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Abstract. The Ionospheric Photometer (IPM) is carried on the Feng Yun 3D (FY3D) meteorological satellite, which allows 

for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity 

nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the night-side thermosphere and 135.6 nm 15 

and N2 LBH emissions in the day-side thermosphere that can be used to invert the peak electron density of the F2 layer 

(NmF2) at night and O/N2 ratio in the daytime, respectively. Preliminary observations show that the IPM could monitor the 

global structure of the equatorial ionization anomaly (EIA) structure around 2:00 local time using OI 135.6 nm nightglow.  It 

could also identify the reduction of O/N2 in the high-latitude region during the geomagnetic storm of Aug. 26, 2018. The 

IPM derived NmF2 accords well with that observed by 4 ionosonde stations along 120ºE with a standard deviation of 26.67%. 20 

Initial results demonstrate that the performance of IPM meets the design requirements and therefore can be used to study the 

thermosphere and ionosphere in the future. 

1 Introduction 

The Earth’s far-ultraviolet (FUV) airglow radiation from the thermosphere includes the emission of H, O, and N2 and the 

absorption of O2 (Meier, 1991). The OI 135.6 nm nightglow emission, which is mainly produced by the recombination of 25 

ionospheric O
+
 and electron, represents the spatial and temporal variations of the ionosphere in the nighttime. The 135.6 nm 

and N2 LBH dayglow emission, which are produced by energetic photon-electron impact excitation of the neutral atmosphere, 
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are used to derive the column O/N2 in the sunlit disk. The Earth’s atmosphere is opaque to the FUV radiation due to the 

lower atmosphere absorption. The background emission of FUV airglow from the Earth’s surface is absent. So FUV airglow 

radiation is particularly well-suited to space-based remote sensing (Paxton et al., 2003; Budzien et al., 2019). In past decades, 30 

FUV spectrography has been used extensively in studying the thermosphere and ionosphere from satellites, such as GUVI 

(the Global Ultra-Violet Imager) on the NASA TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) 

satellite (Christensen et al., 2003) and the Far Ultraviolet Imager (FUV) on the NASA IMAGE (Imager for Magnetopause-

to-Aurora Global Exploration) satellite (Sagawa et al., 2005). The other useful instrument is ionospheric photometer, which 

is compact and high-sensitive. The photometer on the polar-orbiting Department of Defense satellite S3-4 was used to 35 

measure the airglow, aurora, and solar scatter radiance of the earth's atmosphere (Huffman et al., 1980). The U.S. Naval 

Research Laboratory gave the concept for a new class of ionospheric photometer twenty years ago. It was supplied in the 

Tiny Ionospheric Photometer (TIP) on the Constellation Observing System for Meteorology, Ionosphere, and Climate 

satellites (Anthes et al., 2008; Dymond et al., 2016), complemented and upgraded in the Tiny Ionospheric Photometer (TIP) 

as part of the GPS Radio Occultation and Ultralviolet Photometry –Colocated (GROUP-C) experience on the International 40 

Space Station (Budzien et al., 2019; Budzien et al., 2017), and notably improved in the Triple Tiny Ionospheric Photometer 

(Tri-TIP) in Coordinated Ionospheric Reconstruction  CubeSat Experience (Dymond et al., 2017; Stephan et al., 2018). 

The compact and high-sensitivity nadir-viewing FUV Ionospheric Photometer (IMP) is one of ten scientific payloads aboard 

the FY3D meteorological satellite. IPM monitors 135.6 nm emission in the night-side thermosphere and 135.6 nm and N2 

LBH emissions in the day-side thermosphere by employing a filter wheel that adds two red-leak signal channels for daytime 45 

and nighttime red-leaks respectively. Red-leaks refer to weak residual sensitivity of the sensor to detect unwanted 

wavelengths including visible light that is “redder” than ultraviolet (Budzien et al., 2019). The main scientific objectives of 

IPM are follows: (1) Measure 135.6 nm emission in the night-side thermosphere to capture the large-scale structure of the 

low- and mid-latitude ionosphere. (2) Measure 135.6 nm and N2 LBH emissions in the day-side thermosphere to capture 

global variations O/N2 ratio and evolutions of the thermosphere and ionosphere during extreme space weather events. The 50 

FY3D is an afternoon sun-synchronous satellite with an orbit altitude of 830 km, an inclination of 98.75º and orbit period of 

~102 minutes, and is designed for weather forecast, atmospheric chemistry, climate change monitoring, and space weather 

monitoring. The FY3D satellite was launched at 18:35 UTC on November 14, 2017 from the Taiyuan Satellite Base, Shanxi 

province, China. This paper presents instrumental descriptions and initial observations by IPM. 

