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Abstract. Wind retrieval parameters, i.e., quality indicators and the 2DVAR analysis speeds, are explored with the aim to 

improve wind speed retrieval during rain for tropical regions. We apply the well-researched support vector machine (SVM) 

method in machine learning (ML) to solve this complex problem in a data-orientated regression. To guarantee the effectiveness 10 

of SVM, the inputs are extensively analysed to evaluate their appropriateness for this problem, before the results are produced. 

The comparisons between distributions and differences between data of rain-contaminated winds, corrected winds and good 

quality C-band winds, illustrate that the rain-distorted wind distributions become more nominal with SVM, hence reducing 

much the rain-induced biases and error variance. Further confirmation is obtained from a case with synchronous Himawari-8 

observation indicating rain (clouds) in the scene. Furthermore, the estimation of simultaneous rain rate is attempted with some 15 

success to retrieve both wind and rain. Although, additional observations or higher resolution may be required to better assess 

the accuracy of the wind and rain retrievals, the Machine Learning (ML) results demonstrate benefits of such methodology in 

geophysical retrieval and nowcasting applications. 

1 Introduction 

It is well-known that the structure of the atmosphere and ocean depends on the motions driven by radiation affecting the 20 

redistribution of heat. The circulations imply wind convergence to elevate water vapour from the ocean surface that then forms 

clouds and rain, while rain, in turn, causes downdrafts. These interactions of the air and the ocean underneath are connected 

by the basic mass, momentum and energy equations involving winds, heat and moisture are vital for understanding the earth 

system (Gill, 1982). In the tropics, the resolution of moist convection is key for improving earth system simulations (Bony, et 

al., 2015). 25 

Observed ocean surface wind-fields (OSW) are essential to investigate such processes and related applications. An efficient 

method of acquiring a large coverage and good quality OSW are the retrievals from scatterometers with an application history 

up to 40 years (Jones et al, 1979; Stoffelen et al., 2019). Scatterometers are real aperture radars providing stable and accurate 

normalized radar cross-sections (NRCS) of the wind-roughened ocean surface in different azimuthal directions from oblique 

incidence angles. The winds are then obtained in a maximum likelihood estimation method (MLE) from the measured NRCSs 30 
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within a wind vector cell (WVC) with reference to a Geophysical Model Function (GMF). Generally, a WVC is a square of 

the size 25 km × 25 km, and GMFs are empirical models mapping NRCSs from scatterometers in different frequencies, 

polarizations and observing geometries to winds. 

Rain products provide another important information for air-sea interaction. In the Global Precipitation Mission (GPM), one 

of the core instruments is the dual-frequency radar (DPR) working at Ku- and Ka-band in nadir-looking mode. Rain is then 35 

obtained by relating the radar cross-sections to a chosen distribution of precipitation particles. Meanwhile, rain products from 

infrared observations are also widely used, for example, rain rates from the Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) on-board the Meteosat Second Generation (MSG) Satellite, which is derived by considering retrieved cloud 

condensed water path (CWP), particle distribution, and cloud thermodynamic phase (E. L. A. Wolters, M. Van Den Hurk et 

al, 2011). Both rain products are good references for rain in Ku-band wind scatterometry (Xu et al., 2020a), though the high 40 

spatial and temporal variability of rain generally challenges small collocation errors and high correlation between instantaneous 

rain data sets (e.g., Liu et al., 2020).  

Combined retrievals of wind and rain are generally applying synchronous passive measurements from radiometers for rain 

in the scatterometer case (Stiles et al., 2010) while in addition to rains for winds are retrieved in GPM researches (Li et al., 

2014). Radiometer winds are of coarser spatial resolution and are not adept for wind direction retrieval, which would require 45 

the third and fourth Stokes parameters that are now generally obtained in low signal to noise ratio (SNR). Scatterometers are 

not specifically designed for acquiring precipitation profiles. When rain clouds affect the observations, the winds obtained 

from a wind GMF will deviate from the truth, resulting in biases in the retrieved wind and an increased retrieval residual, 

called MLE. Since rain is spatially more heterogeneous than winds are, rain can be captured and estimated in the NRCS set 

within a WVC. Considering the distances of NRCS observations to the wind GMF, the retrieved wind and with the reference 50 

to rain observations from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), wind and rain may be 

segregated (Owen et al., 2011; Draper et al., 2004). Furthermore, the heterogeneous rain within a WVC can be depicted from 

indicators applied in scatterometer Quality Control (QC) (Portabella et al., 2002; Lin et al., 2017). Joss is a recent indicator 

developed for tropical regions for rain screening, which has been verified to correlate well with rain for Ku-band scatterometers 

(Xu et al., 2020a; Xu, et al., 2020b). From a conceptual point of view, the MLE identifies the WVC NRCS sets that do not 55 

follow the wind GMF. Two main reasons have been identified for such discrepancy, which are 1) enhanced wind variability 

and 2) rain. Fortunately, collocated operational C and Ku-band observations are available, when due to the longer wavelength 

at C band (about 5 cm) than Ku band (about 3 cm), standard QC, based on MLE, rejects ten times more Ku-band than C band 

winds, i.e., about 5% of its observations. Hence, specifically in tropical regions, the accepted C-band winds can be used to 

verify their Ku-band collocations, which helped to develop the Joss indicator and verify the performance of the other Ku-band 60 

QC indicators. In addition, extreme convergence and divergence in C-band winds has been related to tropical moist convection 

and rain, where convergence proceeds rain by about 30 minutes, while extreme divergence occurs simultaneously with rain in 

convective downdrafts for C-band winds, hence illustrating the physical integrity of C-band winds in the presence of rain. C-

band rejections correspond to the most extreme variability in WVCs, including wind gradients induced by heavy precipitation 
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downdrafts (King et al., 2017). The different rain signatures in C- and Ku-band scatterometers can cast a light on developing 65 

methods for correction of the rain-affected winds in Ku-band scatterometer retrievals by referring to their C-band collocations. 

