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Abstract. Atmospheric carbon dioxide (CO2) is the most significant greenhouse gas and its concentration is continuously 

increasing mainly as a consequence of anthropogenic activities. Accurate quantification of CO2 is critical for addressing the 

global challenge of climate change and designing mitigation strategies aimed at stabilizing the CO2 emissions. Satellites 20 

provide the most effective way to monitor the concentration of CO2 in the atmosphere. In this study, we utilized the 

concentration of column-averaged dry-air mole fraction of CO2 i.e., XCO2 retrieved from a CO2 monitoring satellite, the 

Orbiting Carbon Observatory 2 (OCO-2) and the net primary productivity (NPP) provided by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) to estimate the anthropogenic CO2 emissions using Generalized Regression Neural Network 

(GRNN) over East and West Asia. OCO-2 XCO2, MODIS NPP, and the Open-Data Inventory for Anthropogenic Carbon 25 

dioxide (ODIAC) CO2 emission datasets for a period of 5 years (2015-2019) were used in this study. The annual XCO2 

anomalies were calculated from the OCO-2 retrievals for each year to remove the larger background CO2 concentrations and 

seasonal variabilities. Then the XCO2 anomaly, NPP, and ODIAC emission datasets from 2015 to 2018 were used to train the 

GRNN model, and finally, the anthropogenic CO2 emissions were estimated for 2019 based on the NPP and XCO2 anomalies 

derived for the same year. The estimated and the ODIAC CO2 emissions were compared and the results showed a good 30 

agreement in terms of spatial distribution. The CO2 emissions were estimated separately over East and West Asia. In addition, 

correlations between the ODIAC emissions and XCO2 anomalies were also determined separately for East and West Asia, and 

East Asia exhibited relatively better results. The results showed that satellite-based XCO2 retrievals can be used to estimate 

the regional scale anthropogenic CO2 emissions and the accuracy of the results can be enhanced by further improvement of 

the GRNN model with the addition of more CO2 emission and concentration datasets.   35 
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1 Introduction 

Climate change is one of the greatest challenges to the future of Earth arising from global warming, which in turn is accelerated 

by anthropogenic emissions of greenhouse gases (Lamminpää et al., 2019). The major warming effects are caused by the 

atmospheric CO2 emissions and significant amounts of these emissions are contributed by fossil fuel combustion and some 

industrial activities, such as the calcination of limestone during cement production (Hutchins et al., 2017). The levels of 40 

atmospheric CO2 are continuously increasing (Mustafa et al., 2020) and if these levels continue to increase at the same rate, 

1.5 °C of global warming will be reached between 2030 and 2052, which will cause more climate extremes (Hoegh-Guldberg 

et al., 2018).  

Estimates of CO2 emissions at national, regional, and global levels are now widely reported and have become an important 

element of public policy and mitigation strategies. Many countries are making efforts to reduce CO2 emissions. Over the past 45 

few decades, significant work has been carried out to compile the regional as well as the global inventories of CO2 emission 

from anthropogenic activities (Olivier et al., 2005; Janssens-Maenhout et al., 2015; Gurney et al., 2009; Oda and Maksyutov, 

2015). Most of the emission inventories employ ‘bottom-up’ methods using available human activity data, emission factors 

and corresponding technologies. The bottom-up methods incorporate energy consumption datasets along with other 

information such as fuel purity, efficiency, etc.  However, it is known that such information can be subject to errors and biases 50 

leading to considerable discrepancies and uncertainties in emission estimates, especially in the case of rapidly growing 

developing economies such as China and India (Guan et al., 2012; Korsbakken et al., 2016). These discrepancies can result in 

∼40% to ∼100% uncertainty in emission estimations at the country and the local scales, respectively (Peylin et al., 2013; Wang 

et al., 2013). Moreover, the uncertainty in inventory datasets is also a challenging task and the intercomparisons of various 

inventories do not necessarily reveal all the uncertainties because different inventories are sometimes using common sources 55 

of information (Konovalov et al., 2016). It is becoming increasingly important to find efficient and reliable ways to monitor 

the CO2 reduction progresses and evaluation of how well specific CO2 reduction policies are working. 

