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Abstract. Warm clouds, consisting of liquid cloud droplets, play an important role in modulating the amount of 

incoming solar radiation to Earth’s surface and thus, the climate. The size and number concentration of these 

cloud droplets control the reflectance of the cloud, the formation of precipitation and ultimately, the lifetime of 

the cloud. Therefore, in situ observations of the number and diameter of cloud droplets are frequently performed 

with cloud and aerosol spectrometers, which determine the optical diameters of cloud particles (in the range of up 20 

to a few tens of microns) by measuring their forward scattering cross sections in visible light and comparing these 

values with Mie-theoretical computations. The use of such instruments must rely on a fast working scheme 

consisting of a limited pre-defined uneven grid of cross section values that corresponds to a theoretically derived 

uneven set of size intervals (bins). However, as more detailed structural analyses of warm clouds are needed to 

improve future climate projects, we present a new numerical post-flight methodology using recorded particle-by-25 

particle sample files. The Mie formalism produces a complicated relationship between a particle’s diameter and 

its forward scattering cross section. This relationship cannot be expressed in an analytically closed form and it 

should be numerically computed point by point, over a certain grid of diameter values. The optimal resolution 

required for constructing the diagram of this relationship is therefore analysed. Cloud particle statistics are further 

assessed using a fine grid of particle diameters in order to capture the finest details of the cloud particle size 30 

distributions. The possibility and the usefulness of using coarser size grids, with either uneven or equal intervals 

is also discussed. For coarse equidistant size grids, the general expressions of cloud microphysical parameters are 

calculated and the ensuing relative errors are discussed in detail. The proposed methodology is further applied to 

a subset of measured data and it is shown that the overall uncertainties in computing various cloud parameters are 

mainly driven by the measurement errors of the forward scattering cross section for each particle. Finally, the 35 

influence of the relatively large imprecision in the real and imaginary parts of the refractive index of cloud droplets 

on the size distributions and on the ensuing cloud parameters is analysed. It is concluded that, in the presence of 

high atmospheric loads of hydrophilic and light absorbing aerosols, such imprecisions may drastically affect the 

reliability of the cloud data obtained with cloud and aerosol spectrometers. Some complementary measurements 

for improving the quality of the cloud droplet size distributions obtained in post-flight analyses are suggested. 40 
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1. Introduction 

Understanding the microphysics of clouds is a key component both in assessing future climate change and in 

operational weather forecast, with vast implications for modern domestic activities ranging from agriculture to 

energy harvesting and aviation. The cloud droplet size distribution has long been recognised as particularly 

important for the Earth’s energy balance through the so-called cloud albedo effect (Twomey, 1977). The in-cloud 45 

microphysical processes involved in this effect are strongly influenced by the spatiotemporal variation in the 

detailed shape of the cloud droplet size distribution (see, for example, Feingold et al., 1997; Liu and Daum, 2002; 

Iorga and Stefan, 2007; Liu et al., 2008; Chen et al., 2016). It is currently recognized that in situ measurements 

are required to properly characterize the highly complex microphysical processes occurring in clouds in order to 

efficiently apply various models for resultant cloud albedo. In this context, as in situ investigations continue to 50 

offer the best spatiotemporal accuracy of cloud droplet measurements, one of the most useful types of airborne 

instruments is casted into the generic name of Cloud and Aerosol Spectrometer (CAS). Such devices, which are 

essentially a variant of the so-called optical particle counters (OPC), sort out cloud droplets based on their optical 

diameters, by measuring the forward scattering cross section (FWSCS) of a laser beam of known wavelength from 

cloud droplets entering the sample volume of the instrument (Baumgardner et al., 2001). The standard CAS 55 

measurement procedure can be split into two distinct phases, an instrumental and a numerical phase. The 

instrumental phase deals with a broad range of problems such as bringing the studied particles into the laser beam 

(within an air stream flowing with a known rate), selecting valid particles, collecting the scattered light on 

specialized sensors, and amplifying and recording the electrical output etc. The net product of this process is the 

measured value of the FWSCS for the qualified cloud particle. 60 

Meanwhile, the numerical phase of a CAS measurement crucially involves the comparison of this measured value 

to the theoretical scattering cross section of pure water spheres (computed within the classical Mie formalism). 

The instrumental phase of the CAS measurement procedure is well documented in the literature (Baumgardner et 

al., 1985; Baumgardner and Spowart, 1990; Baumgardner et al., 1992; Baumgardner et al., 2001; Baumgardner 

and Korolev, 1997; Glen and Brooks, 2013) and will not be discussed in the present study. Instead, the focus will 65 

be on the numerical phase leading to the optical sizing of the cloud particles. 

 The typical range of particle diameters that can be analysed by a CAS is between 0.5-50 µm. However, the 

comparison step is often ambiguous due to the complicated quasi-monotonic dependence of the scattering cross 

section on the diameter of the target sphere. Owing to this behaviour, a measured value of the cross section 

corresponds in most cases to several diameters. Partly to alleviate this drawback, and partly to accelerate the (in-70 

flight) comparison step, the size distribution is commonly constructed over a limited partition of uneven widths 

called bins. The limits of each size bin should be established unambiguously, in the sense that to each boundary 

corresponds a FWSCS value, or threshold, which cannot be assigned to any other diameter of a pure water sphere. 

The user has some freedom in setting the limits of the size bins, but the choice should be made in such a way that 

the corresponding thresholds of FWSCS are all unambiguous. The result is a partition of the FWSCS range in an 75 

equal number of uneven intervals, or cross section bins, associated to the chosen structure of the size bins. During 

the in-flight data acquisition, the measured values of FWSCS for qualifying cloud droplets are readily “sifted” 

through the grid of cross section bins and then assigned and counted in the suitable diameter bins. To optimize 

the statistical analysis of the cloud droplets, the operator should choose the limits of the diameter bins according 

to the range of droplet sizes expected in the sampled cloud. If, for example, the main focus is on small (few 80 
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microns) droplets, then more size bins should be designated in the range of such diameters. For reasons that will 

become clear in the next sections, the number of bin limits having unambiguous FWSCS thresholds tends to be 

larger in this case. However, for counting mainly droplets that are larger than 10 m the dependence of the FWSCS 

on the particles’ diameters becomes so riddled that fewer size bins with valid thresholds can be assigned. With 

wider bins, the ensuing size distributions obviously become less accurate. The sizing precision can be improved 85 

if each particle’s FWSCS response is considered separately and its finite set of possible values for the optical 

diameter is sorted out. However, such a feat would entail quite intensive and time-consuming computations, which 

are usually not at hand for in-flight data acquisition. Also, retaining the FWSCS response for all detected cloud 

particles proves impractical given the overwhelming file sizes that would be produced during a normal session of 

measurements. For these reasons, it is common to discard the individual particle data once it is assigned to a size 90 

bin. 

