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Abstract. Several single-platform satellite missions have been designed during the past decades in order to retrieve the 

atmospheric concentrations of anthropogenic greenhouse gases (GHG), initiating worldwide efforts towards better 15 

monitoring of their sources and sinks. To set up a future operational system for anthropogenic GHG emission monitoring, 

both revisit frequency and spatial resolution need to be improved. The Space CARBon Observatory (SCARBO) project aims 

at significantly increasing the revisit frequency of spaceborne GHG measurements, while reaching state-of-the-art precision 

requirements, by implementing a concept of small satellite constellation. It would accommodate a miniaturized GHG sensor 

named NanoCarb coupled with an aerosol instrument, the multi-angle polarimeter SPEXone. More specifically, the 20 

NanoCarb sensor is a static Fabry-Perot imaging interferometer with a 2.3 x 2.3 km2 spatial resolution and 200 km swath. It 

samples a truncated interferogram at optical path differences (OPDs) optimally sensitive to all the geophysical parameters 

necessary to retrieve column-averaged dry-air mole fractions of CO2 and CH4 (hereafter XCO2 and XCH4). In this work, we 

present the Level 2 performance assessment of the concept proposed in the SCARBO project. We perform inverse radiative 

transfer to retrieve XCO2 and XCH4 directly from synthetic NanoCarb truncated interferograms, and provide their systematic 25 

and random errors, column vertical sensitivities and degrees of freedom as a function of five scattering-error-critical 

atmospheric and observational parameters. We show that NanoCarb XCO2 and XCH4 systematic retrieval errors can be 

greatly reduced with SPEXone posterior outputs used as improved prior aerosol constraints. For two thirds of the soundings, 

located at the centre of the 200 km NanoCarb swath, XCO2 and XCH4 random errors span 0.5 – 1 ppm and 4 – 6 ppb, 

respectively, compliant with their respective 1-ppm and 6-ppb precision objectives. Finally, these Level 2 performance 30 

results are parameterized as a function of the explored scattering-error-critical atmospheric and observational parameters in 

order to time-efficiently compute extensive L2 error maps for future CO2 and CH4 flux estimation performance studies. 
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1. Introduction 

The monitoring of anthropogenic greenhouse gas (GHG) emissions is crucial to assess the progress made towards the 2015 

Paris Agreement goals, and satellite remote estimations of GHG atmospheric concentration can help to better constrain 35 

anthropogenic and natural GHG emissions through top-down atmospheric inversion studies (Ciais et al., 2010). As urban 

areas concentrate about 70% of all fossil fuel related emissions on a very small fraction of the continental surface (Duren and 

Miller, 2012; Liu et al., 2020), a frequent monitoring of local scale and point sources would enable to constrain a large 

fraction of anthropogenic carbon dioxide emissions. With near and shortwave (NIR and SWIR) infrared measurements, that 

are sensitive to atmospheric layers close to the surface where emissions take place, the spectro-imagery of CO2 performed by 40 

large-swath sensors with small ground-size adjacent pixels (e.g. 2x2 km2) offers the adequate spatial resolution to detect 

point-source emission plumes (≥10 MtCO2/year, e.g. Kuhlmann et al., 2019). Anthropogenic emission rates can indeed be 

inferred by different types of method relying on CO2 plume images and/or enhancements (Bovensmann et al., 2010; Varon et 

al., 2018; Pandey et al., 2019; Cusworth et al., 2021; Nassar et al., 2021) or usual atmospheric flux inversion approaches 

(e.g. Pillai et al., 2016; Broquet et al., 2018). Coverage and revisit frequency are also critical for an operational emission 45 

monitoring system. For instance, considering satellites carrying sensors with a 250 km swath, the annual number of detected 

CO2 plumes over Berlin ranges from 13 to 50 with a constellation that includes from 1 to 6 satellites, respectively 

(Kuhlmann et al., 2019). Five satellites are enough to ensure a daily global coverage at a fixed overpass time (Velazco et al., 

2011). 

 50 

Currently flying NIR and SWIR satellite missions include JAXA’s Greenhouse gases Observing SATellites (GOSAT and 

GOSAT-2), NASA’s Orbiting Carbon Observatory-2 and 3 (OCO-2 and OCO-3), the Chinese mission TanSat and ESA’s 

Sentinel 5-Precursor/TROPOMI. CO2 and/or CH4 integrated columns are retrieved from their measurements thanks to 

inverse radiative transfer algorithms that determine the state of the atmosphere that best fits the infrared measurements 

provided by these missions. Imperfections in forward radiative transfer and inverse modelling result in systematic errors or 55 

increased variability of the retrieved GHG columns with regard to reference products, such as those produced by the ground-

based Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011). In NIR and SWIR spectral bands, taking 

into account scattering particles such as optically thin cirrus clouds or aerosols is particularly critical as they change the 

optical path of the measured radiation. Their imperfect modelling thus results in sizeable systematic errors of retrieved 

column-averaged dry-air mole fractions of CO2 (denoted 𝑋!!!) (e.g. Houweling et al., 2005; Reuter et al., 2010). State-of-60 

the-art 𝑋!!! retrieval algorithms do account for the detrimental impact of scattering particles, however empirical corrections 

of their results that depend on aerosol parameters are still necessary (e.g. Guerlet et al., 2013; Reuter et al., 2017; O’Dell et 

al., 2018; Wu et al., 2018).  The remaining (or not corrected) systematic errors can then perturb GHG atmospheric flux 

inversions, as shown in synthetic flux inversion studies (e.g. Chevallier et al., 2007; Pillai et al., 2016; Broquet et al., 2018). 
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Thus, accounting for the scattering particle impact on satellite-based GHG column retrievals remains a key challenge for the 65 

performance of satellite missions. 

 

In addition, none of these currently flying NIR and SWIR missions have the spatial coverage, spatial resolution, nor revisit 

frequency that meet the requirements (global scale, 2x2 km2 or better, better than every 4 days, respectively) for the space 

component of an operational system for top-down monitoring of anthropogenic fossil fuel-related emissions (Ciais et al., 70 

2014; Commission et al., 2016). Compact GHG sensors concepts are well suited to address these previous limitations: their 

small sizes (and lower costs) allow to envision constellation concepts that could close the coverage and revisit gaps in the 

objectives of current or planned single-platform high-end reference instruments (e.g. Strandgren et al., 2020; Wilzewski et 

al., 2020). For example, the Canadian company GHGsat recently put into orbit the demonstrator for a small satellite concept 

observing methane with a Fabry-Perot imaging spectrometer (Jervis et al., 2021). Besides spatial resolution, it requires that 75 

their precisions reach an acceptable level of performance: better than 1 ppm and 10 ppb for 𝑋!!! and 𝑋!!! precisions, 

respectively, in the case of the upcoming high-end Copernicus CO2 Monitoring (CO2M) mission (Meijer and Team, 2019). 