 Satellites provide the most effective way to monitor atmospheric CO2 with great spatiotemporal resolutions. Several satellites 

such as GOSAT, GOSAT-2, OCO-2, OCO-3, and TanSAT are orbiting around the Earth and dedicatedly monitoring the 

atmospheric CO2 (Crisp, 2015; Liu et al., 2018; Matsunaga et al., 2019; Taylor et al., 2020; Bao et al., 2020; Hong et al., 2021; 60 

Yang et al., 2018). These satellites calculate the average atmospheric CO2 concentrations in the path of sunlight reflected by 

the surface through spectrometers carried onboard. OCO-2 measures the CO2 optical depth with bands centered around 1.6 

and 2.0 microns and determines O2 optical depth with band A, which is centered around 0.76 microns (Crisp et al., 2017; O'dell 

et al., 2012). The information from these bands is combined to calculate the column-averaged dry-air mole fraction of CO2 

(XCO2) (Crisp et al., 2012). Several studies suggest that XCO2 can be used to detect the CO2 concentration induced by 65 

anthropogenic activities by removing the background concentration from the satellite XCO2 retrievals (Bovensmann et al., 

2010; Hakkarainen et al., 2019; Keppel-Aleks et al., 2013). The results from these studies have reported an enhancement of 

nearly 2 ppm over megacities and high-density urban regions of the United States and China. The XCO2 retrievals derived 
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from the satellite measurements show a positive correlation with the CO2 emission inventories (Hakkarainen et al., 2016; Yang 

et al., 2019) which implies that these space-based observations can be used to assess the anthropogenic CO2 emissions by 70 

enhancing the anthropogenic XCO2 concentration. 

Asia is the home to the most populous nations with the highest amounts of CO2 emissions. East Asia, in particular, China 

significantly contributes to the global carbon budget and has accounted for ~30% of the overall growth in global CO2 emissions 

over the past 15 years (Edgar, 2017). This increment in the CO2 levels is mainly due to the rapid economic growth and 

anthropogenic activities (Shan et al., 1997). China has pledged to make aggressive efforts to reduce the CO2 emissions per unit 75 

GDP by 60–65% relative to 2005 levels, and peak carbon emissions overall, by 2030 (Unfcc, 2015). West Asia is also a region 

with higher rates of anthropogenic CO2 emissions (Mustafa et al., 2020) and some of its countries, such as Iran, Saudi Arabia, 

and Turkey are listed among the 10 largest CO2 emitting nations in the world. Several studies have been carried out to estimate 

the CO2 emissions using various machine learning techniques but most of them do not deal with the spatial distribution. (Rao, 

2021) estimated the CO2 emissions using Support Vector Machine (SVM). (Zhonghan et al., 2018) predicted the CO2 flux 80 

emissions based on published data including latitude, age, potential net primary productivity (NPP) and mean depth using 

Back Propagation Neural Network (BPNN) and Generalized Regression Neural Network (GRNN). (Yang et al., 2019) 

estimated the anthropogenic CO2 emissions using GOSAT XCO2 retrievals over China and the results showed a good 

agreement between the estimated and the ODIAC CO2 emission dataset. In this study, we have improved the model initially 

developed by (Yang et al., 2019) to estimate the regional scale anthropogenic CO2 emissions using OCO-2 XCO2 retrievals 85 

over East and West Asia. MODIS NPP, OCO-2 and ODIAC CO2 datasets were obtained for a period of five years from January 

2015 to December 2019. XCO2 anomalies were calculated from the OCO-2 retrievals for each year, GRNN model was trained 

using XCO2 anomalies, MODIS NPP, and ODIAC CO2 emissions with four years of data from 2015 to 2018 and then 

anthropogenic CO2 emissions were estimated for the year 2019 based on 2019 NPP and XCO2 anomalies. Atmospheric CO2 

monitoring satellites can detect and analyze the anthropogenic CO2 signatures and the satellite-based estimation of 90 

anthropogenic CO2 emissions can be helpful in investigating the carbon emissions as a data-driven method, which is different 

to the conventional method in calculating emission inventory. Although estimation of anthropogenic CO2 emission using 

satellite datasets is a challenging task because some other factors such as the atmospheric transport and the terrestrial ecosystem 

play notable roles in controlling the spatial distribution of atmospheric CO2 (Cao et al., 2017) but still this data-driven method 

can provide a meaningful help in quantifying anthropogenic CO2 emissions that will be important for evaluating the effects 95 

for anthropogenic CO2 emissions reduction at regional as well as global scales. The details about the datasets and methods are 

provided in Section 2. The results including estimated CO2 emissions and evaluation of these emissions, and correlation 

between ODIAC CO2 emissions and XCO2 anomalies are discussed in Section 3.    
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2 Materials and Methods 

2.1 Datasets 100 

2.1.1 OCO-2 Dataset 

 

The Orbiting Carbon Observatory 2 (OCO-2) was launched by the National Aeronautics and Space Administration (NASA) 

on 2 July 2014 to monitor the concentration of atmospheric CO2 at regional and global levels (Crisp, 2015). It carries a three-

channel imaging grating spectrometer that collects high-resolution, bore-sighted spectra of reflected sunlight. Spectra are 105 

collected in the molecular oxygen A-band at 0.765 microns and the CO2 bands at 1.61 and 2.06 microns (Hakkarainen et al., 