Nevertheless, certain CAS configurations allow for some sampling of the full particle-by-particle (PbP) data to be 

retained in dedicated output files. More precisely, the in-flight measurements are structured in finite time intervals 

called sampling instances, most conveniently one second long. In normal clouds, large numbers (frequently 

several thousands) of droplets can be detected and measured during such sampling instances. The in-flight 95 

processing software may allow the storage of the FWSCS data for the first few hundreds (e.g. the first 292) of 

each sampling instance. A separate PbP output file containing this data is subsequently generated. As the selection 

of the particles contributing to the PbP data file appear to be completely random, their set can be considered as 

statistically representative for the entire set of detected particles during a measurement session. This assumption 

is fundamental for our proposed use of PbP data in detailed post-flight analyses. 100 

In the following sections we present a methodology for obtaining detailed droplet size distributions from such 

PbP sample files. This study relies on an analysis of a “most detailed” shape of the FWSCS-diameter diagram for 

pure water. As all local “ripples” of this diagram may play a role in sizing cloud droplets, it is concluded that the 

size distributions of various cloud parameters, as well as their bulk values, are most accurately expressed in post-

flight analyses by using “the finest” equidistant division (or mesh points) of the range of particle diameters. 105 

Nevertheless, for certain purposes, droplet distributions over coarser size grids (which are readily available from 

the “basic” ones obtained over the finest set of equidistant mesh points) may prove more practical. An obvious 

example is the design of unambiguous divisions of the whole range of diameters into uneven size bins for use in 

in-flight recordings. Also, coarser equidistant size grids can be very convenient in post-flight error evaluation of 

resulting cloud parameters. 110 

The proposed methodology is illustrated on short (few minutes) selections of data recorded during previous 

measurement campaigns of water clouds with an airborne CAS instrument. Error assessment is also performed in 

detail for the results obtained with the considered example data. 

Additionally, some possible influences of atmospheric aerosols on the outcomes of the CAS measurements are 

discussed, with emphasis on the possible alteration of the optical properties of cloud droplets by the dissolving or 115 

the inclusion (starting from the nucleation step) of sub-micron particles of hygroscopic/hydrophilic aerosol. The 

importance of the optical properties of measured particles has been long addressed in the literature (Liu et al., 

1974; Johnson and Osborne, 2011; Rosenberg et al., 2012), insisting mainly on aerosol sizing and on instrument 

calibration issues. The wavelength of the light provided by a CAS light source is normally chosen in a range where 

pure water has virtually no absorption. The whole sizing procedure assumes that any measured particle is a droplet 120 
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of pure water and the FWSCS-diameter diagram, which is the basic comparison tool, is constructed for the specific 

case of pure water. It follows that a significant increase in the absorption and/or refractivity properties of 

“contaminated” cloud droplets may induce drastic changes in their sizing from comparisons with the pure water 

diagram. These changes, if very numerous, may further degrade the objectivity of CAS measurements, the ensuing 

size distributions of cloud droplets and the values of important bulk cloud properties. To improve the reliability 125 

of such results, some complementary measurements are suggested. 

2. The detailed shape of the FWSCS-diameter diagram 

According to Mie theory, the differential scattering cross section of light on dielectric spheres with given complex 

refractive indices is a complicated function of both the scattering angle and the diameters of the scatterers. The 

details of this formalism can be found in any classic book on the subject (e.g. Bohren and Huffmann, 1983), so 130 

its derivation is omitted in this paper. As the intensity of the scattered light cannot be determined at a specific 

value of the scattering angle, any instrument used for such measurements is designed to capture the scattered light 

in a certain angular interval. The standard CAS collects the forward scattered light. Therefore, its sensors usually 

cover a small (around 10) angle near the direction of the incident laser beam. It follows that the CAS is actually 

measuring an integral of the differential scattering cross section over that specific angular interval. The value of 135 

this integral is what we call the FWSCS. We mention here in passing that the FWSCS still retains a quite strong 

sensitivity on the limits of the collecting angular interval, especially on its upper bound, so the accurate knowledge 

of these constructive parameters is of utmost importance for an objective use of the instrument. Our computations 

of the FWSCS have been performed through integration over the fixed angular interval stretching from 4.0 to 

13.5. It is also worth mentioning here that the wavelength used in FWSCS calculations was  = 658 nm at which 140 

our instrument operates, according to its technical specifications. At this wavelength, pure water is almost non-

absorptive (more precisely, the real and imaginary parts of the refractive index are n = 1.331 and k = 2.2310-8, 

respectively). 

Turning now to the FWSCS-diameter diagram, any type of CAS instrument determines the size of cloud particles 

through comparison between measured and theoretical values of FWSCS, thus attempting an inversion of the 145 

FWSCS-diameter functional dependence. The characteristics of this dependence are therefore of paramount 

importance in the numerical phase of the CAS sizing process. Nevertheless, the theoretical FWSCS-diameter 

relationship is too complicated to be cast in a closed analytical form and it should be calculated point by point for 

a certain set of diameter values. As mentioned before, the typical range of diameters of particles detected by CAS 

is 0.5-50 µm. The FWSCS diagram can be computed within this fixed range, at a certain number of equidistant 150 

mesh points, Nd. Constructing the FWSCS curve for increasing values of Nd uncovers more and more “ripples” of 

it, as illustrated in Figure 1, which shows a close up of the dimensional range of scatterers between 37 and 40 m. 

The figure’s main panel contains the corresponding segment of the FWSCS-diameter curve plotted for three 

increasing values of Nd (and thus for three increasing densities of mesh points on the abscissa). It can be seen that, 

once Nd increases, the curves look increasingly oscillatory at the local level. The presence of “ripples” clearly 155 

constitutes a difficulty in the process of retrieving a particle’s size from a specific value of the FWSCS. For 

example, when assuming a measured value of 2.27510-6 cm2 (indicated by the pink horizontal line in Figure 1), 

there are multiple possible values for the diameter of the scattering particle that produces such response. That 
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number is obtained by counting all of the intersections of the horizontal line in the FWSCS diagram. This number 

obviously increases when the diagram is computed in greater detail. In older descriptions of the forward scattering 160 

spectrometers (originally used for aerosol sizing measurements, see Baumgardner et al., 1992) this aspect seemed 

to be overlooked and some smoothened versions of the FWSCS vs. diameter diagrams appeared to have been 

used. More recent studies on OPCs (Rosenberg et al., 2012) consider in greater detail the consequences of the 

non-monotonicity of the FWSCS vs. diameter correspondence, but focus mainly on the issues related to the 

instrument calibration. 165 

The obvious practical question arising in connection to the local irregularities of the FWSCS curve is: How fine 

should the division of points on the abscissa be to reveal all the local features of its size dependence? In other 

words, one should settle on a sufficiently large value of the number Nd in order to have a reliable theoretical 

FWSCS-diameter diagram that displays the full “noisiness” of this dependence. In order to answer this problem, 

the diagram has been computed in the same range of diameters (0.5 to 50 µm), for an increasing sequence of mesh 170 

point numbers. It was found that, with increasing Nd, the shapes of the resulted diagrams change, become more 

detailed and increasingly similar. In quantitative terms, the similarity of two such diagrams can be measured by 

the area enclosed between them. For convenience, these areas have been normalized to the area under the finest 

plot in the sequence (namely that corresponding to Nd = 10,000) and called “normalized similarities”. Thus, for 

each FWSCS plot in the sequence the “normalized similarity” with the preceding one in the sequence has been 175 

computed. The “normalized similarities” have then been represented against their Nd values and the result is 

presented in the inset of Figure 1. It can be seen that the difference in shape between two successive FWSCS 

diagrams drops close to zero for over 9,000 mesh points. As a consequence, a reference value of Nd = 10,000 

equidistant mesh points on the abscissa has been used in all following computations. 