 

The Space CARBon Observatory (SCARBO, https://scarbo-h2020.eu/) project funded by the European Union Horizon 2020 

research and innovation program investigates the feasibility of a low-cost GHG monitoring satellite constellation (Brooker, 80 

2018). The proposed concept targets natural and anthropogenic GHG emissions, and aims to address the previously 

described limitations through various design features. First, SCARBO satellites would carry a nadir-pointing miniaturized 

GHG sensor named NanoCarb (~9 kg), which is a static Fabry-Perot imaging spectrometer that samples truncated 

interferograms at optical path differences (OPDs) related to the GHG signature in NIR and SWIR spectral regions. These 

OPDs are selected to be optimally sensitive to geophysical parameters necessary to retrieve 𝑋!!! and 𝑋!!! (Ferrec et al., 85 

2019; Gousset et al., 2019, see Sect. 2.1). The currently considered imager would have a ~200 km swath with a 2.3 x 2.3 km2 

spatial resolution, enabling to detect emission plumes from hotspots such as megacities or point-sources (e.g. > 10 Mt CO2 

yr-1 power plants). Secondly, the NanoCarb sensor would be coupled with an aerosol instrument, the multi-angle polarimeter 

SPEXone (van Amerongen et al., 2019; Hasekamp et al., 2019) whose measurements can help limiting the impact of 

scattering errors in GHG retrievals, and thus mitigating the systematic errors they can cause on 𝑋!!! and 𝑋!!! (Rusli et al., 90 

2021). Both the NanoCarb and SPEXone instruments could be carried on small satellite platforms (< 100 kg). With the 

objective of reaching sub-ppm and sub-6-ppb precisions for 𝑋!!! and 𝑋!!!, respectively, a SCARBO constellation could 

thus be envisioned as a valuable companion to CO2M. Finally, with about 20 satellites, it could provide daily revisits (and 

even intraday depending on the regions, with cloudy overpasses included) over megacities and emission hotspots and thus 

close the revisit gap in the current CO2M plans. More specifically, the SCARBO project pursues two parallel objectives: (1) 95 

the development of an airborne prototype for the NanoCarb concept that can be deployed in an airborne campaign together 
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with the SPEX airborne instrument (Smit et al., 2019); (2) the performance assessment of the NanoCarb coupled to 

SPEXone concept for GHG column retrieval (Level 2, hereafter L2) and GHG flux estimation (Level 4, hereafter L4). 

 

In this work, we present the Level 2 performance assessment of the concept proposed in the SCARBO project. For a set of 100 

scattering-error-critical atmospheric and observational parameters, we perform inverse radiative transfer to retrieve 𝑋!!! and 

𝑋!!! directly from synthetic NanoCarb truncated interferograms. This differs from usual concepts that use infrared spectra as 

measurements: the discontinuous and sparse sampling of NanoCarb truncated interferograms do not allow to calculate the 

spectra through Fourier Transform formalism. In this paper, we first seek to analyse the information content of such 

measurements as well as their vertical sensitivities. Following the approach outlined in (Buchwitz et al., 2013) for the 105 

preparation of CarbonSAT, retrieved 𝑋!!!  and 𝑋!!!  systematic and random retrieval errors are then analysed and 

parameterized as functions of the explored atmospheric and observational parameters. We especially study the impact of 

improved prior knowledge of aerosol parameters brought by SPEXone measurements on the L2 performance of the concept. 

Finally, considering a synthetic constellation of SCARBO satellites, we exemplify how the derived L2 error 

parameterizations can be applied to time-efficiently compute large 𝑋!!! and 𝑋!!! error maps that can be used as inputs to L4 110 

performance studies. 

 

This paper is structured as follows: Section 2 describes the NanoCarb and SPEXone instruments. Section 3 presents the 

general approach and the inverse method used in this work. Section 4 details the synthetic atmospheric setup, the selected 

scattering-error-critical atmospheric and observational parameters, as well as the two studied design scenarios: without and 115 

with SPEXone aerosol measurements that can be used as improved prior constraint for GHG retrievals. Section 5 details 

NanoCarb measurement information content, the vertical sensitivity of the retrieved columns, and describes the two design 

scenario retrieval results. Section 6 presents the L2 error parameterization approach and illustrates how it can be applied to 

yield typical error maps. Finally, Section 7 highlights the conclusions of this work.  

2. Description of the SCARBO concept 120 

2.1 NanoCarb 

NanoCarb is a static Fourier Transform imaging spectrometer that samples a truncated interferogram at optical path 

differences optimally sensitive to geophysical parameters necessary to retrieve 𝑋!!!  and 𝑋!!! . Its optical design, the 

optimized OPD selection, the measurement principles, the expected radiometric performance and the resulting statistical 

error on 𝑋!!! are extensively described in (Gousset et al., 2019).  125 

 

Table 1. NanoCarb spectral band characteristics 



5 
 

 Band 1: O2 A-band Band 2: CO2-weak Band 3: CH4-band Band 4: CO2-strong 

Region 0.76 µm 1.6 µm 1.66 µm 2.06 µm 

Measurement Surface pressure, 

aerosols 

CO2, H2O CH4 CO2, aerosols 

Narrow-band filter 

reference 

wavenumber 

13,093 cm-1 6,213 cm-1 6,078 cm-1 4,840 cm-1 

Narrow-band filter 

FWHM 

35 cm-1 24 cm-1 69 cm-1 18 cm-1 

Radiative transfer 

simulation limits 

12,940 – 13,175 cm-1 6,180 – 6280 cm-1 6,000 – 6200 cm-1 4820 – 5010 cm-1 

 

To summarize, narrow-band filters, described by their central wavelength and full-width at half-maximum (FWHM), first 

select the light incoming from a given field of view (hereafter FOV) in the four spectral bands considered for the NanoCarb 130 

instrument and detailed in Table 1. For each spectral band, the truncated interferogram is sampled thanks to an array of 

Fabry-Perot interferometers of fixed OPDs. They produce images of the whole FOV modulated with interference rings on 

the camera detector. Thus, an image of the FOV is recorded for each spectral band and for all of their respective selected 

OPDs, and, conversely, a truncated interferogram is measured at the selected OPDs for all the ground pixels within the FOV. 

Figure 1 shows how spectral bands, OPDs and FOV images are accommodated on the instrument detectors: the measured 135 

intensity depends on the observed atmospheric scene, on the spectral band and OPD and also on the transversal 𝜃! (across-

track) and longitudinal 𝜃! (along-track) angles characterizing a given ground pixel within the FOV. This spectral response at 

pixel-level arises from the angular dependence of the Fabry-Perot and narrow-band filter transmissions. Figure 2 shows a 

synthetic NanoCarb measurement corresponding to one of the central pixels of the NanoCarb FOV displayed in Fig. 1. 

Finally, the camera detector captures snapshots with a frequency set so that NanoCarb records a truncated interferogram, for 140 

all the FOV ground pixels, every time the FOV moves forward by one ground pixel in the along-track direction. 
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Figure 1. Example of a complete NanoCarb measurement. Left panels show the measured intensities for the 4 spectral bands 
(denoted BD in the figure), for all their 60 OPDs and for all FOV pixels. The right panel illustrates the FOV intensity for one given 
OPD. This example has been computed for a vegetation surface type, with a solar zenith angle of 25°. 145 
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Figure 2. Example of a NanoCarb truncated interferogram for the 4 spectral bands (denoted BD in the figure), for a central pixel 
of the field-of-view, simulated for the same situation as for Fig. 1.  Intensities are plotted as a function of the OPD indices as the 
OPD sampling is very discontinuous. 

 150 

This work uses the latest design of the NanoCarb concept, based on an selection of 60 OPDs per spectral band, optimized for 

the central part of a FOV that accommodates 170 (across-track, 𝜃! between -9.3° and 9.3°) x 102 (along-track, 𝜃! between -

5.5° and 5.5°) ground 1.15x1.15 km2 pixels. This latest NanoCarb design hypotheses takes into account entanglements 

between CO2, CH4, O2, H2O and aerosols signals, with the assumption that albedo models are constant over all four spectral 

bands. As this study is the first L2 performance assessment for the NanoCarb concept, choices made for the state vector 155 

design (see Sect. 3.2) and simulation setups (see Sect 4.2) are consistent with those hypotheses. Here, we use a NanoCarb 

instrumental model that implements (1) a model of the spectral transmission for a 3-cavity narrow-band filter that simulates 

the angular dependency within the FOV, and (2) an analytical approximation of the Fabry-Perot transmission (Gousset et al., 

2019). Given a synthetic radiance spectrum, computed by a line-by-line forward radiative transfer model, and the transversal 

𝜃!  and longitudinal 𝜃!  angles characterizing a given ground pixel within the FOV, it yields a NanoCarb truncated 160 
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interferogram. This analytical model assumes perfect processing of the raw measurements and does not account for possible 

optical defects (such as straylight) or instrumental inaccuracies (such as faulty thermal regulation, which impact is assessed 

separately), nor does it take into account the Point Spread Function (PSF) of the instrument. 

