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Abstract. Single footprint retrievals of carbon monoxide from the Atmospheric Infrared Sounder 25 

(AIRS) are evaluated using aircraft in situ observations. The aircraft data are from the HIAPER 

Pole-to-Pole (HIPPO, 2009–2011), the first three Atmospheric Tomography Mission (ATom, 

2016–2017) campaigns and the National Oceanic and Atmospheric Administration (NOAA) 

Global Monitoring Laboratory (GML) Global Greenhouse Gas Reference Network Aircraft 

Program between 2006 - 2017.  The retrievals are obtained using an optimal estimation approach 30 

within the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) algorithm. Retrieval biases 

and estimated errors are evaluated across a range of latitudes from the sub-polar to tropical regions 

over both ocean and land points. 

AIRS MUSES CO profiles were compared with HIPPO, ATom, and NOAA GML aircraft 

observations with a coincidence of 9 hours and 50 km to estimate retrieval biases and standard 35 

deviations.  Comparisons were done for different pressure levels and column averages, latitudes, 

day, night, land, and ocean observations.  We found mean biases of + 6.6% +/- 4.6%, +0.6% +/- 

3.2%, and -6.1% +/- 3.0% for three representative pressure levels of 750 hPa, 510 hPa, 287 hPa, 

and column average mean biases of 1.4% +/- 3.6%.  The mean standard deviations for the three 
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representative pressure levels were 15%, 11% and 12% and the column average standard deviation 40 

was 9%. Observation errors (theoretical errors) from the retrievals were found to be broadly 

consistent in magnitude with those estimated empirically from ensembles of satellite aircraft 

comparisons, but the low values for these observation errors requires further investigation. The 

GML Aircraft Program comparisons generally had higher standard deviations and biases than the 

HIPPO and ATom comparisons. Since the GML aircraft flights do not go as high as the HIPPO 45 

and ATom flights, results from these GML comparisons are more sensitive to the choice of method 

for extrapolation of the aircraft profile above the uppermost measurement altitude.  The AIRS 

retrieval performance shows little sensitivity to surface type (land or ocean) or day or night but 

some sensitivity to latitude. Comparisons to the NOAA GML set spanning the years 2006–2017 

show that the AIRS retrievals are able to capture the distinct seasonal cycles but show a high bias 50 

of ~ 20% in the lower troposphere during the summer when observed CO mixing ratios are at 

annual minimum values.  The retrieval bias drift was examined over the same years of 2006 - 2017 

and found to be small at < 0.5%. 

 

1.  Introduction 55 

 

Carbon monoxide (CO) is produced by the combustion of fossil fuels and biofuels, wildfires and 

agricultural biomass burning, and hydrocarbon oxidation.  It is a precursor to tropospheric ozone 

and carbon dioxide and thus plays an important role in both atmospheric pollution and climate. 

CO is removed from the atmosphere mainly through reactions with the hydroxyl radical (OH) and 60 

influences the removal rates of other atmospheric pollutants.  CO has a chemical lifetime greater 

than a week in the troposphere, which allows it to be transported long distances.  At the same time 

the lifetime is short enough that concentrations generally remain spatially inhomogeneous.  It is 

therefore a good tracer species whose uneven distribution can be used to analyze regional to global 

transport processes from pollution sources (e.g., Edwards et al., 2004, 2006; Hegarty et al., 2009, 65 

2010; Petetin et al., 2018; Panagi et al., 2020).  

The satellite record of nadir CO observations began in 2000 with the Measurement of Pollution in 

the Troposphere (MOPITT) instrument on the NASA Terra satellite (Drummond et al., 2010). The 

nadir satellite CO record now includes datasets from the Atmospheric Infrared Spectrometer 

(AIRS) on Aqua launched in 2002, The Scanning Imaging Absorption Spectrometer for 70 

Atmospheric Chartography (SCIAMACHY) on Envisat launched in 2003, the Tropospheric 
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Emission Spectrometer (TES) on Aura launched in 2004, the Infrared Atmospheric Sounding 

Interferometer (IASI) on the MetOp series beginning in 2006, the Cross-track Infrared Sounder 

(CrIS) on Suomi-NPP launched in 2011, and most recently the Joint Polar Satellite System series 

and TROPOMI on the Sentinel-5 precursor in 2017. Satellite CO datasets have been used 75 

extensively in emission source attribution studies (e.g., Kopacz et al., 2010; Jiang et al., 2017) and 

trend analyses (e.g., Worden et al., 2013a;  Buchholz et al., 2021).  Among the satellite instruments 

currently observing CO, AIRS and MOPITT have the longest continuous records making them the 

most suitable for trend analysis.  Though the MOPITT data record begins two years earlier, AIRS 

has the advantage of a swath width approximately twice as large as MOPITT’s enabling near 80 

global coverage in about a day as compared to about three days for MOPITT (Yurganov et al., 

2008).   

Characterization of uncertainties is key for the effective use of any measurement in emission 

source attribution and trend studies. Ideally, the characterization of uncertainties in satellite 

datasets should include both quantification of biases and the validation of the error estimates 85 

associated with the remotely sensed products (von Clarmann et al., 2020).  In this paper we present 

an evaluation of these uncertainties for a new set of CO retrievals from AIRS. These retrievals 

differ from previous AIRS products in that they are derived from single footprint L1B radiances, 

rather than from radiances obtained from applying a cloud clearing algorithm to sets of nine 

footprints.  Therefore, the spatial resolution of this new product is the native spatial resolution of 90 

the Level 1B radiances (15 km at nadir).   The improved spatial resolution enables better 

representation of smaller pollution plumes from local strong anthropogenic sources and small 

wildfires which will enable better pollution tracking and more precise trend analysis.  For example, 

George et al ( 2009) found that CO related to fires was systematically ~ 17 % lower for AIRS than 

MOPITT and IASI due to the coarser resolution of the 9-pixel cloud-cleared radiance retrieval 95 

used for AIRS (McMillan et al., 2005).   Furthermore, Buchholz et al (2021) using MOPIIT found 

that recent trends in column CO over northeastern China were driven mainly by significant trends 

in the 75th  percentile values suggesting changes in local emissions rather than transported CO.  