2 Instrument Description 55 

2.1 Instrument parameters requirements 

According to the two main scientific objectives mentioned above, the IPM instrument requirements are summarized in the 

Table1. In the design of the ionospheric photometer, there are two important problems to be solved. One problem is red-leak. 

It is a major challenge to ionospheric photometers that visible light radiation from the sun is about 109 times more than FUV 

file:///C:/Users/wangyg/Desktop/IPMæ��ç« /æ��ç�®/FUVspectrum/The%20use%20of%20far%20ultraviolet%20remote%20sensing%20to%20monitor%20space%20weather.htm%23!
https://ui.adsabs.harvard.edu/#search/q=author:%22Huffman%2C+R.+E.%22&sort=date%20desc,%20bibcode%20desc
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radiation.  The other problem is that ionospheric photometers need to eliminate 130.44nm and shorter wavelengths airglow 60 

and collect 135.6 nm airglow emissions with high sensitivity. 

Table 1．FY-3D IPM instrument requirements. 

Parameter value 

Wavelength 135.6 nm（night mode） 

135.6 nm  and  145-180nm（day mode） 

Field of View ~3.5° (along orbit)×1.6° (cross orbit) 

Sensitivity day mode：1 counts/s/Rayleigh@135.6nm 

night mode：150 counts/s/Rayleigh@135.6nm 

Spatial resolution ~30km@ionosphere（300km） 

Time  resolution 

 

2 s（day mode） 

10 s（night mode） 

 

2.2 Composition, channel, and mode 

 65 
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Figure 1: IPM instrument. 

 

The IPM instrument is shown in Fig. 1 and includes a telescope, a filter wheel, a detector system, and control electronics 

cabinet. The telescope has a field-of-view of 3.5° (along orbit) ×1.6° (cross orbit). An off-axis aluminum mirror coating 70 

MgF2 is used to collected airglow emission in the telescope. To suppress the longer wavelength radiance, a sunblind PMT 

(R10825, Hamamatsu) with CsI photocathode is used in the detector system (Fu et al, 2015). The quantum efficiency of the 

PMT with an effective area of 4 × 9.5 mm, is about 26 % at the wavelength 135.6 nm, 6.17×10
-5

 at 254 nm, and 4.06×10
-8

 at 

514 nm. The PMT has better than 10
−4

 rejection at wavelengths longer than 200 nm.   

IPM monitors 135.6 nm emissions in the nighttime and 135.6 nm and N2 LBH emissions in the daytime by employing a filter 75 

wheel. There are six spots in the filter wheel (Fig. 1 (c)) corresponding to six channels of IPM: dark count channel, 135.6 nm 

nightside channel, red-leak nightside channel, red-leak dayside channel, N2 LBH dayside channel, and 135.6 nm dayside 

channel.  The Channel information of IPM is shown in Table 2. In order to suppress the longer wavelength radiance further, 

the band-pass filter centred on 135.6 nm is used in the 135.6 nm dayside channel, and the band-pass filter centred on 160 nm 

is used in the N2 LBH channel.  Besides, IPM specifically adds two red-leak signal channels for daytime and nighttime red-80 

leak respectively. Based on the design of dayside or nightside channel, a SiO2 filter is added in the red-leak channels in order 

to eliminate longer than 180 nm. By differencing the measurements of dayglow channels and red-leak dayside channel, 

dayglow radiations can be detected. And by differencing the measurements of 135.6 nm nightside channel and red-leak 

nightside channel, 135.6 nm radiation in the nighttime can be detected. To exclude radiation shorter than 135.6 nm 

completely, a 0.5 mm-thin VUV-grade BaF2 flat filter is used and the transmittance at 135.6 nm at room temperature is 0.5 85 

(Fu et al., 2015). The emission of wavelengths shorter than 132 nm cannot pass the 0.5 mm-thick BaF2 filter over a 

temperature range of 5 °C to 35 °C. 