2.2 SPEXone 

SPEX (standing for Spectro-Polarimeter for Planetary Exploration) is a family of aerosol sensors that have been co-165 

developed by the Netherlands Institute for Space Research (SRON) and its academic and industrial partners. SPEXone, the 

latest and most compact multi-angle polarimeter of this family (6 dm3), is currently being developed by SRON, supported by 

optical expertise from Airbus Defence and Space Netherlands and the Netherlands Organisation for Applied Optics (TNO) 

(van Amerongen et al., 2019). It measures visible light at 5 viewing angles ± 50°, ±20° and 0° along the satellite track and 

makes use of the spectral modulation technique (Snik et al., 2009) to encode the Degree of Linear Polarization (DoLP) in the 170 

measured spectrum. Radiance measurements will be provided at the spectral sampling (1 nm) and resolution (2 nm) of the 

spectrometer. The Degree of Linear Polarization (DoLP) will be provided at 50 spectral bands with a spectral resolution 

ranging from about 10-30 nm. A key feature of SPEXone is that it is designed to measure the DoLP at very high accuracy 

(0.003, comprising both systematic and random errors) allowing the retrieval of aerosol size, refractive index, and single-

scattering albedo in addition to the Aerosol Optical Depth (AOD) (Hasekamp et al., 2019).  175 

  

2.3 Sizing of the SCARBO constellation concept 

The constellation sizing aims at ensuring intra-daily revisit of the largest possible amount of anthropogenic CO2 emission 

hotspots. Those are defined as small areas which emission rate produce an 𝑋!!! enhancement that can be detected with the 1 

ppm SCARBO 𝑋!!! precision objective. For this purpose, we use the reprocessing of the Open Source Data Inventory of 180 

Anthropogenic CO2 (ODIAC) database compiled by Wang et al. (2019). They identified the emission clumps (area and point 

fossil fuel emission CO2 emitting sources) that are compatible with the detection of an 𝑋!!! anthropogenic plume by a 

satellite flying around noon, for different 𝑋!!! precision. Figure 3 shows the repartition of the emission hotspots compatible 

with the 1 ppm SCARBO precision objective, and gives the revisit statistics over these hotspots for a constellation of 22, 24 

or 26 satellites flying at 600 km on Sun-Synchronous orbits, and equally distributed over two orbital planes, at 10:00 and 185 

14:00. With 24 satellites, the SCARBO constellation provides global coverage and guarantees daily revisit for all hotspots, 

and intra-daily revisit for 73% of the hotspots (those beyond ±30° of latitude). This number of satellites provides an optimal 

compromise between coverage, cost and available launch and deployment capabilities.  
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Figure 3. Map of hotspots (point sources in red, and other type of emission clumps in blue) with an emission rate compatible with 190 
the detectability of an 𝑿𝑪𝑶𝟐  plume around noon with a 1 ppm precision spaceborne instrument. Yellow, green and blue horizontal 
lines give the minimum latitude for better intra-day revisit for a constellation of 22, 24 and 26 satellites, respectively. The left panel 
gives the corresponding average number of revisits as a function of latitude for a constellation of 22, 24 and 26 satellites, 
respectively. 

3. Methodology 195 

3.1 General approach 

Level 4 atmospheric flux inversions targeting regional or global scale exploit extensive amounts of Level 2 products. The 

preparation of planned satellite missions usually includes Observing System Simulation Experiments (OSSEs) that build a 

realistic numerical model of the atmosphere, simulate the instrument orbit and its measurements, on which retrieval 

algorithms are then tested. This kind of computation-expensive approach is out of scope for the early-stage readiness of the 200 

NanoCarb truncated interferogram concept. This is why we propose here to follow the approach used for CarbonSat 

preparation (Buchwitz et al., 2013).  

 

First, given synthetic atmospheric and aerosol models (Sect. 4.1), we introduce five scattering-error-critical atmospheric and 

observational parameters (Sect. 4.2) for which we simulate synthetic NanoCarb truncated interferograms (without adding a 205 

random draw of artificial noise to them) for parameter values that span realistic intervals. Then, for two different SCARBO 

design scenarios (without and with SPEXone, described in Sect. 4.3) we assess the L2 performance of the concept by 
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performing inverse radiative transfer to retrieve 𝑋!!! and 𝑋!!! directly from the previously simulated synthetic NanoCarb 

measurements. Key L2 performance results presented in Sect. 5 comprise the systematic and random errors of the retrieved 

𝑋!!! and 𝑋!!!, as well as the vertical sensitivities of these retrieved columns, which are, for instance, essential to yield 210 

pseudo-observed columns from simulated GHG concentration profiles. Finally, those results are parameterized as functions 

of the selected scattering-error-critical atmospheric and observational parameters (Sect. 6). This yields fast and easily usable 

L2 performance models that enable to produce large amounts of L2 data. 

3.2 Retrieval method: the 5AI inverse scheme 

In the context of this work, inverse radiative transfer aims to determine the geophysical parameters and their uncertainties 215 

that best explain a given noised infrared measurement. For this purpose, we use the 5AI retrieval scheme (Dogniaux et al., 

2021) that implements the Optimal Estimation (hereafter denoted OE) inverse method, iterating with a Levenberg-Marquardt 

optimization method (Rodgers, 2000).  

 

In the framework of OE, we consider a state vector 𝒙, containing various geophysical variables that adequately describe the 220 

state of the atmosphere and of the surface, and a measurement vector 𝒚 (here, the NanoCarb truncated interferogram). Both 

are Gaussian random variables described by an average and an uncertainty given in a covariance matrix. Prior to the 

measurement, climatologies or ad hoc choices describe the knowledge of the state 𝒙: this is called the a priori state. Its 

uncertainty has a strong impact on the retrieval result as it constrains how the measurement can be allowed to modify the 

state. Given this a priori state with its uncertainty and the measurement 𝒚, which uncertainty is known thanks to the noise 225 

characteristics of the instrument, OE enables to find the most probable a posteriori state 𝒙 that best fit the measurement 𝒚, 

thus verifying the following equation: 

𝒚 = 𝑭 𝒙 + 𝜺  (1) 

with 𝑭, the forward radiative transfer model that describes the physics linking the state to the measurement and 𝜺, the 

measurement noise which statistics is known with the instrument and detector characteristics. Besides, OE relies on a 230 

Bayesian formalism that translates the measurement uncertainty into state uncertainty, thus yielding an a posteriori 

covariance matrix, for the retrieved a posteriori state 𝒙, that describe the estimation random error. Finally, OE also provides 

the averaging kernel matrix, usually denoted 𝑨, which describes how the retrieved state 𝒙 relates to the true (but unknown) 

values of its chosen parameters.  

 235 

The key L2 performance results that we seek to determine are computed from these outputs: (1) the systematic errors of the 

retrieved 𝑋!!! and 𝑋!!! are defined as the differences between retrieved columns, computed from the a posteriori state 𝒙, 

and the synthetic true columns (2) 𝑋!!! and 𝑋!!! random errors are computed from the a posteriori covariance matrix (3) 
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𝑋!!! and 𝑋!!! vertical sensitivities are described by the column averaging kernels, computed from the averaging kernel 

matrix 𝑨. 240 

 

Here, 5AI state vector includes all the main geophysical variables that impact shortwave infrared radiative transfer and may 

interfere with 𝑋!!! and 𝑋!!! retrieval. Table 2 describes the state vector, the a priori value of its elements as well as their 

prior uncertainties (no covariance is taken into account). The interfering impact of atmospheric temperature has not been 

taken into account for the latest optimized OPD selection used in this work, and is not considered in the state vector. In 245 

addition, except for the prior uncertainties of the aerosol optical depths, which depend on the design scenario we consider 

(see Sect. 4.3), all the prior uncertainties are purposefully large as we also aim to determine the information content of the 

NanoCarb truncated interferogram. Finally, the standard deviation of the instrument noise used for the 5AI retrievals can be 

calculated as: 

𝜀!,! = 𝐼!,! + 𝑟!!  (2) 250 

with 𝜀!,! , the standard deviation of the a priori noise, for the 𝑖-th OPD of the 𝑗-th spectral band, 𝐼!,! , the truncated 

interferogram intensity, for the 𝑖-th OPD of the 𝑗-th spectral band, and 𝑟!, the readout noise of the spectral band camera 

detector. 

