 0.071

bm [-] 1.87 3.13 2.08 - 2.01

AG: aggregates, GR: graupel, COL: columns, CPC: combination of planar crystals and

columns, PC: planar crystals. Results are reported only if at least 80 samples are

available.
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