 

Table2. Channel information. 

Number Name Filter 

1 dark count channel none 

2 135.6nm dayside channel BaF2+bandpass 

3 N2 LBH dayside channel BaF2+bandpass 

4 red-leak dayside channel BaF2+bandpass+quartz 

5 red-leak nightside channel BaF2+quartz 

6 135.6nm nightside channel BaF2 

 90 

IPM has two observation modes: day mode and night mode. The day mode includes 4 observations of the 135.6 nm dayside 

channel, 4 observations of the N2 LBH channel, 2 observations of the red-leak dayside channel, and 1 dark count observation 
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in each frame. The night mode includes 8 observations of the 135.6 nm night channel, 1 observation of the red-leak nightside 

channel, and 1 dark count observation. 

2.3 Laboratory Calibration 95 

The IPM was calibrated at ground laboratory prior to flight. The optical calibration facility at ground has a deuterium lamp, a 

monochromator, a collimator, a diffuser, a NIST standard detector and a vacuum chamber assembled in a modular pattern 

(Fig. 2). The deuterium lamp (L11798) with a MgF2 window has 150W power and provides a bright, stable source of FUV 

radiation. The source of FUV radiation is wavelength-selected by the monochromator (234/302) which has a ƒ/4.5 0.2 m 

Czerny-Turner with a 1200 grooves/mm grating. A collimator ensures that the beam consists of parallel rays. The NIST 100 

standard detector (AXUV-100G) traced from NIST provides a reference for calibrating IPM.  

 

 

Figure 2: The optical calibration facility at ground 

The processes of calibration are: First, the FUV light at 125-200 nm from the deuterium lamp is selected by the 105 

monochromator. Second, the wavelength selected reaches the NIST standard detector through the collimator, and the NIST 

standard detector obtains the irradiance of the wavelength selected. And then, by using a rotating platform, the wavelength 

selected reaches the diffuser board through the collimator and enters IPM. IPM obtains the signal for the wavelength selected. 

Finally, the count and irradiance of the wavelength selected are used in calculating the responsivity to the wavelength 

selected. The uncertainty of the ground calibration comes from the stability of the FUV light source, the error of the standard 110 

detector, the bi-directional reflection distribution function (BRDF) uncertainty of the diffuser board, the non-uniformity of 

the light source, and so on. The uncertainty of the ground calibration is estimated to reach 11.25%. As a function of 
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wavelength, the responsivity of the 135.6 nm nightside channel from 130 to 200 nm is shown in Figure 3. The responsivity 

to 135.6 nm radiation at night is about 266.9 counts/s/R near the peak of the responsivity function distribution, and reaches 

the design requirement of the 135.6 nm nightside channel. The responsivity to 135.6 nm radiation at night provides high 115 

sensitivity in observations of OI 135.6 nm radiation at night. 

 

Figure 3: The IPM responsivity of the 135.6nm nightside channel in counts/s/R. 

 

Figure 4: The IPM responsivity of the 135.6 nm dayside channel in counts/s/R. 120 
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As a function of wavelength, the responsivity of the 135.6 nm dayside channel from 130 nm to 200 nm is shown in Figure 4. 

The responsivity to the 135.6 nm radiation in daytime is about 23.2 counts/s/R, and also reaches the design requirement of 

the 135.6 nm dayside channel. The responsivity is much less than the one on the nightside due to the bandpass used in the 

135.6 nm dayside channel, which is designed to obtain the radiation of 135.6 nm in daytime and suppress the radiation at 125 

wavelengths shorter than 135.6 nm, N2 LBH and red-leak contributions in daytime.  The other bandpass is used in the N2 

LBH day channel in order to obtain the radiation of N2 LBH and suppress the radiation of 135.6 nm and red-leak 

contributions in daytime. The responsivity of N2 LBH channel is shown in Figure 5. 

 

 130 

Figure 5:  The IPM responsivity of the N2 LBH channel in counts/s/R. 

