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Abstract. The 2017 National Academy of Sciences Decadal Survey highlighted several high priority objectives to be pursued

in the decadal timeframe, and the next-generation Cloud Convection Precipitation (CCP) observing system is thereby contem-

plated. In this study, we develop a suite of hybrid Bayesian algorithms to investigate the capability of two CCP candidates

including a W-band cloud radar and a (sub)millimeter-wave radiometer with channels in the 118 GHz to 880 GHz frequency

range for ice cloud remote sensing. The algorithms address active-only, passive-only, and synergistic active-passive retrievals.5

The hybrid Bayesian algorithms combine the Bayesian MCI and optimization process to retrieve quantities and uncertainty es-

timates. The radar-only retrievals employ the optimal estimation methodology, while the radiometer-involved retrievals employ

ensemble approaches to maximize the posterior probability density function. A priori information is obtained from the Tropical

Composition, Cloud and Climate Coupling (TC4) in situ data and CloudSat radar observations. Simulation experiments are

conducted to evaluate the pixel-level retrieval accuracies by comparing the retrieved parameters with known values. The exper-10

iment results suggest that the radiometer measurements possess high sensitivity for large ice cloud particles, even though the

brightness temperature measurements do not contain direct information on the vertical distributions of ice cloud microphysics.

The radar-only retrieval demonstrates skill in retrieving ice water content profiles, but not in retrieving number concentration

profiles. The synergistic information allows improved retrieval accuracies especially in terms of ice water path. The end-to-end

simulation experiments also provide a framework that could be extended to the inclusion of other remote sensors to further15

assess the CCP observing system in future studies.

1 Introduction

The 2017 earth science decadal survey (Board et al., 2019) identified five designated foundational observations to be pursued

during the 2017-2027 time frame, and the Aerosols (A), and Clouds, Convection, and Precipitation (CCP) are included as

designated observables (DOs). In the preformulation study, the A and CCP DO’s were merged to exploit synergies in the20

measurement systems. The objective of the preformulation study was to identify measurables that can achieve the science

objectives of the DOs. As such, the study identified observing system architectures that maximize science benefit while limiting

cost and risk. To narrow in on a set of viable architectures, the ACCP study relied on a suite of Observing System Simulation

Experiments (OSSEs) aimed at addressing pixel-level retrieval uncertainties and sampling trade-offs for various geophysical

variables that were deemed important to achieving science goals.25
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The properties of ice clouds are among the critical geophysical variables in the CCP science objectives. Ice clouds play a

significant role in modulating the energy budget of the earth system by absorbing upwelling long-wave radiation emitted from

the lower troposphere and reflecting incoming solar short-wave radiation (Liou, 1986; Su et al., 2017). Studies suggest that ice

clouds are a net heat source to the climate system (Stephens and Webster, 1984; Ackerman et al., 1988; Berry and Mace, 2014)

while contributing a positive feedback to the climate system (Zelinka and Hartmann, 2011).30

The radiative effects of ice clouds depend on the vertically integrated and the vertical distribution of ice particle character-

istics (Hartmann and Berry, 2017). The microwave radar and (sub)millimeter-wave radiometry are two critical techniques for

ice cloud remote sensing that are strongly synergistic when combined (Buehler et al., 2012). The microwave radar reflectivity

constrains ice cloud microphysical quantities in a vertically resolved sense while the (sub)millimeter-wave radiometer con-

strains integrated mass and particle size. These two techniques are also highly complementary. The nadir looking microwave35

cloud radar provides high resolution of ice cloud vertical profiles but are limited to the along-track measurements, whereas the

scanning (sub)millimeter-wave radiometer has a wide swath but provides limited information about cloud vertical structure.

Combing the strength of both observing sensors enhances our capability to better acquire ice cloud spatial distributions and

assess their role in radiative heating.

Several retrieval algorithms have been developed specifically for ice cloud radiometry studies. All applicable algorithms that40

could be generally classified as statistical approaches and optimization approaches are under the framework of Bayes’ theorem.

The statistical approaches, including the Bayesian Monte Carlo Integration (MCI) (Evans et al., 2002, 2005) and the Neural

Network (Jiménez et al., 2007; Brath et al., 2018), builds up an a priori database by randomly generating atmospheric/cloud

cases according to the a priori probability density function (PDF) and simulating instrument-specific measurements. To solve

the sparsity of database cases in the measurement space, optimization algorithms are developed to maximize the posterior45

PDF. Evans et al. (2012) applied the Optimal Estimation Method (OEM) and Markov Chain Monte Carlo (MCMC) to retrieve

ice cloud profiles from the Compact Scanning Submillimeter Imaging Radiometer (CoSSIR) (Evans et al., 2005) observations

during the Tropical Composition, Cloud and Climate Coupling (TC4) (Toon et al., 2010) experiment. Liu et al. (2018) proposed

an ensemble methodology that does not use the gradient information but always relies on estimating posterior PDF to minimize

the cost function. For the combined radar and radiometer retrievals, McFarlane et al. (2002) explored the synergistic concepts50

by retrieving liquid water content and effective radius profiles from millimeter wavelength radar reflectivity and dual-channel

microwave brightness temperatures using the Bayesian MCI algorithm. Although McFarlane et al. (2002) worked on the liquid

cloud, the basic methodologies are applicable to the ice cloud remote sensing. Pfreundschuh et al. (2020) developed OEM

algorithms for the upcoming Ice Cloud Imager radiometer (Kangas et al., 2014) and a conceptual W-band cloud radar to

investigate to synergies between the active and passive observations.55

The objective of this paper is to develop candidate algorithms for synergistic radar and radiometer retrievals to quantitatively

assess the capability of sensing designated ice cloud geophysical variables for the next-generation ACCP observing system.

The algorithms for active-only, passive-only, and combined retrievals use a hybrid Bayesian framework, which combines the

Bayesian MCI and optimization process to retrieve ice cloud quantities with uncertainty estimates. This paper is structured as

follows: in Sect. 2 we provide an overview of the assumed ACCP remote sensors and simulate active and passive observations60
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from reference cloud scenes using radiative transfer models. Sect. 3 describes the hybrid Bayesian algorithms for the radar-

only, radiometer-only, and synergistic retrievals in detail, followed by Sect. 4, which describes the a priori retrieval database

using the statistics from in situ data and CloudSat radar observations. Sect. 5 conducts the retrieval simulation experiments and

quantitatively evaluates the retrieval results. Finally, Sect. 6 presents the summary and conclusions.