3. Retrieving particle diameters from the comparison with the FWSCS diagram 180 

As mentioned in the above discussions, the non-monotonicity of the FWSCS-diameter dependence induces an 

important difficulty when extracting a particle’s size from the FWSCS value it generates in a CAS instrument. To 

be more precise, while there is an overall increase in the FWSCS values for larger scatterers, the dependence is 

quite oscillatory and, at the local level, it shows a very noisy structure of small “ripples”. Therefore, as shown 

before in Figure 1, this makes the particle sizing highly ambiguous. A way to get around this difficulty would be 185 

to use a coarser and uneven partition of size bins over the whole measurable range of particle diameters. As 

mentioned before, the bin limits should be designed unambiguously, in the sense that the corresponding FWSCS 

thresholds have unique intersections with the diagram. However, due to the high density of ripples in the FWSCS 

curve, the possibilities of constructing strictly unequivocal (but still meaningful) divisions of bins are practically 

quite limited. The difficulty may become more obvious when there is an interest in detailing regions of the cloud 190 

droplets’ dimensional spectrum, which fall in the noisiest parts of the FWSCS diagram. A straightforward 

possibility to overcome this hurdle would be to use various smoothed versions of the FWSCS-diameter diagram. 

Numerical smoothing of a data set can be achieved in several ways, but only the resulting shape is relevant. The 

smoothing should be performed in a balanced degree, such that it does not alter the main features of the functional 

dependence described by the diagram. An illustration of this requirement is presented in Figure 2. 195 

Here we consider three versions of the FWSCS diagram and select the maximum number of bins for each of them. 

The first diagram (Figure 2a) is the “raw” FWSCS curve (computed at 10,000 mesh points on the abscissa) and 
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the other two (Figures 2b,c) are smoothed versions of it constructed by the so-called median smoothing method 

which averages the FWSCS values at a certain (odd) number of consecutive points on the abscissa. The number 

of points over which the average is performed is called the smoothing window. The maximal bin configuration 200 

has been established for each case according to two constraints. First, as already mentioned, it was required that 

the horizontal lines drawn for each FWSCS threshold intersect the diagram at a single point. The second 

requirement was that the width of a size bin was not irrelevantly small (for example, if the width of a size bin 

turned out to be lower than 5 % of the value assigned to its upper limit then the bin was merged with its next 

adjacent neighbour). In this way, a one-to-one correspondence is established between the FWSCS thresholds and 205 

the limits of the size bins. Figure 2 illustrates how the degree of smoothing of the FWSCS diagram influences the 

bin width and spacing. When applying the bin construction method to the raw FWSCS diagram, a maximum of 

13 bins is obtained (shown in Figure 2a and detailed in Figure 2d), which can be too coarse, especially for 

obtaining meaningful information about particles of larger sizes. 

By applying a 3 points smoothing window, the number of bins increases to 17 (Figures 2b and 2e). Moreover, if 210 

the smoothing window is increased to 7 points, the number of bins becomes more representative across the entire 

measurable particle range (22 on Figure 2c) and more detailed information about the larger particles is retained. 

This improvement, however, is obviously obtained at the expense of distorting the local structure of the FWSCS-

diameter diagram (Figure 2f). If the degree of smoothing is pushed further, even larger amplitude undulations of 

the curve are wiped out and its deviation from the raw diagram is enhanced. Consequently, the new FWSCS 215 

thresholds are more likely to be ambiguous if referred to the raw curve and this will directly impact the accuracy 

of cloud droplet sizing.  

The splitting of the range of cloud particle diameters into relatively large and uneven size bins is clearly very 

helpful in practical in situ measurements as it both allows for rapid in-flight counting and sizing of cloud particles 

and saves storage memory by generating relatively small data files. The process of generating the size bin structure 220 

automatically produces the corresponding FWSCS grid of bins, which in principle allows for the rapid sizing of 

every valid particle that was sampled by the instrument, with no need to retain the particular value of the FWSCS 

it produced. The resulting statistics are usually expressed in various histograms (normalized or not) over the pre-

established structure of size bins. Nevertheless, the practical procedure is not so simple as the FWSCS of a particle 

is quantified in voltage counts of some specialized sensors (Baumgardner et al., 2001). Thus, the theoretical 225 

FWSCS grid of thresholds must be made to correspond to a grid of threshold counts of the sensor. This process 

involves precise knowledge of some electronic parameters of the instrument (since generating the voltage signals 

usually requires different non-linear amplification stages) and of certain specific constructive parameters of the 

instrument (like the angular collecting range of the scattered light, the effective sample area, the laser wavelength 

etc.). Therefore, it is expected that constructing the sequence of threshold voltage counts to be associated with the 230 

size bin structure brings a certain amount of error that may be difficult to evaluate for older versions of such 

instruments (when some constructive parameters were quite poorly defined). Due to these difficulties, the rapid, 

in-flight statistical analysis of cloud particles should be complemented, whenever PbP FWSCS recordings are 

available, with post-flight PbP analysis. 
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4. Expressing cloud particle statistics from PbP files by using a fine grid of particle diameter values 235 

As discussed in the previous section, while rapid and memory saving, the use of uneven size bin structures 

constructed from the unequivocalness requirement inherently lose important details about the particle size 

distributions, especially at larger sizes (where the FWSCS diagram is more “rippled”). These ensuing errors are 

critical when size distributions are used to derive quantities that are highly sensitive to larger particles like the 

liquid water content (LWC). To overcome such drawbacks, we propose the use of a dense mesh of a convenient 240 

number of equal size bins. This number of bins could be as large as that of the number of mesh points on the 

abscissa (10,000) for which the shape of the FWSCS-diameter diagram stabilizes, as discussed in Section 2. 

Further, consider a certain measured value of the FWSCS (i.e. a given entry of the PbP file). When theoretically 

computing the FWSCS, the same value is obtained for a number of values, n0, of the particle diameter (they 

correspond to all intersections of the measured value with the FWSCS diagram), each one of which is a possible 245 

optical diameter of the particle that produced the measured FWSCS response. As we lack information on which 

of these alternatives is more probable, we are forced to assume that any of them is equally possible. In other words, 

given the measured value of the FWSCS, we count 
0

1

n
 for each diameter where the computed diagram takes on 

that value. In this way, we replace integer particle counts in unequivocal (but large and uneven) size bins with 

fractional particle counts associated to each mesh point of the dense, equidistant grid of diameters. Detailed 250 

pointwise size distributions can thus be constructed. They can be used as they are but can be also grouped in any 

structure of bins, including that resulting from the smoothing of the FWSCS diagram, as described in the preceding 

section. The most important advantage of the proposed approach is that, instead of an uneven grid of size bins, 

one may use a structure of a convenient number of equal size bins (e.g. one micron wide). In most situations, 

when presented in this way, the size distribution retains its information across all measurable sizes. 255 

As already stated, the PbP output files contain detailed records on a certain subset of the entire group of measured 

particles in a given flight segment. The particles that enter the instrument during a flight segment and qualify for 