 The algorithm utilized here is the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) 

algorithm (Worden et al., 2006, 2013b; Fu et al., 2013, 2016, 2018, 2019), optimal estimation 100 

approach (Rodgers, 2000) based on the Aura Tropospheric Emission Spectrometer (TES) retrieval 

algorithm (Bowman et al., 2006) with enhancements that enable the use of radiances from either 
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one or multiple instruments.  MUSES uses a multi-step retrieval process to characterize an 

atmospheric profile: temperature, water vapor, surface properties, trace gases and cloud optical 

depth and height, thus accounting for the radiative impact of clouds. The optimal estimation 105 

method provides the vertical sensitivity (i.e., the averaging kernel matrix) and estimates of the 

uncertainties due to noise and radiative interferences from other geophysical parameters such as 

temperature and water vapor as described in Sect. 2.  We use aircraft in situ observations from the 

HIAPER Pole-to-Pole (HIPPO) and Atmospheric Tomography Mission (ATom) campaigns as 

well as the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring 110 

Laboratory (GML) Global Greenhouse Gas Reference Network Aircraft Program (hereafter 

referred to simply as NOAA GML), taken between 2006 and 2017. The aircraft measurements, 

described in Sect. 2, span a wide range of latitudes, and include observations made over both ocean 

and land. Our validation methodology is described in Sects. 3 and 4 and closely follows Oetjen et 

al. (2014) and Kulawik et al. (2021) and includes an evaluation of actual errors and a comparison 115 

to theoretical errors.  The evaluation of results is presented in Sect. 4. 

 

2.  Data 

 

2.1 Aircraft Data 120 

Data from all five HIPPO aircraft missions (Wofsy et al., 2012) are used in this study: HIPPO-1 

in January 2009; HIPPO-2 in October–November 2009; HIPPO-3 in March–April 2010; HIPPO-

4 in June–July 2011; and HIPPO-5 in August–September 2011.  During HIPPO, the National 

Science Foundation’s Gulfstream V flew tracks that were primarily over the Pacific Ocean but 

also crossed over New Zealand, Australia, and western North America at latitudes from 67S to 125 

87N.  The aircraft made steep ascents and descents along the flight path to construct vertical 

profiles approximately every 220 km or 20 minutes.  The locations of all the aircraft profiles used 

in this study are shown in Fig. 1.   The profiles had an average top of approximately 290 hPa.  CO 

was measured with a quantum cascade laser spectrometer (QCLS) at 1 Hz frequency with accuracy 

of 3.5 ppb and 1σ precision of 0.15 ppb (McManus et al., 2010; Santoni et al., 2014).  The QCLS 130 

CO measurements were compared with NOAA flask measurements over 59 HIPPO profiles and 

had a bias of -1.94 ppb which is within the accuracy estimate of the QCLS instrument (Santoni et 

al., 2014).  HIPPO QCLS data have also been used to validate MOPITT satellite retrievals of CO 

(Deeter et al., 2013; Martínez-Alonso et al., 2014). 
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Data from ATom aircraft campaigns 1–3 (Wofsy et al., 2018) are also used in this study: ATom-135 

1, July–August 2016; ATom-2, January–February 2017; and ATom-3 September–October 2017.  

During Atom, the NASA DC-8 aircraft flew tracks with similar latitude coverage as HIPPO but 

also flew over both the Atlantic and Pacific Oceans (Fig. 1). During flights, the aircraft 

continuously profiled the atmosphere from 0.2 to 12 km altitude with a similar average top to that 

of HIPPO. For this study, we use CO measurements on ATom from the QCLS instrument, similar 140 

to HIPPO, that are calibrated to the WMO X2014A scale (Novelli et al., 1991, 1994, 1998).  

The NOAA GML observations are taken mainly at fixed sites in North America (Sweeney et al., 

2015).  In this study observations from the years 2006–2017 and from nine sites (Fig. 1) are used.  

The air samples are collected using an automated Programmable Flask Package (PFP) operated on 

small aircraft.  Air samples are collected at several altitudes during a single flight resulting in a 145 

vertical profile for each trace gas measured. The average top of the profiles in the data set used 

here was at 440 hPa.  The CO mixing ratios are reported relative to the WMO X2014A CO scale.  

Uncertainties on the CO from the flasks are of the order of 1 ppb (Sweeney et al., 2015). 

 

Figure 1:  Locations of aircraft profiles used for HIPPO and ATom as colored dots and NOAA 150 

GML as black diamonds with 3-character string identifier.  Most NOAA GML site codes 

represent the site name (e.g., “cma” stands for offshore Cape May, New Jersey) while some 

site codes such as “act” and “crv” represent NOAA flask data collected on campaigns.  
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2.3 AIRS single footprint CO retrievals  155 

AIRS is a nadir-viewing, scanning thermal infrared (TIR) spectrometer launched on board the 

Aqua satellite on May 4, 2002 into a sun synchronous polar orbit at an altitude of 705 km with 

1:30 am and 1:30 pm local equator crossing times (Aumann et al., 2003).  It measures the thermal 

radiance between 3–12 microns with a spectral resolution of ~ 1.8 cm-1 in the 4.6-micron (~ 2100 

cm-1) CO absorption region. A single AIRS field of view (FOV) has a circular footprint with ~ 15 160 

km diameter at nadir and the AIRS swath width is ~1650 km which enables near global coverage 

twice daily.   

Several algorithm evaluations have been published previously for retrievals of CO from AIRS, 

using Level 2 cloud-cleared radiances (Susskind et al., 2003) on the 45 km fields of regard (FORs), 

which encompass nine FOVs. These include the AIRS operational algorithm (first introduced by 165 

McMillan et al. (2005) with revisions through to the current v7), the NOAA-Unique Combined 

Atmospheric Processing System (NUCAPS) (Gambacorta et al., 2015), the Community Long-term 

Infrared Microwave Combined Atmospheric Product System (CLIMCAPS) (Smith and Barnet, 

2020) and the optimal estimation algorithm presented by Warner et al. (2010).  

Here we present results of CO retrievals from AIRS radiances using the MUSES algorithm 170 

(Worden et al., 2006, 2013b; Fu et al., 2013, 2016, 2018, 2019; Kulawik et al., 2021). MUSES 

uses an optimal estimation approach (Rodgers, 2000) and leverages the algorithm developed for 

the Aura TES (Bowman et al., 2006). We use L1B radiances on single 15 km AIRS FOVs or 

footprints rather than cloud cleared radiances on the 45 km FORs (comprised of 9 FOVS) to 

preserve the original well-characterized radiance noise characteristics for use in our estimates  175 

(Irion et al., 2018; DeSouza-Machado et al., 2018). The Optimal Spectral Sampling (OSS) code 

was used as the forward model (Moncet et al., 2008, 2015). CO is retrieved using the 2181–2200 

cm-1 spectral range. 