Particularly, the combination of MLE and Joss appears promising to segregate wind variability and rain effects in Ku-band 

retrievals. 

To derive the complexly associated wind and rain information referred to above, machine learning (ML) may prove to be a 

powerful tool, which can be applied with knowledge of the validity of the underlying principles (Reichstein et al., 2019). In 70 

fact, ML methods have long been well-researched in wind scatterometry (Thiria et al., 1993; Stiles et al., 2010). For common 

roughness conditions, it cannot exceed the performance of GMF-based methods (Cornford et al., 1999), but ML may be 

effective in rainy conditions. Among the ML methods, support vector machine (SVM) is one based on the Mercer theorem, by 

complement of empirical risk minimization with Vapnik-Chervonenkis (VC) confidence, infer statistical relations without a 

priori distributions and gives no regional minimum (Vapnik, 1998). It can establish an information space based on the training 75 

set and if the data applied in training is well representative for the problem, it also requires less samples than other ML methods. 

Aside, SVM already provides good results in rain rate estimates (Kumar et al, 2021).  

In this research, SVM is applied for wind correction of rain-affected winds of Ku-band scatterometers, considering 

quantified rain and rain effect information captured in the QC indicators of Ku-band observations. The GPM rain products and 

collocated accepted winds from C-band products are used as references. When this SVM model has been established, without 80 

C-band collocations, the rain contaminated winds can be corrected with Ku-band winds and their QC indicators alone. First, 

in the method part, the underlying principles of the problem of rain signatures in scatterometry are addressed in detail with a 

brief of error requirement for assimilation application before data description. Then, in the experimental part, results for the 

testing set, not applied in the training procedure, demonstrate a minimum mean difference of -0.12 m/s at about 8 m/s and a 

largest difference of -3.25 m/s at about 14 m/s ASCAT speed. The distributions of the corrected winds and the scatter plots 85 

against C-band winds are inspected, with a check on wind differences in each wind speed bin of the original and corrected 

winds against ASCAT winds, prove proving the more unbiased and symmetric error of the corrected set, illustrating the 

advantage of applying SVM. The similarity of the corrected distributions with the references provided from collocated ASCAT 

winds and the reduced mutual differences, it indicates that to a certain extent the local (WVC) wind scales are recovered by 

the SVM corrections. Results suggest that the method resolves the heterogeneity induced by rain clouds in MLE and Joss with 90 

the settings of the proposed SVM. Furthermore, a case without rain collocations, and thus not involved in deriving the 

corrections, is provided as a case study for verification. Where simultaneous images from the Himawari-8 provide a concrete 

view of the rain clouds in the scene. 

In the discussion part, rain labelling and regression SVMs are established with the same inputs, attempting rain estimation 

from scatterometer winds by employing SVM. The rain identification accuracy is 72% for the independent test set not applied 95 

in the training procedures. While for rain rate estimation, the correlation coefficient of SVM rain with GPM products achieves 

0.47 for the independent testing set. An analysis of the uncertainties in the SVM model and possible improvements in the rain 

estimation procedure are also discussed. The corrected winds increase the global wind coverage and, in synergy with the rain 
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information provided, benefit now-casting applications (Majumdar et al, 2021). This research illustrates an example of 

complex data driven ML methods, complementary to traditional methods in complex problems, which motivates and 100 

demonstrates the adhibition of the ML method in meteorological applications. 

2 Method 

Research on observation errors, i.e., the deviations from the truth, together with the monitoring information obtained from 

differences between scatterometer winds and models, supports NWP. Among the errors, undetermined geophysical 

dependencies including rain effects are to be corrected to better understand model biases (Stoffelen et al., 2021), while it cannot 105 

be achieved by a first order correction. Apart from this, the control variables, define multivariate background errors and 

correlated errors between variables are modeled by linear regression (Descombes et al, 2015). Also, the 3DVAR and Kalman 

Filter assumes linear or quasi-linear and Gaussian features in observation operator and error distributions respectively, when 

4DVAR considers additional dynamical constraints in the time dimension (Parrish et al., 1992; Courtier et al., 1994). Hence 

linearized Gaussian or quasi-Gaussian errors are vital for the assimilation of observations. We seek to address and correct 110 

biases in Ku-band scatterometer wind retrievals due to rain. In the following part, first, the complex rain signatures in wind 

scatterometer observations are analyzed, demonstrating non-Gaussian error features before the principles of SVM are 

introduced. 

2.1 Rain characteristics in MLE, Joss and the fractal parameter 𝜶 

When compared to the C-band winds that are of good quality (accepted), collocated Ku-band QC-rejected WVCs in tropical 115 

regions are affected by rain due to the shorter observing wavelength (Xu et al., 2020a). The wind Quality Control (QC) is 

determined by QC indicators, and the indicator widely applied in operational wind products, is the MLE residual obtained 

through wind inversion. Using all N NRCS measurements obtained within a WVC Maximum Likelihood Estimation (MLE) 

procedures are applied for wind retrieval. The MLE residual is a normalized Euclidian distance to the cone determined by 

GMFs (Stoffelen et al., 1997): 120 

𝑀𝐿𝐸 =
1

𝑁
∑

(𝜎𝑖
𝑜−𝜎𝑠𝑖𝑚𝑖

)
2

(𝐾𝑝𝑖•𝜎 )
2

𝑁
𝑖            (1) 