 

Table 2. 5AI retrieval state vector 255 

Parameters Size A priori value A priori uncertainty 

H2O profile scaling factor 1 factor 1.0 0.1 

CO2 profile scaling factor 1 factor 1.0 0.1 

CH4 profile scaling factor 1 factor 1.0 0.1 

Surface pressure 1 1013.0 hPa 4.0 hPa 

Constant band-wise albedo 4 spectral bands Synthetic true value 1.0 

Coarse mode aerosol Optical 

Depth (COD) 

1 layer Depends on design scenario Depends on design scenario 

Fine mode aerosol Optical 

Depth (FOD) 

1 layer Depends on design scenario Depends on design scenario 

 

For its forward radiative transfer simulations, the 5AI scheme relies on the operational version of the Automatized 

Atmospheric Absorption Atlas (4A/OP) (Scott and Chédin, 1981) that is coupled with the LInearized Discrete Ordinate 

Radiative Transfer model (LIDORT: Spurr, 2002) in order to take into account multiple scattering caused by thin clouds 

and/or aerosols. Regarding spectroscopy, we use the 2015 version of the Gestion et Études des Informations 260 
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Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information (GEISA) 

spectroscopic database (Jacquinet-Husson et al., 2016) and we take into account line-mixing and collision-induced 

absorption in the O2 A-band (Tran and Hartmann, 2008), as well as line-mixing and H2O-broadening of CO2 lines 

(Lamouroux et al., 2010).  

 265 

For this work, in order to take into account the use of truncated interferograms, 5AI is coupled to the NanoCarb instrumental 

model: for all the spectral bands defined in Table 1, a synthetic spectrum and its partial derivatives with regard to the state 

variables (also called Jacobians) are computed line-by-line by 4A/OP, and used as inputs to the NanoCarb instrumental 

model. It yields a NanoCarb truncated interferogram and its partial derivatives, which are the measurement and its Jacobians 

used within the 5AI scheme in this work, respectively. As an example, Fig. 4 shows the partial derivatives with regard to the 270 

5AI state vector elements of the NanoCarb truncated interferogram shown in Fig. 2. 

 
Figure 4. Example of a NanoCarb truncated interferogram jacobian matrix, for the 5AI state vector geophysical variables used in 
this work. It corresponds to the NanoCarb truncated interferogram shown in Fig. 2. Again, partial derivatives are plotted as a 
function of the OPD indices as the OPD sampling is very discontinuous. 275 
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3.3 Field of view  

One NanoCarb measurement is not made of one truncated interferogram but of 170 (across-track) x 102 (along-track) 

truncated interferograms measured in snapshot mode, in the instrument field of view. As the foreseen time between two 

consecutive snapshots corresponds to the FOV moving by one ground pixel, up to 102 independent single-pixel NanoCarb 

truncated interferograms can be measured for a given fixed location on the ground, during the ~20-second overflight by the 280 

SCARBO satellite. The strategy to achieve the sub-ppm and sub-6-ppb precision objectives for 𝑋!!! and 𝑋!!!, respectively, 

is then to combine (for details, see Appendix A), for every ground pixel associated with a transversal position 𝜃! within the 

swath, all their respective available along-track single-pixel measurements in order to retrieve one final unique state of the 

atmosphere per transversal position. Consequently, all the NanoCarb retrieval results presented in this work also depend on 

the transversal position 𝜃! of the situation within the swath.  285 

  

Several hypotheses are made to speed up calculations within the FOV. Because we assume that it is uniform, it suffices to 

compute single-pixel L2 results for the whole FOV, and then to combine them in the along-track direction, in order to 

simulate the final L2 results. In addition, we assume that the along-track direction is aligned with the sun, single-pixel L2 

results are thus perfectly symmetrical with respect to the longitudinal axis (results can be shown for positive values of 𝜃! 290 

only) and nearly symmetrical, because of the impact of the asymmetrical aerosol phase function, with respect to the 

transversal axis. Actually, due to the very nature of NanoCarb measurements (see interference rings in Fig. 1), single-pixel 

L2 results exhibit a near-central symmetry. Processing all 170 x 102 pixels within the FOV would lead to unmanageable 

computation times, this is why, here, we make use of the near-central symmetry in single-pixel L2 results to perform 

retrievals for a careful selection of 23 NanoCarb FOV pixels only (see supplements). Single-pixel L2 performance results are 295 

then interpolated from those 23 selected pixels to the whole FOV. Assuming that the CO2 and CH4 state vector parameters 

can be retrieved independently from the other geophysical variables, we then combine the single-pixel L2 performance 

results for 𝑋!!! and 𝑋!!! in the along-track direction following, for scalar quantities, the method described in Appendix A. 

This last step yields final L2 performance results that only depend on the transversal position 𝜃! within the swath, in 

addition to the five atmospheric and observational parameters considered here (see Sect. 4). Errors arising from the 300 

interpolation have been assessed and are negligible (not shown, up to 0.01 ppm for 𝑋!!! systematic and random errors, and 

up to 0.05 ppb for 𝑋!!! systematic and random errors, all evaluated on a test case). These final L2 results are, like single-

pixel L2 results, symmetrical along 𝜃!, so only results for 𝜃! between 0° and 9.3° need to be shown. 
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4. Simulation setups 

4.1 Synthetic atmospheric and aerosol models 305 

The L2 performance assessment presented here is done for an atmospheric situation representative of the meteorological 

conditions that can be found over Europe. More precisely, for all our inverse radiative transfer simulations, we use the 

average mid-latitude temperate atmospheric situation computed from the Thermodynamic Initial Guess Retrieval (TIGR) 

climatology library (Chedin et al., 1985) (available at https://ara.lmd.polytechnique.fr/index.php?page=tigr). The 

corresponding temperature, water vapour and ozone profiles have been discretized over 20 pressure levels bounding 19 310 

layers, as for the ACOS algorithm (O’Dell et al., 2018). The surface pressure is set to 1013 hPa. For this synthetic 

performance study, constant trace gas concentration profiles have been used: 394.85 ppm for CO2 and 1855.3 ppb for CH4. 

The use of these constant background GHG concentration profiles is a strong hypothesis, which is in line with the one 

chosen by Bovensmann et al. (2010) for CarbonSat performance studies. Eventually, realistic CO2 and CH4 profiles should 

be considered in full OSSE experiments, as the SCARBO concept improves in its readiness. 315 

 

We consider the presence of two aerosol modes in the atmosphere: a fine mode and a coarse mode. This assumption is in line 

with the ones made for the SPEXone retrieval capability study (Hasekamp et al., 2019) and, apart from the cirrus 

contribution, follows the assumptions made for the Full Physics retrieval algorithm developed at the University of Leicester 

(Cogan et al., 2012). Here, the fine aerosol mode is treated under a log-normal size distribution with an effective size of 0.20 320 

µm, an effective variance of 0.2 µm and a refractive index of 1.50+10-7i. This fine mode is representative of typical 

industrial non-organic aerosols and is located in a fixed atmospheric layer between 0 and 2 km. As for the coarse mode, it is 

treated under a log-normal size distribution with an effective size of 1.6 µm, an effective variance of 0.6 µm, a refractive 

index of 1.53+0.00254i and a spheroid fraction of 0.95. This coarse mode is representative of typical mineral dust and is 

located at a varying altitude. Non-spherical aerosols are described as a size–shape mixture of randomly oriented spheroids, 325 

and we use the Mie- and T-matrix-improved geometrical optics database by Dubovik et al. (2006) along with their proposed 

spheroid aspect ratio distribution for computing optical properties (extinction coefficient, single-scattering albedo and 

asymmetry parameter) for a mixture of spheroids and spheres. These optical properties are then used as inputs to the 5AI 

scheme. 