3.  Validation Methodology 

3.1 Coincidence criteria and quality control 180 

 

The AIRS and aircraft profiles were matched using time and distance coincidence criteria of 9 

hours and 50 km.  The matched profiles were then subject to several quality control filters to form 

the final validation set.  The aircraft profiles were required to have at least 10 pressure levels with 

valid CO data and the difference between the maximum and minimum pressure of the valid data 185 
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levels had to be at least 400 hPa.  The AIRS MUSES algorithm provides a diagnostic retrieval 

quality flag, and this was used to remove poor or suspect retrievals from the set.  While  the AIRS 

MUSES algorithm uses the original single pixel instrument radiances rather than cloud-cleared 

radiances, the algorithm does retrieve cloud optical thickness following Kulawik et al (2006) and 

provides both a spectrally varying and average effective optical depth. The cloud optical depth is 190 

retrieved before CO; thus, the effect of clouds is taken into account in the CO retrieval. AIRS 

MUSES profiles with optically thick clouds were designated as those with an average cloud 

effective optical depth over the AIRS spectrum and within the CO absorption band greater than 

0.1 and were removed from the set.  After the quality and cloud screening was applied there 

remained 3734 AIRS – HIPPO matches representing 405 unique HIPPO aircraft profiles, 1324 195 

AIRS – ATom matches representing 158 unique ATom aircraft profiles and 10044 AIRS - NOAA 

GML matches representing 747 unique NOAA GML aircraft profiles.  Thus, each aircraft profile 

was compared to a set of AIRS profiles. All the aircraft profiles in the final data sets were 

interpolated vertically to the 67 AIRS MUSES forward model levels.  

3.2 Approach for Error Validation  200 

 

Details of the retrieval error characterization from the optimal estimation (OE) approach of Rogers 

(2000) and its application to instruments like AIRS are provided in many publications (e.g., Boxe 

et al., 2010; Oetjen et al., 2014; Kulawik et al., 2021).  Here the details relevant to the error 

validation in this study are presented.   205 

As described in Oetjen et al. (2014) the OE error covariance can be split up into several terms, as 

shown in Equation (1), that represent the various factors contributing to the overall uncertainty Sz 

of a retrieved CO profile.  These factors include smoothing due to limited vertical information 

content of the satellite instrument measurement (smoothing), instrument measurement noise 

(noise), uncertainties from parameters not included in the retrieval state vector (systematic), 210 

coupling interference or cross correlation between parameters retrieved simultaneously with CO 

(cross-state), and a residual term (res) that accounts for uncertainties not considered or unknown.  

 

𝐒z = (𝐀𝑧𝑧 − 𝐈)𝐒𝑠(𝐀𝑧𝑧 − 𝐈)𝑇 + 𝐆𝐒𝑒𝐆𝑇 + ∑ 𝐆𝐊𝑏𝐒𝑏(𝐆𝐊𝑏)𝑇 + ∑ 𝐀𝑥𝑠𝐒𝑎
𝑏𝑟𝑒𝑡( 𝐀𝑥𝑠)𝑇 + 𝑟𝑒𝑠      (1) 

          smoothing                         noise         systematic                 cross-state 215 

 

In the smoothing term I is the identity matrix, Azz is the covariance matrix for CO and Ss is the 

smoothing error covariance. In the noise term G is the gain matrix that describes the sensitivity of 
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the retrieved state to changes in measured radiances and Se is the instrument noise covariance.  In 

the systematic term the subscript b represents parameters that are held constant during the retrieval 220 

with respective Jacobians, Kb, and error covariance matrix Sb.  In the cross-state term the averaging 

kernels of the other parameters (x) retrieved simultaneously with CO are Axs and the corresponding 

error covariance matrix is Sa
bret.  

The averaging kernel matrix describes the vertical sensitivity of a retrieved parameter to its true 

state in the atmosphere.  The vertical sensitivity is dependent on the true state vertical distribution 225 

of CO and other trace gases, retrieval constraints, and on the interference of other geophysical 

parameters such as the profiles of temperature and water vapor.  The sum of the rows of the 

averaging kernel matrix provides information on the location of the peak sensitivity of the retrieval.  

Fig. 2 shows the mean sum of the rows of the averaging kernel matrices for all the AIRS profiles 

in the validation set binned by latitude band: the level of peak sensitivity is generally between 400 230 

and 500 hPa.  The sensitivity peaks at a higher level in the tropical and sub-tropical latitude band 

of 30S–30N and at lower vertical levels in the higher latitude bands of both hemispheres.   

For comparing satellite profiles of trace gases with limited vertical resolution to profiles measured 

in situ from aircraft, the averaging kernel and an a priori profile is applied to the in-situ profiles as 

in Rodgers and Connor (2003).  Through this procedure a new profile �̂�, representing what the 235 

satellite “sees” assuming no retrieval errors, is generated as shown in Equation (2) from the 

averaging kernel Azz applied to the difference between the elements of the original aircraft profile 

Zaircraft and the a priori profile Zapriori.   For AIRS MUSES CO retrievals, the a priori profiles are 

obtained from a monthly climatology, in 30 degree latitude by 60 degree longitude boxes produced 

from the MOZART atmosphere chemistry model for the Aura mission (Brasseur et al., 1998). The 240 

a priori constraint used for CO is the same constraint used in the  MOPITT CO algorithm (Deeter 

et al., 2010).  

 

�̂�  = Zapriori + Azz ( Zaircraft  - Zapriori )                                                                (2) 

 245 

This procedure is also referred to as convolving the in-situ profiles with the averaging kernel.  

Since there are no aircraft observations for the part of the retrieved profile above the aircraft flight 

levels, numerical techniques must be applied to extrapolate aircraft profiles above the flight levels 

(e.g., Kulawik et al., 2021); however, the uncertainty of the extrapolated measurements at these 

levels must be accounted for as it can propagate to the levels where there is actual aircraft 250 
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observations through the application of the averaging kernel (Tang et al., 2020).   For our study 

we simply fill the true aircraft profile above the aircraft flight levels with the a priori value.  If the 

a priori is representative of the average true atmosphere this assumption should be reasonable. We 

explore the implications of this assumption using the NOAA GML set in Sect. 4.3.  

The approach for error validation in this paper will start with a comparison of each AIRS retrieved 255 

profile with the corresponding matched aircraft profile convolved with the averaging kernel; the  
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Figure 2: Mean (solid) sum of rows of the AIRS MUSES CO averaging kernels for each 

latitude band for the HIPPO retrievals.  The dotted lines are one standard deviation from 

the mean. The peak of the mean generally corresponds to the vertical level of maximum 270 

AIRS sensitivity to the true state CO mixing ratio 

results will be grouped in latitude bands ranging from the tropics to sub-polar regions.  Next 

theoretical errors represented by all but the smoothing term of the error covariance of Eq. (1) will 

be evaluated for each retrieval, averaged within the latitude bands, and compared to the retrieval 

error standard deviation (uncertainty) and the a priori error.  Finally, empirical errors calculated 275 

from an ensemble of retrieved profiles collocated with an aircraft profile as in Boxe et al. (2010) 

and Oetjen et al. (2014) will be evaluated for select CO plume and background cases.  This 

approach will be applied separately to the HIPPO, ATom and NOAA datasets, since each 

presented different characteristics. 

280 



10 

 

4. Results 

4.1 AIRS MUSES validation with HIPPO 

 

The percent differences between AIRS MUSES and the HIPPO aircraft profiles are shown in Fig. 