Where 𝜎𝑖
𝑜 is the i th NRCS of the N NRCSs within a WVC, 𝐾𝑝𝑖 is a dimensionless constant determined by instrument noise, 

and 𝜎𝑠𝑖𝑚𝑖
 is from a wind GMF indexed by observing geometry and the local wind vector. Before wind inversion, NRCS are 

well-calibrated for instrumental as well as GMF uncertainties that are generally small (~2%), and are reproducible or 

systematic. NRCS calibration and GMF bias term uncertainties lead to wind speed probability density function variations. 125 

Errors in the harmonic terms of the GMF may lead to wind direction errors, and in systematic wind speed errors that have 

associated wind direction errors and vice versa (Portabella et al., 2002). During the 2DVAR procedure that optimizes wind 

vector selection (Vogelzang et al., 2011), essentially the WVC MLE associated with the selected direction is determined. At 
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the same time, the 2DVAR low-pass filtered analysis winds, which are here referred to as 2DVAR winds, are calculated When 

rain affects the NRCS, the GMF does not represent the NRCS measurements well, as rain effects are not considered in the 130 

wind GMFs (Stoffelen, 1998). Therefore, this part of the GMF error due to missed or incompletely modelled rain processes 

generates errors of a class that cannot be eliminated by calibration, and induces deviation of error distributions from the well-

calibrated random Gaussian shape. Note that the KNMI QC flag is based on MLE values, and in the Ku-band rejections and 

C-band acceptances in tropical regions, the rejections are mainly caused by rain. Hence, MLE values of the 2DVAR selected 

Ku-band wind can be related to rain effects that alter the amplitudes of NRCSs.  135 

However, at the same time, the 2DVAR winds do not use QC-flagged WVCs and are hence not affected by local disturbances 

introduced by rain. The wind speed correction procedure employed here, hence does not change the 2DVAR analysis field, 

nor the selected wind direction at the rain-affected WVCs obtained during the elaborated 2DVAR Multiple Solution Scheme 

(MSS) (Vogelzang et al, 2018). The rain effect is estimated by the wind speed difference of the 2DVAR analysis wind speed 

f and the selected observational wind speed fs, corresponding to the wind direction obtained by 2DVAR (Xu et al., 2020a): 140 

JOSS=  f − fs             (2) 

Note that the 2DVAR winds are low-pass filtered and of relatively coarse resolution, ignoring rain-affected WVCs through 

MLE-based QC (J. Vogelzang, 2017). Since the spatially heterogeneous tropical rain clouds are generally of smaller spatial 

scale than a WVC, rain effects in the 2DVAR analysis winds can be ignored and taken as the true winds (J. Vogelzang and 

A. Stoffelen, 2018). Hence, Joss values can screen and eliminate false alarm rate (FAR) for MLE based QC results for Ku-145 

band wind products after 2DVAR processing, indicating rain information (Xu et al, 2020b). 

Usually rain clouds will cause negative Joss for wind speeds below 15 m/s. A WVC is usually partially heavy rain, and 

since Ku-band rain saturates around 18m/s, hereafter the parameter for area fraction 𝛼 for Ku-band winds can be expressed 

as: 

𝛼 =
 𝐽𝑂𝑆𝑆

𝑓−18
            (3) 150 

As 18 m/s winds cannot be distinguished from rain and to allow rain sensitivity, the rain effect correction set is limited to: 

JOSS> 0.33 f −5            (4) 

For retrieved 2DVAR speed smaller or equal to 11m/s. For 2DVAR wind speed larger than 11m/s, the FAR set is limited to 

Joss < -1.33 (Xu et al., 2021). Then the negative values of 𝛼 corresponding to positive Joss when wind speeds are smaller than 

18 m/s can be owed to effects of local variance of the ocean surface. Larger wind speed than 18 m/s and positive Joss may 155 

happen when both rain and winds are large in the scene. For tropical rain this practically only occurs in hurricanes, but has not 

yet been investigated with respect to Joss in the criterion above. Thus, this parameter can provide relative information of rain 

within the WVC from 2DVAR residuals.  

Enhanced wind variability enhances MLE, due to beam collocation errors. In particular, extreme wind convergence and 

divergence is associated with heavy rain (King et al., 2017). The wind variability associated with heavy precipitation may 160 
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enhance the wind speed, just like rain does at Ku-band, but which has been investigated by comparing the 2DVAR winds with 

ASCAT winds. ASCAT winds are equally sensitive to wind speed variations at the surface, but much less sensitive to rain 

cloud scattering effects. Hence, the effect due to amplitude alternations for a single NRCS in a tropical scene with rain clouds 

can be obtained by the rain screening ability of Joss.  

From the above contents and equations, rain effects can be represented by MLE, Joss, and the observational wind in the Ku-165 

band retrieval, while the 2DVAR analysis wind provides information on rain sensitivity. In this research, for the C-band QC 

accepted and Ku-band rejected WVCs, after the FAR set is eliminated, the Ku-band WVCs are collocated with rain rates from 

GPM products. Then MLE, Joss values and the 2DVAR winds and observational winds are applied as inputs to the SVM model, 

with the training destination set as the collocated C-band winds. In the established model, corrected winds closer to the 

observed C-band winds may be obtained for rain-affected Ku-band WVCs, by eliminating non-Gaussian errors within a WVC 170 

caused by rain. Moreover, the SVM model, when established, could be applied for Ku-band rejections. 

1.2 The principle of SVM regression 

The SVM regression procedures map input vectors to a space of higher dimension before the regression is conducted. When 

the mapping is obtained and thus described by kernel functions determined from the training sets, non-linear features are 

linearized. This provides a possibility for solving problems that are non-convex and difficult to solve in the original input 175 

space, as well as linearizing intricate relations. Specifically, during the training procedure, weights for the input vectors in the 

training set in the mapped space is determined, and the corresponding support vectors (SVs) can be identified by the values of 

corresponding weights. While the weights are applied to scale similarities with other vectors in the training set. On the other 

hand, they are obtained by minimizing distances with the targets of the training vectors. Moreover, the similarity is measured 

between the kernel function mapped inputs. In this way, it allows the data involved in training to embody the underlying model 180 

in a space that facilitates information extraction. Furthermore, L2-normdistance minimization is achieved by an objective 

function expressed as the distances between the vectors in the training sets to the plane fixed by the weighted support vectors 

in the mapped space (Vapnik, 1998). 