4.2 Atmospheric and observational parameters for L2 performance assessment 330 

We consider five parameters related to scattering error: (1) the albedo model (2) the solar zenith angle (3) the coarse layer 

height (4) the coarse mode aerosol optical depth (5) the fine mode aerosol optical depth. Those are usual parameters 

considered for L2 performance assessments as they can strongly impact the photon optical path or the overall amount of 

signal measured by the satellite detector (Boesch et al., 2011; Buchwitz et al., 2013). Different values for these five 
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parameters are explored, yielding a set of 324 atmospheric and observational situations for which the SCARBO L2 335 

performance assessment is performed.  

 

Regarding albedo (hereafter ALB), we consider three different ground albedo models representative of soil, vegetation and 

desert scenes, that are generated from the ASTER spectral library (Baldridge et al., 2009). As detailed in Sect. 2, the current 

optimization of the NanoCarb OPDs assumes constant band-wise albedos. Hence, in this work, the simulated NanoCarb 340 

truncated interferograms and the 𝑋!!! and 𝑋!!! retrievals use the same assumption: Fig. 5 shows the spectral dependence of 

the three albedo models we consider, as well as the constant band-wise fits used for all simulations.  

 
Figure 5. True spectral dependence of the three albedo models considered in this work. Constant band-wise fits of these models are 
used here. 345 

 

For Solar Zenith Angle (hereafter SZA), we explore four different values: 0°, 25°, 50° and 70°. Though shortwave infrared 

soundings can be made at higher SZAs, experience from OCO-2 post-filtering by the ACOS algorithm shows that soundings 

at high SZAs are more often removed (O’Dell et al., 2018), thus studying a maximum SZA of 70° is a reasonable 

compromise. 350 

 

Concerning Coarse aerosol mode Layer Height (hereafter CLH), we assume possible altitudes of 2, 4 and 6 km and Coarse 

aerosol mode Optical Depths (hereafter COD) explore the following values: 0.001, 0.05 and 0.15 at 550 nm reference 
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wavelength. Fine aerosol mode Optical Depths (hereafter FOD) explore: 0.001, 0.12, 0.22 at 550 nm reference wavelength. 

The aerosol synthetic setup proposed here aims to represent: (1) background aerosol optical depth, arbitrarily attributed to 355 

industrial non-organic aerosols (as those are expected around and downwind of strong emission hotspots) with optical depth 

values consistent for instance with MODIS observed averages over Europe for 2010 (Palacios-Peña et al., 2019); (2) 

transient coarse mineral desert dust layers that can be observed over Europe in late-spring, summer and early-autumn with a 

varying altitude (Papayannis et al., 2008). 

4.3 Two design scenarios: without and with SPEXone 360 

Two SCARBO satellite design scenarios are studied in this work. Table 3 summarizes the assumptions made for both 

scenario: they are only related to the a priori setups of 5AI NanoCarb retrievals. 

 

Table 3. Summary of no-SPEX and with-SPEX design scenario assumptions 

Parameter Prior no-SPEX scenario with-SPEX scenario 

Coarse aerosol mode 

Optical Depth (COD)  

A priori value 0.05 Synthetic truth 

 A priori uncertainty 0.5 SPEXone linear error 

analysis output (see Fig. 6) 

Fine aerosol mode Optical 

Depth (FOD) 

A priori value 0.12 Synthetic truth 

 A priori uncertainty 0.5 SPEXone linear error 

analysis output (see Fig. 6) 

Coarse Layer Height 

(not retrieved)  

A priori value 2 km Synthetic truth 

 365 

The first one, hereafter referred as ‘no-SPEX’, simulates a SCARBO satellite only carrying the NanoCarb instrument. This 

scenario is simulated with fixed a priori values for COD and FOD in the state vector, and with a fixed CLH of 2 km, 

whatever the atmospheric and observational situation considered. The random prior uncertainties for COD and FOD are set 

to 0.5, a large value also reflecting the limited knowledge of aerosol parameters in this design scenario.  

 370 

The second design scenario, hereafter referred as ‘with-SPEX’, simulates a SCARBO platform carrying both SPEXone and 

NanoCarb instruments at the same time, thus yielding collocated SPEXone and NanoCarb measurements. For this scenario, 

we consider a two-step L2 retrieval approach in which SPEXone measurements are analysed first. These results are then 

used to improve the a priori constraints on aerosol parameters in second-step GHG column retrievals from NanoCarb 
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measurements. The first step is fulfilled by a linear error analysis that yields SPEXone posterior uncertainties for COD and 375 

FOD, following the method described in (Hasekamp et al., 2019). Figure 6 shows these SPEXone random errors for the 

coarse mode (COD) and fine mode (FOD) aerosol optical depths, for all the 324 atmospheric and observational situations 

considered in this work. Its first five top panels have a descriptive purpose: they remind the values of ALB, SZA, CLH, 

COD and FOD parameters for all the 324 situations. Thus, the first third of the x-axis is dedicated to soil albedo situations, 

the second to vegetation albedo situations, and the last to desert albedo situations. For all these ALB cases, all SZA values 380 

are explored, as are all scattering particle cases for all ALB cases and SZA values, thus sorting all the 324 considered 

situations along one dimension (an identical sorting is used in Fig. 7, 9, 10 and 11). Regarding SPEXone performance, the 

optical depths posterior uncertainties are correlated to the optical depths values and are lower for the fine mode compared to 

the coarse mode. Uncertainties are higher for desert albedo situations as the ratio between scattered photons and surface-

reflected photons is lower over desert compared to soil or vegetation situations. For both modes they improve with 385 

increasing SZA values because the light path through the aerosol layer increases, but also because a wider scattering angle 

range, that is also closer to 90°, is typically encountered at higher SZA (Hasekamp et al., 2019; Fougnie et al., 2020). 

Posterior uncertainties of coarse mode optical depths are also decreasing with CLH values as more photons are scattered 

when the coarse layer height increases. For the with-SPEX design scenario considered here, these COD and FOD posterior 

uncertainties are used as a priori uncertainties within the second-step GHG column retrievals from NanoCarb measurements. 390 

In addition, in the absence of full SPEXone retrieval results, we also assume that the first-step SPEXone measurement 

analyses yield perfectly accurate COD and FOD values, as well as the true synthetic CLH values (aerosol layer heights are 

not retrieved from NanoCarb measurements, as per Table 2, but can be obtained from SPEXone retrievals).  
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Figure 6. SPEXone linear error analysis results for all the 324 atmospheric and observational situations used in this work. 395 
SPEXone COD and FOD posterior uncertainties are plotted against the situation number: the five top panels detail the ALB (0.7 
µm), SZA, CLH, COD and FOD values defining all these 324 situations. 