3.  The profiles are plotted only up to 200 hPa, as there were few aircraft observations above that 285 

level, and are shown as the complete set and binned by latitude bands.  For all groupings the mean 

biases are positive in the lower troposphere, tend toward zero in the middle troposphere, where the 

retrieval has greatest sensitivity, and become negative in the upper troposphere.  The spread of the 

error profiles also tends to be narrower in the middle of the troposphere. Table 1 shows statistics 

corresponding to these plots and for the profiles grouped by land/ocean and day/night categories 290 

for selected pressure levels.  The lowest biases are within plus or minus 3.1% and occur at the 510 

hPa level while there are larger positive biases between 2–21% at the 750 hPa level and negative 

biases up to ~ 15% at the 287 hPa level.  There were no substantial or consistent differences for 

the error statics grouped by land vs ocean and day vs night, which suggests that these categories 

can be combined in the error analysis.  Partial column average mixing ratios (referred to hereafter 295 

as column average mixing ratios) were calculated for each profile between the lowest to the highest 

aircraft flight level.  The column average CO mixing ratios plotted by latitude (Fig. 4, top panel) 

show that the 30S–90S band was predominantly in a background regime with mixing ratios 

generally < 70 ppbv, and that mixing ratios increased steadily with latitude to ~ 150 ppbv by 30N.  

The average column CO mixing ratio bias (Fig. 4 bottom panel) also shows a latitude dependence 300 

with higher mean bias of ~ 10–15 ppbv occurring near 30N band.  In addition, the error distribution 

is highly skewed toward positive numbers particularly in the 30N–60N latitude band 

(skewness=1.36), indicating that the errors are not normally distributed. 

Beyond examining biases and variability of the retrieved profiles, evaluating the retrieval error 

estimates is also important, since they provide users with a measure of the reliability of the data. 305 

Following Oetjen et al. (2014) and Kulawik et al. (2021) we evaluated the AIRS MUSES retrievals 

by comparing the theoretical error estimates from the MUSES diagnostics to the actual retrieval 

error statistics described above.  Figure 5 shows the profiles of the fractional estimated observation 

errors, mean a priori error, AIRS-aircraft standard deviation, and a priori–aircraft standard 

deviation.  The errors are binned by latitude band and the 30–90-degree bands have been divided 310 

into two bands of 30–60 and 60–90 degrees in both hemispheres to better capture the dependence 

of error characteristics on latitude.  The estimated observational error includes the noise, 
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systematic and cross-state error terms as shown in Eq. (1) and the mean a priori error is estimated 

from the square root of the diagonal of the a priori covariance matrix.   

 315 

 

 

 

Figure 3:  The AIRS MUSES-Aircraft percent difference profiles for HIPPO. The number of 

profiles and the latitude bands are indicated in the upper left.  All HIPPO profiles were 320 

convolved with the averaging kernels (Eq. 2) before the differences were calculated.  The red 

lines indicate the individual profiles, the black solid lines the mean difference or bias, and 

the dashed lines one standard deviation from the mean. 

 

  325 
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Table 1:  AIRS – Aircraft statistics for HIPPO campaign.   

 Bias  

749.89  

hPa 

(%) 

STD 

749.89  

hPa 

(%) 

Bias 

510.90  

hPa 

(%) 

STD 

510.89 

hPa 

(%) 

Bias 

287.30 

hPa 

(%) 

STD 

287.30 

hPa 

(%) 

Bias 

Column 

(%) 

STD 

Column 

(%) 

N  

Profs 

All 4.56 15.69 0.95 12.19 -4.22 13.86 0.69 9.20 3734 

30 S – 

30 N 

9.09 23.71 0.77 10.00 -4.75 16.40 2.37 10.56 830 

30 N – 

90 N 

2.56 12.22 1.94 13.48 -2.35 13.35 0.62 8.99 2260 

30 S –  

90 S 

5.72 11.76 -2.29 8.99 -10.10 9.73 -1.21 7.50 644 

Land 6.96 15.67 -0.12 12.22 -7.52 12.96 -0.32 8.96 930 

30 S – 

30 N 

21.07 24.69 0.38 8.21 -14.58 14.84 3.34 8.60 37 

30 N – 

90 N 

5.30 13.90 -0.88 11.80 -6.96 12.12 -0.42 9.05 799 

30 S – 

90 S 

3.90 10.53 -0.59 11.31 -7.55 11.54 -0.92 8.03 94 

Ocean 3.76 15.62 1.31 12.16 -3.13 13.98 1.03 9.26 2804 

30 S – 

30 N 

8.53 23.53 0.78 10.08 -4.29 16.34 2.32 10.64 793 

30 N – 

90 N 

0.32 9.39 3.05 13.87 0.29 12.82 1.19 8.92 1461 

30 S – 

90 S 

6.03 11.95 -2.58 8.51 -10.53 9.33 -1.26 7.41 550 

Day 4.70 15.18 0.10 12.01 -5.13 13.98 -0.11 8.73 1785 

30 S – 

30 N 

9.32 23.08 -1.13 10.86 -7.84 17.54 1.03 10.18 256 

30 N – 

90 N 

3.62 13.83 0.86 12.76 -3.47 13.87 -0.02 8.63 1210 

30 S – 

90 S 

5.08 10.80 -1.80 9.43 -9.28 9.24 -1.37 7.68 319 

Night 5.30 16.88 1.16 11.93 -4.29 13.67 1.39 9.80 1723 

30 S – 

30 N 

8.99 24.01 1.61 9.48 -3.38 15.69 2.96 10.68 574 

30 N – 

90 N 

2.32 10.64 2.40 14.11 -2.33 12.55 1.26 9.82 824 

30 S – 

90 S 

6.34 12.63 -2.78 8.52 -10.90 10.14 -1.06 7.32 325 
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Figure 4:  The AIRS and HIPPO partial column average mixing ratios (top) and AIRS – 

HIPPO column average mixing ratio differences (bottom) by latitude.  The column averages 

are calculated from the lowest to the highest flight altitudes for each profile.  The black dots 355 

in the bottom figure are the average differences within each 10-degree latitude bin.  The 

skewness of the error distribution is also shown.  Skew values greater (less) than 1 indicate 

significant positive (negative) statistics skew from a Gaussian distribution.  
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The estimated observational errors (red lines are individual errors and the blue lines are the mean) 

are lowest around 500 hPa where AIRS sensitivity is greatest, and this pattern is similar to the 360 

actual error profiles shown in Fig. 3. The minimum error shifts downwards towards the poles with 

the smallest errors occurring lower at about 650 hPa in the Arctic region 60N–90N; however, in 

the Antarctic region (60S–90S) there were not enough AIRS-aircraft profile matches where the 

AIRS profiles passed quality screening to provide a reasonable set of statistics.  