The employed kernel functions are linear, generally polynomial or Gaussian radial basis functions (RBF). Among them, the 

RBF, or the Gaussian kernel, is superior in unlimited dimension mapping and easier in hidden parameter setting. For RBF, the 185 

similarity between a vector x and the selected support vector 𝑙(1) is expressed as (Vapnik, 1998; Smola et al., 1998): 

𝑓1 = exp (−
||𝑥−𝑙(1)||2

2𝜎2 )           (4) 

Where σ is the scale parameter weighting the similarity of x and 𝑙(1). And the larger the value of σ is, the more x and 𝑙(1) 

can be taken as similar. If the L2 distance is applied: 

𝑓1 = exp (−
∑ (𝑥𝑗−𝑙𝑗

(1)
)2𝑛

𝑗=1

2𝜎2 )           (5) 190 

When θi are weights, 𝑦(𝑖) is the target value corresponding to 𝑥𝑖, the objective function can be expressed as: 
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𝑚𝑖𝑛𝜃(𝐶 ∑ 𝑦(𝑖)𝑐𝑜𝑠𝑡1(𝜃𝑇𝑓(𝑖))𝑚
𝑖=1 + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑓(𝑖)) +

1

2
∑ 𝜃𝑗

2)𝑚
𝑗=1      (6) 

where C is the relaxation coefficient and the L2 distance is applied as the cost functions 𝑐𝑜𝑠𝑡1 and 𝑐𝑜𝑠𝑡0 (Smola et al., 1998; 

Chang et al., 2019). 

3. Data and experiments 195 

3.1 The expression of rain in wind retrieval parameters 

The representativeness of the data sets from which the featured SVs are obtained is vital in the SVM procedure. In this research, 

the C- and Ku-band collocations of scatterometer winds are from the Advanced scatterometer-A (ASCAT-A) and ASCAT-B 

onboard the Meteorological Operational Satellite Program of Europe (MetOp) series and the Scatterometer onboard the 

Scatsat-1 Satellite (OSCAT-2) respectively (Eumetsat, 2018), (E-Directory, 2019). Then the ASCAT-A, ASCAT-B and 200 

OSCAT-2 L2 wind products are from the Ocean and Sea Ice Satellite Application Facility (OSI SAF) of the European 

Organization for the Exploitation of Metrological Satellites (EUMETSAT), over a period from October 2016 to January 2019. 

The WVC sizes are 25 km×25 km on the Earth surface. Where the OSCAT-2 Ku-band winds are sea surface temperature (SST) 

corrected sweet swath WVCs with better NRCS azimuth diversity than the nadir and edge swath (M. Portabella, 2002). The 

collocation time lag is within 30 minutes (min) with the spatial distances between ASCAT and OSCAT-2 WVC centres less 205 

than 12.5 km. While the background winds are from the European Center for Medium-range Weather Forecasts (ECMWF), 

the 10-m 3 hourly forecast 0.125° winds are used. GPM rain products used here are the version-5 0.1°-gridded Integrated 

Multi-satellitE Retrievals for GPM-F (IMERG-F) (Huffman et al, 2018) within a time difference to OSCAT-2 WVCs of 4.8 

min. Furthermore, rain products are area-weighted over the OSCAT-2 WVCs to obtain WVC-representative rain rates (Xu et 

al., 2020c). Finally, for validation, the images of the 11th band (medium infrared, MI, 8.6μm) with 2 km resolution in the 210 

tropics are also used for reference (Otemachi, C.-k. et al., 2015). 

Figure 1 plots the 732,614 collocated wind speeds in ASCAT-A accepted and OSCAT-2 accepted set (QC-I set) in (a), 

corresponding MLE values of OSCAT-2 in (b), Joss in (c), collocated rain rates in (d) and (e). Figure 2 shows the same plots 

for the ASCSAT-A accepted winds, but now for rejected OSCAT-2 collocations (QC-II), after that the false alarms in the 

KNMI OSCAT flags were eliminated by Joss (FAE), with 9,339 WVCs (Xu et al, 2020b). 215 
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(a)                                                                   (b)                                                                      (c) 

 

(d)                                                                               (e) 220 

Figure 1: Collocated wind speed distributions in the QC-I set (a), corresponding MLE distribution of OSCAT-2 (b), Joss (c), 

collocated rain rates with reference to MLE (d) and Joss (e). 

 

(a)                                                                        (b)                                                                      (c) 
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 225 

(d)                                                                                 (e) 

Figure 2: Collocated wind speed distributions in the QC-II FAE set (a), corresponding MLE distribution of OSCAT-2 (b), Joss (c), 

collocated rain rates with reference to MLE (d) and Joss (e). 

 

In Figure 1 (a) we note that observed wind distributions from ASCAT and OSCAT-2 are similar, while in Figure 2 (a), the 230 

Ku-band winds are much elevated with respect to ASCAT and clearly suspect, as the ASCAT wind distribution appears 

nominal and similar to that in Figure 1(a). The MLE values are mostly nominal and distributed over the bins under 10 in Figure 

1 (b), while typical values are very large and around 50 in Figure 2 (b). For comparison, in (c) of Figure 1, Joss values are small 

with values close to 0 where in Figure 2 values are typically 4 m/s. Comparing (d) and (e) in both Figures, there is little rain 

in QC-I, while rain is dominant in Figure 2, consistent with both the elevated MLE and Joss values. Also, in Figure 2 (e), the 235 

criterion of Joss in the FAE set can be observed from its upper limit. 