 

3 Observation Results 

3.1 OI 135.6 nm emission on the nightside 

After the FY3D satellite was launched at 18:35 UTC on November 14, 2017, IPM started operation at 10:20 UTC on 135 

November 25, 2017. In IPM data processing, dark count is used to confirm the working status of IPM. Generally, the dark 

count of IPM is less than 10 counts per second. When the FY3D satellite passes by the South Atlantic Anomaly (SAA), the 

dark count of IPM increases rapidly and reaches about 2000 counts per second due to the energetic particles in the SAA.  
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 140 

 

Figure 6: The count of the 135.6nm nightside channel with red-leak (top), without red-leak (bottom), and the count of the red-leak 

nightside channel (middle) for new Moon (left) and full Moon (right) situation, respectively. March 17, 2018 is new Moon day, and 

March 31, 2018 is full Moon day.    

The count of the 135.6 nm nightside channel is presented in Fig. 6. The count with red-leak on March 17, 2018 (new Moon) 145 

and on March 31, 2018 (full Moon) are shown in (a) and (d), respectively. The count without red-leak on March 17, 2018 

and March 3, 2018 are shown in (c) and (f), respectively. The count of the 135.6 nm nightside channel in (d) is several times  

the count of the 135.6 nm nightside channel in (a) due to moonlight reflecting into the 135.6 nm nightside channel from 

cloud tops, while the count levels in (c) and (f) are very similar. We found that the red-leak nightside channel is effective to 

eliminate the contamination of moonlight on the 135.6 nm nightside channel. 150 

An example of the global count of the 135.6 nm nightside channel is presented in Fig. 7 (a). The red solid line indicates the 

magnetic dip equator. The data in Fig. 7 are from 7 to 11 December 2017. From 7 to 11 December 2017, Kp index is not 

more than 4 and the geomagnetic conditions were relatively quiet. As shown in Fig. 7 (a), there is a high-count area near the 

magnetic dip equator in South America, which shows the contamination in SAA associated with particles impacting the 
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instrument. An example of global brightness of the 135.6 nm nightside channel without red-leak and the effect of dark count 155 

is presented in Fig. 7 (b). As shown Fig. 7 (b), there are some brighter areas located on either side of the magnetic dip 

equator in South America and Africa, which are the so-called equatorial ionization anomaly (EIA) structure. The EIA has  

 

Figure 7: The global count (left) and brightness (right) of the 135.6nm nightside channel  from 7 to 11 December 2017. The 

brightness is without red-leak and the effect of dark count. The red solid line indicates the magnetic dip equator. 160 

 

been studied extensively by using data from ground-based ionosodes (Moffett and Hanson, 1965; Walker, 1981) and ground-

based optical observations (Thuillier et al., 1976). The OI 135.6 nm emission data from GUVI on board TIMED satellite, 

FUV on board the IMAGE satellite, and the TIP on board the COSMIC satellites have also been used in study of the EIA 

phenomenon (Christensen et al., 2003; Sagawa et al., 2005; Immel et al, 2006 and Coker et al., 2009). The local time of the 165 

IPM orbit on the nightside is 2:00 am. The EIA structure which we found at the 2:00 local time is later than other results 

mentioned earlier, and it need to be studied further. 

3.2 NmF2 and TEC 

OI 135.6 nm emission is one of the strongest lines in the FUV nightglow at low latitudes and has relatively high transparency 

in the upper atmosphere. In the nightside ionosphere, there are two primary production mechanisms of OI 135.6 nm emission: 170 

(1) Atomic oxygen is excited through the recombination of atomic oxygen ions with electrons and produces OI 135.6 nm 

emission; (2) Atomic oxygen is excited through the mutual neutralization of O
+ 

with O
−
and produces OI 135.6 nm emission 

(Meier, 1991). The mutual neutralization has a relatively smaller contribution. The brightness of OI 135.6 nm emission 
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varies with the electron density and the oxygen ion concentration basically. Equivalently, OI 135.6 nm emission is 

approximately proportional to the square of the electron density in the F-region. 175 