2019). Information from all these bands is combined to calculate the XCO2. The spatial resolution of OCO-2 is 2.25 km x 1.29 

km. More details about the instrument design, calibration approach, on-orbit performance, and measurement principles are 

provided in a previous study (Crisp, 2015). In this study, we used OCO-2 ACOS/XCO2 version 10r product that was generated 

using the ACOS Level 2 Full Physics (L2FP) retrieval algorithm which used a Bayesian optimal estimation framework to 110 

derive estimates of XCO2 from spectral measurements of reflected solar radiation (O'dell et al., 2012; Crisp et al., 2012). A 

comprehensive study about the validation of OCO-2 XCO2 retrievals against the Total Carbon Column Observing Network 

(TCCON) CO2 dataset reported an absolute median difference of less than 0.4 ppm and the RMS difference less than 1.5 ppm 

between the two datasets (Wunch et al., 2017). Similar experiments have been carried out for validation of different versions 

of OCO-2 XCO2 products and the results showed that the OCO-2 dataset was consistent and reliable for atmospheric CO2 115 

monitoring (Kiel et al., 2019; O'dell et al., 2018). The quality and the quantity of the XCO2 product have been improved with 

the developments in the ACOS FP retrieval algorithm. The latest OCO-2 XCO2 product has single sounding precision of ~0.8 

ppm over land and ~0.5 ppm over water, and RMS biases of 0.5-0.7 ppm over both land and water (ODell et al., 2021).The 

evolution of the ACOS L2FP retrieval algorithm from v7 to v10 is summarized in Table 1.  

 No major changes were made in the ACOS v9 L2FP retrieval algorithm relative to v8 except for sampling of 120 

meteorological prior. The trace gas absorption coefficient tables (ABSCO) were updated in various versions of the ACOS 

L2FP retrieval algorithms. The source of the prior meteorology was changed from the European Center for Medium-range 

Weather Forecast (ECMWF) in ACOS v7 to the NASA Goddard Modeling and Assimilation Office (GMAO) Goddard Earth 

Observing System (GEOS) Forward Processing – Instrument Team (FP-IT) products for v8/9. The aerosol prior source was 

changed from the GMAO Modern-Era Retrospective analysis for Research and Applications (MERRA) product in v7-9 to 125 

GEOS5 FP-IT in v10. Moreover, an additional stratospheric aerosol layer was introduced in ACOS v8-10. The prior value of 

aerosol optical depth for each retrieved aerosol type was lowered from 0.0375 in v7 to 0.0125 in v8-10. The CO2 prior 

developed by the TCCON team using the ggg2014 algorithm remained same in v7/8/9of the algorithm. Another major change 

was switching the land surface model from a purely Lambertian land surface model to Bi-Directional Reflectance Distribution 

Function (BRDF) model (Taylor et al., 2021).  130 
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2.1.2 ODIAC Dataset 

 

ODIAC is a global fossil-fuel CO2 (FFCO2) emission dataset with 1 × 1 km, monthly resolution over land and 1×1 degree, 

annual resolution for international bunkers from the year 2000 onward (Oda et al., 2018). It shares country scale estimates with 135 

Carbon Dioxide Information Analysis Center (CDIAC) but distributes the emissions differently within the countries and 

includes gridded international bunker emissions (Oda and Maksyutov, 2015). CDIAC distributes the CO2 emissions based on 

the population density while ODIAC incorporates power plant profiles and nighttime light observation for emission 

distribution (Wang et al., 2020). ODIAC shows a better agreement with the US bottom-up inventory (Gurney et al., 2009) than 

CDIAC and it is commonly used in flux inversions (Crowell et al., 2019; Lauvaux et al., 2016; Maksyutov et al., 2013; Takagi 140 

et al., 2011). In this study, we used the 2020 version of ODIAC emission dataset that is freely available and can be downloaded 

from http://db.cger.nies.go.jp/dataset/ODIAC/.  

2.2 Methods 

Estimation of anthropogenic CO2 emissions includes three major steps as shown in Figure 1. The first step includes enhancing 

the XCO2 concentration influenced by anthropogenic activities, the second step is about setting up the GRNN model using 145 

XCO2, NPP, and ODIAC datasets, and the final step is the validation of estimated CO2 emissions against the actual ODIAC 

emission dataset.  