We note from Figure1 and Figure 2 that rain casts effects on OSCAT-2 data while collocated ASCAT winds remain of 

acceptable quality. The winds distorted by rain (clouds) are clearly segregated by the FAE, resulting in a deformed speed 

distribution, as well as much elevated MLE and Joss, that all can be potentially related to WVC rain rate. 

3.2 SVM for Ku-band wind correction in rain 240 

For the correction of rain effects a SVM model is established, where the inputs are determined by the wind-rain related 

parameters, as described in the previous sections. Specifically, the inputs and outputs are in Table 1.  

Table 1 Inputs and outputs for the SVM of wind speed correction: 

Inputs Output Values of output for training 

OSCAT-2 MLE in dB  Corrected OSCAT-2 wind 

speed [m/s] 

ASCAT wind speed [m/s] 

𝛼 from OSCAT-2 WVC 

OSCAT-2 2DVAR speed 

OSCAT-2 observational speed 
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The SVM tool from sklearn is applied, which is based on the libsvm to realize the procedure described in section 2 for SVM 245 

(C-C Chang and C-J Lin, 2019). In total, there are 18,528 WVCs obtained from FAE in OSCAT-2 collocations for ASCAT-

A and ASCAT-B together. Among them, 70% (12, 969 WVCs) are used in training and 30% (5,559 WVCs) for testing or 

validation. Note that the testing set is not applied in the training procedure. 

4. Results and validations 

4.1 Results 250 

Starting from the large input biases illustrated in Figure 3 (a), typically 5 m/s, Figure 3 shows the corrected winds against the 

accepted winds from ASCAT-A and ASCAT-B for the training set in (a) and the validation set in (b). While in (c) and (d), the 

observational winds and 2DVAR winds of OSCAT-2 are also plot against ASCAT winds. With some of the corresponding 

statistics listed from (a) to (d), in Table 2.  

  255 

(a)                                                                                     (b)  

  

(c)                                                                                        (d) 
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Figure 3: The corrected winds against accepted winds from ASCAT-A and ASCAT-B for the training set (a) and validation set (b)-

(d), where (b) the corrected, (c) the 2DVAR and (d) observational OSCAT-2 wind speed against ASCAT wind speed are depicted. 260 

 

Table 2 Corresponding mean and standard deviation of difference (SDD) statistics to Figure 3 (a-d). 

(a) Corrected winds in the training set                                          (b) Corrected winds in the validation set 

ASCAT-A & 

ASCAT-B wind 

speeds [m/s] 

Mean values of 

the corrected 

winds [m/s] 

SDD corrected - 

ASCAT winds [m/s] 

 ASCAT-A & 

ASCAT-B wind 

speeds [m/s] 

Mean values of 

the corrected 

winds [m/s] 

SDD corrected 

– ASCAT 

winds [m/s] 

4.14 5.86 1.11 4.14 5.93 1.14 

6.21 6.95 0.91 6.21 6.97 0.92 

8.28 8.13 0.93 8.28 8.16 0.96 

10.34 9.54 1.21 10.34 9.39 1.26 

12.41 10.66 1.50 12.41 10.70 1.49 

14.48 10.79 1.59 14.48 11.23 1.30 

 

(c) OSCAT-2 DVAR winds (testing set)                                           (d) OSCAT-2 observational winds (testing set)  265 

ASCAT-A & 

ASCAT-B wind 

speeds [m/s] 

Mean values of 

the 2DVAR winds 

[m/s] 

SDD 2DVAR – 

ASCAT winds 

[m/s] 

 ASCAT-A & 

ASCAT-B wind 

speeds [m/s] 

Mean values 

of the 

observational 

winds [m/s] 

SDD observational 

– ASCAT winds 

[m/s] 

4.14 3.06 1.86 4.14 8.22 2.17 

6.21 5.22 1.95 6.21 10.02 2.21 

8.28 7.43 1.84 8.28 11.96 2.15 

10.34 9.01 2.19 10.34 13.32 1.99 

12.41 10.46 2.37 12.41 14.82 1.70 

14.48 11.04 2.04 14.48 15.50 1.67 

 

As can be seen from Figure 3 (a) and (b), and from the corresponding values in Table 2 (a) and (b), the testing set exhibits 

similar statistics to the training set for wind speed correction established by SVM. Note that most of the QC-II FAE wind 

speeds are distributed from about 4 m/s to 14 m/s, which is typical for rain clouds in moist convection (Xu et al., 2020a). For 

speeds in this range, the largest differences of mean values with the bin centre values are -3.69 m/s and -3.25 m/s at about 14 270 

m/s ASCAT speed for the training and testing set, respectively. Then the bias value decreases as wind speed decreases. And 

for both sets, reach a minimum at about 8 m/s of -0.15 m/s and -0.12 m/s. Then the bias increases with decreasing wind speeds, 

to 1.72 m/s and 1.79 m/s at about 4 m/s. This trend is consistent with the SDD, with the smallest SDD of 0.87 m/s for both sets 
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at about 7m/s. The consistency of the training set and testing set indicates the stability of the SVM model established. Besides, 

it is noteworthy that there is a sign change for these speed differences, suggesting an excessive speed range suppression for 275 

wind speeds both lower and higher than around 8 m/s respectively. This trend also exists in Figures 3(c) and 3(d) of the 

observational and 2DVAR wind against ASCAT winds, as seen from the curvature of the red lines representing mean bin 

values, though they are generally smaller and larger than the ASCAT wind speed for the 2DVAR and observational speed 

respectively, while the distances are larger in absolute values for the observational winds. This is consistent with the fact that 

the OSCAT 2DVAR wind filters the details of the local wind changes, ignoring wind variability due to rain that is captured by 280 

the C-band observations of good quality at finer resolutions. We further note that Figure 3 and Table 2 are based on a 

conditional binning of ASCAT winds, while ASCAT winds are not perfect and OSCAT is not perfectly collocated with 

ASCAT. Such uncertainty in ASCAT also has the tendency to flatten the red curves in Figure 3. 

