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Abstract. In this study, image data features and machine learning methods were used to calculate 24-h continuous cloud cover 

from image data obtained by a camera-based imager on the ground. The image data features were the time (Julian day and 

hour), solar zenith angle, and statistical characteristics of the red-blue ratio, blue–red difference, and luminance. These features 

were determined from the red, green, and blue brightness of images subjected to a pre-processing process involving masking 10 

removal and distortion correction. The collected image data were divided into training, validation, and test sets and were used 

to optimize and evaluate the accuracy of each machine learning method. The cloud cover calculated by each machine learning 

method was verified with human-eye observation data from a manned observatory. Supervised machine learning models 

suitable for nowcasting, namely, support vector regression, random forest, gradient boosting machine, k-nearest neighbor, 

artificial neural network, and multiple linear regression methods, were employed and their results were compared. The best 15 

learning results were obtained by the support vector regression model, which had an accuracy, recall, and precision of 0.94, 

0.70, and 0.76, respectively. Further, bias, root mean square error, and correlation coefficient values of 0.04 tenth, 1.45 tenths, 

and 0.93, respectively, were obtained for the cloud cover calculated using the test set. When the difference between the 

calculated and observed cloud cover was allowed to range between 0, 1, and 2 tenths, high agreement of approximately 42%, 

79%, and 91%, respectively, were obtained. The proposed system involving a ground-based imager and machine learning 20 

methods is expected to be suitable for application as an automated system to replace human-eye observations. 

 

 

1 Introduction 

In countries, including South Korea, that have not introduced automated systems, ground-based cloud cover observation has 25 

been performed using the human eye, in accordance with the normalized synoptic observation rule of the World Meteorological 

Organization (WMO), and recorded in tenths or oktas (Kim et al., 2016; Yun and Whang, 2018). However, human-eye 

observation of cloud cover lacks consistency and depends on the observer conditions and the observation term (Mantelli Neto 

et al., 2010; Yang et al., 2016). Further, although continuous cloud cover observation during both day and night is important, 
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there is a lack of data continuity (observations with at least 1-h intervals) because a person must perform direct observations 30 

(Kim et al., 2020b). In addition, construction of a dense cloud observation network from observation environments with low 

accessibility, such as mountaintops, is difficult. Therefore, meteorological satellites and ground-based remote observation 

equipment that can continuously monitor clouds while overcoming these problems are now being employed (Yabuki et al., 

2014; Yang et al., 2015; Kim et al., 2016, 2020b). 

Geostationary satellites can observe clouds on the global scale at intervals of several minutes; however, their spatial resolution 35 

is as large as several kilometers (Kim et al., 2018b; Lee et al., 2018). Polar satellites have spatial resolutions of several hundred 

meters, i.e., high resolution; however, they can observe the same area only once or twice per day (Kim et al., 2019, 2020a). 

For both geostationary and polar satellites, geometric distortion problems occur during cloud cover estimation on the ground, 

depending on the cloud height (Mantelli Neto et al., 2010). As cloud heights and thicknesses vary, the cloud detection 

uncertainty also varies depending on the position of the sun or satellite (Ghonima et al., 2012). In general, cloud cover 40 

estimation using satellite data differs from the approach used for human-eye observation data, because the wide grid data 

around the central grid are averaged or calculated as fractions (Alonso-Montesinos, 2020; Sunila et al., 2021). 

Radar, LiDAR, ceilometers, and camera-based imagers can be used as ground-based observation instruments (Boers et al., 

2010). With regard to radar, cloud radar technology such as Ka-band radar is suitable for cloud detection but has the 

disadvantage of reduced detection accuracy with increased distance from the radar apparatus (Kim et al., 2020c; Yoshida et al., 45 

2021). For LiDAR and ceilometers, the uncertainty is very large because the cloud cover is calculated from the signal intensity 

of a narrow portion of the sky (Costa-Surós et al., 2014; Peng et al., 2015; Kim et al., 2020b). In contrast, for a camera-based 

imager, the sky in the surrounding hemisphere can be observed through a fisheye lens (180° field of view (FOV)) mounted on 

the camera. Further, depending on the performance of the imager and the operation method, clouds can be observed 

continuously for 24-h, i.e., through the day and night. The data can be stored as images and the cloud cover can be calculated 50 

from these data (Kim et al., 2020b; Sunila et al., 2021). 

Many studies have attempted to use camera-based imagers for automatic cloud observation and cloud cover calculation on the 

ground (Dev et al., 2016; Lothon et al., 2019; Shields et al., 2019). Those results can be used for numerical weather analysis 

and forecasting; they are also very economical and ideal for cloud monitoring over local areas (Mantelli Neto et al., 2010; 

Kazantzidis et al., 2012; Ye et al., 2017; Valentín et al., 2019). In general, cloud cover can be calculated based on the brightness 55 

of the red, green, and blue (RGB) colors of the image taken by the imager. In detail, the RGB brightness varies according to 

the light scattering from the sky and clouds and, using the ratio or difference between these colors, cloud can be detected and 

cloud cover can be calculated (Long et al., 2006; Shields et al., 2013; Liu et al., 2015; Yang et al., 2015; Kim et al., 2016). For 

example, when the red-blue ratio (RBR) is 0.6 or more or the red–blue difference (RBD) is less than 30, the corresponding 

pixel is classified (i.e., using a threshold method) as a cloud pixel and incorporated in the cloud cover calculation (Kruter et 60 

al., 2009; Heinle et al., 2010; Liu et al., 2015; Azhar et al., 2021). However, using these empirical methods, it is difficult to 

distinguish between the sky and clouds under various weather conditions (Yang et al., 2015). This is because the colors of the 

sky and clouds vary with the atmospheric conditions and because the sun position and threshold conditions can change 
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continuously (Yabuki et al., 2014; Blazek and Pata, 2015; Cazorla et al., 2015; Calbó et al., 2017). Therefore, methods of cloud 

detection and cloud cover calculation involving application of machine learning methods to images are now being implemented, 65 

as an alternative to empirical methods (Peng et al., 2015; Lothon et al., 2019; Al-lahham et al., 2020; Shi et al., 2021). 

Cloud cover can be calculated from camera-based imager data using a supervised machine learning method capable of 

regression analysis (Al-lahham et al., 2020). Supervised learning is a method through which a prediction model is constructed 

using training data which already contain the labeled data. Examples include support vector machines (SVMs), decision trees 

(DTs), gradient boosting machines (GBMs), and artificial neural networks (ANNs) (Çınar et al., 2020; Shin et al., 2020). Deep 70 

learning methods that repeatedly learn data features by sub-sampling image data at each convolution step for gradient descent 

are also available, such as convolutional neural networks (Dev et al., 2019; Shi et al., 2019; Xie et al., 2020). However, this 

approach is difficult to utilize for nowcasting because considerable physical resources and time are consumed by the learning 

and prediction processes (Al Banna et al., 2020; Kim et al., 2021).  

In this study, cloud cover was calculated continuously for 24-h from image data obtained by a camera-based imager on the 75 

ground, using image data features and machine learning methods. ANN, GBM, k-nearest neighbor (kNN), multiple linear 

regression (MLR), support vector regression (SVR), and random forest (RF) methods suitable for nowcasting were used for 

calculation. For each of these methods, an optimal prediction model is constructed by setting hyper-parameters. The machine 

learning model most suitable for cloud cover calculation is then selected by comparing the prediction performance of each 

model on training and validation datasets. The cloud cover calculated from the selected machine learning model is then 80 

compared with human-eye observation data and the results are analyzed. The remainder of this paper is organized as follows. 

The image and observation data used in this study are described in Sect. 2, and the machine learning methods and their sets 

are summarized in Sect. 3. The prediction performance evaluation for each machine learning method and the calculation result 

verification are reported in Sect. 4. Finally, the summary and conclusion are given in Sect. 5. 