The algorithm of deriving NmF2 from the night time OI 135.6 nm emission is provided by Rajesh et al. (2011) and Jiang et 

al. (2014, 2018). The night time OI 135.6 nm emission is calculated based on a nighttime OI 135.6 nm airglow radiative and 

emissive model. The electron density profile, the O
+
 density profile and the electron temperature profile are calculated using 

the IRI2000 model, and the neutral components are calculated using the MSISE90 model. The OI 135.6 nm emission is fitted 

to the square of NmF2 linearly. The ratio of the square of NmF2 to the OI 135.6 nm emission is obtained. Finally, NmF2 is 180 

retrieved based on the observed OI 135.6 nm emission and the ratio. We selected the IPM derived NmF2 data which were 

near to four IGGCAS ionosonde stations(Sanya (18.3º N,109.6º E), Wuhan (30.5º N,114.4º E), Beijing (40.3º N,116.2 º E), 

and Mohe (50.2º N,122.5º E)) from November 25, 2017 to May 8, 2018(shown in Fig. 8). Their difference in longitude was 

less than 12º and in latitude was less than 5º. There is a standard deviation of 26.67% between IPM NmF2 and IGGCAS 

ionosonde NmF2 (shown in Fig. 9). 185 

 

Figure 8: IPM derived NmF2 and IGGCAS ionosondes NmF2 from November 25, 2017 to May 8, 2018. (The longitude difference 

between the IPM substellar point and ionosonde stations is less than 12º, and the latitude difference is less than 5º. ) 
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 190 

Figure 9: The relative difference distribution between IPM NmF2 and IGGCAS ionosonde NmF2. 

 

The algorithm of deriving TEC from the night time OI 135.6 nm emission is provided by Rajesh et al. (2011) and Jiang et al. 

(2014). The process of deriving TEC based on the ratio between TEC and the night time OI 135.6 nm emission intensity is 

similar to that of deriving NmF2. We further calculated total electron content (TEC) from IPM results and compared with 195 

that of MIT TEC data from November 25, 2017 to April 8, 2018. The MIT TEC data (Rideout and Coster, 2006) was 

obtained from the MIT Haystack Observatory Madrigal database (http://www.openmadrigal.org). There is a standard 

deviation of 39.41% between IPM TEC (total electron content unit, TECu) and MIT TEC (TECu) (shown in Fig.10). The 

standard deviation between IPM TEC (TECu) and MIT TEC (TECu) is more than the one between IPM NmF2 and IGGCAS 

ionosonde NmF2. MIT TEC is integrated from ground to 20200 km. It includes plasmasphere contribution and ionosphere 200 

contribution. IPM TEC is integrated from ground to 830 km, it only includes ionosphere contribution. There is diurnal 

interchange between the ionosphere and the plasmasphere, the downward diffusion from the plasmasphere helps to maintain 

the nighttime F2-layer. The results of Jason-1, Metop-A, and TerraSAR-X (Yizengawa et al., 2008; Zakharenkova and 

Cherniak, 2015; Klimenko et al., 2015) show that the plasmasphere contribution at night can’t be neglected. 
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 205 

Figure 10:  IPM TEC and MIT TEC (TECu) from November 25, 2017 to April 8, 2018 

3.3 O/N2 

Energetic photon-electron impact excitation of the neutral atmosphere produces 135.6 nm emission and N2 LBH emission, 

which are proportional to the concentration of O and N2 respectively (Meier, 1991).  135.6 nm emission and N2 LBH 

emission can be used to derive column O/N2. The derivation of O/N2 from disk 135.6 and N2 LBH dayglow observations was 210 

first addressed by Strickland et al. (Strickland et al., 1995) And the topic of O/N2 from 135.6 nm emission and N2 LBH 

emission has been studied extensively (Christensen et al., 2014; Strickland et al., 2004; Zhang et al., 2014). During 

geomagnetic storms enhanced Joule and particle heating in the high latitude ionosphere produces upwelling of the oxygen-

depleted or nitrogen-rich air. The upwelling rises from much lower in the thermosphere into the F region. The heating also 

leads to enhanced horizontal equator-ward neutral winds that can change the distribution of the nitrogen-rich/oxygen-215 

depleted air. 