FWSCS measurement are normally so numerous that they can be treated as a statistical ensemble. The particles 

of which FWSCS values have been recorded in the PbP files are selected only on their arrival time in the sample 

volume of the CAS. As for the selection of these particles no size criterion has been imposed (except for that of 260 

fitting into the 0.5 m – 50 m measuring range of the instrument), it follows that their sets will bear the same 

size statistical specifics as the entire ensemble. These size statistical peculiarities may include eventual 

dimensional gaps that can occur due to various effects, e.g. cloud mixing (Beals et al., 2015). This observation is 

key in acknowledging the usefulness of the PbP data. As noted in this section, detailed, pointwise size distributions 

can be obtained from the PbP output files. By further grouping these distributions over the very (uneven) bin 265 

structure that served for the in-flight bulk data recording, one may compare the ensuing size distribution with that 

provided by the instrument (if both are properly normalized, for example at the total number of particles in each 

recording). If consistent, the PbP sample data should generate size distributions similar to those produced by the 

bulk data file. Such consistency checks of the PbP files can be easily performed for each sequence of data to be 

processed through post-flight analysis in order to remove eventual accidental artefacts. 270 

Moreover, if normalized to the so-called sample volume of each recording, further information can be very 

conveniently retrieved from the comparison of the aforementioned size distributions. The sample volume of some 

recording is the total volume of air that is transiting the instrument during that particular recording. For the bulk 
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data of a certain flight segment, the sample volume (to be denoted by Vs
tot) can be determined quite easily as the 

product of the total duration of the flight line, the air speed and the physical area in which particles are detected 275 

in the instrument (the sample area, as will be further discussed in Section 5). By contrast, the sample volume of 

the set of particles that generate the PbP file (denoted simply by Vs) is more difficult to retrieve since the selection 

of these particles is not continuous along the flight segment. By assuming that the total set of particles measured 

in a flight segment and the selected subset that generates the PbP file have similar statistical behaviours, one may 

compare their related size distributions over the uneven bin structure used for the in-flight bulk data recording. 280 

Using the normalization of these distributions at the corresponding sample volumes, their shapes should be, in 

principle, identical. At this point, one can use Vs as an adjustable parameter and compute its value from the 

condition that the “distance” between the two distributions (defined as the root mean square of their bin 

differences) is at a minimum. The accuracy of this procedure can be further improved by using LWC size 

distributions (also normalized at the corresponding sample volumes) instead of number size distributions. The 285 

size distribution of the LWC over the uneven bin structure used in the rapid in-flight measurements is readily 

obtainable from the corresponding number size distributions by multiplying it with the central water droplet mass 

of each size bin (i.e. the mass of a spherical water droplet with the diameter equal to the median of the bin). 

The aforementioned methodology has been applied on some data recorded by our group during recent 

measurement campaigns. Our instrument, a CAS with depolarization (CAPS-DPOL) produced by Droplet 290 

Measurement Technologies Inc. (DMT), in 2011, is mounted on a Beechcraft C90 GTx aircraft. The data files are 

usually quite large, but the post-flight analysis has mainly focussed on selected segments where the aircraft flew 

in warm clouds at approximately constant altitudes, thus probing various horizontal transects of the cloud. Such 

segments are hereafter referred to as flight lines. To illustrate the typical post-flight analysis that we performed 

with our recorded data, a single example will be discussed in this section. The data was collected in a flight line 295 

during a measurement campaign performed in September and October, 2019, over Romania. A further example 

is additionally used in the next section and refers to similar measurements performed in April, 2019. A 

comprehensive description and discussion of these campaigns will follow in a forthcoming paper. The PbP file 

contains detailed values of the measured FWSCS detector counts for 71,014 particles, which represent an excerpt 

of the total number of particles that were validated and classified amongst a predefined size bin structure. 300 

According to the DMT procedures, the result of this classification is recorded in a separate output file without 

retaining any specifics for individual particles. 

Applying the recipe described in this section to the PbP data recorded in the example flight line, the related detailed 

size distributions are constructed over a typical fine grid of 10,000 values for the particle diameters, between 0.5 

and 50 m, which is the measuring range of our instrument. The significant parts of the number and LWC size 305 

distributions are shown in the panels (a) and (c) of the Figure 3. The most striking aspect related to these diagrams 

is the display of fine structures showing certain dimensional preferences (or “modes”) of the cloud droplets. 

Highlighting such peculiarities by in situ measurements might prove useful for correlating cloud microstructure 

with the properties of the aerosol particles that are present in the studied area (as long suggested in the literature 

– e.g. Squires, 1952; Mordy, 1959; Sorjamaa et al., 2004) as well as other cloud microphysical processes. 310 

Such detailed analysis of in situ collected data could not be possible if the distributions were constructed over 

coarser size bins. This point is illustrated in the panels (b) and (d) of Figure 3, where the same statistics as those 

presented in panels (a) and (c) have been built over an equidistant grid of bins, each of almost 1 m in length. 
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This grid is almost 200 times coarser than the detailed one, but still preserves some major features of the two 

distributions. By contrast, the usual CAS acquisition software allows for only 30 (uneven) size bins where the 315 

probed particles can be distributed. It is obviously expected that such coarse grids may further smoothen the 

detailed shapes of the distributions and this aspect is made particularly clear by examining the plots of Figure 4. 

Here, in panels (a) and (b), the detailed and the 50 equal size bins distributions have been reproduced from Figures 

3a and 3b, respectively. For comparison, the plot of Figure 4c shows the size distribution from the same PbP file, 

but represented over the 30 bins structure used for the in-flight data acquisition. Due to the small widths of the 320 

bins in the sub-micrometer range, the distribution of Figure 4c has some resemblance to the detailed one of Figure 

4a, in the same region. However, between 8 and 20 m (a particularly important size range for the microphysics 

of warm clouds), the 30 bins distribution looks rather “dull” and clearly lacks the structural richness of the 

representation shown in Figure 4a. Nevertheless, as already pointed out before, coarser bin structures allow rapid 

in-flight processing, use shorter data files and may serve for validating the PbP recordings as well as for computing 325 

specific functional parameters. 

As a conclusion, using the PbP data files, the methodology described in this section allows the construction of 

detailed size distributions of cloud droplets if accurate descriptions are needed. Such procedure may be useful, for 

example, in precise instrument calibrations (Rosenberg et al., 2012). Coarser size distributions (over equal or 

uneven bin structures) are also readily available from the detailed one, for use in computing various cloud 330 

microphysical parameters. 

5. General expression of cloud microphysical parameters and the ensuing errors 

Mathematical expressions for microphysical quantities of clouds (like droplet effective diameter or LWC) usually 

contain various averages over the size distributions of droplets. Each such average implies a summation over the 

values taken by a certain function of droplets’ diameters, y(d). The sum (whose value we denote by Y) can be 335 

generally written as: 

   
0

md

d

Y y x c x dx  ,  (1) 

where c(x)dx is the number of particles detected in the diameter interval (x, x+dx) per unit of explored volume 

(the so-called number concentration of particles). The integration is over the maximal interval (d0, dm) within 

which the particle diameters can take values (in our case, it is the measurement range of the instrument, namely 340 

d0 = 0.5 µm and dm = 50 µm). For example, to obtain the LWC, the function y(x) in Eq. (1) should be replaced by 

some constant multiple of x3. Also, for computing the extinction coefficient from its practical expression 

(approximated as twice the optical cross section for cloud droplets and visible wavelengths – see, for example 

Kokhanovsky, 2004), y(x) in the integrand of Eq. (1) should be x2. For computing the effective diameter (def) of 

droplets, one should consider a more complicated expression involving a ratio of two integrals of the type shown 345 

in Eq. (1): one with y(x) = x3 divided by the other with y(x) = x2. Nevertheless, the following discussions essentially 

apply for this case too. 