2. Research data and methods 85 

2.1 Ground-based imager 

In this study, a digital camera-based automatic cloud observation system (ACOS) was developed using a Canon EOS 6D 

camera to detect and calculate cloud cover for 24-h, as shown in Fig. 1. This system was developed by the National Institute 

of Meteorological Sciences (NIMS)/Korea Meteorological Administration (KMA) and A&D∙3D Co., Ltd. (Kim et al., 2020b). 

The ACOS was installed at the Daejeon Regional Office of Meteorology (DROM; 36.37°N, 127.37°E), a manned observatory 90 

in which cloud cover observation by human eye is performed. The detailed ACOS specifications are listed in Table 1. The 

International Organization for Standardization (ISO) values of the complementary metal oxide semiconductor (CMOS) sensor 

employed in the camera are 100 (day)–25600 (night), and the sensitivity is adjusted according to the image brightness. In this 

study, the camera shutter speed was set to 1/1,000 s (day)–5 s (night), considering the long exposure for object detection 

required at night. The F-stop was set to F8 (day)–F11 (night), and the sky-dome object was taken with a large depth of field 95 



4 

 

(Peng et al., 2015; Dev et al., 2017). The camera lens was installed at a height of 1.8 m, similar to human-eye height, and a 

fisheye lens (EF8-15 F/4L fisheyes USM) was installed to capture the entire surroundings, including the sky and clouds, within 

a 180° FOV. To perform 24-h continuous observation, heating (below –2 °C) and ventilation devices were installed inside the 

ACOS body to facilitate image acquisition without manned management (Dev et al., 2015; Kim et al., 2020b). 

 100 

a) b) 

 

 
Figure 1: ACOS appearance (a) and installation environment (b) (Kim et al., 2020b). 

 

Table 1: Detailed ACOS specifications. 

Function Description 

Size 264 mm (L) x 264 mm (W) x 250 mm (H), 6.5 kg 

Pixels 2,432 x 2,432 

Focal length 8 mm, 180° fisheye lens 

Sensor CMOS 

Aperture F8 (day)–F11 (night) 

Sutter speeds 1/1,000s (day)–5s (night) 

ISO 100 (day)–25600 (night) 

Observation periods 24-h operation, 10-min interval observation 

Etc. 24-h automatic heating (below –2℃) and ventilation 
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2.2 Cloud cover calculation and validation 105 

The image data captured by ACOS were processed by converting each RGB channel of each image pixel to a brightness of 0–

255. Although the camera-lens FOV was 180°, only pixel data within the zenith angle of 80° (FOV 160°) were used. This 

condition was in consideration of the permanent masking area of the horizontal plane due to surrounding objects (buildings, 

trees, equipment, etc.) (Kazantzidis et al., 2012; Shields et al., 2019; Kim et al., 2020b). For cloud cover calculation using the 

ACOS images, image data taken at 1-h intervals from January 1 to December 31, 2019, were used. The cloud cover was 110 

calculated using the statistical characteristics of the RGB brightness ratio (i.e., the red-blue ratio (RBR)), difference (i.e., the 

blue–red difference (BRD)), and luminance (Y), which vary for each image (Sect. 2.3), as well as supervised machine learning 

methods (Sect. 3). Here, Y was calculated as Y = 0.2126R+0.7152G+0.0722B (Sazzad et al., 2013; Shimoji et al., 2016). The 

calculated cloud cover was compared with human-eye observation data from DROM. As the cloud cover was calculated as a 

percentage between 0 and 100%, the result was converted to an integer (tenth) between 0 and 10 (Table 2) for comparison with 115 

the human-eye-based cloud cover values. As the ACOS was installed at DROM, there were no location differences between 

observers; thus, the same clouds were captured (Kim et al., 2020b). At DROM, night observations were performed at 1-h 

intervals during inclement weather (rainfall, snowfall, etc.), but otherwise at 3-h intervals. The night period varied with the 

season. Considering this, a total of 7,402 images of concurrent human observations were collected, excluding missing cases, 

from the ACOS. 120 

 

Table 2: ACOS cloud cover (%) to DROM human-eye-observed cloud cover (tenths) conversion table. 

% ≤ 5 5~15 15~25 25~35 35~45 45~55 55~65 65~75 75~85 85~95 95 < 

Tenth 0 1 2 3 4 5 6 7 8 9 10 

 

The entire collected dataset was randomly sampled without replacement. Overall, 50% (3,701 cases) of the total data elements 

were configured as a training set, 30% (2,221 cases) as a validation set, and 20% (1,480 cases) as a test set (Xiong et al., 2020). 125 

The training set was used to train the machine learning algorithms, and the prediction performance of each machine learning 

method was assessed using the validation set. Optimal hyper-parameters were set for each machine learning method through 

the training and validation sets. The results of each machine learning method were compared. In this process, the test set was 

input to the machine learning model that exhibited the best prediction performance, and the calculated results and human-eye 

observation data were compared. The accuracy, recall, precision, bias, root mean square error (RMSE), and correlation 130 

coefficient (R) were analyzed according to Eqs. (1)–(6); hence, the prediction performance of each machine learning method 

was determined and compared based on the human-eye observation data. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝐵𝑖𝑎𝑠 =
∑(𝑀 − 𝑂)

𝑁
 (4) 

𝑅𝑀𝑆𝐸 = √
∑(𝑀 − 𝑂)2

𝑁
 (5) 

𝑅 =
∑(𝑀 −𝑀) (𝑂 − 𝑂)

√∑(𝑀 −𝑀)
2
√∑(𝑂 − 𝑂)

2
 

(6) 

 

Here, TP, TN, FP, and FN are the number of true positives (reference: yes, prediction: yes), true negatives (reference: yes, 135 

prediction: no), false positives (reference: no, prediction: yes), and false negatives (reference: no, prediction: no), respectively. 

Further, M, O, and N are the cloud cover calculated by the employed machine learning method, the human-eye-observed cloud 

cover, and the number of data, respectively. 

 

2.3 Machine learning input data 140 

The data input to the machine learning algorithms for cloud cover calculation using the ACOS images were produced as follows. 

First, as the ACOS image was taken with a fisheye lens, the image was distorted. That is, objects at the edge were smaller than 

those at the center of the image (Chauvin et al., 2015; Yang et al., 2015; Lothon et al., 2019). Therefore, the relative size of 

each object in the image was adjusted through orthogonal projection distortion correction according to the method expressed 

in Eqs. (7)–(11) (Kim et al., 2020b).  145 

 

𝑟 = √(𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2 (7) 

𝜃 = asin(𝑟 𝑟𝑎𝑑𝑖⁄ ) (8) 

𝜙 = asin((𝑦 − 𝑐𝑦) 𝑟⁄ ) (9) 

𝑥′ = 𝑐𝑥 + 𝑟 × 𝜃 × cos(𝜙) (10) 
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𝑦′ = 𝑐𝑦 + 𝑟 × 𝜃 × sin(𝜙) (11) 

 

where r is the distance between the center pixel (cx, cy) of the original image and each pixel (x, y), θ is the SZA, radi is the 

image radius (distance between center and edge pixel of circular images), ϕ is the azimuth, and x' and y' are the coordinates of 

each pixel after distortion correction. 150 

Second, surrounding masks such as buildings, trees, and equipment, as well as light sources such as the sun, moon, and stars, 

were removed from the image (building, tree, and equipment: masking was performed when the mean RGB brightness was 

less than 60 in the daytime on a clear day; light source: masking was performed when the mean RGB brightness exceeded 

240). These objects directly mask the sky and clouds or make it difficult to distinguish them; therefore, they must be removed 

when calculating cloud cover (Yabuki et al., 2014; Kim et al., 2016, 2020b). Third, the RBR, BRD, and Y frequency 155 

distributions were calculated using the RGB brightness of each pixel of image data subjected to pre-processing (i.e., masking 

removal and distortion correction). The class interval sizes of the RBR, BRD, and Y frequency distributions were set to 0.02, 