In Figure 4, the distributions of wind speed of the OSCAT-2 observational wind speed, OSCAT-2 2DVAR speed, collocated 

ASCAT speed and that of the SVM-corrected speed are displayed for the testing set.  285 

   

(a)                                                                                        (b) 

 

(c) 
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Figure 4: Distribution of the different wind speeds (a), speed errors with the reference from ASCAT (b) and the cumulative 290 
distribution function (CDF) of speed errors (c) corresponding to the testing set. 

From Figure 4 (a), the blue curve indicates rain affected OSCAT-2 winds are elevated and skewed to higher speeds, peaking 

at around 12 m/s. They also deviate from the corresponding 2DVAR speeds (purple) as well as the collocated ASCAT winds 

(green). Similar to the latter two, the SVM-corrected winds (lighter blue) peak at a similar speed around 8 m/s. This is also 

consistent with Figure 1(a). Moreover, note that the 2DVAR wind distribution extends to the lowest speeds and deviates more 295 

than the corrected winds from ASCAT observations.. Anyway, the corrected winds show a very similar shape to the ASCAT 

distribution, proving the effectiveness of the SVM. Figure 4 (b) demonstrates the speed errors defined as the differences with 

respect to the ASCAT observations. Consistent with (a), the errors distribute more symmetrically and over the smallest range 

for the corrected winds. The more Gaussian-like features of this speed error as compared to the other groups can be more easily 

observed from (c) where the cumulative distribution function (CDF) is obtained. In the figure, the blue, red and black lines are 300 

the CDFs of observational, 2DVAR and regressed speed error respectively. Except for the most symmetric feature of the black 

curve in bias, about 90% of the values lay between -2.0 and 2.0, which indicates again that the corrected winds are close to the 

ASCAT observations. In addition to Figure 4, Figure 5 demonstrates in detail and directly from the data that the statistics has 

been improved after SVM corrections.  

      305 

(a)                              (b) 
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(c)                                                                                           (d) 

Figure 5: Mean values in 1 m/s bin of winds against mean difference values in the same bin of vertical minus horizontal values 

(colour) (a) and (c), and sample WVC density (b) and (d) 310 

Figure 5 are plot from the testing set, where the horizontal and vertical axis are wind speed of ASCAT and that of 

observational and corrected OSCAT-2 speed in m/s for (a), (b) and (c), (d) respectively. Moreover, in (a) and (c) depicted in 

the colour bar, as functions of the horizontal and vertical speeds, are the average values of differences of speed from the vertical 

minus horizontal axis in corresponding bins. In (b) and (d) the colour represents WVC density in a bin. In (a), it can be observed 

that deviations from the C-band accepted collocations are due to rains vary with the reference wind speeds in a similar linear 315 

way while for each wind speed there are multiple differences induced by rain. This is consistent with the quasi-linear 

relationship between Joss and rain rates in Figure 2, and explains that such second-order (speed difference v.s. speed) relations 

involving multiple parameters (rain, wind and wind-rain correlations) cannot be corrected by simple linear methods. While in 

(b), the corresponding density of samples indicates non-uniform characteristics of the distribution of the differences for each 

reference speed (horizontal axis), implying skewed error distributions. At the same time, in (c) and (d), it can be seen that by 320 

SVM corrections, most of the differences are corrected, while (d) shows more evenly distributed difference patterns for the 

moderate wind speeds, where rain contamination effects appear better resolved, implying more uniform and normal difference 

values. This goes along with the distribution of corrected OSCAT winds slightly skewed away from the diagonal, this may 

due to the lack of samples in higher wind speeds. 

4.2 Spatial consistency of corrected winds 325 

In this section, to obtain a spatial view of the results, figures of the collocated data on a randomly selected date (22nd, May 

2017) are provided in Figure 6, where (a) shows the wind speed of OSCAT-2 in both QC-I and QC-II collocations, and that of 

the rest FAE set. The same set is displayed in (b), but where the FAE OSCAT-2 wind speeds are from the SVM corrections,. 

In (c) the regressed wind is replaced by the ASCAT accepted winds. Furthermore, data in Figure 4 is without GPM collocations, 

and the SVM winds are retrieved directly from the model established in section 3.2. 330 
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(a)                                                                                    (b) 

   

(c)                                                                                            (d) 

     335 

(e)                                                                                (f) 
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Figure 6: OSCAT-2 speed (m/s, in colour bars) for QC-I collocation set FA and FAE in the QCII set (a), and that of the QC-I, QC-

II FA set when the FAE in QC-II are replaced SVM regressed speeds (b), then the FAE wind speeds are substituted by collocated 

ASCAT-A and ASCAT-B speeds (c). (d) is the differences of speeds in (c) with their corresponding ASCAT speed, and (e) indicate 

the FAE location while (f) shows the statistics of the corrected wind with ASCAT wind 340 

In Figure 6, the abscissas are longitudes, while the ordinate represents latitudes, and both are in degree. Then the colour bars 

indicate wind speeds in m/s. Where the ascending and descending tracks are displayed together, with latter observations 

obtained replacing the former ones. It can be observed that the colour red in (a) is suppressed in (b), while (b) is also in better 

consistency with (c) than (a) is. This can be directly observed from (d), with the corrected wind locations from (e). (f) shows 

a generally accepted correction in this region with speed higher than 12 m/s overestimated. Similar trends can also be noted in 345 

regions becoming much bluer, especially, in cases that can be found near the red regions. Nota bene, the higher wind regions 

with speed larger than 15 m/s are with fewer samples while also limited by the FA rule limiting Joss to -1.33m/s, above which, 

the wind-rain tangling at higher speed cannot be well resolved. Moreover, a region with no GPM collocation, thus not  