5. Results and discussion 

5.1 Geophysical information content and variable entanglements in NanoCarb truncated interferograms 

In this work, 𝑋!!! and 𝑋!!! are directly retrieved from truncated interferograms sampled at OPDs optimally sensitive to 400 

CO2, CH4 and possibly interfering geophysical variables. This peculiar nature of NanoCarb measurements strongly differs 

from usual infrared spectra (measured for example by GOSAT or OCO instruments). A way to evaluate the geophysical 

information content is to examine the Optimal Estimation Degrees Of Freedom (hereafter denoted ‘DOFs’) that provide, for 

all state vector variables, the amount of useful independent quantities provided by the measurement, whatever its nature 

(Rodgers, 2000).  405 
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Figure 7. NanoCarb state vector variable degrees of freedom averaged over the 23 FOV pixels used to interpolate L2 results to the 
whole FOV. Results are plotted as a function of the situation number: the five top panels detail the ALB (0.7 µm), SZA, CLH, 
COD and FOD values defining all the 324 situations. Grey-shaded areas denote situations for which retrievals did not 
satisfactorily converge.  410 
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Figure 7 shows NanoCarb state vector DOFs, averaged over the 23 selected FOV pixels, for all 324 atmospheric and 

observational situations considered in this work (described in the five top panels, as in Fig. 6), as well as for both no-SPEX 

and with-SPEX design scenarios. Grey-shaded areas in the no-SPEX design scenario case remove situations for which the 415 

retrievals did not satisfactorily converge. Overall, we can notice that CO2 and CH4 DOFs are close to 1.0, confirming the 

sensitivity of the retrievals and of NanoCarb measurements to these two target greenhouse gases. In the no-SPEX design 

scenario, COD DOFs have similar values, thus underlying a significant sensitivity of NanoCarb measurement to the coarse 

mode aerosol layer. All albedo bands have near 1.0 DOFs and, for other variables comprising water vapour profile scaling 

factor, surface pressure and FOD, retrievals do not get much information from NanoCarb measurements. This means that the 420 

retrievals rely on their a priori information for these variables, which can result in systematic 𝑋!!! and 𝑋!!! biases if the a 

priori is biased compared to the true state of the atmosphere. For the no-SPEX design scenario case, the DOFs evolution is 

mainly explained by the strong sensitivity of NanoCarb measurements to COD. This COD sensitivity increases for situations 

with SZA=70° because spaceborne measurements are more sensitive to scattering for highly slanted optical paths. 

Conversely, this explains the drop of the other variable DOFs for which less measurement information is available in 425 

situations with SZA=70°. For all geophysical variables but albedo and surface pressure, the variations of DOFs are 

correlated with COD: the large 0.5 a priori uncertainty for COD in no-SPEX retrievals brings only a mild constraint that 

results in the COD parameter driving the information content for all the other variables. 

 

The with-SPEX design scenario exhibits much reduced aerosol parameter DOFs arising from NanoCarb interferograms: this 430 

scenario is designed so that SPEXone, with improved a priori constraints in GHG retrievals, brings much of the information 

regarding aerosols parameters. Consistently with SPEXone performance shown in Fig. 6, FOD DOFs are nearly equal to 0 

thanks to SPEXone performance and the NanoCarb measurement mild sensitivity to fine mode aerosols. As for coarse mode 

aerosols, the remaining COD DOFs are the result of the strong sensitivity of NanoCarb measurements to this mode, and of 

SPEXone lower performance for coarse mode: with-SPEX COD DOFs are well correlated to Fig. 6 SPEX posterior 435 

uncertainties for COD. One can also note that, for similar SPEXone performance between fine and coarse at high SZAs in 

soil and vegetation case, COD DOFs are much larger than FOD DOFs, thus once again underlying the sensitivity of 

NanoCarb measurement to the coarse mode. For low SZAs desert albedo situations, where SPEXone performance for coarse 

mode is at its lowest with large remaining uncertainties, COD DOFs are high, meaning that NanoCarb measurements can 

contribute to constraining coarse mode aerosols in these situations. Symmetrically to reducing the amount of NanoCarb 440 

measurement information used to constraint aerosol parameters, the use of SPEXone posterior results in NanoCarb GHG 

retrievals helps to use more of that information to constrain other variables. Consequently GHG, surface pressure and albedo 

DOFs increase in the with-SPEX (with regard to no-SPEX) scenario, as shown in Fig. 7 (the increase is very small and not 
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distinguishable for albedo). This underlines the geophysical information entanglement of the latter variables with aerosol 

parameters in NanoCarb measurements. 445 

 

Retrieving a profile scaling factor for CO2 or CH4 instead of a layered profile has the advantage of setting a 1.0 limit to the 

DOFs these gases can have. Given the state vector used in this work, reaching this 1.0 DOF limit value for all geophysical 

variables would mean that all of them could be retrieved independently from each other. Failing to do so as shown in Fig. 7 

for the with-SPEX scenario means that the geophysical information is entangled in NanoCarb measurements: variables 450 

cannot be retrieved independently from each other, correlations exist. A way to identify main variable-to-variable 

entanglements is to examine similarities (correlation or anticorrelations) between the partial derivatives of state vector 

elements. For example, Fig. 4 displays a correlation between albedo and CO2 jacobians in NanoCarb band 2: both evolve 

similarly around different continuous components. Though less or not visible due to scale, similar similarities exist between 

surface pressure and albedo Jacobians in band 1 (anticorrelation), CH4 profile scaling factor and H2O or albedo Jacobians in 455 

band 3 (correlations) and CO2 profile scaling factor and albedo Jacobians in band 4 (anticorrelation). Thus CO2, albedo and 

aerosol variables are entangled in the current OPD optimization of NanoCarb measurement, and the same is true for CH4 

information, which is also entangled with H2O. 

5.2 Vertical sensitivities: column averaging kernels 

Column averaging kernels (hereafter referred as ‘AKs’) describe the vertical sensitivity of retrieved 𝑋!!! and 𝑋!!!. In other 460 

words, they show which atmospheric layers contribute the most to the GHG information contained in the measurement. NIR 

and SWIR spectrum measurements are typically sensitive to the whole atmospheric column, with AKs that reach their 

maximum in atmospheric layers close to the surface and then decrease with altitude above the mid-troposphere (e.g. for 

OCO-2 Boesch et al., 2011). Figure 8 presents the NanoCarb 𝑋!!! and 𝑋!!! AKs for all albedo models and SZAs, and for 

the minimum and maximum total aerosol optical depth (AOD) situations. As for usual NIR and SWIR concepts such as 465 

OCO-2, or S5-P/TROPOMI, NanoCarb truncated interferograms are sensitive to CO2 and CH4 in all atmospheric layers. In 

addition, it can be noticed that NanoCarb AKs with low total AOD satisfactorily compare with those obtained for trace gas 

profile scaling factors retrieved from SCIAMACHY low-resolution measurements by the WFM-DOAS algorithm 

(Bovensmann et al., 1999; Buchwitz et al., 2005). Indeed, like WFM-DOAS 𝑋!!! AKs, NanoCarb 𝑋!!! AKs grossly evolve 

from 1.2 – 1.5 in the boundary layer to only 0.1 – 0.2 at the top of the atmosphere (TOA), and the same comparison stands 470 

for 𝑋!!! AKs: both evolve from approximately 1.2 in the boundary layer to about 0.5 at TOA. SZA dependence of AKs 

appears to be quite similar between NanoCarb and SCIAMACHY/WFM-DOAS for 𝑋!!!, but is different for 𝑋!!! AKs: 

sensitivity in the boundary layer and lower troposphere decreases with SZA in NanoCarb case whereas it increases for 

WFM-DOAS. Regarding NanoCarb AKs for atmospheric situations with the maximum aerosol optical depth, we can notice 

a sensitivity drop in the atmospheric layers containing aerosols for 𝑋!!! AKs, especially at high SZAs. Even if comparing 475 
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AKs shapes remain difficult because a CO2 profile is retrieved (and not a scaling factor) and many other factors differ, a 

similar behaviour was noticed during the ACOS algorithm characterization (Boesch et al., 2011). As for NanoCarb 𝑋!!! 