2, and 2, respectively, and classes with frequencies of less than 100 were ignored. Statistical characteristics of the mean, mode, 

frequency of mode, kurtosis, skewness, and quantile (Q0–Q4: 0%, 25%, 50%, 75%, and 100%) data obtained for each 

frequency distribution were used as input for each machine learning method. As input data for machine learning, time 160 

information (Julian day and hour) allowed differentiating seasons and day and night. Further, solar zenith angle (SZA) should 

be considered because the colors of the sky and clouds change according to the position of the sun (Blazek and Pata, 2015; 

Cazorla et al., 2015; Azhar et al., 2021). As these image data features have different appearances under different conditions 

(cloud cover, day, night, etc.), they constitute an important variable in machine learning regression for cloud cover calculation 

(Heinle et al., 2010; Li et al., 2011). 165 

Figure 2 shows distortion corrected images for day and night cloud-free, overcast, and partly cloudy cases and the RBR, BRD, 

and Y relative frequency distributions. The frequency distributions were expressed as percentages over approximately 310,000 

pixels excluding the masked area. Human-eye observations at DROM yielded cloud-free (Fig. 2a and 2g), overcast (Fig. 2b 

and 2h), and partly cloudy (Fig. 2c and 2i) case values of 0, 10, and 5 tenths, respectively. As for the RBR frequency distribution 

during the day, larger RBR distributions were observed for the overcast than cloud-free case, and bimodal distributions 170 

including both (i.e., overcast and cloud-free) distributions were obtained for the partly cloudy case. The variance was large in 

the partly cloudy case. With regard to the BRD frequency distribution, the blue-channel brightness increased with Rayleigh 

scattering, such that the cloud-free case with many sky pixels had larger BRD distribution than the overcast case (Ghonima et 

al., 2012; Kim et al., 2016). In contrast, the Y frequency distribution was relatively large for the overcast case, which involved 

many cloud pixels. Although the RBR frequency distributions at night and day were similar, the RBR was larger at night 175 

because the red-channel brightness increased under the influence of Mie scattering (Kyba et al., 2012; Kim et al., 2020b). A 

negative BRD distribution was obtained from the cloud pixels. At night, there is no light source such as the sun. Therefore, in 

this study, RGB brightness close to black (0, 0, 0) was distributed in the cloud-free case, yielding small Y. As the images 
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obtained through ACOS had different RBR, BRD, and Y frequency distribution classes and shapes for each case, it was 

necessary to train these data features (i.e., the mean, mode, frequency of mode, kurtosis, skewness, and quantile of each 180 

frequency distribution) on a machine learning model to calculate the cloud cover. 
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Day 

cases 

a) Cloud-free b) Overcast c) Partly cloudy 

   

d) RBR e) BRD f) Y 

   

Night 

cases 

g) Cloud-free h) Overcast i) Partly cloudy 

   

j) RBR k) BRD l) Y 

   

Figure 2: Distortion corrected images and RBR (d, j), BRD (e, k), and Y (f, l) relative frequency distributions for cloud-free (0 tenth), 

overcast (10 tenths), and partly cloudy (5 tenths) cases at day and night. The daytime cloud-free (a), overcast (b), and partly cloudy 
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(c) data were obtained at 1400 LST on 8 March, 1200 LST on 15 July, and 1500 LST on 28 September 2019. Cloud-free (g), overcast 185 
(h), and partly cloudy (i) nighttime data were obtained at 0300 LST on 24 January, 2000 LST on 18 February, and 2200 LST on 30 

April 2019. The green and red areas are masked to remove surrounding masks (i.e., buildings, trees, and equipment) and light 

sources (i.e., the sun and moon), respectively. 

 

3. Machine learning methods 190 

Depending on the machine learning method, even if the accuracy, recall, precision, and R of the trained model are high and 

the bias and RMSE are small, overfitting problems may occur when data other than training data are used for prediction; these 

problems can yield low prediction performance (Ying, 2019). Therefore, in this study, optimal hyper-parameters were set by 

iteratively changing the hyper-parameter for each machine learning method using the training and validation sets (Bergstra 

and Bengio, 2012). The optimal hyper-parameter was determined based on the accuracy, recall, precision, bias, RMSE, and R, 195 

which were prediction performance indicators for each iteration. The details and hyper-parameter settings of each supervised 

machine learning method used in this study are described in Sects. 3.1 to 3.6. The prediction results of each machine learning 

method are compared in Sect. 4.1. 

 

3.1 Multiple linear regression (MLR) 200 

The method in which the relationship of the dependent variable to the independent variable is regressed by considering one 

independent variable only is called simple linear regression, and the method in which the change in the dependent variable is 

predicted based on the changes in two or more independent variables is called MLR. An MLR model with k independent 

variables predicts the dependent variable as shown in Eq. (12), using the least squares method which minimizes the predictor 

variable and the sum of squared errors (Fig. 3a) (Olive, 2017). In this study, we used the R “glm” package (Geyer, 2003). 205 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +⋯+ 𝛽𝑘𝑋𝑘𝑖 , 𝑖 = 1,2,⋯ ,𝑁 (12) 

 

where βk are the population coefficients (i.e., parameters), and Xki is the k-th predictor of the i-th observation (a value that 

describes the variable Yi to be predicted). In this study, the independent variables were the RGB, BRD, and Y mean, mode, 

frequency of mode, skewness, kurtosis, quantile, as well as the Julian day, hour, and SZA. The dependent variable was the 210 

cloud cover observed by human eyes. 

 

3.2 k-Nearest neighbor (kNN) 

The kNN method involves non-parametric, instance-based learning, and is one of the simplest predictive models in machine 
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learning. The kNN algorithm finds the k-nearest neighbors to the query in the data feature space, as shown in Fig. 3b, and then 215 

predicts the query with distance-based weights (Zhang et al., 2018b). That is, a set of independent variables is constructed as 

a cluster, and values corresponding to each neighbor are weighted according to the Euclidean distance and predicted (Martínez 

et al., 2019). In this study, the R “class” package (Ripley and Venables, 2021a) was used and the hyper-parameter setting was 

k = 15. 

 220 

3.3 Support vector regression (SVR) 

SVR is an extended method that can be used for regression analysis by introducing an ε-insensitive loss function to an SVM. 

As shown in Fig. 3c, a hyperplane consisting of support vectors that can classify the maximum margin for the distance between 

vectors is found (Gani et al., 2010; Taghizadeh-Mehrjardi et al., 2017). The optimal hyperplane is obtained by finding w and 

b that minimize the mapping function (Φ(w)), as shown in Eq. (13) (Meyer and Wien, 2021). The constraints are shown in Eq. 225 

(14). Then, as in Eq. (15), the kernel is applied and mapped to a higher dimension. Here, ε determines the threshold of margin, 

ξ is a slack variable to allow error, and C is the allowable cost that can violate the constraint of Eq. (14). In this study, the R 

“e1071” package (Meyer et al., 2021) was used, the SVR kernel was set as a radial basis function (RBF), and the hyper-

parameters were set to epsilon (ε) = 0.12, gamma (γ) = 0.04, and cost (C) = 5. 

 230 

𝛷(𝑤) = min
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖 + 𝜉∗

𝑖
)

𝑛

𝑖=1

 (13) 

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 , 𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉∗
𝑖
, 𝜉𝑖 , 𝜉

∗
𝑖
≥ 0 (14) 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝛾(𝑥𝑖 − 𝑥𝑗)
2) (15) 

 

where subscript i and j are i-th and j-th data point, respectively, and γ is a parameter that controls the RBF kernel width. 

 

3.4 Artificial neural network (ANN) 

An ANN is a mathematical model that mimics a neuron; i.e., the signal transmission system of a biological neural network. As 235 

shown in Fig. 3d, this model consists of an input layer that receives input data, an output layer that outputs prediction results, 

and an invisible hidden layer between the two layers (Rosa et al., 2020). The hidden node of the hidden layer acts like a neuron 

in a neural network and is composed of weight, bias, and an activation function. In this study, we used the R “nnet” package 

(Ripley and Venables, 2021b), which is based on feed-forward neural networks with a single hidden layer that can rapidly learn 

and predict while considering nowcasting. The hyper-parameters of this package were set as follows: size (number of hidden 240 
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nodes) = 7, maxit (maximum number of iterations) = 700, and decay (weight decay parameter) = 0.05. 