2 Simulated observations65

2.1 Remote sensors

The remote sensors we evaluate in this study include a W-Band (94.05 GHz) radar and a (sub)millimeter-wave radiometer

both of which are candidates in the ACCP observing system. The W-band radar is nadir-looking and it is similar to the Cloud

Profiling Radar (CPR) in the CloudSat satellite (Stephens et al., 2008). The radar’s horizontal resolutions are 1 km and 0.8

km in along-track and cross-track directions, respectively. The reflectivity measurement accuracy is 1.5 dBz, and the minimum70

detectable reflectivity is -25 dBz when working at high sensitivity mode. The passive (sub)millimeter-wave radiometer is

conical-scanning and it has 16 horizontally polarized channels at the frequencies of 118 ± 1.1, 118 ± 1.5, 118 ± 2, 118 ±
5, 183 ± 1, 183 ± 2, 183 ± 3, 183 ± 6, 240, 310, 380 ± 0.75, 380 ± 1.5, 380 ± 3, 380 ± 6, 660, and 880 GHz. The 183

GHz and 380 GHz channels are centered around water vapor absorption lines, and the other channels are centered around the

O2-line or within the window region. The desired noise characteristics and the spectral feature for different channels in the75

ACCP candidate (sub)millimeter-wave radiometer are summarized in Table 1. This radiometer has a 45° off-nadir angle and

a 750 km swath width. The assumptions used in this study align with the assumed instruments that were used in the ACCP

study. Specific instruments have yet to be chosen and therefore, additional details regarding the actual flight instruments are

not known. Figure 1 shows the simulated clear-sky brightness temperature (BT) spectrum for a tropical atmospheric profile.

All channels of the ACCP candidate (sub)millimeter-wave radiometer are positioned on the spectrum, and detailed views of80

the double sidebands located on either side of the central frequency are also displayed.

2.2 Reference cloud scenes

The reference cloud scenes are derived from the numerical Environment and Climate Change Canada (ECCC) model (Chen

et al., 2018) simulating tropical atmospheric conditions. The ECCC model outputs were made available to the ACCP Sci-

ence Impacts Team (Kollias, personal communication) and were originally created for use by the EarthCare algorithm team85

(Illingworth et al., 2015). We choose the ECCC atmosphere/cloud profiles to assure the independence between the ice cloud

microphysics for reference and that in the retrieval database, but also to keep these two datasets consistent in a geographic

context. As will be discussed in section 4, the a priori database is created using in situ statistics from NASA TC4 campaign

that occurred in the Tropical Eastern Pacific. The ECCC model outputs water content and number concentration profiles for

several hydrometers including cloud ice, snow, liquid cloud, and rain. In this study, however, we only use the frozen particle90

outputs, and we do not differentiate the cloud ice and snow but add the water content and number concentration of these two
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Table 1. Channel charactieristics of the ACCP candidate (sub)millimeter-wave radiometer used in this study.

Frequency [GHz] Desired Noise [K] Feature

118.75 ± 5 0.5 O2 line

± 2

± 1.5

± 1.1

183.31 ± 6 1 H2O line

± 3

± 2

± 1

240 1 Window

310 1.5 window

380.2 ± 6 1.5 H2O line

± 3

± 1.5

± 0.75

660 1.5 Window

880 1.5 window

hydrometers to characterize the frozen particles. The reason for these simplifications is still to be consistent with the a priori

database that will be discussed in section 4. Currently, the retrieval database we create does not contain liquid hydrometeors,

and we do not distinguish between cloud ice and snow when analysing the TC4 in situ data to capture the a priori statistics. All

ECCC model outputs are interpolated according to the CloudSat CPR range gate spacing that has 250-meter vertical resolution95

to mimic realistic remote sensing situations. A total of 1280 atmosphere/cloud profiles with 0.25 km horizontal resolution

along a latitudinal transect between -2.5° and 9° latitude are selected as the reference cloud profiles for assessing the retrieval

accuracies for studied remote sensors.

2.3 Radiative transfer model

We develop the forward model for both active and passive simulations based on the Atmospheric Radiative Transfer Simulator100

(ARTS) (Buehler et al., 2018). The ARTS forward model used in this study employs the built-in two-moment modified gamma

distribution (Petty and Huang, 2011) scheme which requires both ice water content (IWC) and number concentration (NC) to

characterize the frozen particle size distribution (PSD). The frozen particles are assumed to be randomly orientated, and their

scattering properties are represented by the “EvansSnow” habit from the ARTS Single Scattering Database (SSD) (Eriksson

et al., 2018). The ARTS model uses a single-scattering radar solver to compute the radar reflectivity, and it uses the DIScrete105

Ordinates Radiative Transfer (DISORT) (Stamnes et al., 2000) solver to compute the brightness temperature. The gas absorp-
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Figure 1. Simulated clear-sky brightness temperature spectrum at a tropical atmospheric scenario. All ACCP radiometer channel positions

and a detailed view of the double sidebands located on either side of a central frequency are present.

tions are computed using the HITRAN database (Rothman et al., 2013), and the surface emissivity is calculated using the Tool

to Estimate Sea-Surface Emissivity from Microaves to sub-Millimeter wave (TESSEM) (Prigent et al., 2017) emissivity model.

It should be noted that the ARTS forward models used in simulating observations of the reference cloud scenes are identical

to the models used in the optimization retrieval algorithms, which means the systematic biases from different particle habits or110

PSD schemes are not investigated in this study.

2.4 Simulated observations

This study focuses on developing algorithms to investigate the synergistic retrieval performance for situations where the active

and passive observations are coincident. Based on this purpose, many simplifications are made in simulating remote sensor

observations and conducting retrievals below. The atmosphere is assumed to be one-dimensional, which means the atmospheric115

fields only vary as a function of altitude. Both sensors are assumed to have the nadir-looking viewing angle with pencil beams
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to achieve the same fields of view. We do not consider differences in sampling by the idealized instruments. Considering that

the active and passive remote sensors have different horizontal resolution and scanning mode, the retrieval performance in

reality will differ from the idealized assumptions in this study. The influence of the footprint and viewing geometry will be

addressed in future work once those characteristics are known.120

Figure 2 shows the vertical distribution of IWC and NC for the selected reference cloud scenes along a latitudinal tran-

sect and the corresponding simulated W-band radar observations. Compared to the number concentration, the simulated radar

reflectivity show a stronger tendency to follow the variations in IWC. Figure 3 shows the ice water path (IWP) and the cor-

responding BT simulations for all ACCP candidate radiometer channels. The correlations between the IWP changes and BT

depressions are evident. The channels with higher central frequencies are more sensitive to the change of water path, especially125

for small changes in cloud ice on the order of 102 g m−2. For the double sidebands with the same center frequency, the large

frequency-offset channels show higher brightness temperature values in clear sky conditions, and they have larger BT depres-

sions when encountering thick ice cloud layers. Figure 4 shows the scatterplot of the BT difference between simulations in the

clear-sky and cloudy conditions versus IWP for different channels. The 118 GHz channels demonstrate sensitivity only when

the IWP is over 103 g m−2. This is not surprising since the 118 GHz channels are primely designed for sensing temperature130

profiles. For the 183 GHz and 380 GHz channels, the biggest BT differences are up to 50 K and 80 K, respectively. Also,

the 380 GHz channels simulations show more deviations for the same IWP values, implying that the high-frequency channels

are more sensitive to the IWC vertical distributions. The BT sensitivity of the 660 GHz and 880GHz window channels are

noticeable even when the IWP is below 102 g m−2, and the difference values could be up to 110 K under our reference cloud

scenes. These two channels make the candidate radiometer capable of sensing thin cirrus clouds that are usually composed of135

smaller particles. However, both 660 and 880 GHz show signs of saturation for IWP in excess of 103 g m−2 explaining why

the full suite of channels is necessary to capture the full dynamic range of ice clouds in the upper troposphere.