   

(a)                                                            (b) 350 
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 (c)                                                (d) 

Figure 7: Wind speed of the QC-I, QC-II FA and QC-II FAE (a), the FAE set replaced by the SVM regressed speed (b) and by 

speeds from their ASCAT collocations (c), with the synchronous MIR (e) images from Himawari-8, where the green rectangle 

indicates the region in (a), (b) and (c). 355 

involved in training procedures, is selected from the data set generating Figure 7, and is shown in Figure 8 as a case to validate 

the SVM regression method proposed. Wind speeds from the collocation set in QC-I, QC-II FA and QC-II FAE OSCAT-2 

speeds are shown (a), that of QC-II FAE substituted by the SVM regressed speed for rain (cloud) correction (b) and that from 

the ASCAT collocations in C-band (c). There are 674 WVCs in Figure 7, with 13 FAE, and the observation time ranges from 

09:19 to 09:24. Furthermore, the simultaneous image obtained around 09:20 is applied as references from the band 11 of 360 

Himawari-8 satellite at medium infrared (MR, wavelength of 8.6μm) from Japan Aerospace Exploration Agency (JAXA). 

In Figure 7, the FAE set is distributed in the lower half in (a), where the colour is darker in red with lighter in white implying 

the existence of a wind front. After the correction, a more consistent set of wind speeds north of the front is obtained. In 

addition, rain clouds can be seen from (d) between 7-9 degrees N, with blue regions representing lower brightness temperatures 

(BT) and high probability of rain, where rain correction effects can be observed as well considering (a-c). This further confirms 365 

the necessity of inclusion of 2DVAR Joss for wind correction in case of rain. Although slightly overcorrected wind speeds 

occur in (b) around about 8 degrees N, it can be observed that (b) and (c) are more similar than (a) and (c), demonstrating the 

consistency between the SVM-regressed OSCAT and accepted ASCAT wind speeds. This can be further observed from WVCs 

between 9 and 10 degrees N 175 and 176 degree E, where (d) shows somewhat elevated BT of clouds, illustrating the 

effectiveness of the method proposed for such regions. More detailed statistics are shown in Figure 8. 370 
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(a)                                                                                        (b) 

Figure 8: The FAE wind speed (a) and the corrected ones (b) against ASCAT wind speed in the data set of Figure 6. 

 

It can be seen from Figure 8 that higher wind due to rain is suppressed by the method proposed, while for higher wind speed 375 

around 12 m/s, the SVM-regressed winds become somewhat less consistent with ASCAT truth, as discussed in the former 

section. The effectiveness of the SVM-regressed winds are further confirmed with the data in Figure 8, as they have not been 

applied in the derivation of the SVM. 

5. Discussion 

Air-sea interaction in the vicinity of rain is complex and difficult to observe. In this research, the effect of rain in Ku-band 380 

wind scatterometery is explored for correction of retrieved wind under rainy conditions. The method employed is as follows: 

on the basis of the analysis of signatures induced by rain from parameters obtained during wind retrieval from scatterometers, 

rain effects are corrected as a function of these signatures. Specifically, for quantifying the heterogeneity induced by rain and 

its effect on the wind speed, the quality indicator MLE and Joss are analyzed, with reference to the low-pass filtered 2DVAR 

winds and collocated ASCAT winds (Xu et al., 2020a). Accepted C-band ASCAT winds (Vogelzang et al., 2011) are used as 385 

reference to identify the rain effects and form the basis of a correction after establishing a SVM. Results show that the 

correction is adequate, especially at speeds with abundant information in the Ku-band to segregate wind and rain (under 12m/s). 

The spatial consistency of the corrected winds with the ASCAT observational winds is identified as more similar than to the 

2DVAR winds. Subsequently, a case is provided with comparison to MIR images to check for rain occurrence. This confirms 

that the SVM method proposed is effective. Hereafter, rain information extraction from scatterometers is established. 390 

Following which, further analysis and discussion on the remaining uncertainties are given, with a view to improve in our future 

work.  
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5.1 SVM for rain identification and regression 

For a view of uncertainties unresolved with wind-rain tangling in Ku-band wind scatterometry, SVMs in the same input for 

rain identification and regression in the following Table: 395 

Table 3 Inputs and outputs for the SVM of rain classification and regression: 

Inputs Output Values of output for training 

Rain Classification SVM Rain Regression 

SVM 

Rain Classification SVM Rain Regression SVM 

OSCAT-2 MLE in dB space Rain or no-rain class Rain rates [mm/h] GPM rain rate, 0 mm/h in 

no-rain WVC 

GPM rain rates [mm/h] 

𝜶 from OSCAT-2 WVC 

OSCAT-2 2DVAR speed 

OSCAT-2 observational speed 

 

The data set is the same as for the wind correction, while the training target changed to GPM rain. The classification 

accuracies for both the training and testing set of rain identification SVM are the same and 72%. The results for rain regression 

are shown in the following figure, where the correlation coefficient of the SVM-regressed and GPM rain rates for the training 400 

set and the testing set are both 0.47. Little skill for rain rate appears below 5 mm/hr, while GPM produces more extreme rain 

rates > 10 mm/hr. The corresponding scatter plots of the regressed rain rates in the training set and testing set are depicted in 

Figure 9. 