Energetic photon-electron impact excitation of the neutral atmosphere produces 135.6 nm emission and N2 LBH emission, 

which are proportional to the concentration of O and N2 respectively (Meier, 1991).  135.6 nm emission and N2 LBH 

emission can be used to derive column O/N2. The derivation of O/N2 from disk 135.6 and N2 LBH dayglow observations was 

first addressed by Strickland et al. (Strickland et al., 1995) And the topic of O/N2 from 135.6 nm emission and N2 LBH 220 

emission has been studied extensively (Christensen et al., 2014; Strickland et al., 2004; Zhang et al., 2014). During 

https://www.sciencedirect.com/science/article/pii/S136468261400087X#!
https://www.sciencedirect.com/science/article/pii/S136468261400087X#!
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geomagnetic storms enhanced Joule and particle heating in the high latitude ionosphere produces upwelling of the oxygen-

depleted or nitrogen-rich air. The upwelling rises from much lower in the thermosphere into the F region. The heating also 

leads to enhanced horizontal equator-ward neutral winds that can change the distribution of the nitrogen-rich/oxygen-

depleted air. 225 

 

Figure 11:  Column O/N2 from IPM around the magnetic storm of Aug.26, 2018. 

 

Giving an N2 depth of 10
17

 cm
−2

, column O and N2 ratio is derived from the value at a given Solar Zenith Angle (SZA) by 

two-dimensional interpolation. The retrieval algorithm was described by Strickland et al. (1995) and Zhang et al. (2004). The 230 

brightness of the 135.6 nm emission and the N2 LBH emission on the dayside were derived from observations of the 135.6 

nm dayside channel and the N2 LBH dayside channel respectively. In order to further deduct the red-leak from the cloud tops, 

we used a Butterworth filter in the data processing. The improved AURIC model (Wang and Wang, 2016) was used to 

produce a simulation. The simulation provided the coefficient for deriving O/N2 from a measured pair of 135.6 nm and LBH.  

The column O/N2 ratio during the magnetic storm of Aug. 26, 2018 is presented in Fig. 11. On 24 August 2018 and most of 235 

25 August 2018, Kp index was not more than 3. It abruptly rose to 7 in 26 August 2018. From 29 to 31 August 2018, Kp 

index was not more than 3. The column O/N2 on 24 and 25 August was relatively quiet, and significant changes in column 

O/N2 occurred on 26 and 27 August. The reduction of O/N2 extended from the high-latitude region to mid and low latitude 

regions in the Northern and Southern Hemisphere. On 30 and 31 August, column O/N2 returned to quiet. 

The column O and N2 ratio derived from GUVI during the magnetic storm of Aug. 26, 2018 is presented in Fig. 12. The 240 

GUVI column O/N2 data (Strickland et al., 2004) was obtained from the GUVI website 

(http://guvitimed.jhuapl.edu/data_fetch _l3_on2_ idlsave). The column O/N2 from GUVI on 24 and 25 August was relatively 

quiet, and significant changes in column O/N2 occurred on 26 and 27 August. The reduction of O/N2 also extended from the 

high-latitude region to mid- and low- latitude regions in the Northern and Southern Hemisphere. On 30 and 31 August, the 

http://guvitimed.jhuapl.edu/data_fetch%20_l3_on2_%20idlsave
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column O/N2 of GUVI also returned to quiet. The features of column O/N2 of IPM and GUVI during the magnetic storm of 245 

Aug. 26, 2018 were similar. These results showed that the IPM data could provide a good monitoring of O/N2 changes 

during the magnetic storm. 

 

Figure 12: Column O/N2 from GUVI around the magnetic storm of Aug.26, 2018. 

4 Conclusion 250 

The Feng Yun 3D (FY3D) meteorological satellite was launched at 18:35 UTC on November 14, 2017 from the Taiyuan 

Satellite Base, Shanxi province, China. The Ionospheric Photometer instrument carried aboard the FY3D meteorological 

satellite measures the spectral radiance of the Earth far ultraviolet airglow in the spectral region from 133 to 180 nm. IPM is 

a tiny, highly sensitive, and robust remote sensing instrument. Preliminary observations show that the IPM could monitor the 

global structure of the equatorial ionization anomaly structure around 2:00 local time using OI 135.6 nm nightglow properly.  255 

It could also identify the reduction of O/N2 in the high-latitude region during the geomagnetic storm of Aug. 26, 2018. The 

IPM derived NmF2 accords well with that observed by 4 ionosonde stations along 120ºE with a standard deviation of 26.67%. 

Initial results demonstrate that the performance of IPM meets the design requirements, and therefore can be used to study the 

thermosphere and ionosphere in future. 

 260 
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