3 Hybrid Bayesian algorithms

We developed different hybrid Bayesian algorithms for the radar-only, radiometer-only, and synergistic retrievals. All hybrid

algorithms combine Bayesian MCI with optimization processes to retrieve quantities and uncertainty estimates. Bayesian MCI140

introduces prior information by generating an ensemble of atmospheric cases that are distributed according to the a priori PDF,

and it is highly efficient since the retrieval database is precalculated and additional forward model calculations are not required.

By assuming the uncertainties for different measurement variables to be independent, the conditional PDF, which is also the

posterior PDF, can be written as:

Pcond(x|yobs)∝ exp(−
1

2
χ2) χ2 =

M∑
j=1

(ysim,j − yobs,j)2

σ2
j

(1)145

where Pcond is the conditional probability of the measurement vector yobs given a particular atmospheric state x, ysim is the

simulated observation vector, and σj is the uncertainty of observation and forward model for the jth channel. The retrieved

quantities and uncertainties are calculated by Monte Carlo Integration over the state vectors to find the mean vector and the
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Figure 2. Vertical distribution of water content (WC) and number concentration (NC) for ice and snow particles along the selected latitudinal

transact and the corresponding W-band radar reflectivity simulations. The radar simulations are computed using Atmospheric Radiative

Transfer Simulator (ARTS) forward model.

associated standard deviation:

x̄=

∑
ixiexp(−

1
2χ

2
i )∑

i exp(−
1
2χ

2
i )

σx̄ =

√∑
i(xi− x̄)2exp(− 1

2χ
2
i )∑

i exp(−
1
2χ

2
i )

(2)150
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Figure 3. Integrated water content for ice and snow particles for the selected latitudinal transect and the corresponding brightness temperature

simulations for all ACCP radiometer channels.

The biggest challenge for the Bayesian MCI is the sparsity in the measurement space for a retrieval database with a finite

number of random samples. If we increase the length of the observation vector or decrease the measurement uncertainties, the

number of database cases matching the observation vector becomes smaller and the Bayesian MCI fails. When this happens,

the optimization process is begun to maximize the posterior PDF.
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Figure 4. Scatterplot of the brightness temperature difference between simulations in the clear sky and cloudy conditions as a function of ice

water path for all ACCP radiometer channels.

3.1 Radar-only retrievals155

The robust and efficient OEM method is employed as the optimization algorithm for radar-only retrievals. The fundamental

assumptions of the OEM algorithm are that the forward model is moderately nonlinear and that both prior PDF and conditional

PDF are Gaussians. OEM maximizes the posterior PDF by minimizing the following cost function:

J = (ysim− yobs)TS−1
y (ysim− yobs) + (x−xa)TS−1

a (x−xa) (3)

where Sy and Sa are the covariance matrices for the measurement and prior uncertainties, respectively. In this study, the160

Levenberg-Marquardt minimization method (Rodgers, 2000) is implemented, and the required Jacobian matrix is calculated

via finite difference method with perturbations of ice cloud parameters in each pixel. The posterior error covariance matrix

specified below is used to characterize the retrieval uncertainties:

S = (S−1
a +KTS−1

y K)−1 (4)

where K is the Jacobian matrix of the retrieved quantities to linearize the forward model in each iteration. The covariance165

matrix S is also derived based on the local Gaussian approximation and the forward model linearization assumption. The

relative change of the cost function J is considered as the criteria for testing convergence. The OEM optimization terminates

if the relative change of J is below a specified threshold or the algorithm is over a certain number of iterations.

3.2 Radiometer-involved retrievals

The radiometer-involved retrievals that include the synergistic and radiometer-only retrievals do not employ the OEM algorithm170

in this study because the published OEM methods are not applicable under current testing circumstances. The OEM algorithms

involving BT measurements were developed in the following two studies. The first one was done by Evans et al. (2012), which

computes the Jacobian matrix based on the adjoint modeling technique in the spherical harmonics discrete ordinate method for

plane-parallel data assimilation (SHDOMPPDA) (Evans, 2007) radiative transfer model to make the evaluation of the gradient
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of cost function computationally feasible. The second one was developed by the ARTS community (Pfreundschuh et al., 2020),175

which calculate the BT sensitivity to the scaling parameters in a normalized particle size distribution formalism proposed by

Delanoë et al. (2005). This approach is not employed because a different PSD scheme is utilized in analysing the TC4 in

situ data to capture the prior statistics, and a different prior Gaussian PDF that is characterized in terms of IWC and NC is

used in this study. Besides, as pointed out in Pfreundschuh et al. (2020), the ARTS OEM method does not always satisfy the

OEM fundamental assumptions requiring a nearly linear forward model, and the Jacobian evaluation is computationally very180

expensive. Based on the considerations above, we employ the ensemble approaches instead to handle the radiometer-involved

retrievals and defer the OEM analysis to future work. The ensemble approaches will be discussed in detail in the following two

subsections.

3.2.1 Synergistic radar and radiometer retrievals

The synergistic radar and radiometer retrievals are done by extending the radar OEM algorithm to add the radiometer observa-185

tions. The radar OEM algorithm provides the retrieved values as well as the associated uncertainty estimations formulated in

Eq. (4). Following this step, the Cholesky decomposition is implemented on the covariance matrix to generate an ensemble of

correlated random noise. This is done by decomposing the covariance matrix into a lower triangular form and then multiplying

it by a vector of standard Gaussian deviates. The correlated random noise is added to the radar retrieved quantities to statisti-

cally explore the state space around the OEM radar retrieval results. The corresponding BT simulations for the generated ice190

cloud profiles are subsequently computed using the ARTS radiative transfer model. After that, the ensemble cases are weighted

according to their χ2 values that measure the distance between the BT simulations and the input BT observation through Eq.

(1), and the retrieval results and uncertainties are computed by Monte Carlo Integration over the weighted ensemble cases to

find the mean value and standard deviation.