Eq. (1) is written in the assumption that the number concentration is known for every value of the diameter. 

However, as already discussed, all practical size distributions are discrete functions, over some finite number of 

bins (evenly, or unevenly spaced), to be denoted by Nb. In passing, we may note that Nb should not exceed the 350 
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total number of mesh points, Nd, on the abscissa where the detailed FWSCS diagram was computed. For such 

discrete distributions, the integral in Eq. (1) can be approximated by the corresponding sum over these bins: 

 
1

bN

i i
i

Y y d c


 ,  (2) 

where di and ci are the representative diameter (e.g. the median) of the size bin number i and the number 

concentration of particles found in that bin, respectively. At this point, it is useful to detail explicitly ci by using 355 

the value of the sample volume, Vs, which can be obtained through the procedure described in the previous Section. 

Thus, we should write 

i
i

s

N
c

V
 ,  (3) 

where Ni is the total number of particles detected in the i-th bin (the sequence of all these numbers represents what 

is usually called the number distribution of particles over the given size bins). Therefore, Eq. (2) becomes: 360 

 
1

1 bN

i i
is

Y y d N
V 

  .  (4) 

Along with computations of bulk quantities of the type defined generically in Eq. (1), it is also necessary to 

evaluate the related error interval or, equivalently, the absolute error (Y). A natural and reliable approach would 

be to first compute the relative error of the quantity Y: 

   Y
Y

Y


  .  (5) 365 

As the error analysis is simpler in continuous variables, we return to Eq. (1), which can be more conveniently 

detailed in the following form: 

   
0

1 md

s d

Y y x N x dx
V

  ,  (6) 

where N(x)dx is the number of detected particles having the diameters in the range (x, x+dx). The error in Y 

originates partly in the imprecision of determining the sample volume Vs. The other source of (Y) originates in 370 

the error of each measured value of the FWSCS, which translates in a complex way to the number distribution 

N(x). When assuming such an imprecision for the FWSCS optical measurements, the distribution N(x) takes 

another shape and shifts to a new function denoted by  N x . The shift between these two distributions should 

have no constant sign over the whole range of diameters. On the contrary, their difference should oscillate around 

zero as any overestimation of the particle number in a certain size range should induce an underestimation 375 

somewhere else. We can therefore write: 

   
   

   

0

0

m

m

d

d

s d

d

y x N x dx

Y V

y x N x dx



 

 
  
  



.  (7) 

Moreover, 
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         
0 0

m md d

d d

y x N x dx y x N x N x dx
 

      
 
   . (8) 

Thus, 380 

   
     

   

0

0

m

m

d

d

s d

d

y x N x N x dx

Y V

y x N x dx

 

  
 







.  (9) 

As already discussed, integrals like those appearing in Eq. (9) can be practically computed by summing over some 

custom grid of size bins. If the grid were made of uneven bins, then the errors ensuing from the eventual smoothing 

procedure of the FWSCS diagram (which, in some cases, could be quite consistent) should also be taken into 

account. To avoid such artificial extension of the overall imprecision, a grid of equal bins (which is defined, so it 385 

is not affected by errors) is normally recommended. Using such discretization of the range of diameters in equal 

bins, one obtains: 

   
  

 

1

1

b

b

N

i i i
i

s N

i i
i

y d N N

Y V

y d N

  




 







.  (10) 

For the case of def which can be computed through the relation: 

3

1

2

1

b

b

N

i i
i

ef N

i i
i

N d
d

N d









,  (11) 390 

the relative error takes a form that is independent of the imprecision in Vs: 

 
   3 2

1 1

3 2

1 1

b b

b b

N N

i i i i i i
i i

ef N N

i i i i
i i

N N d N N d

d

N d N d

  

 

 
 
 

 

 

.  (12) 

where iN  is the “distorted” distribution of particles over bins. 

In this way, the remaining problem is to obtain iN  as generated by the error associated to each experimental 

FWSCS. To make any meaningful progress in this difficult matter, one should actually resort to evaluating the 395 

related maximal distortion error. Such an attempt could be imagined as follows: For any measured value, C, of 

the FWSCS, there should be an assumed absolute error, C. We will also assume that the true value can be found, 

with uniform probability, somewhere in the horizontal strip defined by the interval 
1 1

,
2 2

C C C C     
 in 

Figure 5. In other words, instead of obtaining a sharp, exact value C for the FWSCS, the instrument provides a 

“blurred” figure of width C. It is obvious that, the wider the error strip for C is, the larger the imprecision of the 400 
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particle sizing will be. For this reason, it is further assumed that the maximal distortion of the size distribution 

from the one obtained with “exact” values of the FWSCS results by counting the “blurred” intersections of the 

FWSCS-diameter diagram with the error strips associated with each measured particle. To proceed in this 

computation, consider first the intersection of the horizontal line at 
1

2
C C  with the FWSCS diagram. Let the 

abscissa of that point be denoted by dmin. Also, name dmax the abscissa of the rightmost intersection of the horizontal 405 

line at 
1

2
C C . As clearly illustrated in Figure 5, not all the points of the FWSCS diagram with abscissae 

between dmin and dmax fall within the error strip (for example, points with d around 40 µm are not included). Now, 

imagine that we remove from the interval [dmin, dmax] all the abscissae for which the FWSCS values fall outside 

the error strip. The remaining set, which is actually a union of smaller intervals, will be called . As the true value 

of the measured FWSCS is assumed to be somewhere in the (yellow) strip defined by the interval 410 

1 1
,

2 2
C C C C     

, it is clear that the true value of the particle’s diameter associated with the value C of 

the FWSCS should lie within the set . According to our assumption, every value of the FWSCS within the error 

interval 
1 1

,
2 2

C C C C     
 has the same chance of being the true one. On the other hand, every horizontal 

line drawn within the error strip will intersect the FWSCS in a unique set of points, with a unique set of abscissae. 

However, from one horizontal line to another, the number of intersections may differ (depending on the local 415 

shape of the FWSCS diagram), so there should be different chances that one point or another from the portion of 

the FWSCS within the error strip corresponds to the true diameter. The same should be valid for the corresponding 

weights with which the particles’ diameters enter in the counting of each size bin. To quantify the weight for a 

given size bin, one might select from the set of all intersection points of the FWSCS diagram with the error strip 

only the set of points whose abscissae fall inside that size bin. Then, the required weight will be the ratio of the 420 

measures of these two sets of points of the FWSCS diagram, namely the smaller one to the larger one. 