OCO-2 XCO2 dataset was downloaded from the Earthdata platform (https://earthdata.nasa.gov/) and to ensure the reliability 

of the data, screening and filtering of the dataset was carried out following the instructions given in the OCO-2 Data User 

Guide (DUG). Each sounding that is processed using the ACOS L2FP retrieval algorithm is assigned either a “good” (=0) or 150 

“bad” (=1) quality flag based on screening criteria derived from comparisons with TCCON and modelled CO2 fields. It is 

generally advised that users should use the “good” quality soundings for regional and local scale studies because the soundings 

flagged as “bad” quality might include biases that compromise their utility for the application. In this study, the OCO-2 XCO2 

retrievals were included if: (i) they were flagged good (flag=0) and (ii) the standard deviation of the good soundings for the 

day was less than 2 ppm.  CO2 has a larger background concentration and a longer atmospheric life time compared to other 155 

greenhouse gases (Hakkarainen et al., 2019). Because of this, XCO2 varies by nearly 2% over the seasonal cycle and from pole 

to pole. In addition, XCO2 variations influenced by anthropogenic activities are also smaller on the scale of satellite sounding 

(2–4 km2). Therefore, high precision is critical for accurate quantification of the XCO2 anomalies related to anthropogenic 

activities. To highlight the emission areas, CO2 seasonal variability and the large background concentrations must be removed. 

 To highlight the areas associated with the anthropogenic CO2 emission, XCO2 anomalies were calculated by 160 

subtracting the daily XCO2 median (daily background) from the individual XCO2 observation, a method suggested by previous 

studies (Hakkarainen et al., 2019; Hakkarainen et al., 2016). 

 

𝑋𝐶𝑂!	(𝑎𝑛𝑜𝑚𝑎𝑙𝑦) = 	𝑋𝐶𝑂!	(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) − 𝑋𝐶𝑂!	(𝑑𝑎𝑖𝑙𝑦	𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) (1) 
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This equation calculated the XCO2 anomalies for each observation. Subtraction of daily background concentration removes 

the seasonal variability. The space-based soundings are irregularly distributed and have spatiotemporal gaps because a large 

amount of the satellite observations is removed after screening for clouds and other artifacts. To deal with the spatiotemporal 

gaps, kriging interpolation was used and a mapping dataset was generated with the spatial resolution of 0.5°×0.5° 

Longitude/Latitude and temporal resolution of 16 days. Finally, the mean against each grid cell was calculated for each year 170 

from 2015 to 2019. The annual mean of XCO2 (anomaly) can detrend the seasonal variation (Hakkarainen et al., 2016). The 

annually-averaged XCO2 anomalies were resampled at a grid with a spatial resolution of 1°×1° Longitude/Latitude and used 

along with 1°×1° Longitude/Latitude ODIAC emission dataset to setup the GRNN model. 

During the process of photosynthesis, the living plants convert the CO2 into sugar molecules they use for food. In the process 

of making food, they also release the oxygen we breathe. Plant productivity plays a crucial role in the global carbon cycle by 175 

absorbing the CO2 released by anthropogenic activities. The net primary productivity (NPP) shows how much CO2 is absorbed 

by the plants during photosynthesis minus how much CO2 is released during respiration. A negative value of NPP means that 

CO2 is released into the atmosphere and a positive value represents the absorption of atmospheric CO2. To improve the model 

results, an NPP dataset (MOD17A3HGF) provided by MODIS has also been used in this study. It provides information about 

annual NPP and is distributed by NASA’s Land Processes Distributed Active Archive Center (LP DAAC). The NPP dataset 180 

with a spatial resolution of 500 meters (m) was downloaded from the LP DAAC website 

(https://lpdaac.usgs.gov/products/mod17a3hgfv006/). The annual NPP is derived from the sum of all 8-day Net Photosynthesis 

(PSN) products (MOD17A2H) from the given year. The MODIS NPP dataset was reprojected and resampled to the spatial 

resolution of 1°×1° Longitude/Latitude for each year and used along with the ODIAC and OCO-2 datasets to train the GRNN 

model and as well predicting the CO2 emission.  185 

 XCO2 variations are primarily influenced by anthropogenic activities and terrestrial ecosystems, there are both linear 

and non-linear mapping between the XCO2 and the emissions. We adopted the GRNN algorithm to represent the non-linear 

mapping between the independent variables (XCO2 anomaly and NPP) and dependent variable (CO2 emission). The GRNN is 

a memory-based network that provides estimates of continuous variables and converges to underlying regression. The 

regression of a dependent variable on an independent variable is the computation of the most probable value of the dependent 190 

variable for each value of the independent variable based on a finite number of possibly noisy measurements of the independent 

variable and the associated values of the dependent variable. The dependent and the independent variables are usually vectors 