 

3.5 Random forest (RF) 

The RF method composes N decision trees by combining randomly selected variables from each node to grow a regression 

tree, as shown in Fig. 3e. An ensemble of the results of each decision tree is obtained, and hence, a prediction result is provided 245 

(Wright et al., 2017). That is, in the RF ensemble learning method, every individual tree of the decision tree contributes to the 

final prediction (Shin et al., 2020; Kim et al., 2021). In this study, the R “Ranger” package (Wright et al., 2018) was used, and 

the hyper-parameters were set to num.trees (the number of trees) = 510, mtry (the number of variables randomly sampled from 

each node) = 7, min.node.size (minimal node size) = 5. 

 250 

3.6 Gradient boosting machine (GBM) 

The GBM uses boosting instead of bagging during resampling and ensemble processes. As shown in Fig. 3f, a model with 

improved predictive power is created by gradually improving upon the parts that the previous model could not predict while 

sequentially generating weak models. The final prediction is calculated from the weighted mean of these results (Friedman, 

2001). In other words, gradient boosting updates the weights iteratively to minimize the difference from the function f(x) that 255 

predicts the actual observation using gradient descent (Ridgeway, 2020). In this study, the R “gbm” package (Greenwell et al., 

2020) was used; the GBM kernel was set to a Gaussian distribution function; and the hyper-parameters were set to n.trees 

(number of trees) = 500, interaction.depth (maximum depth of binary tree) = 5, shrinkage (learning rate) = 0.1. 

 

  260 
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a) Multiple Linear Regression (MLR) b) k-Nearest Neighbor (kNN) 

  

c) Support Vector Regression (SVR) d) Artificial Neural Network (ANN) 

  

e) Random Forest (RF) f) Gradient Boosting Machine (GBM) 

  

Figure 3: Schematic of each machine learning method: MLR (a), kNN (b), SVR (c), ANN (d), RF (e), and GBM (f). 
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4. Results 

4.1 Training and validation results of machine learning methods 

Figure 4 shows the cloud cover prediction results obtained using the training set for each machine learning method. The hyper-265 

parameters were optimized using the training and validation sets. Each box in the figure denotes the ratio (%) of the number 

of observations for each cloud cover in the DROM and the number of predictions for each cloud cover in the SVR model. The 

higher the frequency in the diagonal one-to-one boxes, the better the agreement between the observed and predicted cloud 

cover. In other words, the closer the diagonal one-to-one boxes are to red (i.e., 100%), the higher is the agreement. For the 

training set, the highest human-eye observation data frequency by cloud cover was 26.80% at 0 tenth; this was followed by 270 

19.97% at 10 tenths and 3.65–11.92% at 1–9 tenths. For the SVR model, the 0- and 10-tenths frequencies were 71.88% and 

92.15%, respectively, being the greatest agreement among the machine learning models. As detailed in Table 3, the SVR 

accuracy, recall, and precision for all cloud cover were 0.94, 0.70, and 0.76, respectively, indicating the best prediction 

performance. The accuracy was in the range of 0.91–0.98 for each cloud cover, whereas recall and precision were in the ranges 

of 0.42–0.92 and 0.24–0.99, exhibiting low predictive power in the partly cloudy case. The bias was 0.07 tenth, the RMSE 275 

was 1.05 tenths, and R was 0.96. In the case of the RF model, the 0- and 10-tenths frequencies were 61.79% and 80.65%, 

respectively, being lower than those of the SVR model; however, the prediction for 1–9 tenths exhibited high agreement to 

within ±1 tenth. The accuracy, recall, and precision were 0.93, 0.67, and 0.76, respectively, lower than SVR model, but the 

bias and RMSE were the smallest at 0.02 and 0.71 tenth, respectively, and the R value was the highest at 0.98. However, for 

the validation set, the SVR model prediction performance (accuracy: 0.88, recall: 0.41, precision: 0.51, bias: 0.06 tenth, RMSE: 280 

1.51 tenths, R: 0.93) was better than that of RF model. In other words, the RF model exhibited a tendency to overfit in this 

study. The accuracy of these results exceeds that of the classification machine learning method (0.60–0.85) presented by Dev 

et al. (2016) using day and night image data, and are higher than or similar to the accuracy (0.91–0.94) achieved using the 

regression and deep learning machine learning methods proposed by Shi et al. (2019, 2021) for day and night image data. 

Apart from the SVR and RF methods, the machine learning methods exhibited similar frequency distributions; however, the 285 

accuracy, recall, precision, and R were lower and the RMSE were higher in the order of GBM, kNN, ANN, and MLR. In 

particular, the MLR model had very poor predictive power (accuracy: 0.75, recall: 0.08, precision: 0.78) for 0 tenth using the 

training set. 
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a) Support Vector Regression (SVR) b) Random Forest (RF) 

  

c) Gradient Boosting Machine (GBM) d) k-Nearest Neighbor (kNN) 

  

e) Artificial Neural Network (ANN) f) Multiple Linear Regression (MLR) 

  

Figure 4: Scatter plots of observed cloud cover and that predicted by machine learning methods (SVR (a), RF (b), GBM (c), kNN 290 
(d), ANN (e), and MLR (f)) on the training set. The number of observations for each observed cloud cover are 0: 992, 1: 136, 2: 141, 

3: 156, 4: 149, 5: 135, 6: 221, 7: 271, 8: 320, 9: 441, and 10: 739. 
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Table 3: Prediction performance for all cloud cover of machine learning methods using training and validation sets. 

Model Set Accuracy Recall Precision Bias RMSE R 

SVR 

Training 0.94 0.70 0.76 0.07 1.05 0.96 

Validation 0.88 0.41 0.51 0.06 1.51 0.93 

RF 

Training 0.93 0.67 0.76 0.02 0.71 0.98 

Validation 0.86 0.35 0.53 –0.03 1.55 0.92 

GBM 

Training 0.89 0.47 0.59 –0.00 1.03 0.97 

Validation 0.86 0.36 0.50 –0.06 1.58 0.92 

kNN 

Training 0.88 0.41 0.57 0.15 1.41 0.94 

Validation 0.87 0.37 0.51 0.12 1.78 0.90 

ANN 

Training 0.86 0.33 0.49 0.03 1.69 0.91 

Validation 0.85 0.31 0.46 0.01 1.92 0.88 

MLR 

Training 0.84 0.27 0.46 –0.02 1.90 0.88 

Validation 0.84 0.27 0.46 –0.02 1.94 0.87 

 295 

The relative importance of the input variable of the SVR method, which exhibited the best predictive performance in this study, 

is shown in Fig. 5. BRDQ4 had the highest relative importance at 8.54% whereas RBRmode had the lowest importance at 0.55%. 

Among the RBR data features, RBRQ0 had the highest importance at 7.06% and, among the Y data features, YQ0 had the highest 

importance at 3.78%. In terms of the cumulative relative importance, the BRD-, RBR- and Y-related data features contributed 

38.25%, 31.44%, and 26.20% of the total (100%), respectively, to the cloud cover prediction, and the remaining data features 300 

contributed 4.10%. The relationship between input data features is complex to determine the optimal hyperplane of the SVR 

model, and the variable importance is determined so that the cloud cover can be calculated with the smallest error using the 

observed cloud cover (Singh et al., 2020). Even if the BRD-related data features have the same RBR characteristics, they 

contribute to machine learning more comprehensively by day, night, and cloud presence depending on the BRD value; therefore, 

they are critical to cloud cover calculation. By contrast, the Y-related data feature is sensitive to the RGB brightness (especially 305 

the G brightness) in the image, but the difference in the Y characteristics according to the cloud cover during the day was not 

large; thus, their importance was relatively low. Although time information and SZA can provide information such as daytime, 

nighttime, and sunset/sunrise images, they have the lowest importance because they do not have statistical characteristics that 

can be used to directly calculate cloud cover. The importance of these data features may vary depending on the camera’s sensor 
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(Kazantzidis et al., 2012). 310 

 

 

Figure 5: Variable relative importance of SVR model on training set. 