The standard deviation for the a priori-aircraft differences (green) is lower than the standard 365 

deviation for the AIRS-aircraft differences (black); for this dataset the a priori appears to be a 

better estimate of the truth than the retrieval; however, the skewness of the column mixing ratio 

differences suggests that Gaussian statistics do not provide an accurate representation of the error 

characteristics of this dataset, i.e., a simple average of error estimates is not very meaningful. Note 

also the average estimated error (blue) is significantly lower than the AIRS-aircraft differences 370 

(black) except below 600 hPa in the 30S–60N range, which is also likely due to the skewness of 

the data differences. 

An alternative approach for evaluating the theoretical error is to compare it to the variability within 

the set of AIRS profiles collocated with an aircraft profile.   If it is assumed that all satellite 

footprints in the collocated set are basically seeing the same scene then the variability in the 375 

retrieved profiles can be considered an empirical error (Oetjen et al., 2014).  In this analysis the 

empirical error is referred to simply as the AIRS profile variability.   Using this approach, plume 

and background cases were selected for each of the five HIPPO missions.  The case profiles were 

chosen using the maximum and minimum CO mixing ratios for each campaign at the 464.16 hPa 

pressure level of the remapped aircraft profiles. In addition to the CO mixing ratio criteria a 380 

minimum of eight co-located AIRS profiles that met the quality control standards had to be 

available for the case to be selected. A mean  observation error for this set of co-located AIRS 

profiles is calculated like that in Fig. 5.  The AIRS profile variability  was estimated as the square 

root of the diagonal of the covariance matrix of all the coincident AIRS MUSES retrievals. In 

general, for these cases, the AIRS profile variability was of the same magnitude as the mean 385 

observation error and the absolute differences was less than 10%.  For the background cases the 

AIRS profile variability is generally comparable to the mean  observation error.  For the plume 

cases, we might expect to see larger discrepancies between the mean observation error and the 

AIRS profile variability due to actual atmospheric variability in the region of the plume.     
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 390 

 

Figure 5:  Estimated observational error analysis for the HIPPO data set.  Estimated 

observation errors for each AIRS MUSES CO retrieval (dotted red lines), the mean 

observation error (solid blue line and triangles) the mean a priori error estimate (green line) 395 

and the standard deviation of the AIRS MUSES – HIPPO aircraft profiles differences and 

the standard deviation of the a priori – aircraft profile differences.  The profiles are binned 

by latitudes bands 30N–60N, 60N–90N, 30S–30N, 30S–60S and 60S–90S.    
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Illustrative cases for HIPPO-2 and HIPPO-3 are presented in Fig. 6.  The plume case for HIPPO-

2 is in the Arctic; the aircraft data feature a very high spike (~270 ppb) near 400 hPa that the mean 400 

AIRS profile does not capture (Fig. 6 bottom left panel).  The AIRS profile variability has a large 

peak > 15% at about the same level that is much larger than the mean observation error (Fig. 6 top 

left panel).  For the HIPPO-3 plume case the observed CO is also high with peaks greater than 200 

ppb in the middle troposphere. In this case, the AIRS mean retrieval does capture a peak (Fig. 6 

right  bottom panel), and the AIRS profile variability and mean observation error are in reasonable 405 

agreement.  

 

Figure 6:  Mean observation error and AIRS profile variability for selected plume and 

background cases from the HIPPO campaign (top panels). Mean observation error are black 

(plume profiles) and blue (background profiles) and AIRS profile variability are red (plume 410 

profiles) and green (background profiles).  In the bottom panels the plume (red) and 

background (green) HIPPO and average AIRS profiles (plume black, background blue) 

corresponding to the mean observation error and AIRS profile variability profiles in top 

panels are shown. The HIPPO profiles are shown without (solid) and with (dotted) the 

application of the AIRS averaging kernel.  The average AIRS a priori profiles are shown for 415 

the plume cases only as black dots. 
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4.2 AIRS MUSES validation with ATom 

 

The same steps were followed for the analysis of the ATom dataset. The percent differences 

between AIRS MUSES and the ATom aircraft profiles are shown in Fig. 7 for different latitude 420 

bands and the error statistics corresponding to these plots are shown in Table 2.  As with HIPPO 

the smallest biases are in the middle troposphere and cover a similar range (from ~ -4 to + 5 % vs 

-3 to +3%).  Like HIPPO, the average column mixing ratios (Fig. 8) show the same general 

dependence on latitude, as do the column errors.  However,  for HIPPO the aircraft column average 

CO mixing ratios in the 30S–10N band were all less than 100 ppbv (Fig. 4 top), whereas for ATom 425 

they were much more variable and were as high as ~ 130 ppbv (Fig. 8 top).  Between 30N–40N 

the HIPPO column mixing ratios ranged from ~70 ppbv to ~ 140 ppbv whereas for ATom they 

were lower ranging from ~60 ppbv to ~125 ppbv.  These differences in air mass CO were 

associated with ATom errors positive in the 30S–10N band and negative around 30N (Fig. 8 

bottom) and the opposite sign errors were in the corresponding latitude bands for HIPPO.  The 430 

estimated observational errors for ATom (Fig. 9) were smallest in the middle troposphere, like 

HIPPO.  However, the standard deviation of the AIRS – aircraft differences is smaller for the 

ATom comparisons than for the HIPPO comparisons. In the vertical range where AIRS has good 

sensitivity to CO (~600 to 200 hPa), The standard deviation of the AIRS – ATom differences is 

generally less than the standard deviation of the a priori – ATom differences, except south of 30S, 435 

where there are mostly low levels of CO.  The distribution of errors in the 30N–60N latitude band 

is less skewed than for HIPPO (0.54 vs. 1.36) suggesting that a Gaussian distribution of errors is 

a reasonable assumption for this dataset.  The difference between HIPPO and ATom was most 

evident in the 30N–60 N band where for HIPPO the retrieval error standard deviation was ~ 4 % 

larger than the a priori error standard deviation (Fig. 6) whereas for ATom the retrieval error 440 

standard deviation was ~ 5 % smaller than the a priori error standard deviation.   

 

 

 

 445 
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Figure 7:  The AIRS MUSES- Aircraft percent difference profiles for ATom campaigns 1-3.  

The number of profiles and the latitude bands are indicated in the upper left.  All ATom 

profiles were convolved with the averaging kernels (Eq. 2) before the differences were 450 

calculated.  The red lines indicate the individual profiles, the black solid lines the mean 

difference or bias, and the dashed lines one standard deviations from the mean. 
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Table 2:  AIRS – Aircraft statistics for ATom campaigns 1-3.   