AKs, they exhibit a slight increase of sensitivity in the atmospheric layers containing aerosols, and a sensitivity drop 

comparable to NanoCarb 𝑋!!! AKs for SZA=70°. No similar 𝑋!!! AKs sensitivity study to the presence of aerosol has been 

found when writing this article.  480 

 
Figure 8. NanoCarb  𝑿𝑪𝑶𝟐  (top panels) and 𝑿𝑪𝑯𝟒  (bottom panels) column averaging kernels averaged over the 23 FOV pixels used 
to interpolate L2 results to the whole FOV. We show all three albedo models: soil (left), vegetation (middle) and desert (right), and 
four different SZA values (colour scales). Averaging kernels are shown for a low total aerosol optical depth (top rows) and a high 
total aerosol optical depth (bottom rows).  485 

5.3 Systematic and random errors 

The NanoCarb spectral band narrow-band filters exhibit FOV-dependent effects that impact the L2 performance: their 

reference wavelengths shift towards slightly shorter wavelengths with the angle of incident light, thus with the distance of 

pixels to the centre of the FOV (Smith, 2008). As the OPD selection was optimized for the center of the FOV, this results in 

an increased GHG and albedo information entanglement close to the swath border (not shown). This leads to an increase of 490 
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𝑋!!! and 𝑋!!! random errors, which can become slightly larger than the SCARBO sub-ppm and sub-6-ppb precision 

objectives for few situations and FOV pixels. In addition, it also challenges the hypothesis of independent scalar columns 

that is used to combine the FOV single-pixel 𝑋!!! and 𝑋!!! results in the along-track direction. As a consequence, we 

choose here to only consider pixels with 𝜃! comprised between -6° and 6° (whereas the full swath spans ±9.3° in the 

currently considered design used for constellation sizing). 495 

 
Figure 9. NanoCarb systematic and random errors for 𝑿𝑪𝑶𝟐  and 𝑿𝑪𝑯𝟒  in the no-SPEX design scenario case. Results are plotted as 
a function of the situation number: the five top panels detail the ALB (0.7 µm), SZA, CLH, COD and FOD values defining all the 
324 situations. In addition, the a priori and averaged retrieved COD and FOD values are also shown in the 4th and 5th top panels. 
6th and 7th panels show 𝑿𝑪𝑶𝟐  systematic and random errors, respectively, and 8th and 9th panels show 𝑿𝑪𝑯𝟒  systematic and random 500 
errors, respectively. The dependence on the transversal angle 𝜽𝑻 of L2 results is shown with the colour-scales: darker colours 
correspond to lower 𝜽𝑻 absolute values. Grey-shaded areas denote situations for which retrievals did not satisfactorily converge. 
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Figure 9 shows, for all 324 atmospheric and observational situations, as well as for all transversal angle positions between 0° 505 

and 6°, NanoCarb systematic and random errors (which definitions are given in Sect. 3.2) for 𝑋!!! and 𝑋!!! in the no-SPEX 

design scenario case. As for Fig. 6, the five top panels describe ALB, SZA, CLH, COD and FOD values for all situations. A 

priori and retrieved values are also shown for COD and FOD, in order to explain where 𝑋!!! and 𝑋!!! systematic errors 

come from. The four bottom panels display 𝑋!!!  and 𝑋!!!  systematic and random errors. Retrievals converge and 

satisfactorily reduce the cost function for most of the situations. Still, some of them remain challenging depending on the 510 

albedo model and SZA, when COD or CLH are far from the a priori value. Their results are excluded as shown with the 

grey-shaded areas.  

 

In this no-SPEX case, systematic errors come from the erroneous prior knowledge of scattering parameters in the state vector 

(Fig. 9). Regarding scattering particles, NanoCarb measurements are mostly sensitive to the presence of coarse mode 515 

aerosols in the optical path (as explained in Sect. 5.1) and the COD can be retrieved to some extent when the synthetic truth 

is not too far from the a priori state. Retrieved FOD seldom differ from the a priori value, showing again that no-SPEX 

retrievals are very little sensitive to fine mode aerosols. Here, 𝑋!!! and 𝑋!!! systematic errors can reach up to 8 ppm and 30 

ppb in absolute value for 𝑋!!! and 𝑋!!!, respectively. This corresponds to about 10 times and 5 times their average random 

error, respectively. Thus, no-SPEX NanoCarb 𝑋!!! retrievals are more sensitive to scattering error than no-SPEX NanoCarb 520 

𝑋!!!  retrievals. 𝑋!!!  systematic errors are mostly driven by COD retrieval errors that correlate with CLH a priori 

misknowledge (CLH a priori value is here fixed at 2 km, see Table 3) and SZA. This SZA dependence of systematic errors is 

particularly important for 𝑋!!!: that may be explained by the use of the 2.05 µm CO2 strong band that includes saturated 

CO2 lines and is quite sensitive to aerosols. A similar COD retrieval error dependence is found for 𝑋!!! systematic errors, 

which also interestingly exhibit a stronger correlation to FOD retrieval error, particularly visible in vegetation and desert 525 

albedo situations. 𝑋!!! and 𝑋!!! systematic error swath dependence is shown by the colour scales. It is most visible when 

systematic 𝑋!!! errors are high at the swath centre, and in situations with COD values far from the a priori for 𝑋!!!.  

 

Random errors in the no-SPEX design scenario (Fig. 9), for transversal positions below 6° in absolute value, outperform the 

1 ppm SCARBO 𝑋!!! precision objective for SZA below 50° in soil and vegetation situations, and for all SZA values in 530 

desert albedo situations. Regarding 𝑋!!! random errors, they overall meet the 6 ppb precision objective, but for soil albedo 

situations with SZA values of 25° or lower. Within the OE formalism random error variations are by definition completely 

correlated with DOFs variations (see Fig. 6): when more information is available for a given variable, its random error 

diminishes. Thus, as for DOFs, random error variations are mostly driven by COD and ALB values in the no-SPEX design 

scenario. It can finally be noted that most of the transversal positions within the swath exhibit similar random errors, except 535 

for those close to 6°. 
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Figure 10. NanoCarb sensitivities to a priori misknowledge of COD and FOD and random errors for 𝑿𝑪𝑶𝟐  and 𝑿𝑪𝑯𝟒  in the with-
SPEX design scenario case. Results are plotted as a function of the situation number: the five top panels detail the ALB (0.7 µm), 
SZA, CLH, COD and FOD values defining all the 324 situations. 6th and 7th panels show 𝑿𝑪𝑶𝟐  sensitivities to a priori 540 
misknowledge of COD and FOD and random errors, respectively, and 8th and 9th panels show 𝑿𝑪𝑯𝟒  sensitivities to a priori 
misknowledge of COD and FOD and random errors, respectively. The dependence on the transversal angle 𝜽𝑻 of random errors 
results is shown with the colour-scales: darker colours correspond to lower 𝜽𝑻 absolute values. As for sensitivities, only the 
minimum and maximum values for all transversal angles are shown. 

 545 

As detailed in Table 3, the a priori aerosol profile and a priori state vector are identical to the true state of the synthetic 

atmosphere in the with-SPEX design scenario case. This is done to simulate a more precise and accurate knowledge of 

aerosol parameters that can be brought by the SPEXone instrument. Given this strong hypothesis for SPEXone retrieval 

accuracy, L2 retrieval results do not exhibit systematic errors. Consequently, in order to study the sensitivity of 𝑋!!! and 

𝑋!!! systematic errors to this hypothesis, we use the averaging kernel matrix 𝑨 to propagate a priori misknowledge of 550 

aerosol parameters. Following Rodgers' (2000) notations, we have: 

𝑑𝒙 = !𝒙
!𝒙𝒕𝒓𝒖𝒆

𝑑𝒙𝒕𝒓𝒖𝒆 = 𝑨 0,0,0,0,0,0,0,0, 𝛿!"# , 𝛿!"# !     (3) 
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with 𝒙, the retrieved state vector, 𝒙𝒕𝒓𝒖𝒆, the synthetic true state of the atmosphere, 𝛿!"# and 𝛿!"# differential perturbation of 

COD and FOD parameters, respectively.  