In this study, an ensemble of 500 cases is generated using the Cholesky decomposition to statistically investigate the ad-195

ditional benefits from the BT information. The Bayesian MCI step requires a minimum number of cases (25 in the retrievals

below) matching the BT observation within a specified χ2 threshold. The χ2 threshold is set to M + 4
√
M , where M is the

number of radiometer channels (Evans et al., 2005). If this criterion fails, we inflate the radiometer standard deviations in steps

of a factor of
√

2 until reaching the minimum number of cases, and the retrieval results and uncertainties are computed by MCI

over the weighted cases, as shown in Eq. (2).200

3.2.2 Radiometer-only retrievals

We employ the Ensemble Probability Estimation (EnPE) algorithm as the optimization procedure for the radiometer-only

retrievals. The EnPE algorithm was first proposed by Liu et al. (2018), and we continue to develop it as an optimization

methodology. The EnPE algorithm has advantages in the following aspects. First, the algorithm does not rely on gradient

information to move forward. Since the Jacobian calculations for BT observations are either complex to implement in the205

radiative transfer model or computationally expensive, the EnPE algorithm’s characteristic of non-Jacobian dependence makes

it suitable for ice cloud profile retrievals that have high dimensional state vectors using advanced radiative transfer models.
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Second, the EnPE algorithm is under the Bayesian MCI framework, which not only provides the theoretical basis but also

offers a straightforward way to estimate the retrieval uncertainties associated with the retrieved quantities.

Figure 5. Flowchart of the Ensemble Probability Estimation (EnPE) algorithm applied in the radiometer-only retrievals.

We describe the EnPE algorithm in detail here to involve improvements in many aspects and to make the algorithm more210

understandable. The EnPE algorithm stochastically explores the state space by sampling an explicit probability distribution
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function estimated from promising weighted cases obtained so far from the perspective of Bayesian MCI. As the flowchart

in Figure 5 shows, the algorithm consists of two modules: the PDF estimation module numerically estimates the unknown

continuous posterior PDF using the discrete cases with posterior values in the last ensemble, and the PDF sampling module

synthesizes new cases according to the accumulated PDF using the resampling approach and the covariance matrix.215

Started from the situation where too few a priori database cases matching the observations, the PDF estimation module

artificially inflates the measurement uncertainties so that there are enough matches between the observation vector and the BT

simulations from the a priori profiles, and the conditional PDF is computed by:

Pcond,j = exp(− 1

2σ2
s

χ2
i ) (5)

where σ2
s is the inflation factor ensuring a minimum number of cases in one ensemble are within a specified χ2 threshold. The220

estimation module then computes the prior PDF to carry along prior information during the iteration to avoid overfitting. The

prior PDF is neglected in the first iteration since it is implicitly described by the distribution of the retrieval database cases.

We update the prior PDF calculation method in this study to use more accurate prior statistics, and this new approach will be

discussed later in this subsection. After computing the conditional PDF and the prior PDF, the atmospheric/cloud samples in

each ensemble are weighted according to the posterior PDF:225

Ppost,j =
Pprior,i ∗Pcond,i∑
iPprior,i ∗Pcond,i

(6)

Following this step, the PDF sampling module reselects the samples according to their posterior value to multiply cases with

high weights and eliminate cases with low weights. The weights of the selected state vectors become equivalent again. The

sampling module then generates correlated random noise using the two-point correlation statistics in the covariance matrix.

The covariance matrix of the retrieved quantities is computed using the posterior PDF based on Bayesian MCI:230

Cov(m,n) =
∑

i
(xi,m− x̄i,m)(xi,n− x̄i,n) ∗Ppost,i (7)

Liu et al. (2018) conducted the correlated noise generation step by sampling a set of Gaussian distributions in the eigenspace,

but a simpler approach is to use the concept of the covariance matrix decomposition. This step is essentially consistent with

the Cholesky decomposition applied in the synergistic retrieval in section 3.2.1. However, since the covariance matrix here is

not always positive definite, we use the empirical orthogonal functions (EOFs) to generate correlated random variables. The235

eigenvalues and eigenvectors of the covariance matrix in (7) are calculated, and the EOFs including 99.9% of the variance are

used. The correlated Gaussian distributed elements are calculated by multiplying the standard Gaussian deviates by the square

root of the eigenvalue matrix to scale the data based on the variance magnitude, and then multiplying them by the eigenvector

matrix to rotate back to the original axes:

Σ = E
√

ΛD (8)240

where Σ is the random correlated variables, D is the standard Gaussian derivates,
√

Λ is the diagonal scaling matrix composed

by the square root of eigenvalues, and E is the rotation matrix composed by eigenvectors in each column. At last, the PDF
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sampling module builds up a new ensemble by adding the correlated random variables to the selected state vectors from the

resampling step to further explore the state space.

Once a new ensemble is synthesized and the corresponding BT simulations are computed, the algorithm evaluates the new245

state samples based on the prior PDF and conditional PDF, and the optimization cycle starts again. As the iteration proceeds,

the ensemble evolves and gradually becomes concentrated in the most likely area, compensating for the sparse distribution of

the original retrieval database. The cases in the last ensemble are used to calculate the mean parameter values (retrieved values)

and standard deviations (retrieved uncertainties) by Bayesian MCI. The EnPE iteration stops when a required number of cases

(25 in this study) within the χ2 threshold are found in one ensemble, or the number of iterations is over a limit. If there are250

not enough cases satisfying the χ2 criterion in the lase ensemble, we again inflate the BT measurement standard deviations

until covering enough cases. In the retrievals below, the EnPE algorithm generates 300 new cases in each iteration, and only 2

iterations at the maximum are permitted due to the computation limitation.

We upgrade the precalculated retrieval database with the random cases distributed according to the a priori PDF. In Liu

et al. (2018), the prior database is built up only relying on the numerical Global Environmental Multiscale (GEM) (Côté et al.,255

1998) model outputs. The disadvantages of this method are two-fold. First, the random cases cannot well represent the ice

cloud distributions because there are many microphysical simplifications in such a numerical model that results in much less

microphysical variability than exits in nature. Second, the reference cloud scenes come from the same GEM model, and the

interference due to the close relations between these two datasets becomes inevitable since the datasets share the same GEM

simulation parameters and initial conditions. In this study, we build up the retrieval database using the in situ microphysical260

data and spaceborne radar observations. The remote sensing data are combined with the in situ microphysical PDF using the

Bayesian MCI algorithm to create vertical profiles of ice cloud microphysics. After that, the cumulative distribution functions

(CDFs) and EOFs procedures are applied to capture the single-point and two-point statistics and to create a required number

of synthetic microphysical and thermodynamic profiles that are statistically consistent with the Bayesian retrieval results. A

comprehensive discussion on creating synthetic ice cloud profiles can be found in Liu and Mace (2020). Accordingly, the265

random cases in the updated retrieval database represent our prior knowledge of the atmospheric and cirrus clouds better,

and they are also completely independent from the reference cloud scenes for testing purposes. Further, since the random ice

cloud profiles are generated by statistically generalizing a relatively small number of cloud profiles that represent the prior

information, a new method is applied to deal with the regularization term (Pprior in Eq. (6)) constraining the synthesized

profiles to follow the prior knowledge. Compared to the method in Liu et al. (2018), this new approach captures more accurate270

a priori statistics, and it is applicable even when the a priori PDF is highly non-Gaussian.