 

4.2 Test set results for SVR model 315 

Figure 6 shows the total cases and seasonal scatter plots of the DROM cloud cover and the ACOS cloud cover prediction 

calculated from the SVR model using the test set. In the Korean Peninsula, the winter cloud cover is sparse (<5 tenths) as the 

weather is generally clear because of the Siberian air mass. In summer, the rainy season is concentrated under the influence of 

the Yangtze-River and Pacific air masses, and the cloud cover is dense (>5 tenths) until fall because of typhoons (Kim et al., 
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2018a, 2020a,). Furthermore, the Korean Peninsula experiences a westerly wind, cumulus heat generated in the western sea 320 

moves inland, and the cloud cover changes rapidly and continuously (Kim et al., 2021). The cloud cover distributions 

calculated for all test set cases exhibited good agreement with the observed cloud cover, with accuracy, recall, and precision 

of 0.88, 0.42, 0.52, respectively. Further, the bias, RMSE, and R were 0.04 tenth, 1.45 tenths, and 0.93, respectively. In fall, 

the bias, RMSE, and R were –0.12 tenth and 1.30 tenths, and 0.95, respectively, indicating that the difference between the 

observed and calculated cloud cover was small. In winter and summer, the RMSE was larger and R was lower than in the other 325 

seasons. This is because the cloud cover calculation error is large at sunrise and sunset (100° ≥ SZA > 80°), i.e., where daytime 

(SZA ≤ 80°) and nighttime (SZA > 100°) intersect (Lalonde et al., 2010; Alonso et al., 2014; Kim et al., 2020b). 

For the test set daytime cases, the bias, RMSE, and R were 0.10 tenth, 1.20 tenths, and 0.95, respectively, and 0.08 tenth, 1.59 

tenths, and 0.93, respectively, for the night data. However, for sunrise and sunset, these values were –0.22 tenth, 1.71 tenths, 

and 0.90, respectively. Relatively, the bias and RMSE were large and R was low. In spring and autumn, sunrise and sunset 330 

images were learned at similar times (sunrise: 0600–0700 LST, sunset: 1800–1900 LST); however, differences between the 

winter (sunrise: 0700–0800 LST, sunset: 1700–1800 LST) and summer (sunrise: 0500–0600 LST, sunset: 1900–2000 LST) 

results are apparent because sunrise and sunset occurred late or early and exhibited different features from the data features 

learned for those times (Liu et al., 2015; Li et al., 2019). That is, owing to the sunrise/sunset glow, high cloud cover calculation 

errors are obtained at sunrise/sunset, when it is difficult to distinguish between the sky and clouds because of the reddish sky 335 

on a clear day and the bluish cloud on a cloudy day (Kim et al., 2021). Therefore, for the test set, the bias, RMSE, and R for 

sunrise and sunset in spring and autumn were –0.24 tenth, 1.46 tenths, and 0.93, respectively. However, in winter and summer, 

the bias, RMSE, and R were –0.21 tenth, 1.93 tenths, and 0.86, respectively. Nevertheless, the results of this study surpass 

those of Kim et al. (2016) for daytime (0800–1700 LST; bias: –0.36 tenth, RMSE: 2.12 tenths, R: 0.87) and Kim et al. (2020b) 

for nighttime (1900–0600 LST; bias: –0.28 tenth, RMSE: 1.78 tenths, R: 0.91) cases. Shields et al. (2019) employed different 340 

day and night cloud cover calculation algorithms. In that approach, cloud cover calculation errors may occur at sunrise and 

sunset. Therefore, if a day and night continuous cloud cover calculation algorithm is considered, the calculation error for this 

discontinuous time period should be reduced (Huo and Lu, 2009; Li et al., 2019). Figure 7 shows the daily mean cloud cover 

results based on the observed and calculated cloud cover for the test set. For the observed and calculated cloud cover, a bias 

of 0.03 tenth, RMSE of 0.92 tenth, and R of 0.96 were obtained. The coefficient of determination (R2) was 0.92, and the result 345 

calculated from the SVR model constructed in this study explained approximately 92% of the observed data in the test set. 
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a) Total cases 

 

b) Winter c) Spring 

  

d) Summer e) Fall 

  

Figure 6: Scatter plots of total (a) and seasonal (b–e) cloud cover based on observed (DROM) and calculated (ACOS) cloud cover 

for the test set. Parentheses values are the number of observations for each cloud cover in DROM. 

  350 
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Figure 7: Daily mean time series of observed (DROM) and calculated (ACOS) cloud cover for the test set. 

 

Figure 8 shows the frequency distribution of the differences between ACOS and DROM by season and time. In this frequency 

distribution, the higher the 0 tenth frequency, the higher the agreement between the observed and calculated cloud cover. The 355 

highest 0 tenth frequency was obtained in winter (46.05%) and the lowest in spring (35.58%), but 41.69% agreement was 

obtained for all seasons. Conditioned on the time of day, high agreement of approximately 44% was obtained for both daytime 

and nighttime, but the lowest agreement (30.49%) was obtained for sunrise and sunset. Previous studies obtained a difference 

of approximately 2 tenths from the observed cloud cover for the cloud cover calculated based on the ground-based imager data 

(Kazantzidis et al., 2012; Kim et al., 2016, 2020b; Wang et al., 2021). When a difference of up to 2 tenths was allowed between 360 

the observed and calculated cloud cover, the agreement was 90.95%, as detailed in Table 4. When a difference up to 1 tenth 

between both cloud cover results was allowed for all cases, the agreement was 79.05%. When the difference was within 2 

tenths, high agreement of 86.59% to 94.41% by season and by time was obtained. These results reveal greater agreement than 

those obtained by Cazorla et al. (2008), Kreuter et al. (2009), Kazantzidis et al. (2012), Krinitskiy and Sinitsyn (2016), Fa et 

al. (2019), Kim et al. (2016, 2020b), Xie et al. (2020), and Wang et al. (2021). In those works, 80–94% agreement was achieved 365 

when the allowed difference between the observed and calculated cloud cover was 2 oktas (2.5 tenths) or 2 tenths for day, 

night, and day and night cases. 

  



21 

 

a) By season b) By time 

  

Figure 8: Relative frequency distributions of differences between observed (DROM) and calculated (ACOS) cloud cover by season 

and time for the test set. 370 

 

Table 4: Concordance frequency (%) according to the difference (Diff.) between the observed (DROM) and calculated (ACOS) cloud 

cover for the test set. 

Diff. Winter Spring Summer Fall Annual Daytime 
Night-

time 

Sunrise 

/Sunset 

±0 

tenth 
46.05 35.58 39.84 45.48 41.69 43.96 43.88 30.49 

±1 

tenth 
78.53 76.01 78.36 83.24 79.05 84.29 77.45 68.70 

±2 

tenths 
90.11 88.68 90.50 94.41 90.95 93.66 89.69 86.59 

 

5. Conclusions 375 

In this study, data features of images captured using ACOS, a camera-based imager on the ground, were used in conjunction 

with machine learning methods to continuously calculate cloud cover for 24-h, at day and night. The data features of the images 

used as the machine learning input data were the mean, mode, frequency of mode, skewness, kurtosis, and quantile (Q0–Q4) 

of the RBR, BRD, and Y frequency distributions, respectively, along with the Julian day, hour, and SZA. The RBR, BRD, and 

Y data features were calculated through pre-processing using the methods described by Kim et al. (2020b) (masking removal 380 

and distortion correction). These features indicate the sky and cloud colors depending on the light scattering characteristics in 

the day and night, along with the presence or absence of clouds and the position of the sun (Heinle et al., 2010; Blazek and 
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Pata, 2015; Li et al., 2019). The collected image data (100%) were composed of training (50%), validation (30%), and test 

(20%) sets, and were used for optimization of the models produced by the machine learning methods, comparative analysis of 

the prediction results of each machine learning method, and verification of the predicted cloud cover. In this study, the SVR, 385 

RF, GBM, kNN, ANN, and MLR supervised machine learning methods were used. Among these methods, the SVR model 

exhibited the best prediction performance, with accuracy, recall, and precision of 0.94, 0.70, and 0.76, respectively. The cloud 

cover calculation results produced by the SVR on the test set had a bias of 0.04 tenth, RMSE of 1.45 tenths, and R of 0.93. 