(Rooki, 2016). The architecture of GRNN is shown in Figure 2. It consists of four layers including an input layer, a hidden 

layer, a summation layer, and a decision layer. In the input layer, each neuron corresponds to the independent variable that is 

expressed as a mathematical function and the independent variable values are standardized. Then the standardized values of 195 

the independent variable are transferred to the neurons in the hidden layer. In this layer, each neuron stores the values of the 

dependent and independent variables and calculates a scalar function. The third layer known as the summation layer contains 

two neurons; the denominator summation unit which sums the weight values being received from the hidden layer, and the 
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numerator summation unit which sums the weight values multiplied by the actual target-dependent variable value for each 

hidden neuron. Finally, the target-dependent value is obtained in the decision layer by dividing the value accumulated in the 200 

numerator summation unit by the value in the denominator summation unit. To develop a neural network, the dependent and 

the independent training variables must be standardized, so that in the input layer all training data will have the same order of 

magnitudes (Yang et al., 2019). 

 

𝑑(𝑥" − 𝑥#) = ∑ ;%!"&%#"
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<
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)*+    (2) 205 

  

where 𝑝 is the dimension of the variable vector 𝑥#, 𝜎 is the spread parameter and an optimal spread parameter value is obtained 

after several runs following the mean squared error of the estimated values, which must be kept at a minimum (Rooki, 2016). 

In this study, values of spread parameters were optimized using the Holdout Method. More detail about the Holdout Method 

is provided in a previous study (Specht, 1991). The weight of the denominator neuron was set to 1.0. The predicted target 210 

dependent variable was defined by the following equation: 
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   (3) 

 

where the values calculated with the scalar function in a hidden neuron 𝑖 are weighted with the corresponding values of the 215 

training samples 𝑦#. 𝑛 is denoting the number of training samples. 

3 Results and Discussions 

3.1 Spatial Distribution of XCO2 Observations and Anomalies 

The satellite-based observations are sensitive to clouds and aerosols, therefore, much of the data is discarded during the 

preprocessing due to the presence of cloud and aerosol content (Mustafa et al., 2021b). Figures 3a and 3b show the quantity of 220 

XCO2 retrievals from 2015 to 2019 on a spatial grid of 0.5°×0.5° Longitude/Latitude over West and East Asia, respectively. 

OCO-2 shows a good spatial coverage over East Asia, however, southern parts of the region, in particular, the Tibetan plateau 

has a relatively lower number of XCO2 retrievals. The Tibetan plateau is the most extensively elevated surface on Earth and 

satellite measurements show larger uncertainties over this region (Yang et al., 2019). In the case of West Asia, the southern 

parts of the region have a lower number of XCO2 retrievals. In the southern parts of West Asia, a very large desert, the Rub’ 225 

al Kahli is located that stretches across Saudi Arabia, Yemen, Oman, and United Arab Emirates (UAE) and often observes 

dust storms. The lower number of XCO2 retrievals in these parts of the region might be due to the ACOS XCO2 retrieval 

algorithm that excludes the satellite measurements with high aerosol optical depth and cloud optical thickness (Crisp et al., 

2012; O'dell et al., 2012). 
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Figure 3c shows the spatial distribution of five years-averaged XCO2 anomalies calculated using the method described in 230 

section 2.2 over West Asia. The higher concentrations of XCO2 anomalies were observed over central parts of the region that 

included Iran, Kuwait, Saudi Arabia, and Iraq. Iran and Saudi Arabia are listed among the top 10 CO2 emitting nations and 

produce over 6% of the global CO2 emissions (Jalil, 2014). In addition, Iran, Saudi Arabia, and Iraq are the major fuel 

consumers of the region and contribute more than 60% of the region’s total fossil fuel CO2 emissions (Boden et al., 2017). 

Figure 4d shows the multiyear-averaged XCO2 anomalies over East Asia. The eastern parts of the region including eastern 235 

China, Japan, and South Korea show the highest concentrations of XCO2 anomalies. China’s Beijing-Tianjin-Hebei area, 

Korea and Japan are the most populated urban regions with high amount of anthropogenic emissions in the world (Mustafa et 

al., 2020).  

Figure 3e shows the monthly-averaged XCO2 over East and West Asia. The monthly-averaged XCO2 concentrations show 

seasonal fluctuations. Moreover, the XCO2 concentrations during each month are higher than those in the same month of the 240 

previous year and it reflects that the XCO2 concentration in the atmosphere is continuously increasing in both regions. The 

XCO2 concentration starts increasing from September and reaches its maximum value in April, then it starts decreasing and 

reaches the minimum value in August. The decrement in its concentration from May to August is due to several reasons, 

primarily due to the strong photosynthesis and weak respiration rate by the plants, and this process is enhanced during the 

monsoon or rainy season (Mustafa et al., 2020). The increment in XCO2 concentration from September to April is likely to be 245 

caused by weak photosynthesis and strong respiration, the use of heating systems in winter, and strong microbial activity (Cao 

et al., 2017; Mustafa et al., 2021a). 