The method to calculate the prior PDF is consistent with the control vector transformation concept applied in Evans et.al,

(2012). The CDFs are used to capture the one-point statistics of the Bayesian retrievals that combine the remote sensing

data and in situ microphysics by sorting different ice cloud parameters at different layers from smallest to largest in value and

calculating the sum of the assigned equal probabilities up to each datum. The original ice cloud parameters are then represented275

by their percentile ranks, and the correlations are also preserved in the rank matrix. Following that, the percentile rank matrix
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is transformed into a Gaussian derivate matrix using the standard normal cumulative distribution function:

ξi = Φ−1(R(xi)) (9)

where Φ(ξi) is the standard normal cumulative distribution function, and R(xi) is the percentile ranks for different parameters

at different layers. For a new ensemble, the ice cloud profiles are transferred into Gaussian derivate matrices to calculate the ξ280

values, and the associated a priori PDF quantitating the strength of the prior constraints are directly determined by the Gaussian

derivates ξ:

Pprior,i = exp(−1

2
ξ2
i ) (10)

In this way, more realistic ice cloud statistics displayed in arbitrary functional forms are added into the EnPE algorithm as the

regularizations to make the algorithm more applicable.285

3.3 Measurement space and state space

We conduct simulation experiments to assess the synergistic radar and radiometer capability in retrieving ice cloud parameters.

The measurement space in the retrieval experiments consists of the noisy radar reflectivity measurements at vertical grid points

and the noisy BT at different radiometer channels. Independent Gaussian noise with 1.5 dBz standard deviation characterizing

the radar measurement accuracy is added to the simulated radar reflectivity observations, and 4 dBz reflectivity uncertainty that290

account for estimations of the forward model uncertainty due to unknown ice hydrometeor bulk density is assumed during the

radar retrieval process. The 4 dBz error estimation is based on the study of Mace and Bensen, 2017. The grid points with the

radar reflectivity below the minimum detectable sensitivity (-25 dBz) are ignored in the retrieval. We add independent Gaussian

noise with standard deviation listed in Table 1 to the simulated BT observations for different channels, and we use the same

noise characteristics in the radiometer retrievals.295

The state space in all three retrievals consists of the IWC and NC profiles using the same vertical grids as the reference cloud

scenes. The vertical resolution is 250-meter. Other atmospheric parameters such as water vapor, temperature, and pressure

profiles are set to the true values during the retrieval. For the radar-only and synergistic retrievals, the ice cloud parameters

are transformed into lognormal distributions which means the state variables are ln(IWC) and ln(NC). For the radiometer-only

retrievals, the state variables are IWC and NC because we test that the EnPE algorithm works better in non-log scales.300

4 Retrieval database

The key element in implementing the Bayesian MCI is to build up the retrieval database, which generally consists of two

steps: creating random atmosphere and ice cloud properties that are distributed according to the prior PDF and computing the

simulated radar reflectivity or BT using the forward model. In this study, we separately develop two retrieval databases for

radar and radiometer retrievals using the a priori statistics from TC4 in situ measurements and CloudSat CPR observations.305
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4.1 Radar retrieval database

The realistic ice cloud microphysical probability distributions used for building up the radar retrieval database is obtained from

the in situ data from instruments flown in the TC4 campaign. The in situ ice particle size distributions are obtained from the two-

dimensional stereo (2D-S) probe and the precipitation imaging probe (PIP), and the associated temperature is measured by the

Meteorological Measurement System on the DC8 aircraft platform. The bimodal PSD scheme which approximates both small310

and large particle distribution modes by gamma functions is used to fit the in situ data, and the ice cloud parameters, including

IWC, NC, and particle size are derived. More details on the TC4 in situ analysis could be found in Liu and Mace (2020).

A multi-variant Gaussian distribution in temperature, ln(IWC), and ln(NC) is used to capture the in situ statistics, using

the prior idea that the microphysical parameters are approximately lognormally distributed. Using a multi-variant Gaussian

function shows several advantages in generalizing the in situ statistics: first, it specifies the microphysical PDF using a few315

parameters; second, it facilitates the radar OEM algorithm, which explicitly requires a normally distributed prior PDF; third, it

reasonably covers the space where the in situ probes fail to detect, which is important since the random cases need to completely

cover the possible parameter range. The parameters for the TC4 multi-variant Gaussian function are summarized in Table 2.

An ensemble of random cases (30,000 cases in this study) is sampled from the Gaussian function, and the ARTS radar forward

model is used to simulate the reflectivity for each random case.

Table 2. Ice particle microphysical statistics defining the a priori Gaussian probability distribution derived from the TC4 in situ data.

ln(IWC) (g m−3) ln(NC) (m−3) Temperature (K)

mean -6.04 9.88 231.07

std 2.45 1.81 12.41

correlation ρln(iwc)−ln(nc) = 0.69 ρln(iwc)−tp = 0.17 ρln(nc)−tp =−0.10

320

The radar retrieval database is used to generate the initial state vector for the radar-only OEM retrieval algorithm based

on the Bayesian MCI. This step helps the OEM algorithm to better satisfy the fundamental requirement for a moderately

nonlinear forward model. The initial state vector generation step proceeds from top down, and the generated radar attenuation

is used to correct the radar reflectivity below. The a priori Gaussian PDF listed in Table 2 is used in the OEM algorithm

as the regularization. This Gaussian PDF contains single-layer constraints, but the vertical correlations between ice cloud325

microphysics at different layers are not considered in this study.

Figure 6 shows the two-dimensional histogram for the microphysical quantities and reflectivity simulations in the radar

retrieval database. A fairly strong correlation between IWC and NC over the whole range is observed in the left panel. The

middle panel and the right panel indicate that the radar reflectivity simulations have a strong correlation with IWC in the whole

range, but its correlation with NC is much weaker.330
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Figure 6. Two-dimensional histogram for the microphysical quantities and the W-band radar reflectivity simulations derived from the random

cases in the precalculated radar retrieval database.

4.2 Radiometer retrieval database

Apart from using the TC4 in situ microphysical statistics, we also use the CloudSat observations to acquire the critical coherent

vertical correlations to synthesize the random ice cloud profiles for creating the radiometer retrieval database. The data we use

include CloudSat radar reflectivity, CALIPSO lidar cloud fraction, and the corresponding ECMWF profiles of temperature

and relative humidity. As mentioned in section 3.2.2, the active remote sensing profiles are first combined with the TC4 cloud335

microphysical probability distributions using the Bayesian MCI algorithm, and then the CDFs/EOFs procedures are applied

to create a required number of synthetic microphysical and thermodynamic profiles (100,000 profiles in this study) using the

one-point and two-point statistics that are captured from the Bayesian retrieval results. More details could be found in Liu and

Mace (2020).