With respect to this calculation result, when a difference of 2 tenths from the observed cloud cover was allowed, the agreement 

was 41.69%, 79.05%, and 90.95% for 0, 1, and 2 tenths difference, respectively. 390 

Using the image data features and machine learning methods (best: SVR, worst: MLR) considered in this study, high accuracy 

cloud cover calculation can be expected; further, this approach is suitable for nowcasting. Based on the cloud information 

obtained from such cloud detection and cloud cover calculation makes it possible to calculate the physical properties of various 

clouds (Wang et al., 2016; Ye et al., 2017; Román et al., 2018; Zhang et al., 2018a). In other words, it is possible to calculate 

cloud based height and cloud motion vector through the geometric and kinematic analysis of continuous images using single 395 

or multiple cameras (Nguyen and Kleissl, 2014), which can be used for cloud type classification according to cloud cover, 

cloud based height, and cloud color feature (Heinle et al., 2010; Ghonima et al., 2012). Ground-based observation of clouds 

using a camera-based imager, accompanied by cloud characteristic calculation, is an economical method that can replace 

manned observations at synoptic observatories with automated (unmanned) observations. In addition, objective and low-

uncertainty cloud observation is expected to be possible through widespread distribution of instruments such as those used in 400 

this study, to unmanned as well as manned observatories. Therefore, active research and development of imager-based cloud 

observation instruments is merited. 

 

Code availability: The code for this paper is available from the corresponding author. 

Sample availability: The sample for this paper are available from the corresponding author. 405 

Author contribution: BYK carried out this study and the analysis. The results were discussed with JWC and KHC. BYK 

developed the machine learning model code and performed the simulations and visualizations. The manuscript was mainly 

written by BYK with contributions by JWC and KHC. 

Competing interests: The authors declare that they have no conflict of interest. 

Acknowledgements: This work was funded by the Korea Meteorological Administration Research and Development Program 410 

“Development of Application Technology on Atmospheric Research Aircraft” under Grant (KMA2018-00222). 

References 

Al Banna, M. H., Taher, K. A., Kaiser, M. S., Mahmud, M., Rahman, M. S., Hosen, A. S., Cho, G. H.: Application of artificial 

intelligence in predicting earthquakes: state-of-the-art and future challenges. IEEE Access, 8, 192880–192923, 



23 

 

doi:10.1109/ACCESS.2020.3029859, 2020. 415 

Al-lahham, A., Theeb, O., Elalem, K., A Alshawi, T., A Alshebeili, S.: Sky Imager-Based Forecast of Solar Irradiance Using 

Machine Learning. Electron., 9(10), 1700, doi:10.3390/electronics9101700, 2020. 

Alonso, J., Batlles, F. J., López, G., Ternero, A.: Sky camera imagery processing based on a sky classification using radiometric 

data. Energy, 68, 599–608, doi:10.1016/j.energy.2014.02.035, 2014. 

Alonso-Montesinos, J.: Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera. Remote Sens., 12(9), 1382, 420 

doi:10.3390/rs12091382, 2020. 

Azhar, M. A. D. M., Hamid, N. S. A., Kamil, W. M. A. W. M., Mohamad, N. S.: Daytime Cloud Detection Method Using the 

All-Sky Imager over PERMATApintar Observatory. Universe, 7(2), 41, doi:10.3390/universe7020041, 2021. 

Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res., 13(2), 281–305, 2012. 

Blazek, M., Pata, P.: Colour transformations and K-means segmentation for automatic cloud detection. Meteorol. Z., 24(5), 425 

503–509, doi:10.1127/metz/2015/0656, 2015. 

Boers, R., De Haij, M. J., Wauben, W. M. F., Baltink, H. K., Van Ulft, L. H., Savenije, M., Long, C. N.: Optimized fractional 

cloudiness determination from five ground‐based remote sensing techniques. J. Geophys. Res., 115, D24116, 

doi:10.1029/2010JD014661, 2010. 

Calbó, J., Long, C. N., González, J. A., Augustine, J., McComiskey, A.: The thin border between cloud and aerosol: Sensitivity 430 

of several ground based observation techniques. Atmos. Res., 196, 248–260, doi:10.1016/j.atmosres.2017.06.010, 2017. 

Cazorla, A., Husillos, C., Antón, M., Alados-Arboledas, L.: Multi-exposure adaptive threshold technique for cloud detection 

with sky imagers. Sol. Energy, 114, 268–277, doi:10.1016/j.solener.2015.02.006, 2015. 

Chauvin, R., Nou, J., Thil, S., Grieu, S.: Modelling the clear-sky intensity distribution using a sky imager. Sol. Energy, 119, 

1–17, doi:10.1016/j.solener.2015.06.026, 2015. 435 

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., Safaei, B.: Machine learning in predictive 

maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211, doi:10.3390/su12198211, 

2020. 

Costa-Surós, M., Calbó, J., González, J. A., Long, C. N.: Comparing the cloud vertical structure derived from several methods 

based on radiosonde profiles and ground-based remote sensing measurements. Atmos. Meas. Tech., 7(8), 2757–2773, 440 

doi:10.5194/amt-7-2757-2014, 2014. 

Dev, S., Nautiyal, A., Lee, Y. H., Winkler, S.: Cloudsegnet: A deep network for nychthemeron cloud image segmentation. IEEE 

Geosci. Remote Sens. Lett., 16(12), 1814–1818, doi:10.1109/lgrs.2019.2912140, 2019. 

Dev, S., Savoy, F. M., Lee, Y. H., Winkler, S.: Design of low-cost, compact and weather-proof whole sky imagers for High-

Dynamic-Range captures. In: IGARSS 2015–2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 445 

pp. 5359–5362, 2015. 

Dev, S., Savoy, F. M., Lee, Y. H., Winkler, S.: Nighttime sky/cloud image segmentation. In: ICIP 2017–2017 IEEE International 

Conference on Image Processing. IEEE, pp. 345–349, 2017. 



24 

 

Dev, S., Wen, B., Lee, Y. H., Winkler, S.: Ground-based image analysis: A tutorial on machine-learning techniques and 

applications. IEEE Geosci. Remote Sens. M., 4(2), 79–93, doi:10.1109/MGRS.2015.2510448, 2016. 450 

Fa, T., Xie, W., Wang, Y., Xia, Y.: Development of an all-sky imaging system for cloud cover assessment. Appl. Opt., 58(20), 

5516–5524, doi:10.1364/AO.58.005516, 2019. 

Friedman, J. H.: Greedy function approximation: A gradient boosting machine. Ann. Stat., 29(5), 1189–1232, 

doi:10.1214/aos/1013203451, 2001. 

Gani, W., Taleb, H., Limam, M.: Support vector regression based residual control charts. J. Appl. Stat., 37(2), 309–324, 455 

doi:10.1080/02664760903002667, 2010. 

Geyer, C. J.: Generalized linear models in R. R Reference Document, pp. 1–23, available at: 

https://www.stat.umn.edu/geyer/5931/mle/glm.pdf (last access: 1 June 2021), 2003. 