Unfortunately, the usual representations of the FWSCS curves are not metric spaces, so one cannot simply use the 

length of the curve as a measure of a set of its points. Instead, one could rely on the “ordinate length” of a certain 

segment of the curve. This quantity can be defined as the sum of the absolute values of the ordinate projections 

of all monotonic parts of the curve within that segment. Thus, we can denote by err , the ordinate length of the 425 

portion from the FWSCS diagram that fit within the error strip and by 
i
err , the ordinate length of the subset of 

the diagram that fit within the error strip and have the abscissa projections within the size bin number i. The 

desired weight with which the given particle contributes to that size bin can then be defined as the ratio 

i
err err  . Moreover, by summing up these weights for all measured particles, one can obtain the “distorted” 

number of droplets with sizes contained in the bin number i, iN . As the distribution iN , obtained in this way, 430 

accounts for the maximal imprecision of each FWSCS measurement, we assert that it represents the maximal 

departure from the “correct” distribution Ni. If replaced in Eq. (10), it will provide the maximal relative error of 

the quantity Y. Increasing the upper bound of the error by using the inequality 
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     
1 1

b bN N

i i i i i i
i i

y d N N y d N N
 

      at the numerator of the second term of Eq. (10) would mean 

accepting the exceptional possibility that the terms of the sum    
1

bN

i i i
i

y d N N


   are all positive. However, 435 

in the case of number distributions, this situation can never happen due to the condition that the total number of 

particles is the same, irrespective of the way they are distributed over the bins: 
1 1

b bN N

i i
i i

N N
 

  . Thus, some 

terms are necessarily negative and therefore, while the inequality      
1 1

b bN N

i i i i i i
i i

y d N N y d N N
 

      

is formally correct, its left term would lead to a physically overrated upper bound of the error. 

By attempting to apply the above recipe for error evaluation to a too detailed distribution (as are the examples 440 

shown in panels (a) and (c) of Figure 3, one may readily conclude that the computational effort is inconveniently 

large, as usually the analysis extends over multiple flight lines. 

As pointed out in this section, one of the most difficult task in error evaluation is computing the maximally 

distorted size distribution. On the example flight line used in Section 4, the distortion has been computed for the 

distribution over the equidistant structure of 50 bins. The result is plotted as a histogram in Figure 6, together with 445 

the “exact” (or “nominal”) distribution (the same as that appearing in Figure 3b) for comparison. One should note 

that the differences between the two distributions may be locally quite large, although the logarithmic scale of the 

ordinate might diminish their appearance. The distorted distribution has been evaluated with the hypothesis that 

FWSCS measurements bear a homogeneous overall error of 10 % from the nominal values, which, for our 

instrument, is well below the manufacturer’s estimations. Nevertheless, the errors in FWSCS measurements (more 450 

precisely in the numbers of “counts” given by instrument’s detectors at each measurement) may actually depend 

on various conditions (e.g. on the gain stages used in a given measurement) and cannot be taken as fixed at, say, 

10 %. To evaluate the impact of the accuracy in FWSCS measurements over the bulk parameters of the clouds, 

we computed the ensuing relative errors induced in three such quantities (namely the LWC, the extinction 

coefficient and the effective diameter) for a range of values of the relative errors in measuring the FWSCS. It can 455 

be seen in Figure 7 that, as expected, the increase in the imprecision for FWSCS make the errors of all bulk cloud 

parameters grow. According to the above discussions in this section, to compute relative errors of LWC and 

extinction coefficient one needs to evaluate the relative error in the value of the sample volume for the particles 

involved in the PbP recording, Vs. Therefore, there will always be a background error for such bulk parameters. 

In Section 4 we described a simple and reliable procedure of obtaining Vs by comparing PbP vs. bulk data size 460 

distributions over the operational in-flight structure of size bins. From this method, Vs results as a certain fraction 

of Vs
tot. Therefore, the relative error of Vs should be the sum of the relative errors of Vs

tot and of the fraction itself. 

The fraction error is essentially stemming from a comparison between the two size distributions and it will be 

assumed negligible. Consequently, the relative error of Vs will be taken as that of the sample volume of the whole 

recording in the given flight line, Vs
tot. This parameter is actually a composite one, as it requires the knowledge of 465 

the velocity of the airflow in the instrument (the so-called probe air speed, or PAS), the duration of the 

measurements and the so-called sample area, which is the physical area where particles are detected. This last 

quantity should be, usually, provided by the manufacturer. The output files constructed by the processing software 
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of CAS-DPOL typically provide the PAS at fixed time intervals (sampling instances, e.g. one second each). 

Moreover, another string of the bulk data file generated in-flight from all validated particles provides the final 470 

moments of each sampling instance and is called “End Seconds”. These entries can be used to extract the exact 

durations of the sampling instances for the whole bulk recording. By multiplying these time intervals with the 

corresponding PAS values and with the assumed value of the sampling area, one readily obtains a string of 

sampling volumes to be associated with the corresponding sampling instances and, by summing them up, the 

flight line sample volume, Vs
tot, is obtained. Due to the large imprecision in the knowledge of the sample area 475 

(Lance et al., 2010), the relative error of Vs
tot has been settled at 20 % in all cases considered in this study. 

It should be noted here that, in principle, Vs could result from a string of the PbP output file which records the 

time separations between successive particle measurements (the so called “inter-arrival particle time”, or IPT). 

However, as already mentioned, the PbP data is recorded only for the first ~ 290 particles detected in a sampling 

instance and the IPT is retained for each measured particle, without counting the “jumps” between successive 480 

sampling instances. This particular feature actually hinders the use of the IPT data string for reliably computing 

Vs and underscores the utility and simplicity of the method described in Section 4. 

Overall, we can conclude that evaluating the accuracy of cloud microphysical parameters obtained from CAS 

measurements is no straightforward matter. It involves a complicated and time consuming analysis of the PbP 

files and relies on the knowledge of the detecting precision of CAS for individual particles, as well as on the 485 

precise knowledge of constructive parameters of the instrument (e.g. the effective sample area). 

6. The effects of increased droplets’ refractivity and/or absorption on their sizing 

As discussed in the previous sections, due to the complicated shape of the FWSCS vs. diameter diagram, which 

is at the core of the numerical phase of the CAS method, the whole procedure of sizing cloud particles is far from 

straightforward. Additional uncertainties may also stem from the assumption that the measured particles are pure 490 

water droplets. 

In fact, real cloud droplets are necessarily “contaminated” by aerosol particles, either by incorporating or by 

dissolving them (or even both) and it might be suspected that the forward scattered light from such complex 

particles might differ from the case of pure water droplets of the same size. A convenient approach to describe 

the optical response of “contaminated” particles is by using a composite refractive index, which is generally larger 495 

(in both its real and imaginary parts) than the one of pure water (Erlick, 2006; Liu and Daum, 2002; Wang and 

Sum, 2012; Mishchenko et al., 2014). 

Moreover, the FWSCS-diameter diagram is quite sensitive to the values of both the real and imaginary parts of 

the particle’s refractive index (Figure 8). Therefore, it may turn out that the sizing and classification of cloud 

droplets may be flawed by using the pure water version of this curve. Indeed, as seen in Figure 8a, refractivity 500 

larger than that of pure water keeps the FWSCS-diameter diagram highly oscillating, but it gets an overall decrease 

with respect to that for pure water. The decrease is more significant for large droplets. On the other hand, changes 

in the absorption lead to more abrupt deformations of the diagram (Figure 8b). Even slight increases of the 

imaginary part of the refractive index produce strong distortions of the curve in comparison to that for pure water. 