Figure 7 shows the profiles of IWC, NC, temperature, and relative humidity for seven percentiles in the cumulative distri-340

butions. Layers that are identified as clear are added with random Gaussian noise to prevent discontinuity in the CDFs. The

mean values for the added IWC and NC noise are 10−6 g m−3 and 10 m−3, respectively. The left two panels show that the a

priori IWC profiles cover the range from clear condition to about 10 g m−3, and the NC profiles cover the range up to about

106 m−3. The 50% curve only has meaningful values in the 11 to 13 km altitude range, indicating that the ice cloud particles

are mostly concentrated in this region. The 75% curve implying that a large majority of atmospheric conditions outside the345

9 to 14 km range are effectively clear. The right two panels show that the a priori temperature profiles have a small range of

temperature coverage under the tropical atmospheric conditions applied in this study, and the relative humidity profiles have a

large possible range, almost coving the entire possible values from 0 to 1.

The precalculated retrieval database provides a good opportunity for estimating the degrees of freedoms (DoF) for the

ACCP (sub)millimeter-wave radiometer. The DoF describes the number of independent pieces of information in the radiometer350

measurement since some channels provide redundant information. The DoF is usually calculated as the trace of the averaging

kernel matrix based on the Jacobian matrix (Rodgers, 2000), but a more general method described in Eriksson et al. (2020)
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Figure 7. Profiles of ice water content (IWC), number concentration (NC), temperature, and relative humidity for seven percentiles in the

cumulative distributions for the random atmospheric/cloud profiles in the precalculated radiometer retrieval database.

is employed here since the Jacobian matrix for BT is not estimated here. This method calculates the DoF in the measurement

space based on the EOF approach. The covariance matrix of a set of simulated BT is decomposed using EOF:

Sy = EΛET (11)355

whereE is the matrix with eigenvectors in each column, and Λ is the diagonal matrix containing the corresponding eigenvalues.

The Gaussian measurement noise in eigenspace is transformed back using the same eigen coordinate axes:

SΛ = ESεE
T (12)

where Sε is the diagonal matrix that contains the square of measurement noise for different channels. The DoF is defined as

the number of diagonal elements in Sy that are larger than the corresponding value in SΛ in the same place.360

Figure 8 shows the DoF of the ACCP radiometer as the function of the ice water path (IWP) and integrated water vapor

(IWV) using the measurement noise characteristics listed in Table 1. The DoF is computed only when the number of random

cases in a certain IWV-IWP range is larger than 10 to avoid noise interference. It can be seen that the DoF increases with IWP,

but it decreases as the IWV gets large. For the wet atmospheres with IWV larger than 45 kg m−2, the DoF is generally smaller

than 6 when IWP is below 100 g m−2, and it is between 7 to 9 in the 100 to 500 g m−2 IWP range. The DoF reaches 13 as the365

IWP goes beyond 500 g m−2. For the dry atmospheres with IWV smaller than 45 kg m−2, the DoF is high even at low IWP

conditions, generally between 6 and 11 when IWP is smaller than 100 g m−2, and the DoF is mostly 13 when the IWP is over

100 g m−2.
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Figure 8. The Degree of Freedoms (DoF) for the ACCP radiometer as the function of the ice water path and integrated water vapor. The DoF

is estimated using the radiometer retrieval database that has 100,000 random atmospheric/cloud profiles.

5 Retrieval simulation experiment and results

In this section we present the analytical results for the radiometer-only, radar-only, and synergistic retrievals to assess the370

capability of the objective ACCP remote sensors in retrieving ice cloud parameters. The retrieval experiments are performed

by inputting the simulated noisy radar reflectivity and BT observations into the hybrid Bayesian algorithms and then comparing

the retrieved parameters with the true values to determine the retrieval accuracy.

Figure 9 shows a side by side comparison between the true values and the retrieval results for IWC and NC profiles along the

ECCC model transect. The results for the radar-only, radiometer-only, and combined retrievals are presented sequentially. For375

the passive-only retrievals, the results suggest that there is very little if any information regarding the ice cloud vertical profiles

of both IWC and NC in the radiometer measurements when considered without the radar measurements. For the active-only

retrievals, the retrieved IWC profiles realistically reproduce the vertical structure of the reference cloud scenes. The retrieved
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values also correspond to the true values in general, even though sometimes the retrievals tend to underestimate the IWC

values, especially near the top of the cloud ranging from 10 km to 15 km in height. By contrast, the active-only retrievals for380

NC profiles perform much worse. The true NC values cover the range from 10 m−3 to over 106 m−3, but the radar retrievals

do not match this variability, usually concentrating in the 103 m−3 to 105 m−3 range. The retrieval results again illustrate

that the radar measurements are much more sensitive to the IWC variation compared to the NC variation. For the synergistic

retrievals, obvious perturbations can be observed for both IWC and NC profiles and the results become less smooth compared

to the radar-only retrievals. The added radiometer observations tend to correct the IWC underestimation discussed above by385

constraining the vertically integrated condensed mass.

Figure 9. Comparison between the true values and the retrieval results for ice water content and number concentration profiles along the

selected latitude transect. The retrieval results for radar-only, radiometer-only, and combined are presented sequentially.

Figure 10 shows the retrieved IWP values for the passive-only, radar-only, and combined retrievals based on the hybrid

Bayesian algorithms along the latitudinal transect. For the passive-only retrievals, the retrieval errors are comparable to the

active-involved retrievals over the entire range. The active-only retrievals show the tendency to overestimate the IWP for

thin clouds but underestimate the thick cloud IWP. The combined retrievals are developed from the radar OEM results, and390

substantial improvements in IWP retrieval accuracy can be seen after adding the ACCP BT measurements.
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Figure 10. Direct comparison between the retrieved ice water path (IWP) and the true values along the latitudinal transect. The passive-only,

radar-only, and combined retrievals are all displayed.

Figure 11 shows the scatterplots of the retrieved parameters against the true values that are colored by density to further

visualize the retrieval performance. All statistical analyses for IWC below only applies to the grid points where the reference

IWC values are over 10−5 g m−3. Similarly, the bottom limitations for NC and IWP analysis are 100 m−3 and 10 g m−2,

respectively. The scatterplots for IWC, NC, and IWP are shown in different columns, and the plots for passive-only, active-395

only, and combined retrievals are shown in different rows. This figure could be directly compared to figures 7, 8, and 13 in

Pfreundschuh et al. (2020), and a similar phenomenon could be observed here. Starting from the IWC retrievals in the first

column, the passive-only retrievals show the largest deviations from the diagonal line, which is not surprising since the BT

measurements have low sensitivity to the vertical distribution of the ice cloud microphysics. The radar-only retrievals provide
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much more accurate results. The scatter of points lies along the diagonal and the associated deviations are small. The radar-400

only retrievals are observed to bias high for the tenuous clouds and bias low when IWC values are high. The prior constraint

is possibly the reason for causing both low-end and high-end biases since the particles with extreme values possess small

prior probability values. Another possibility is that we do not differentiate the cloud ice and snow in the forward model. The

combined retrievals correct the high-end offset, and the scatter plots lie more along the diagonal. The rim of the scatter plots

for the combined retrievals becomes less smooth, which is inevitable because the BT measurements are added through an405

ensemble approach by generating random cases over a large possible range to statistically explore the state space. However, its

systematic deviations are reduced compared to the radar-only retrievals, which is consistent with the analysis in Pfreundschuh

et al. (2020). For the NC retrievals in the second column, the passive-only retrievals again show very little skill. The NC results

from the radar-only retrievals do not follow the true values well. The retrieved values are always located in the range of 104

m−3 to 105 m−3 although the true values vary in a much wider range. The combined retrievals improve the NC accuracies410

only when NC is over 104 m−3, but the overall performance is still poor. The IWP retrievals show very good performance

overall. All retrieved values in different panels follow the true values with small associated deviations. The IWP results from

passive-only tend to overestimate the true values when IWP is small and underestimate the true values when IWP is large. The

underestimation performance could probably be corrected if more random atmospheric/cloud profiles covering the large IWP

range are included in the precalculated radiometer retrieval database. The active-only retrievals show a similar tendency, and415

significant improvements could be seen for the results from the combined retrievals.