Ghonima, M. S., Urquhart, B., Chow, C. W., Shields, J. E., Cazorla, A., Kleissl, J.: A method for cloud detection and opacity 

classification based on ground based sky imagery. Atmos. Meas. Tech., 5(11), 2881–2892, doi:10.5194/amt-5-2881-2012, 2012. 460 

Greenwell, B., Boehmke, B., Cunningham, J., GBM Developers: Package ‘gbm’. R Reference Document, pp. 1–39, available 

at: https://cran.r-project.org/web/packages/gbm/gbm.pdf (last access: 1 June 2021), 2020. 

Heinle, A., Macke, A., Srivastav, A.: Automatic cloud classification of whole sky images. Atmos. Meas. Tech., 3(3), 557–567, 

doi:10.5194/amt-3-557-2010, 2010. 

Huo, J., Lu, D.: Cloud determination of all-sky images under low-visibility conditions. J. Atmos. Ocean. Technol., 26(10), 465 

2172–2181, doi:10.1175/2009JTECHA1324.1, 2009. 

Kazantzidis, A., Tzoumanikas, P., Bais, A. F., Fotopoulos, S., Economou, G.: Cloud detection and classification with the use 

of whole-sky ground-based images. Atmos. Res., 113, 80–88, doi:10.1016/j.atmosres.2012.05.005, 2012. 

Kim, B. Y., Jee, J. B., Zo, I. S., Lee, K. T.: Cloud cover retrieved from skyviewer: A validation with human observations. Asia-

Pac. J. Atmos. Sci., 52(1), 1–10, doi:10.1007/s13143-015-0083-4, 2016. 470 

Kim, B. Y., Lee, K. T.: Radiation component calculation and energy budget analysis for the Korean Peninsula region. Remote 

Sens., 10(7), 1147, doi:10.3390/rs10071147, 2018a. 

Kim, B. Y., Lee, K. T., Jee, J. B., Zo, I. S.: Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 

AHI data. Remote Sens. Environ., 204, 498–508, doi:10.1016/j.rse.2017.10.006, 2018b. 

Kim, B. Y., Lee, K. T.: Using the himawari-8 ahi multi-channel to improve the calculation accuracy of outgoing longwave 475 

radiation at the top of the atmosphere. Remote Sens., 11(5), 589, doi:10.3390/rs11050589, 2019. 

Kim, B. Y., Cha, J. W., Ko, A. R., Jung, W., Ha, J. C.: Analysis of the occurrence frequency of seedable clouds on the Korean 

Peninsula for precipitation enhancement experiments. Remote Sens., 12(9), 1487, doi:10.3390/rs12091487, 2020a. 

Kim, B. Y., Cha, J. W.: Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observation 

System (ACOS) Package. Remote Sens., 12(14), 2314, doi:10.3390/rs12142314, 2020b. 480 

Kim, B. Y., Cha, J. W., Jung, W., Ko, A. R.: Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation 

of Water Resource Augmentation and Economic Benefits. Remote Sens., 12(22), 3730, doi:10.3390/rs12223730, 2020c. 



25 

 

Kim, B. Y., Cha, J. W., Chang, K. H., Lee, C.: Visibility Prediction over South Korea Based on Random Forest. Atmosphere, 

12(5), 552, doi:10.3390/atmos12050552, 2021. 

Kreuter, A., Zangerl, M., Schwarzmann, M., Blumthaler, M.: All-sky imaging: a simple, versatile system for atmospheric 485 

research. Appl. Opt., 48(6), 1091–1097, doi:10.1364/AO.48.001091, 2009. 

Krinitskiy, M. A., Sinitsyn, A. V.: Adaptive algorithm for cloud cover estimation from all-sky images over the sea. Oceanology, 

56(3), 315–319, doi:10.1134/S0001437016020132, 2016. 

Kyba, C. C., Ruhtz, T., Fischer, J., Hölker, F.: Red is the new black: how the colour of urban skyglow varies with cloud cover. 

Mon. Notices Royal Astron. Soc., 425(1), 701–708, doi:10.1111/j.1365-2966.2012.21559.x, 2012. 490 

Lalonde, J. F., Narasimhan, S. G., Efros, A. A.: What do the sun and the sky tell us about the camera?. Int. J. Comput. Vis., 

88(1), 24–51, doi:10.1007/s11263-009-0291-4, 2010. 

Lee, S. H., Kim, B. Y., Lee, K. T., Zo, I. S., Jung, H. S., Rim, S. H.: Retrieval of reflected shortwave radiation at the top of the 

atmosphere using Himawari-8/AHI data. Remote Sens., 10(2), 213, doi:10.3390/rs10020213, 2018. 

Li, Q., Lu, W., Yang, J.: A hybrid thresholding algorithm for cloud detection on ground-based color images. J. Atmos. Ocean. 495 

Technol., 28(10), 1286–1296, doi:10.1175/JTECH-D-11-00009.1, 2011. 

Li, X., Lu, Z., Zhou, Q., Xu, Z.: A Cloud Detection Algorithm with Reduction of Sunlight Interference in Ground-Based Sky 

Images. Atmosphere, 10(11), 640, doi:10.3390/atmos10110640, 2019. 

Liu, S., Zhang, L., Zhang, Z., Wang, C., Xiao, B.: Automatic cloud detection for all-sky images using superpixel segmentation. 

IEEE Geosci. Remote Sens. Lett., 12(2), 354–358, doi:10.1109/LGRS.2014.2341291, 2014. 500 

Long, C. N., Sabburg, J. M., Calbó, J., Pagès, D.: Retrieving cloud characteristics from ground-based daytime color all-sky 

images. J. Atmos. Ocean. Technol., 23(5), 633–652, doi:10.1175/JTECH1875.1, 2006. 

Lothon, M., Barnéoud, P., Gabella, O., Lohou, F., Derrien, S., Rondi, S., Chiriaco, M., Bastin, S., Dupont, J. C., Haeffelin, M., 

Badosa, J., Pascal, N., Montoux, N.: ELIFAN, an algorithm for the estimation of cloud cover from sky imagers. Atmos. Meas. 

Tech., 12(10), 5519–5534, doi:10.5194/amt-12-5519-2019, 2019. 505 

Mantelli Neto, S. L., von Wangenheim, A., Pereira, E. B., Comunello, E.: The use of Euclidean geometric distance on RGB 

color space for the classification of sky and cloud patterns. J. Atmos. Ocean. Technol., 27(9), 1504–1517, 

doi:10.1175/2010JTECHA1353.1, 2010. 

Martínez, F., Frías, M. P., Charte, F., Rivera, A. J.: Time Series Forecasting with KNN in R: the tsfknn Package. R J., 11(2), 

229, doi:10.32614/RJ-2019-004, 2019. 510 

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. C., Lin, C. C.: Package ‘e1071’. R Reference 

Document, pp. 1–66, available at: https://cran.r-project.org/web/packages/e1071/e1071.pdf (last access: 1 June 2021), 2021. 

Meyer, D., Wien, F. H. T.: Support vector machines. The Interface to libsvm in package e1071, pp. 1–28, 2015. 

Nguyen, D. A., Kleissl, J.: Stereographic methods for cloud base height determination using two sky imagers. Sol. Energy, 

107, 495–509, doi:10.1016/j.solener.2014.05.005, 2014. 515 

Olive, D. J.: Multiple linear regression. In Linear regression. Springer, Cham, pp. 17–83, 2017. 



26 

 

Peng, Z., Yu, D., Huang, D., Heiser, J., Yoo, S., Kalb, P.: 3D cloud detection and tracking system for solar forecast using 

multiple sky imagers. Sol. Energy, 118, 496–519, doi:10.1016/j.solener.2015.05.037, 2015. 

Ridgeway, G.: Generalized Boosted Models: A guide to the gbm package. Update 1(1), pp. 1–15, 2020. 

Ripley, B., Venables, W.: Package ‘class’. R Reference Document, pp. 1–19, available at: https://cran.r-520 

project.org/web/packages/class/class.pdf (last access: 1 June 2021), 2021a. 