There is also an overall decrease (which tends to be very large) and a smoothing effect at higher absorptivity and 505 

for large droplets. Based on such examples, one may conclude that, if regarded as made of pure water (as the CAS 

method does), “contaminated” cloud droplets appear generally smaller than they really are. 
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One very important observation is that even large increases of both refractivity and absorptivity have little effect 

on the sub-micrometer range of the FWSCS-diameter diagram. The small sensitivity of the FWSCS on the 

absorptivity extends actually towards the 3 m range. To better highlight this remark, the small diameter parts of 510 

the curves shown in Figure 8 have been zoomed in on Figure 9, where logarithmic scales have been used on the 

ordinates. It can be seen that, when the refractivity varies quite widely (Figure 9a), shifts no larger than 100 nm 

may occur in evaluating the sizes of sub-micrometer objects. Also, for large variations of the absorptivity (Figure 

9b), the FWSCS diagrams almost coincide in most of the sub-3 m range. This peculiar aspect has little 

importance on classifying cloud droplets, since they rather seldom fall into that size range. Instead, the observation 515 

refers mainly to eventual aerosol particles that can be detected by CAS if they are larger than 0.5 m. It means 

that fine, sub-micrometric, aerosol particles are most likely to be correctly sized by CAS, irrespective of their 

refractive indexes, as they are “seen” as a lump portion of the size distribution. 

 Once the effect of refractive index variations on the FWSCS-diameter curve is established, one may check 

for the related distortions of the size distributions. As concluded after discussing the examples plotted in Figure 520 

7, moderate increase in either the real or the imaginary parts of the refractive index of a cloud droplet makes it 

appear smaller in a CAS measurement. The overall consequence of this fact is that the size distributions of clouds 

with “contaminated” droplets as resulted from CAS data are somehow shifted towards smaller diameters and the 

size-related properties (like the LWC) are underestimated. To check the amplitude of such eventual distortions, 

we considered the same PbP data file as that used for constructing Figure 3a and we analysed it with FWSCS 525 

diagrams computed with modified refractive indexes. The results are shown in Figure 10. Both detailed number 

(panels a-c) and LWC (panels d-f) size distributions have been computed for the cases when droplets would have 

had higher refractivity (Figure 10, b and e) or higher absorption (Figure 10, c and f) with respect to the pure water 

(Figure 10, a and d). In both cases, the distributions are right-shifted with respect to those obtained for pure water. 

The shift is more obvious in a bulk size parameter like the effective diameter which should be larger with between 530 

10 and 15 % if “contamination” of droplets is taken into account. In other words, this means that “contaminated” 

cloud droplets are systematically placed in a lower range of diameters when the CAS data is processed with the 

FWSCS diagram for pure water. The effect is more visible in the shift of the total LWC, as indicated in the panels 

d-e of Figure 10. It can be seen that rather realistic changes of either real or imaginary parts of the refractive index 

(Erlick, 2006) may lead to underestimations of between 25 and 30 % of the total LWC when assuming that 535 

“contaminated” droplets have the optical parameters of pure water. 

To better quantify the influence of the refractive and absorbing optical properties of the cloud droplets on their 

sizing by CAS and on the ensuing cloud parameters, the same PbP data file from September 26th has been 

processed using FWSCS diagrams computed with a relatively wide range of values for the real and imaginary 

parts of the refractive index. Then, using the detailed size distributions obtained for each case, some of their bulk 540 

characteristics have been computed and plotted as three-dimensional diagrams against the real and imaginary parts 

of the refractive index. Figure 11 shows four such diagrams, namely for the def (panel a), for LWC (panel b – note 

here that we use g/m3 as units since we refer to the total LWC), for the mean diameter (panel c) and for the 

extinction coefficient (panel d). The mean diameter is essentially defined as the arithmetic mean of the diameters 

of all the droplets considered in the PbP file. As all these parameters are more sensitive to the imaginary part of 545 

the refractive index, k, this variable was shown in logarithmic scale. One can readily note steep jumps in all 

diagrams for k beyond approximately the value of 0.001. Further increase in absorptivity above this threshold 
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becomes almost irrelevant for any of the computed parameters. Some of them, like the effective and mean 

diameter, only approximately double their values in their jumps. However, the quantities involving moments of 

the second and third degrees of the size distributions (like the extinction coefficient and the LWC) have much 550 

higher increases (about four and six times, respectively). The variations in the refractivity values (the real part of 

the refractive index) produces slighter increases in all the considered parameters. The results illustrated in Figure 

11 show quite clearly that the CAS analysis of cloud droplets may become abruptly flawed when the particles are 

“contaminated” with light absorbents over some specific threshold. The droplets’ sizes and, most importantly, the 

cloud parameters deriving therefrom, become largely underestimated. 555 

The obvious question stemming from such results is on the degree of reliability of CAS measurements. First, it 

should be remembered that cloud droplets have been considered all “contaminated” to the same degree in our 

computations. This is obviously far from true. The aerosol incorporation should itself follow a certain distribution, 

dictated primarily by the variations of aerosol concentration along the cloud’s vertical dimension. Moreover, in 

order to be incorporated in water droplets, the aerosols should be hygroscopic/hydrophilic, which is not always 560 

the case for strong absorbers in the visible spectrum. Also, to achieve absorptivity levels that make k = 0.001, the 

droplets should “ingest” light absorbing aerosols at relatively large concentrations (Erlick, 2006), which can be 

the case only in events of intense atmospheric pollution. Even in such situations, the volume fraction of “ingested” 

aerosol particles in water droplets is far from uniform. In a coarse estimation, this volume fraction should be 

proportional with d-3, but also with d2 (since the probability of each “ingestion” act should be proportional to the 565 

droplet’s cross sectional area). Thus, unless the droplet results from coalescence of smaller ones that are already 

“contaminated”, it may be concluded that the volume fraction of “ingested” aerosol should be roughly proportional 

to the inverse of the droplet’s diameter. Implicitly, it follows that the impact of droplet “contamination” should 

be less severe on larger droplets. Such observations may obviously reassure CAS users that their measurements 

are generally quite objective. Nevertheless, to improve the reliability of the post-flight analyses, one should find 570 

useful to make assessments into the overall aerosol loading and composition. This task can be performed with 

complementary airborne instrumentation. Nevertheless, some primitive information can be also obtained directly 

from the PbP files generated by CAS. More precisely, estimations of the fine aerosol loading (the one that is more 

likely to be incorporated in water droplets) can result from closely inspecting the sub-micrometer tail (usually 

between 0.5 and 1 m) of the detailed size distribution obtained from the PbP file. According to our previous 575 

remark (see the discussion related to Figure 9), the shape and position of this tail should not be affected much by 

the differences in refractive index between the aerosol particles and the pure water standard used by CAS. 

Therefore, the amplitude of the sub-micrometer (even sub-3 m) part of the detailed distribution should, at least 

qualitatively, indicate the amount of the cloud’s optical “contamination” and the level of confidence in the 

parameters computed from its detailed droplet size distribution obtained with the pure water FWSCS standard 580 

diagram. 