Figure 12 shows the scatterplots of the absolute errors that are normalized by the retrieval uncertainties against the true

values for different retrieval parameters. The normalized error is defined as

δerror =
|xret−xtrue|

σxret

(13)

where xret and xtrue are the retrieved value and true value, and σxret
is the associated retrieval uncertainty created by the420

retrieval algorithms. The δerror measures how well the retrieved uncertainties reflect the actual retrieval errors, and it is another

indicator for checking if the retrieval algorithms work well. The figure shows that the deviations of δerror for radiometer-only

retrievals are the largest, and the values spread from 10−2 to over 102 for both IWC and NC. However, the areas with the

highest density are always around the δerror = 0 line, and a large majority of cases could be found between 10−1 and 101. By

comparing the subplots for the radar-only and combined retrievals, it is observed that the deviations of δerror are increasing425

after implementing the ensemble approach to add BT information, but most cases still center around the δerror = 0 line within

the 10−1 to 10 range, indicating that the absolute retrieval uncertainties are mostly within 1 order of magnitude of the actual

retrieval errors. The subplots suggest that the ensemble approaches applied to both radiometer-only and combined retrievals

produce reasonable retrieval uncertainty estimations, which provides indirect evidence to support the good running of the

hybrid retrieval algorithms.430

Figure 13 shows the scatter plots of the logarithmic error versus the true values for different parameters under different

retrieval algorithms. The logarithmic error is defined as:

Elog10 = log10(
xret
xtrue

) (14)
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Figure 11. The scatterplots of the retrieved parameters against the true values that are colored by density. The scatterplots for ice water

content (IWC), number concentration (NC), and ice water path (IWP) are shown in different columns, and the plots for passive-only, active-

only, and combined retrievals are shown in different rows.
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Figure 12. Scatterplots of the absolute errors that are normalized by the retrieval uncertainties against the true values. The normalized error

is defined as: δerror = |xret−xtrue|
σxret

, where xret and xtrue are the retrieved value and true value, and is the associated retrieval uncertainty.

The negative/positive values of Elog10 indicate that the retrieved values are smaller/larger than the true values, and 0 B error

represents the retrieved value and true value are identical. 1B error is a factor of 10. For the IWC retrievals in the first column,435

23



the radiometer-only retrievals show the strongest deviation, with the logarithmic errors spreading from -4 B to +4 B. However,

the logarithmic errors tend to concentrate around zero when true IWC values are over 10−2 g m−3, especially for cases around

10−1 g m−3. The radar-only retrievals for IWC are more accurate, and the logarithmic errors are mostly between -1 B and +1

B. Still, the overestimations for the small IWC particles and the underestimations for the larger IWC particles are clear. The

combined retrievals help to improve the retrieval accuracies when IWC is large than 10−2 g m−3. The combined retrievals,440

together with the radiometer-only retrievals shown on the top panel, suggest that the radiometer measurements possess high

sensitivity for large particles with IWC over 10−2 g m−3. For the NC retrievals in the second column, the log errors for the

radiometer-only and radar-only retrievals both spread from -2 B to +2 B. The radiometer-only retrievals tend to have small

log errors when true NC values are over 10−4 m−3, but the radar-only retrievals do not exhibit skill in constraining NC over

the whole range. These results also agree well with the findings in Pfreundschuh et al. (2020). The combined retrievals tend445

to improve the retrieval performance for particles with large NC values. Again, the combined retrievals and radiometer-only

retrievals together suggest that the radiometer measurements are sensitive for particles with NC larger than 10−4 m−3. For the

IWP retrievals in the third column, the log error deviations are much smaller, mostly vary from -0.4 B to +0.4 B. The combined

retrievals decrease the log errors over the entire possible IWP range.

Figure 14 displays the PDF of the logarithmic errors for different parameters under different retrieval methods and the450

corresponding CDF of the absolute logarithmic errors to summarize the logarithmic error distributions. As displayed in the top

left panel, the IWC logarithmic errors for radiometer-only retrievals cover a large range from -4 B to 2 B, and the radar-only

and combined retrievals are mostly concentrated between -1 B to 1 B. Compared to the error PDF for radar-only retrievals, the

PDF for the synergistic retrievals has a smaller offset and smaller variance, even though the improvements are not substantial.

The NC retrievals displayed in the top middle panel show little skill with the logarithmic error spreading from -2.5 B to 2.5 B.455

As for the IWP retrieval displayed in the top right panel, the passive-only and active-only retrievals show comparable errors,

both distributing between -0.5 B to 0.5 B, and significant improvements for the synergistic retrievals is evident.

Figure 15 shows the quantitative values measuring logarithmic error distribution to compare the retrieval accuracy under

different retrievals. The top two panels show the mean values of the logarithmic errors and the associated IQR. The IQR

is defined as the difference between the 75th percentile and 25th percentile. The mean and IQR values were also presented460

in Figure 11 in Pfreundschuh et al. (2020). However, since substantial differences in underlying assumptions exist in these

two studies, the absolute values presented here could not be directly compared to those in Pfreundschuh et al. (2020). The

differences are primarily reflected in the following aspects. The PSD schemes used in these two studies are not identical, and

the a priori PDF to constrain the optimization is significantly different. Also, the selection of the initial state vector to start

the optimization differs. Further, as mentioned in section 2.3, we do not investigate the systematic biases coming from various465

particle habits, which results in much smaller absolute mean and IQR values compared to the results in Pfreundschuh et al.