 

 Bias  

749.89  

hPa 

(%) 

STD 

749.89  

hPa 

(%) 

Bias 

510.90  

hPa 

(%) 

STD 

510.89 

hPa 

(%) 

Bias 

287.30 

hPa 

(%) 

STD 

287.30 

hPa 

(%) 

Bias 

Column 

(%) 

STD 

Column 

(%) 

N Profs 

All 5.19 13.40 -1.10 10.58 -6.84 10.91 0.02 8.26 1324 

Pacific 4.46 11.80 -2.90 10.35 -7.55 9.32 -1.14 7.33 708 

30 S – 

30 N 

13.46 21.70 4.81 8.62 -3.49 16.93 6.22 8.34 237 

30 N – 

90 N 

3.83 10.01 -2.55 11.00 -7.43 9.25 -1.07 7.69 840 

30 S –  

90 S 

1.84 9.44 -1.81 8.77 -8.03 7.69 -2.21 7.21 247 

Land 1.98 8.69 -2.78 9.55 -6.41 9.58 -1.94 7.16 349 

30 S – 

30 N 

NA NA NA NA NA NA NA NA 0 

30 N – 

90 N 

1.94 8.65 -2.82 9.65 -6.40 9.80 -1.98 7.13 326 

30 S – 

90 S 

2.46 9.52 -2.06 8.18 -6.58 5.54 -1.44 7.64 23 

Ocean 6.33 14.56 -0.50 10.87 -6.99 11.34 0.72 8.51 975 

30 S – 

30 N 

13.46 21.70 4.81 8.62 -3.49 16.93 6.22 8.34 237 

30 N – 

90 N 

5.02 10.63 -2.38 11.78 -8.09 8.83 -0.50 7.98 514 

30 S – 

90 S 

1.77 9.45 -1.80 8.84 -8.18 7.87 -2.29 7.17 224 

Day 4.56 12.17 -0.57 10.35 -5.80 10.86 0.10 7.49 734 

30 S – 

30 N 

10.17 21.07 5.65 10.10 -0.07 19.17 5.39 8.20 99 

30 N – 

90 N 

4.15 9.58 -1.68 10.13 -6.77 8.68 -0.52 6.62 512 

30 S – 

90 S 

1.78 10.72 -0.95 9.74 -6.39 8.17 -1.56 8.48 123 

Night 6.36 15.21 -1.39 10.87 -8.12 10.94 0.24 9.19 546 

30 S – 

30 N 

15.82 21.90 4.20 7.36 -5.95 14.71 6.81 8.42 138 

30 N – 

90 N 

3.72 11.23 -3.54 12.47 -8.51 10.27 -1.60 9.27 284 

30 S – 

90 S 

1.89 8.01 -2.68 7.62 -9.66 6.83 -2.85 5.63 124 

 470 
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 490 

 

 

 

 

Figure 8:  The AIRS and partial column average mixing ratios (top) and AIRS – ATom 495 

column average mixing ratio differences (bottom) by latitude.  The column averages are 

calculated from the lowest to the highest flight altitudes for each profile.  The black dots in 

the bottom figure are the average differences within each 10-degree latitude bin. 

 

 500 
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Figure 9:  Estimated observational error analysis for the ATom data set. Estimated 

observation errors for each AIRS MUSES CO retrieval (dotted red lines), the mean 

observation error (solid blue line and triangles) the mean a priori error estimate (green line) 505 

and the standard deviation of the AIRS MUSES – ATom aircraft profiles differences and the 

standard deviation of the a priori – aircraft profile differences.  The profiles are binned by 

latitudes bands 30N–6 N, 6 N–90N, 30S–30N, 30S–60S and 60S–90S.    

 

 510 



22 

 

The reason for the “better” retrieval performance relative to the prior for the ATom vs the HIPPO 

comparisons is not immediately clear.  In the 30N–60N latitude band, the mean and standard 

deviation of the average column CO amounts for HIPPO and ATom were similar at 103 and 108 

ppb and 409 and 445 ppb respectively. The datasets have similar seasonal coverage.  There was a 

significant difference in geographic coverage: the HIPPO flights only covered the Pacific Ocean 515 

and adjacent land whereas ATom additionally flew over the Atlantic Ocean (Fig. 1).  To determine 

if this difference influenced the statistics a subset of the ATom data set was generated that 

considers only points west of 75W longitude.  The statistics for this case are shown in Table 2 in 

the row labeled “Pacific”.  While the bias at 510 hPa is slightly more negative for the Pacific case 

at -2.98% compared to -1.10% for all cases, the standard deviation of the AIRS-aircraft differences 520 

is similar.  Furthermore, for the Pacific case there was no significant skew in the column average 

mixing ratio error distribution (30N–60N skewness=0.29) and the estimated observation error 

profiles (not shown) were similar to those in Fig. 9.  Therefore, it does not appear that the different 

geographic coverage between HIPPO and ATom was the cause of the differences in the error 

statistics.  525 

Fig. 10 shows example comparisons of mean observation error and AIRS profile variability 

estimates for selected AIRS-ATom matches (as presented for HIPPO in Fig. 6).  The plume in the 

ATom-1 example is retrieved at a much higher altitude than observed and the AIRS profile 

variability is much greater than the mean observation error (Fig. 10 left panels), while in the 

ATom-2 example there is a better agreement between the retrieved and observed profiles, and the 530 

AIRS profile variability and mean observation error are comparable.  Overall, this analysis shows 

similar features to the analysis of estimated observation errors by latitude band in Fig. 9.   

      

 

 535 

 

 

 

 

 540 
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Figure 10:  Mean observation error and AIRS profile variability for selected plume and 

background cases from the ATom campaigns (top panels). Mean observation error are black 

(plume profiles) and blue (background profiles) and AIRS profile variability are red (plume 545 

profiles) and green (background profiles). In the bottom panels the plume (red) and 

background (green) ATom and average AIRS profiles (plume black, background blue) 

corresponding to the mean observation error and AIRS profile variability in top panels are 

shown.  The ATom profiles are shown without (solid) and with (dotted) the application of the 

AIRS averaging kernel.  The average AIRS a priori profiles for the plume cases only are 550 

shown as black dots.  

 

4.3 AIRS MUSES validation with NOAA GML 

 

The NOAA GML dataset was much larger, spanning a much longer period (2006–2017), but 555 

provided results over only a limited number of locations in North America (Fig. 1). For the NOAA 

GML set the AIRS MUSES retrieval error profiles are shown in Fig. 11 and statistics are shown 

in Table 3. Table 3 indicates that there are about a third of the matched profiles listed as ocean 

points which seems to contradict the map in Fig. 1 that shows all the NOAA GML location over 

land. However, the land/ocean classification is based on the MUSES land/ocean flag and several 560 

of the NOAA GML locations are at the coast and one, “cma”, is identified as offshore Cape May.  
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Therefore, a substantial number of the AIRS FOVs within the 50 km radius of the NOAA GML 

profiles near the coast and those corresponding to “cma” were classed as ocean.   

The column average mixing ratio errors by latitude are shown in Fig. 12.  Overall, the retrievals 

have a noticeably larger positive bias in the lower troposphere compared to the HIPPO and ATom 565 

sets.   