 

3.2 Estimated CO2 Emissions 

The annually-averaged XCO2 anomalies, MODIS NPP, and ODIAC CO2 emission datasets for a period of four years from 250 

2015-2018 were used as a training dataset for the GRNN model built to estimate the CO2 emissions using the method described 

in section 2.2. Then the GRNN model was applied to 2019 annually-averaged XCO2 anomalies and NPP datasets to predict 

the CO2 emissions with the same unit as the ODIAC CO2 emissions. The analyses were carried out separately over East and 

West Asia. Figures 4a and 4b show the estimated and the ODIAC CO2 emissions over East Asia, respectively. The results 

show that the estimated and the inventory CO2 emissions exhibit nearly the same spatial distribution pattern. The eastern part 255 

of the region shows higher CO2 emissions and the western and northern parts, in particular, the Tibetan plateau and Mongolia 

show the minimum CO2 emissions. The pattern is also similar to XCO2 anomalies distribution over East Asia (Figure 3d). The 

estimated CO2 emissions have a relatively smoother distribution pattern compared to the ODIAC CO2 emission and it might 

be due to the interpolation of the OCO-2 dataset. Figure 4c shows the difference between the estimated and the inventory CO2 

emissions over East Asia. The estimated CO2 emissions are generally overestimated relative to the ODIAC CO2 emissions; 260 

however, the emissions are underestimated over some parts of the region as well. Figure 4d shows the landcover distribution 

of East Asia provided by the Copernicus Global Land Services (Buchhorn et al., 2020). The predicted CO2 emission is 

overestimated over most of the regional parts; whereas, this overestimation is more significant over agricultural areas which 
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are located near the high-density region, i.e., eastern China. Eastern China, Japan, and Korea are known to be among the 

regions with the highest CO2 emissions and this underestimation over the agricultural areas might be caused by the nearby 265 

CO2 emitting sources which raise the CO2 concentration of the nearby areas through atmospheric transport. Previous studies 

demonstrated that the concentration of atmospheric CO2 was influenced by atmospheric transport (Cao et al., 2017; Kumar et 

al., 2014). The areas where the predicted CO2 emission is underestimated are covered by agriculture, forest and vegetation. 

This underestimation of the predicted CO2 emissions over these areas indicate the presence of uncertainties in the XCO2 

anomalies that are likely to be produced by the CO2 uptake of the biosphere which is still remaining in the XCO2 anomalies. 270 

In addition, the areas where the estimated CO2 emissions are overestimated have higher elevations. OCO-2 observations show 

larger uncertainties over elevated and mountainous areas, especially the Tibetan Plateau where the OCO-2 retrievals are 

significantly overestimated (Kong et al., 2019; Mustafa et al., 2020) and this might also have a contribution to the 

overestimation of estimated CO2 emissions. The difference between the estimated and the ODIAC CO2 emissions was ranging 

from -0.06x109 kg to 3.2x109 kg and the magnitude of difference between -1x109 kg to 1x109 kg accounted for 84% of the 275 

total number of grid cells. (Yang et al., 2019) estimated the CO2 emissions by a similar machine learning approach using 

GOSAT XCO2 retrievals over China and differences between the estimated and the ODIA CO2 emissions were between -5x109 

kg to 5x109 kg. Moreover, the predicted results from the referenced study exhibited overall less CO2 emissions relative to the 

ODIAC emissions contradicting our results. Our study showed better results and it might be due to several reasons; (i) we 

improved the prediction model with the addition of NPP dataset (Figure 4e), (ii) we utilized the higher resolution XCO2 280 

retrievals provided by OCO-2, and (iii) we incorporated the OCO-2 XCO2 retrievals processed using the latest version of the 

retrieval algorithm. The newer version of the ACOS L2FP retrieval algorithm has improved the quantity as well as the quality 

of the satellite-based observations (Taylor et al., 2021).  

Figures 5a and 5b show the spatial distribution of satellite-based estimated CO2 emissions and the actual ODIAC CO2 

emissions over West Asia, respectively. The spatial distribution pattern of both the estimated and the original CO2 emissions 285 

is similar with some differences in their magnitudes. CO2 emissions in the eastern parts are relatively larger compared to other 

parts of the region. Figure 5c shows the difference between the estimated and the ODIAC CO2 emissions. The satellite-based 

estimated CO2 emissions are generally overestimated compared to the actual ODIAC CO2 emissions. The estimated CO2 

emissions are notable larger over Iran and Saudi Arabia. Figure 5d shows the landcover distribution of West Asia. It can be 

seen that the predicted CO2 emissions are overestimated over the areas that are covered by either urban settlements or bare 290 

land. The overestimation of estimated CO2 over these areas is likely to be caused by atmospheric transportation that influences 

the spatial distribution of atmospheric CO2 (Cao et al., 2017). Moreover, a large part of West Asia is covered by deserts and 

these deserts observe a notably lower number of OCO-2 retrievals (Figure 3a). The overestimation of the predicted CO2 

emissions over the largest desert of the region, the Rub’ al Kahli, located in southern parts is likely to be caused by the 

uncertainties in the satellite-based XCO2 anomalies and these uncertainties are likely to be produced due to a lower number of 295 