 

(a)                                                                                               (b) 405 

Figure 9: SVM regressed rains for training set (a) and validation set not involved in training (b). 
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(a)                                                                           (b) 
Figure 10: Distribution of GPM and the SVM regressed rains, with that of the error (a), the corresponding CDF of the error (b) 

From visualization of the classification results (details not shown), non-rainy WVCs are less often incorrectly classified than 410 

rainy WVCs. Where larger 2DVAR speed are well-crowded and can be better discriminated in MLE, Joss and α to the correct 

class, while this is more difficult for smaller 2DVAR speed WVCs. Light rain clouds have small effects to the wind 

observations. Correspondingly, Figure 10 (a) shows the distribution of rain rates from GPM (blue), SVM regression (purple) 

and that of the error defined as the GPM rain rate minus the regressed values (green). The corresponding CDF of error is shown 

in (b). In addition to Figure 9, Figure 10 (a) shows in detail that SVM regressed rain fails in capturing the non-convex feature 415 

in lower rain rate, and in prediction of higher rains. This may due to the L2 distance norm applied and lack of information as 

well as samples. For GPM rain above 10 mm/h, OSCAT rain rates are rather randomly distributed and presumably lack skill. 

However, from (b) in Figure 10, it can be observed that the error displays a feature of symmetry and steady increasing feature. 

And those within the range of [-2, 2] mm/h takes 34%, within [-5, 5] mm/h takes about 80%, consistent with the correlation 

coefficient value of 0.47. L1 distance, at the same time, including other sources of observation, with increasing number of 420 

samples may help improve the results. Xu et al. (2020b) find similar spread in rain products at the scatterometer spatial 

resolution, hence illustrating the applicability of the SVM rain product derived here. 

5.2 Conclusions and further research 

Rain features in wind scatterometry in the Ku-band can trigger QC rejections. These effects also provide opportunities to 

identify rain and perform wind corrections. The SVM method proposed acts well for medium and lower wind speeds, while 425 

the wind-rain tangling remains severe for higher wind speed. This can also be noted from the rain identification and regression 

SVMs in 5.1. While for lower speeds, the change of values of parameters considered may be caused by different wind-rain 

interaction with the ocean surface that alters the sea-state rather than only elevating the speed of wind due to rain cloud 

scattering that may be similar for C- and Ku-band and hence missed here. 
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On the other hand, from the rain features in MLE and Joss, as well as the uncorrected speed, it can be seen that uncertainties 430 

can be introduced from the training parameters; the normalized MLE is designed to characterize errors that result in large 

deviations from the GMF for QC, but its accuracy depends on relative wind vector and azimuthal diversity of the NRCS views. 

While the 2DVAR speed is derived balancing errors in the observation space of a grid of WVCs and the NWP background, 

representing larger spatial scales, thus they can be considered as lower-bound estimates of the true values and uncertainties in 

the wind speeds can be different due to spatial heterogeneity. This may hamper the effectiveness of the rain screening ability 435 

of Joss. In order to bound those uncertainties for better results in SVM, extra observations for rain (clouds) can help, while 

higher spatial resolution is obtained in the next generation of scatterometers for simultaneous ocean surface wind and current 

measurements, for example, Chelton et al. (2018) and Du et al. (2021). OSCAT-2 and ASCAT collocations provided a unique 

opportunity to study rain effects in Ku-band scatterometers. Rain effects are rather transient in nature, where the moist 

convection time scale is about 30 minutes. This implies updrafts, downdrafts and rain patterns in a WVC change very fast and 440 

rather strict collocation criteria would be needed to resolve rain effects well. With WindRad on FY3E a combined C- and Ku-

band scatterometer has been launched on the 5th, July, 2021, which will provide parts of the swath with excellent azimuth 

diversity and both C- and Ku-band retrieval capability. Hence this mission will be useful to further elaborate this research. 

Above all, the SVM can effectively represent the increasing effect of rain in elevating wind speeds as the true wind speed 

decreases showing the advantage of the ML method for such complex problems involving multiple interrelated variables. The 445 

method provides correction of deviations that are non-uniform and skew- to Gaussian-like features. This demonstrates the 

effectiveness of a ML method when used with representative parameters for addressing more complex problems. The corrected 

winds provide information previously lacking, while vital for nowcasting winds in the presence of moist convection and to 

improve initialization of NWP models in dynamic conditions. The rain regression in SVM indicates the potential of additional 

rain information observations for further exploration, as well as the promise of improved hybrid wind and rain estimation 450 

methods based on ML using physically meaningful parameters for the problem at hand. 

 

6 Appendix: 

The mean values and standard deviations of differences 

For the comparison of two collocated groups of data, one of which is set as reference group. Then figures and values are 455 

obtained by grouping the reference data (depicted as horizontal axis) and the other data set to compare (vertical axis) into i 

bins of the same sample number j. For the mean values of the reference data, Refi, (in tables they are put in the first column), 

there is corresponding 𝐴𝑣𝑒𝑖 (in tables as the second column) and standard deviation values (third column) calculated for the 

data to compare (in figures as the vertical axis). Specifically, the following equations describe the calculation of the mean 

value 𝐴𝑣𝑒𝑖 and standard deviation of difference (SDD) 𝑆𝑡𝑑𝑖: 460 
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    𝐴𝑣𝑒𝑖 =
∑ 𝑂𝑏𝑣_𝑉𝑎𝑙𝑢𝑒𝑗

𝑁𝑖
𝑗=1

𝑁𝑖
                                                                                                                                                       (A.1) 

  𝑆𝑡𝑑𝑖 =
1

𝑁𝑖
√∑ (𝑂𝑏𝑣_𝑉𝑎𝑙𝑢𝑒𝑗 − 𝑅𝑒𝑓𝑖)

2𝑁𝑖
𝑗=1                                                                                                                             (A.2) 

Where the values of the group to compare is 𝑂𝑏𝑣_𝑉𝑎𝑙𝑢𝑒. 
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