At the 510 hPa level the biases over land/ocean and day/night categories range from 4.9–9.6% for 

the NOAA GML set (Table 3) compared to less than plus or minus 4% for the HIPPO and ATom 

sets in the corresponding 30N–90 N latitude band (Tables 1 and 2).  The column average mixing 

ratios are also biased much higher ranging from 7.2–10.7% for NOAA GML (Table 3) compared 570 

to within plus or minus 2% for the HIPPO and ATom sets (Tables 1 and 2).  The higher biases 

seem consistent across the latitudinal range of the NOAA GML observations as shown in Fig. 12. 

The theoretical observations errors for the NOAA GML set (Fig. 13) are similar to those of the 

HIPPO set (Fig. 5) with larger AIRS MUSES-aircraft error standard deviations than the mean 

observation errors and the a priori error standard deviations.  As with HIPPO the column average 575 

mixing ratio errors are highly skewed toward positive values with an overall skewness of 1.57. 

This suggests that the assumption of a Gaussian error distribution upon which the observational 

error analysis is based is also not valid for the NOAA GML set. 

We hypothesized that the higher retrieval biases for the NOAA GML set may be an artifact of 

larger errors associated with extrapolation of the aircraft profiles above the uppermost 580 

measurement altitude. The NOAA GML profiles have an average highest flight level near 440 

hPa compared to 290 hPa for the HIPPO and ATom sets and therefore there are more retrieval 

levels to fill in the remapped aircraft profile. These extra fill levels can cause greater error 

uncertainty in the lower levels when the averaging kernel matrix is applied.  Tang et al. (2020) 

found that errors in MOPITT aircraft CO comparisons were very sensitive in the middle and 585 

upper troposphere to the method used to extend the aircraft profile.    
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 595 

 

 

 

 

Figure 11:  The AIRS MUSES-Aircraft percent difference profiles for NOAA GML aircraft 600 

CO observations. All aircraft profiles were convolved with the averaging kernels (Eq. 2) 

before the differences were calculated.  The red lines indicate the individual profiles, the 

black solid lines the mean difference or bias, and the dashed lines one standard deviations 

from the mean. 

 605 

Table 3:  AIRS – Aircraft statistics for the NOAA GML observations. By default, the aircraft 

are filled above the flight levels with the a priori profile.  Additional statistics are generated 

by filling above the flight level with the a priori scaled by the difference between the a priori 

and the aircraft value at the highest flight level (All Scale Fill).   

 610 

 

 

 Bias  

749.89  

hPa 

(%) 

STD 

749.89  

hPa 

(%) 

Bias 

510.90  

hPa 

(%) 

STD 

510.89 

hPa 

(%) 

Bias 

287.30 

hPa 

(%) 

STD 

287.30 

hPa 

(%) 

Bias 

Column 

(%) 

STD 

Column 

(%) 

N Profs 

All 12.85 18.33 6.68 15.49 -4.37 15.76 9.42 13.50 10044 

Land 13.79 20.34 6.99 16.78 -4.40 16.83 10.25 15.07 6534 

Ocean 11.11 13.67 6.08 12.74 -4.30 13.53 7.90 9.76 3510 

Day 15.41 20.63 4.91 14.24 -6.70 14.37 10.74 14.96 6289 

Night 8.57 12.51 9.64 16.99 -0.46 17.14 7.20 10.24 3755 

All  

Scale Fill 

9.82 18.22 0.67 15.09 -10.21 15.45 5.75 13.31 10044 
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Figure 12:  The AIRS and NOAA ESRL partial column average mixing ratios (top) and AIRS 

– aircraft column average mixing ratio differences (bottom) by latitude.  The column 

averages are calculated from the lowest to the highest flight altitudes for each profile.  The 650 

black dots in the bottom figure are the average differences within each 10-degree latitude 

bin. 

  



27 

 

 

 655 

 

 

 

 

 660 

 

 

 

 

 665 

 

 

 

 

 670 

 

 

 

 

 675 

 

 

 

 

 680 

 

 

 

 

 685 

 

 

 

 

 690 

Figure 13:  Estimated observational error analysis for the NOAA GML data set. Estimated 

observation errors for each AIRS MUSES CO retrieval (dotted red lines), the mean 

observation error (solid blue line and triangles) the mean a priori error estimate (green line) 

and the standard deviation of the AIRS MUSES – NOAA ESRL aircraft profiles differences 

and the standard deviation of the a priori – aircraft profile differences.  The errors are based 695 

on the NOAA ESRL observations. The profiles are binned by latitudes bands 30N–60N, 60N–

90N.    

  



28 

 

To test the sensitivity of the AIRS retrieval statistics to the mixing ratio values used to fill the 

aircraft profiles, an additional set of statistics was generated using a scaled a priori value to fill the 700 

aircraft profiles above the flight levels.  The scaled a priori value used a constant scale ratio 

between the mixing ratio at the highest aircraft level and the a priori at that level.  The retrieval 

statistics for this experiment are shown in the last row of Table 3.  For the scaled a priori fill case  

the bias at 510 hPa is only 0.7% but the column average mixing ratio bias is still large at 5.8%.  

Clearly the choice of fill value has a large impact on the retrieval error statistics.  705 

The twelve years of NOAA GML CO profiles from 2006–2017 provided the opportunity to 

investigate the retrieval performance over time as shown in the AIRS and aircraft time series plot 

of Fig. 14.  There is a distinct seasonal cycle in the NOAA GML observations with high values 

occurring during the northern hemisphere winter and lower values in the summer, which is also 

captured by the AIRS retrievals.  The bias drifts over this period (Fig. 15) are small, < 0.5% per 710 

year in magnitude, for all levels and the column average. They are also of approximately the same 

magnitude as those reported by Deeter et al. (2019) for MOPITT.  There is a distinctive seasonal 

cycle to the bias errors in middle and lower troposphere and column averages with biases as high 

as 20% in the summer months and biases approaching zero during the winter months.  We 

hypothesize that this pattern is a result of greater photolytic destruction of the CO in the summer 715 

months leading to lower background values not always captured by the retrieval perhaps due to 

average a priori profiles being too high.  We also examined the relationship between retrieval bias 

and the CO mixing ratio (Fig. 16).  The bias sensitivity is greater in the lower troposphere with 

average biases at the 749 hPa pressure level ranging from positive 20% at low CO mixing ratios 

to near zero at higher mixing ratios with an average slope of -0.16% per ppbv.  At the 510 hPa 720 

pressure level and for the column averages there is no marked dependence.  
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Figure 14:  AIRS MUSES CO retrieval (red) and corresponding NOAA GML observations 

(blue) for select pressure levels and the aircraft column averages. 
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Figure 15:  AIRS MUSES CO retrieval relative bias (%) drift for select pressure levels and 

the aircraft column averages for the NOAA GML observations. 

 



30 

 

 760 

                                   

 

 

 

 765 

 

 

 

 

 770 

 

 

Figure 16: AIRS MUSES CO retrieval relative bias (%)  Versus CO drift for select pressure 

levels and the aircraft column averages for the NOAA GML observations. 