OCO-2 retrievals. In addition, a previous study also indicated that the ACOS XCO2 retrieval algorithm showed uncertainties 

over deserts (Bie et al., 2018). Similar to East Asia, the predicted CO2 emissions over West Asia are also underestimated over 
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the areas that are covered by agriculture or vegetation and this underestimation might be due to the presence of CO2 uptake of 

the biosphere in the XCO2 anomalies calculated using the satellite-based retrievals. The difference between the estimated and 

the ODIAC CO2 emission was ranging from -0.16x109 kg to 2.8x109 kg and the magnitude of difference between -1x109 kg 300 

to 1x109 kg accounted for 88% of the total number of grid cell.  

 

3.3 Correlation Analysis Between OCO-2 XCO2 Anomalies and ODIAC Emissions 

Figure 6 shows the correlation analysis between the ODIAC CO2 emissions and the XCO2 anomalies calculated using the 

OCO-2 retrievals over East and West Asia. (Yang et al., 2019)found that the cluster of XCO2 changes derived from satellite-305 

based observations showed a better and more significant correlation with the CO2 emissions relative to a single grid of XCO2  

and it might be due to the reason that the atmospheric CO2 measurement is an instantaneous snapshot of the realistic atmosphere 

(Liu et al., 2015). For that, we segmented the ODIAC emissions which were binned according to every 0.3 tons/year of lgE 

using mean emissions calculated from annual emissions during 2015–2019, and then the correlation analysis was carried out 

between the mean of emissions and the mean of the XCO2 anomalies within the binned regions. The results showed a positive 310 

and significant correlation between the two datasets. Figures 6a and 6b show the spatial distribution of segmented ODIAC 

emissions over East Asia and the scatterplot between the mean of emissions and mean of XCO2 anomalies, respectively. The 

two datasets show a positive and significant correlation with the determined coefficient (R2) of 0.81. The spatial distribution 

of segmented ODIAC emissions over West Asia and the scatterplot between the mean of emissions and mean of XCO2 

anomalies are shown in Figures 6c and 6d, respectively. The two datasets showed a good correlation with the determined 315 

coefficient (R2) of 0.60. Several studies correlated the satellite-based XCO2 anomalies with the CO2 emissions (Fu et al., 2019; 

Shekhar et al., 2020). (Yang et al., 2019) performed a correlation analysis between the GOSAT based XCO2 anomalies with 

the ODIAC CO2 emissions over China and found a significant correlation with a determined coefficient (R2) of 0.82 which 

increased up to 0.95 if the analysis was carried out with higher values of CO2 emissions. In our study, the correlation between 

the CO2 emissions and XCO2 anomalies is relatively low for West Asia and it might be due to the uncertainties in the OCO-2 320 

retrievals. A large part of West Asia is covered by deserts and (Bie et al., 2018) reported that the ACOS XCO2 retrieval 

algorithm showed uncertainties over deserts.  

 

4 Summary and Conclusions 

In this study, the anthropogenic CO2 emissions were estimated using satellite datasets employing a neural network-based 325 

method. The study was carried out using ODIAC CO2 emission, OCO-2 XCO2, and MODIS NPP datasets from 2015 to 2019. 

To remove the CO2 seasonal variability and the large background concentration from the OCO-2 XCO2 retrievals, XCO2 

anomalies were calculated for each year. Then a GRNN model was built and XCO2 anomalies, NPP, and CO2 emissions from 