(2020). Nevertheless, the results could still be compared qualitatively to see if similar tendencies exist. For the IWC retrievals,

the radiometer-only retrievals show the largest retrieval errors. Compared to the radar-only retrievals, the combined retrievals

correct the systematic biases, but the improvements in decreasing the IQR spreads are not evident. For the NC retrievals,

the radar-only and radiometer-only results are both unsatisfactory and their IQR values are similar. For the IWP retrievals,470
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Figure 13. Scatterplots of the logarithmic errors against the true values. The logarithmic errors is defined as: Elog10 = log10(
xret
xtrue

), where

xret and xtrue are the retrieved value and true value.

the radiometer-only and radar-only show comparable capabilities, and the improvements from the combined retrievals are
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Figure 14. The probability density function (PDF) of the logarithmic errors for different ice cloud parameters under different retrieval

methods.

obvious since both biases and IQR deviations decrease. The tendencies observed in IWC and IWP retrievals here are generally

consistent with the findings in Pfreundschuh et al. (2020). The bottom left panel shows the root-mean-square deviation (RMSD)

for different parameters to measure the deviations against zero. Not surprisingly, the radiometer-only retrievals have the highest

number for both IWC and NC. The radar-only retrievals have a small RMSD value for IWC and a large RMSD value for NC,475

and the combined retrievals decrease the number on this basis. Since the RMSD is easily skewed by a few poor retrievals,

the robust median of the absolute logarithmic errors that separate the higher half from the lower half in all the absolute

logarithmic errors are displayed in the bottom right panel. 50% of the retrievals have an error less than the median error, and

50% have a larger error. The median fractional error is used to quantitatively assess the relative improvements after adding

BT measurements into the radar-only retrievals. The median bias for IWC retrievals decreases from 0.34 to 0.28, indicating480

a 18% improvement, and the bias for NC decreases from 0.73 to 0.62, indicating a 12% improvement obtained from the BT

information. The biggest improvement exists in IWP retrievals, which decreases the median bias from 0.19 to 0.11, and the

relative improvements reach 42%.

6 Summary and conclusions

In this study, we develop a suite of hybrid Bayesian retrieval algorithms to assess a candidate observing system representative485

of the what is being considered for the decadal survey clouds-convection-precipitation designated observable mission to be

flown later this decade. We specifically evaluate the capability of an observing system consisting of a W-band radar and

a (sub)millimeter-wave radiometer for sensing ice cloud microphysical quantities. Our purpose is to demonstrate the value

of single-instrument and synergistic retrievals of ice cloud microphysical parameters. Several new algorithms are proposed

here, and the algorithms could serve as alternative solutions for exploring the synergistic active and passive retrieval concepts490

for the actual instruments once they are known. The geophysical variables we investigate include the IWC, NC, and IWP.
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Figure 15. The quantitative statistics of the logarithmic errors for the retrieved ice cloud quantities. The top panels show the mean values and

the IQR, and the bottom left panel shows the root-mean-square deviation (RMSD) of the logarithmic errors. The bottom right panel shows

the median values of the absolute logarithmic errors that separate the higher half from the lower half in all the retrieval error estimations.

The hybrid Bayesian algorithms combine the Bayesian MCI and optimization processes to compute retrieval quantities and

associated uncertainties. The radar-only retrievals employ the OEM optimization algorithm that uses gradient information to

minimize the cost function. The OEM is initialized by a state vector that is constructed by implementing Bayesian MCI to

each reflectivity value in different layers using the precalculated radar database. The necessary Jacobian matrix is calculated495

by perturbing the ice cloud microphysical quantities in different layers. The radiometer-involved retrievals employ ensemble
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strategies to optimize the ill-posted problem. The synergistic radar and radiometer retrievals are done by generating random

cases from the radar OEM results based on the Cholesky decomposition technique. The BT simulations are then computed, and

the Bayesian MCI is implemented to derive the final retrieval results. For the radiometer-only retrievals, the EnPE algorithm is

applied to statistically estimate the posterior pdf using the promising weighted cases. The estimation module and the sampling500

module proceed iteratively to stochastically explore the state space. In addition, a new approach to implement prior constrain

that allow the a priori PDF to be highly non-Gaussian is proposed to make the ensemble algorithm more applicable.

We conducted simulation experiments to evaluate the accuracy of retrieving ice cloud quantities for different remote sensors.

The simulated noisy observations from a tropical transect of cloud profiles are input to the hybrid Bayesian algorithms, and the

retrieved parameters are compared to the known values to determine the retrieval accuracies. A tropical transect of cloud pro-505

files that are simulated using the ECCC model is selected as the reference cloud scenes. This choice ensures the independence

between the atmospheric/cloud profiles for testing and the vertical profiles in the a priori database. The simulation experiments

assume that both sensors have the same nadir-looking viewing angle. The influence of different footprints and viewing geome-

tries between the active and passive remote sensors are neglected in this initial study but will be evaluated once the specific

parameters of the observing system are known. Since we do not consider the forward model uncertainties from various particle510

habits, the retrieval errors are much smaller than the results in Pfreundschuh et al. (2020). Nevertheless, consistent results can

still be qualitatively observed here. The main conclusions from the presented results are summarized:

1. The radiometer measurements do not have direct information about the IWC and NC vertical distribution. However, the

BT measurements possess high sensitivity for large ice cloud particles with IWC values larger than 10−2 g m−3 and NC values

larger than 104 m−3.515

2. The radar-only retrieval demonstrates skills in retrieving IWC profiles, but it literally does not exhibit capabilities in

retrieving NC vertical distribution. The radar-only retrievals for IWP have comparable accuracies to the radiometer-only re-

trievals.

3. The synergistic retrievals have evident improvements in retrieval accuracies compared to the radar-only retrievals. When

using the median of the absolute fractional error as the quantitative parameter to evaluate the retrieval accuracies, the relative520

improvements after adding BT measurements for IWC, NC, and IWP are 18% and 12%, and 42%, respectively.

This paper provides an end-to-end idealized simulation experiment that sacrifices precise reality in order to demonstrate

nuances in the various algorithms, and several disadvantages are worth mentioning. Firstly, there are many simplifications on

the reference cloud scenes and the radiative transfer model. We only use the frozen particles in the reference cloud scenes,

and the liquid clouds are ignored. The impacts from water vapor uncertainties are also neglected. Further, only one particle525

habit is applied and the forward model uncertainties from particle habits and PSD are not considered. These simplifications

facilitate the quantitative evaluation of the proposed retrieval algorithms without complication from parameters not yet known

so that the relative benefit of the observing system is considered as separate instruments or as a synergistic set. In all cases

the value of synergy is demonstrated although consideration of more realistic observing systems must be considered in future

work. Secondly, the statistical characteristics are only derived based on selected atmospheric/cloud profiles along a single530

latitudinal transect. Since this subset with a finite number of profiles can hardly represent the realistic spatial distribution of
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ice cloud microphysics that will be encountered globally, the statistics we derive may differ from the characteristics of the

entire possible atmospheric conditions. Thirdly, apart from the W-band radar and the (sub)millimeter-wave radiometer, the

eventual observing system will likely include other remote sensors that would be useful for improving retrieval accuracies for

ice cloud remote sensing. For instance, the eventual radar system will likely to be dual frequency and add Ku- or Ka-band to535

the measurements. Also, highly accurate Doppler velocity measurements will likely be observed that may allow for constraints

on the ice crystal bulk density that could significantly mitigate forward model uncertainties. The retrieval performance by

combining other synergistic information content such as lidar remains to be investigated, and it will be explored in future work.
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