 775 

5. Discussion and Conclusions 

 

A total of 15,112 quality-controlled AIRS single footprint CO retrievals were evaluated with a 

total of 1,310 aircraft profiles from the HIPPO and ATom aircraft campaigns and the ongoing 

NOAA GML measurement program.  Single footprint retrievals provide better spatial resolution 780 

over the AIRS operational CO product that uses a 3 X 3 footprint array of cloud-cleared radiances.  

The enhanced resolution should enable plumes from local anthropogenic sources and small fires 

to be better resolved and tracked.  This evaluation seeks to quantify the error uncertainty in this 

new product to provide end users a measure of its reliability.  

The AIRS CO retrievals were produced using the MUSES optimal estimation algorithm that 785 

utilizes techniques first applied to the Aura TES instrument.  The AIRS profiles were matched 

with aircraft profiles with space and time coincidence criteria of 50 km and 9 hours. The aircraft 

profiles of CO mixing ratio were first convolved with the AIRS averaging kernel to account for 

AIRS vertical sensitivity and then compared with the retrieved profiles.  In addition, partial column 
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average CO mixing ratios (referred to as column average mixing ratios for simplicity) defined as 790 

those between the highest and lowest aircraft flight level for each profile were estimated and 

compared to the corresponding AIRS values. 

The averaging kernels generated by the MUSES algorithm indicated that the level of greatest AIRS 

sensitivity to CO was in the middle troposphere at or near the 510 hPa retrieval level.  The 

estimated observation error also showed the lowest values at this level.  Overall mean biases were 795 

+6.6% +/- 4.6%, +0.6% +/- 3.2%, -6.1% +/- 3.0%, and 1.4% +/- 3.6%, for 750 hPa, 510 hPa, 287 

hPa, and the full column, respectively (Table 4).  The mean standard deviations were 15%, 11%, 

12%, and 9% at these same pressure levels, respectively. For the HIPPO and ATom profile sets, 

the overall biases at the 510 hPa level were 0.95% and -1.10% respectively. For both HIPPO and 

ATom the AIRS CO comparison statistics had little sensitivity to land / ocean or day / night 800 

categorization.  Column average mixing ratios by latitude for both sets exhibited lower mixing 

ratios in the 30S–90S band of about 50–70 ppbv with increasing values toward the north reaching 

~125–150 ppbv at 30N.  While the column average errors were similar in both sets, the errors were 

highly skewed in the positive for HIPPO particularly in the 30N–60N latitude bands. Estimated  

observation errors from the AIRS MUSES algorithm were generally small as expected in the 805 

middle troposphere where AIRS has good sensitivity.   However, for HIPPO in the 30N–60N band 

the retrieval error standard deviation was ~4% higher than expected, possibly because the 

algorithm assumes a Gaussian error distribution and the errors were highly positively skewed in 

that region.  The AIRS retrievals were able to distinguish between plume and background cases in 

the HIPPO case but were not always able to capture sharp vertical gradients or pinpoint the vertical 810 

location of the plume feature.   

The retrieval errors for the NOAA GML profiles were considerably higher than those for the 

HIPPO and ATom sets.  The 510 hPa and column average biases were 6.7% and 9.4% respectively.  

Like HIPPO, the column average errors were highly skewed in the positive suggesting a non-

Gaussian distribution of errors and possibly explaining the much higher error standard deviation 815 

than the estimated theoretical observation error.  The statistics of AIRS-aircraft differences were 

shown to be very sensitive to the values used to fill the aircraft profiles above the flight level due 

to the propagation of error uncertainty to lower retrieval levels through the averaging kernel 

convolution procedure. Using a scaled a priori for the fill value resulted in a considerably smaller 

bias at the 510 hPa level of 0.7% and a slightly smaller column average bias of 5.8 %. 820 
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The results of the NOAA GML comparisons were more strongly affected by the choice of fill 

value above the flight level than the HIPPO or ATom comparisons since the NOAA GML profiles 

had a lower top with an average of 440 hPa compare to HIPPO and ATom with an average top at 

290 hPa.  

The twelve years of NOAA GML CO profiles from 2006–2017 provided the opportunity to 825 

evaluate the AIRS MUSES retrieval performance over time.  The AIRS MUSES retrievals mostly 

capture the distinct observed seasonal cycle that featured higher mixing ratios in the winter and 

lower mixing ratios in the summer. However, the AIRS CO mixing ratios seemed to be biased 

high by ~20% in the summer in the lower troposphere.  The bias drift for 2006 to 2017 was also 

evaluated using the NOAA GML set and shown to be small (< 0.5 % per year).  830 

 

Table 4:  Summary statistics for all aircraft campaigns and categorizations. 

 

Overall,  these validation results show no appreciable latitudinal dependence in the bias and  that 

the bias drift over time is small. This suggests that the retrieval data can be used reliably to compare 835 

regional differences in CO mixing ratios and to track trends over time.   Furthermore, the higher 

spatial resolution compared to the operational product should enable better detection and tracking 

of small plumes and more robust trend analysis of the higher end mixing ratios that are likely to 

be muted due to smoothing in the coarser product. An important finding for future algorithm 

development was that the algorithm diagnosed observation errors were underestimating the actual 840 

retrieval errors.   The cause of this underestimation requires further investigation.  

 

 Bias  

749.89 

hPa 

(%) 

STD 

749.89 

hPa 

(%) 

Bias 

510.90 

hPa 

(%) 

STD 

510.90 

hPa  

(%) 

Bias 

287.30 

hPa 

(%) 

STD 

287.30 

hPa 

(%) 

Bias 

Column 

(%) 

STD 

Column 

(%) 

All 

Average 

6.6 14.7 0.6 11.0 -6.1 12.4 1.4 8.9 

All 

Standard 

Deviation 

4.6 5.0 3.2 2.3 3.0 3.3 3.6 1.9 

HIPPO  4.56 15.69 0.95 12.19 -4.22 13.86 0.69 9.20 

ATom 5.19 13.40 -1.10 10.58 -6.84 10.91 0.02 8.21 

NOAA 

GML 

12.85 18.33 6.68 15.49 -4.37 15.76 9.42 13.50 
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Data availability:  The original HIPPO data file  can be obtained 

from  https://data.eol.ucar.edu/dataset/112.123.  The NOAA GML data were obtained on request 

through Colm Sweeney through the NOAA GML Carbon Cycle Greenhouse Gases (CCGG) data 845 

program.  The ATom aircraft data were obtained from https://doi.org/10.3334/ORNLDAAC/1581 

(Wofsy et al., 2018).  AIRS-MUSES CO products are available via the GES-DISC from the NASA 

Tropospheric Ozone and Precursors from Earth System Sounding (TROPESS) project at 

https://disc.gsfc.nasa.gov/datasets/TRPSDL2COAIRSFS_1/summary.  The AIRS – aircraft 

matched dataset used here for validation is available from the authors on request. 850 
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