2015 to 2018 were used as a training dataset and finally, CO2 emissions were predicted for 2019 based on the NPP and XCO2 

anomalies calculated for the same year. The analyses were carried out separately over East and West Asia. The satellite-based 330 

estimated and ODIAC CO2 emission datasets were compared and both of the datasets showed a good agreement in terms of 
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spatial distribution. The estimated CO2 emissions showed better results over East Asia compared to West Asia and it might be 

due to the uncertainties in the XCO2 retrievals because previous studies reported that the ACOS XCO2 retrieval algorithm 

produced uncertainties over deserts. The predicted CO2 emissions were generally overestimated and this overestimation was 

larger over the areas  that were closer to the high-density urban regions. The overestimations might be due to the nearby high 335 

emission CO2 sources that raised the XCO2 concentration due to the effects of atmospheric transportation. The satellite-based 

estimated CO2 emissions were underestimated over some parts of the regions which were mostly covered by the agricultural 

areas and vegetation and it was likely to be caused by the uncertainties in the calculated XCO2 anomalies and these uncertainties 

were produced due to the presence of CO2 uptake of the biosphere. We compared our results with a previous study carried out 

using a similar prediction model incorporating GOSAT XCO2 retrievals. The referenced study generally underestimated the 340 

predicted CO2 emissions with larger differences relative to ODIAC CO2 emission contradicting to our results. Our study 

showed relatively better results and it might be due to several reasons; (i) we improved the prediction model with the addition 

of NPP dataset, (ii) we incorporated OCO-2 XCO2 retrievals which have higher spatial resolution compared to the GOSAT 

XCO2 retrievals, and (iii) we used the XCO2 product processed using the latest version of the ACOS L2FP retrieval algorithm. 

The newer version of the algorithm has improved the quantity as well the quality of the XCO2 retrievals. Moreover, correlation 345 

analysis was also carried out between the ODIAC CO2 emissions and OCO-2 XCO2 anomalies and the results were significant 

with R2 of 0.81 and 0.60 over East and West Asia, respectively. The results were in agreement with the previous studies.  

 The results from our study suggested that the CO2 emissions can be estimated using the observations obtained from 

the CO2 monitoring satellites. Currently, several satellites are orbiting around the Earth and dedicatedly monitoring 

atmospheric CO2. Joint utilization of the observations from the old and the latest satellites such as OCO-3, GOSAT-2, and 350 

TanSAT might reduce the spatiotemporal gaps and uncertainties. In future studies, we intend to improve the GRNN model by 

the addition of CO2 uptake datasets and join utilization of multi-sensor data.  
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Table 1: Evolution of ACOS L2FP retrieval algorithm (Taylor et al., 2021). 

  ACOS v7 ACOS v8/9 ACOS v10 

1 Spectroscopy ABSCO v4.2 ABSCO v5.0 ABSCO v5.1 

2 Meteorology prior source ECMWF GEOS5 FP-IT No changes 

3 Aerosol prior source MERRA monthly climatology No changes GEOS5 FP-IT with 

tightened prior 

uncertainty 

4 Retrieved aerosol types Water + ice + 2 MERRA types + stratospheric aerosol No changes 

5 AOD prior value (per type) 0.0375 0.0125 No changes 

6 CO2 prior source TCCON ggg2014 No changes TCCON ggg2020 

7 Land surface model Lambertian BRDF No changes 

 

 
Figure 1: Flowchart explaining steps to estimate the anthropogenic CO2 emissions using MODIS NPP and OCO-2 XCO2 retrievals. 
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Figure 2: Flowchart explaining steps to estimate the anthropogenic CO2 emissions using OCO-2 XCO2 retrievals (Yang et al., 2019). 
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Figure 3: Number of observations in each cell of a 0.5x0.5 deg grid for a period of five years from 2015 to 2019 over (a) West Asia 
and (b) East Asia; Five years-mean of XCO2 anomalies calculated using OCO-2 retrieval over (c) West Asia and (d) East Asia; and  
(e) the monthly-averaged XCO2 concentration from 2015 to 2019 over East and West Asia. (Basemap credits: OpenStreetMap). 

 

 540 
Figure 4: Spatial distribution of (a) OCO-2 XCO2-based anthropogenic CO2 emission estimates for 2019 (b) actual ODIAC emissions 
for 2019, (c) their difference (estimated emission-actual emission), (d) 100 m resolution landcover distribution provided by 
Copernicus Global Land Services over East Asia, and (e) spatial distribution of NPP (Basemap credits: OpenStreetMap). 
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 545 
Figure 5: Spatial distribution of (a) OCO-2 XCO2-based anthropogenic CO2 emission estimates for 2019 (b) actual ODIAC emissions 
for 2019, (c) their difference (estimated emission-actual emission), (d) 100 m resolution landcover distribution provided by 
Copernicus Global Land Services over West Asia, and (e) spatial distribution of NPP (Basemap credits: OpenStreetMap). 
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Figure 6: Spatial distribution of segmented ODIAC emissions, where the data are binned by every 0.3 tons/yr of lgE using mean 
emission calculated from annual emission during 2015–2019 over (a) East Asia and (c) West Asia; the correlation between mean 
ODIAC CO2 emissions and mean XCO2 anomalies calculated from annual XCO2 during 2015–2018 for (b) East Asia and (d) West 
Asia (Basemap credits: OpenStreetMap). 
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