Due to specific circumstances, the aerosol loading may differ at various altitudes in the cloud and this is a further 

reason for splitting a large PbP file into smaller parts corresponding to separate flight lines. An example is shown 

in Figure 12 for which the data has been collected during a flight on April 15th, 2019. Panels a, b, on one side and 

c, d, on the other side, show the detailed size distributions obtained from two flight lines, at different altitudes, 585 

through the same warm cloud. By comparing Figures 12b and 12d, it can be seen that, due probably to some 

aerosol advection, the sub-micrometer tail is significantly larger in the higher flight line than the one obtained 
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about 100 m below. One may therefore conclude that the CAS sizing in the upper line is less reliable than the one 

in the lower line. Nevertheless, such assertions should be enforced by more targeted complementary in situ 

measurements on the aerosol loading and composition in each circumstance. As instrumentation for such 590 

measurements is expensive and complicated to mount on small research aircraft, one could also rely on simpler, 

less precise methods. For example, it may be useful only to collect separate samples of liquid water from each 

flight line and to simply measure their refractive and absorptive properties for the same wavelength as that of the 

CAS’s laser. These quantities are actually the only ones that are of importance for CAS sizing: they can be readily 

used as average values for n and k in computing a more realistic FWSCS diagram used for evaluating each droplet. 595 

7. Conclusions 

The present study details a numerical methodology for obtaining droplet size distributions from PbP sample files 

recorded with an airborne CAS instrument. First, we show how refined the size resolution should be in order to 

achieve a FWSCS diagram with reliable shape. The next step was establishing a procedure for obtaining particle 

diameters from the measured value of the FWSCS, by comparing it with the one computed using Mie theory and 600 

the hypothesis that the instrument’s laser beam scatters on pure water droplets. Cloud particle statistics could be 

further constructed using a fine grid on the diameter scale in order to capture the details of the size distributions. 

The possibility and the utility of coarser size grids, with either uneven or with equal bins was also briefly 

discussed. A small amount of PbP data obtained from our recent measurement campaigns has been used to 

illustrate the proposed methodology. The general expressions of cloud microphysical parameters were written for 605 

size distributions over smaller numbers of equal bins and the ensuing relative errors were discussed in detail. It 

was thus shown that the overall uncertainties in computing various cloud parameters are mainly driven by the 

errors in measured FWSCS values for each particle. The influence of the relatively large imprecision in the values 

of the real and imaginary parts of the refractive index of cloud droplets on their size distributions and on the 

ensuing cloud parameters was analysed in the final part. It was concluded that, when high atmospheric loads of 610 

hydrophilic and light absorbing aerosols are present, such imprecisions may drastically impact the reliability of 

the cloud data obtained through CAS measurements. Some possible complementary measures for improving the 

quality of the information obtained in post-flight analyses were suggested. 
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Figure 1: Detail of the FWSCS vs. particle diameter diagram plotted for three different values of the 
mesh point number, Nd, on the abscissa (the blue, red and black lines on the main panel). The wavelength 
of the radiation, , as well as the corresponding real (n) and imaginary (k) parts of the refractive index 
of pure water are indicated in the main panel. Increasing densities of these mesh points reveals more 
“rippling” in the structure of the curve. This, in turn, makes the particle sizing increasingly ambiguous. 
The pink horizontal line corresponds to a single measured value of 2.27510-6 cm2 which intersects the 
FWSCS diagram multiple times. Thus, assigning a unique value for the diameter is impossible. The inset 
illustrates the analysis of the shape convergence of the FWSCS plots for increasing mesh points density 
on the abscissa. 
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Figure 2: Size and FWSCS bin structures induced on the FWSCS-diameter diagram. Green lines in 
panels (a), (b) and (c) indicate the size bins (on the abscissa) and the FWSCS bins (on the ordinate), for 
three degrees of smoothness, as indicated in panels (d), (e) and (f), where one same detail of the diagram 
is magnified for clarity. 
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Figure 3: Number (a, b) and LWC (c, d) size distributions obtained from the post-flight analysis of PbP data 
recorded during a flight line performed on September 26th, 2019, over some area of Romania. The diagrams (a) 
and (c) are detailed distributions and show a fine structure of size “modes”, which are “wiped” out if spread over 
coarser size grids, as seen on the histograms (b) and (d) constructed over a structure of 50 equal size bins. 
Nevertheless, these coarser representations allow for sufficient resolution to accurately compute various averages 
and are more convenient in evaluating maximal relative errors, as described in the next section. Note the LWC 
unusual range of values due to the small amounts of liquid water counted in each division of the very fine grid of 
diameter values. Also, in panel (d), note that the levels of the LWC distribution are higher than those of the panel 
(c) as they collect the contributions of particles from larger divisions of diameter values. 
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Figure 4: Droplet size distribution of the Figures 3a and 3b (panels a and b, respectively) shown in 
comparison with the size distribution of the same droplets constructed over the 30 bins structure used 
for the in-flight data acquisition. 
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Figure 5: Detail of the FWSCS-diameter diagram showing a measured value, C (red line), of a particle’s 
FWSCS and the ensuing error strip (yellow region). The particle’s contribution to the “distorted” size 
distribution can be computed by considering the “length” of the “blurred” intersection of the error strip with 
the FWSCS diagram. That “length”, err, is defined as the absolute values of the sum of the ordinate projections 
of all the monotonic parts of the diagram that fit within the error strip. If we further restrict to the part of the 
curve that fits within the error strip and in the size bin #i, then the analogous “length” i

err results. Its ratio to 
err, is the weight with which the given particle contributes to the size bin #i (enclosed by the vertical green 
lines). 
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Figure 6: Nominal (orange) and distorted (hollow blue) number distributions over a structure of 50 equal 
size bins. The distorted histogram is obtained with the assumption that FWSCS measurements have a 
homogeneous overall error of 10 % from the nominal values. 
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Figure 7: Relative errors of the LWC, the extinction coefficient and the effective diameter as functions of 
the relative error in measuring the FWSCS. Different scales have been used on the axes in order to reach 
a convenient aspect ratio of the figure. 
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Figure 8: Computed FWSCS-diameter diagrams for the same size range, laser wavelength and angular 
interval of collecting scattered light, but for (a) different values of the real refractive index and (b) 
various degrees of absorption (as indicated by the imaginary part of the refractive index) 
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Figure 9: Enlarged view of the small-diameter range of the diagrams of Figure 8, with focus on the sub-
3 m region. (a) Horizontal shifts no larger than 100 nm may occur when the real part of the refractive 
index varies. (b) Wide variations in absorption (imaginary part of the refractive index) make almost no 
changes in the zoomed region of the FWSCS diagrams. 
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Figure 10: Effect of eventual variations in the refractive index on the detailed number (a-c) and LWC (d-f) 
size distributions illustrated on data collected in a flight line performed on September 26th, 2019, over some 
part of Romania. Panels (a) and (d) are constructed using the refractive index of pure water. Both 
distributions shift to the right when either the refractivity (b, e) or the absorption (c, f) increase, indicating 
that using optical parameters of pure water leads to underestimations in both size and LWC. While the 
effective diameter, indicated in panels (a)-(c), is underestimated with 10 to 15 %, the underestimation of the 
total LWC, indicated in panels (d)-(f), runs between 25 and 30 % when assuming optical parameters of pure 
water for “contaminated” droplets. 
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Figure 11: Effective diameter (a), total LWC (b), mean diameter (c) and extinction coefficient computed with the 
data used to construct Figure 3b for which the droplet sizing has been performed by assuming the particles have 
various values of the real and imaginary parts of the refractive index. Each diagram shows a steep increase for 
imaginary (absorption) index larger than about 0.001, which suggests that droplet sizing is largely underestimated 
in clouds “contaminated” with substances that highly absorb the wavelength of the CAS laser. 
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Figure 12: Detailed size distributions obtained with the standard pure water FWSCS from two PbP files 
of different flight lines performed on April 15th, 2109, through the same liquid cloud over southern 
Romania. Panels (a) and (b) correspond to the higher altitude, while panels and (c), (d), show results for 
the lower altitude. Panels (b) and (d) focus on the sub-micrometer details of the full size distributions 
plotted in panels (a) and (c). 
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