Ripley, B., Venables, W.: Package ‘nnet’. R Reference Document, pp. 1–11, available at: https://cran.r-

project.org/web/packages/nnet/nnet.pdf (last access: 1 June 2021), 2021b. 

Román, R., Cazorla, A., Toledano, C., Olmo, F. J., Cachorro, V. E., de Frutos, A., Alados-Arboledas, L.: Cloud cover detection 

combining high dynamic range sky images and ceilometer measurements. Atmos. Res., 196, 224–236, 525 

doi:10.1016/j.atmosres.2017.06.006, 2017. 

Rosa, J. P., Guerra, D. J., Horta, N. C., Martins, R. M., Lourenço, N. C.: Overview of Artificial Neural Networks. In Using 

Artificial Neural Networks for Analog Integrated Circuit Design Automation. Springer, Cham, pp. 21–44, 2020. 

Sazzad, T. S., Islam, S., Mamun, M. M. R. K., Hasan, M. Z.: Establishment of an efficient color model from existing models 

for better gamma encoding in image processing. Int. J. Image Process. (IJIP), 7(1), 90, 2013. 530 

Shi, C., Zhou, Y., Qiu, B., He, J., Ding, M., Wei, S.: Diurnal and nocturnal cloud segmentation of all-sky imager (ASI) images 

using enhancement fully convolutional networks. Atmos. Meas. Tech., 12(9), 4713–4724, doi:10.5194/amt-12-4713-2019, 

2019. 

Shi, C., Zhou, Y., Qiu, B.: CloudU-Netv2: A Cloud Segmentation Method for Ground-Based Cloud Images Based on Deep 

Learning. Neural Process. Lett., pp. 1–14, doi:10.1007/s11063-021-10457-2, 2021. 535 

Shields, J. E., Burden, A. R., Karr, M. E.: Atmospheric cloud algorithms for day/night whole sky imagers. Appl. Opt., 58(26), 

7050–7062, doi:10.1364/AO.58.007050, 2019. 

Shields, J. E., Karr, M. E., Johnson, R. W., Burden, A. R.: Day/night whole sky imagers for 24-h cloud and sky assessment: 

history and overview. Appl. Opt., 52(8), 1605–1616, doi:10.1364/AO.52.001605, 2013. 

Shimoji, N., Aoyama, R., Hasegawa, W.: Spatial variability of correlated color temperature of lightning channels. Results Phys., 540 

6, 161–162, doi:10.1016/j.rinp.2016.03.004, 2016. 

Shin, J. Y., Kim, B. Y., Park, J., Kim, K. R., Cha, J. W.: Prediction of Leaf Wetness Duration Using Geostationary Satellite 

Observations and Machine Learning Algorithms. Remote Sens., 12(18), 3076, doi:10.3390/rs12183076, 2020. 

Singh, A., Kotiyal, V., Sharma, S., Nagar, J., Lee, C. C.: A machine learning approach to predict the average localization error 

with applications to wireless sensor networks. IEEE Access, 8, 208253–208263, doi:10.1109/ACCESS.2020.3038645, 2020. 545 

Sunil, S., Padmakumari, B., Pandithurai, G., Patil, R. D., Naidu, C. V.: Diurnal (24 h) cycle and seasonal variability of cloud 

fraction retrieved from a Whole Sky Imager over a complex terrain in the Western Ghats and comparison with MODIS. Atmos. 

Res., 248, 105180, doi:10.1016/j.atmosres.2020.105180, 2021. 

Taghizadeh-Mehrjardi, R., Neupane, R., Sood, K., Kumar, S.: Artificial bee colony feature selection algorithm combined with 

machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA. Carbon 550 



27 

 

Manag., 8(3), 277–291, doi:10.1080/17583004.2017.1330593, 2017. 

Valentín, L., Peña-Cruz, M. I., Moctezuma, D., Peña-Martínez, C. M., Pineda-Arellano, C. A., Díaz-Ponce, A.: Towards the 

Development of a Low-Cost Irradiance Nowcasting Sky Imager. Appl. Sci., 9(6), 1131, doi:10.3390/app9061131, 2019. 

Wang, G., Kurtz, B., Kleissl, J.: Cloud base height from sky imager and cloud speed sensor. Sol. Energy, 131, 208–221, 

doi:10.1016/j.solener.2016.02.027, 2016. 555 

Wang, Y., Liu, D., Xie, W., Yang, M., Gao, Z., Ling, X., Huang, Y., Li, C., Liu, Y., Xia, Y.: Day and Night Clouds Detection 

Using a Thermal-Infrared All-Sky-View Camera. Remote Sens., 13(9), 1852, doi:10.3390/rs13091852, 2021. 

Wright, M. N., Ziegler, A.: Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. 

Softw., 77, 1–17, doi:10.18637/jss.v077.i01, 2017. 

Wright, M. N., Wager, S., Probst, P.: Package ‘ranger’. R Reference Document, pp. 1–25, available at: https://cran.r-560 

project.org/web/packages/ranger/ranger.pdf (last access: 1 June 2021), 2020. 

Xie, W., Liu, D., Yang, M., Chen, S., Wang, B., Wang, Z., Xia, Y., Liu, Y., Wang, Y., Zhang, C.: SegCloud: a novel cloud image 

segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation. Atmos. 

Meas. Tech., 13(4), 1953–1961, doi:10.5194/amt-13-1953-2020, 2020. 

Xiong, Z., Cui, Y., Liu, Z., Zhao, Y., Hu, M., Hu, J.: Evaluating explorative prediction power of machine learning algorithms 565 

for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci., 171, 109203, 

doi:10.1016/j.commatsci.2019.109203, 2020. 

Yabuki, M., Shiobara, M., Nishinaka, K., Kuji, M.: Development of a cloud detection method from whole-sky color images. 

Polar Sci., 8(4), 315–326, doi:10.1016/j.polar.2014.07.004, 2014. 

Yang, J., Min, Q., Lu, W., Yao, W., Ma, Y., Du, J., Lu, T., Liu, G.: An automated cloud detection method based on the green 570 

channel of total-sky visible images. Atmos. Meas. Tech., 8(11), 4671–4679, doi:10.5194/amt-8-4671-2015, 2015. 

Yang, J., Min, Q., Lu, W., Ma, Y., Yao, W., Lu, T., Du, J., Liu, G.: A total sky cloud detection method using real clear sky 

background. Atmos. Meas. Tech., 9(2), 587–597, doi:10.5194/amt-9-587-2016, 2016. 

Ye, L., Cao, Z., Xiao, Y.: DeepCloud: Ground-based cloud image categorization using deep convolutional features. IEEE Trans. 

Geosci. Remote Sens., 55(10), 5729–5740, doi:10.1109/TGRS.2017.2712809, 2017. 575 

Ying, X.: An overview of overfitting and its solutions. In Journal of Physics: Conference Series. IOP Publishing, 1168(2), p. 

022022, 2019. 

Yoshida, S., Misumi, R., Maesaka, T.: Early Detection of Convective Echoes and Their Development Using a Ka-Band Radar 

Network. Weather Forecast., 36(1), 253–264, doi:10.1175/WAF-D-19-0233.1, 2021. 

Yun, H. K., Whang, S. M.: Development of a cloud cover reader from whole sky images. Int. J. Eng. Technol., 7, 33, 580 

doi:10.14419/ijet.v7i3.33.21023, 2018. 

Zhang, J., Liu, P., Zhang, F., Song, Q.: CloudNet: Ground‐based cloud classification with deep convolutional neural network. 

Geophys. Res. Lett., 45(16), 8665–8672, doi:10.1029/2018GL077787, 2018a. 

Zhang, S., Cheng, D., Deng, Z., Zong, M., Deng, X.: A novel kNN algorithm with data-drive k parameter computation. Pattern 



28 

 

Recognit. Lett., 109, 44–54, doi:10.1016/j.patrec.2017.09.036, 2018b. 585 