 555 

Figure 10 is similar to Fig. 9, but shows results for the with-SPEX design scenario (a version that combines Fig. 9 and Fig. 

10 is included in the supplements for a better comparison of systematic errors, but less readability of no-SPEX results). 

Instead of systematic errors, it presents 𝑋!!! and 𝑋!!! systematic error sensitivities to synthetic truth perturbations of COD 

and FOD corresponding to their respective prior uncertainties 𝜎!"# and 𝜎!"#: 𝛿!"# = ±𝜎!"# and 𝛿!"# = ±𝜎!"# (provided 

by SPEXone linear error analysis). This systematic error sensitivity test is conservative in different ways. First, the 560 

perturbation by SPEXone random error is at least a factor two greater than the systematic optical depth errors found in 

(Hasekamp et al., 2019). In addition, the separation between COD and FOD perturbations does not allow for these errors to 

compensate themselves and possibly partially cancel out a fraction of 𝑋!!!  and 𝑋!!!  systematic errors. 𝑋!!!  and 𝑋!!! 

systematic error sensitivities to synthetic truth perturbations of COD and FOD are shown as the maximum and minimum 

sensitivities among all transversal positions with |𝜃!| < 6°. Uncertainties in COD retrieved by SPEXone can result in up to 565 

±5.5 ppm impact on 𝑋!!! and ±28 ppb impact on 𝑋!!!. It is interesting to note that despite similar SPEXone precisions for 

COD and FOD between SZA=50° and SZA=70° over all albedo models, COD perturbations have a much more important 

impact on 𝑋!!! at SZA=70°. This highlights the particular sensitivity of the NanoCarb measurements to coarse mode 

aerosols at high SZAs. This remains valid for 𝑋!!! to a lesser extent. Sensitivities to COD imprecisions also impact 𝑋!!! 

and 𝑋!!! at low SZA over desert-albedo situations, where SPEXone uncertainties are the highest. Regarding fine mode, 570 

uncertainties in FOD retrieved by SPEXone can result in up to ±0.4 ppm impact on 𝑋!!! and ±2.5 ppb impact on 𝑋!!!. 

Those sensitivities to FOD perturbations are greatly smaller than those to COD, due to the better SPEXone performance for 

fine mode aerosols and the lower impact this mode has on NanoCarb measurements. Compared to the no-SPEX systematic 

errors presented in Fig. 9, we can conclude here that SPEXone has the potential to significantly reduce systematic errors 

originating from fine mode aerosols in both 𝑋!!! and 𝑋!!! retrievals from NanoCarb truncated interferograms. Regarding 575 

coarse mode aerosols, the potential of SPEXone is more nuanced. SPEXone has COD posterior uncertainties at their best for 

situations in which no-SPEX 𝑋!!!retrievals exhibit the largest systematic errors due to COD, namely for high SZA values, in 

situations with large COD. Conversely, no-SPEX 𝑋!!! systematic errors are lower than the 𝑋!!! impact of SPEXone COD 

uncertainty in situations with low SZA. Thus, SPEXone performance for COD appears to be complementary to the 𝑋!!! 

COD sensitivity of NanoCarb measurements. Considering a typical European situation with a vegetation albedo and 580 

SZA=50°, the aerosol information brought by SPEXone is thus critical to reduce systematic errors due to coarse mode 

aerosols. However, some situations where SPEXone is less precise for COD can remain a challenge: in case of transient 

coarse aerosol contamination over desert albedo situations and low SZAs for instance. The sensitivity of 𝑋!!! systematic 

errors to SPEXone COD uncertainty is mostly larger than the no-SPEX 𝑋!!! systematic errors, except for high SZA and 
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COD values in vegetation and desert albedo situations. This shows the limitations of SPEXone ability to help reduce the 585 

systematic errors originating from coarse mode aerosols in 𝑋!!! NanoCarb retrievals. 

 

Figure 10 also shows 𝑋!!! and 𝑋!!! random errors for the with-SPEX design scenario, those are lower than in the no-SPEX 

design scenario. Indeed, due to the GHG and aerosol information entanglement shown in Sect. 5.1, the better a priori 

constraint of aerosol parameters brought by SPEXone enables to dedicate more of NanoCarb measurement information to 590 

estimate GHG parameters in the with-SPEX scenario. For nearly all the atmospheric and observational situations considered 

in this work, 𝑋!!! and 𝑋!!! satisfactorily reach the SCARBO sub-ppm and sub-6-ppb precision objectives, respectively. 

6. Level 2 performance parameterization 

6.1 Linear regressions 

In order to yield generalized SCARBO L2 performance models from the 324 situations considered in this work, we adopt the 595 

approach used in (Buchwitz et al., 2013) and perform linear regressions to parameterize L2 performance results. In other 

words, we determine the 𝑐 and 𝑎! coefficients so that: 

𝑌 = 𝑐 +  𝑎!𝑋!!
!!!  (3) 

with 𝑌, an L2 performance result to parameterize as a function of 𝑛 heuristically determined (linear and non-linear) 

parameters 𝑋!, expressed as combinations of the selected ALB, SZA, CLH, COD, FOD parameters along with 𝜃!, the 600 

transversal angle position (absolute value) within the swath. Considering ALB_NIR, ALB_SWIR-1 and ALB_SWIR-2 that 

describe albedo model values at 0.7 µm, 1.6 µm and 2.0 µm, respectively, Table 4 lists the 𝑋! parameters used for 𝑋!!! and 

𝑋!!! systematic errors, random errors and AK level values parameterizations. 

 

Table 4. Heuristically determined parameters to use for L2 performance parameterizations 605 

Parameter name Parameter definition for systematic errors (𝒏 = 𝟗) Unit to use 

𝑋! 1/cos (SZA×𝜋/180)  ° 

𝑋! ALB_SWIR-2 - 

𝑋! log (FOD)  - 

𝑋! log (COD)  - 

𝑋! max(CLH, 2)  km 

𝑋! 1/cos (θ!×𝜋/180)  ° 

𝑋! 𝑋! − 2 ×𝑋!  - 

𝑋! ALB_NIR - 
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𝑋! 𝑋!×𝑋!  - 

Parameter name Parameter definition for random errors (𝒏 = 𝟗)  Unit to use 

𝑋! 1/cos (SZA×𝜋/180)  ° 

𝑋! ALB_NIR - 

𝑋! −ALB_SWIR-2 + 0.2   - 

𝑋! log (FOD)  - 

𝑋! log (COD)  - 

𝑋! 1/cos (θ!×𝜋/180)  ° 

𝑋! 𝑋!×𝑋!  - 

𝑋! 𝑋!/𝑋!  - 

𝑋! 𝑋!×𝑋!  - 

Parameter name Parameter definition for column averaging kernel layer values (𝒏 = 𝟖) Unit to use 

𝑋! 1/cos (SZA×𝜋/180)  ° 

𝑋! ALB_NIR - 

𝑋! ALB_SWIR-1 - 

𝑋! FOD - 

𝑋! COD - 

𝑋! max(CLH, 2)  km 

𝑋! ALB_SWIR-2 - 

𝑋! 𝑋!×𝑋!  - 

 

Figure 11 shows parameterization results for 𝑋!!! systematic and random errors, and for no-SPEX and with-SPEX design 

scenarios. For no-SPEX situations, results are parameterized for retrieved COD + FOD < 0.25, in order to emulate some sort 

of sensible filtering that could be performed in operational processing. For systematic errors, the parameterization captures 

the combined COD, SZA and CLH trends of L2 results, as well as some of the transversal angle position dependence. 610 

Regarding no-SPEX random errors, the parameterization captures the combined albedo and SZA trends (except for soil-

albedo at SZA=70°), but fails to reproduce the COD trend over vegetation and soil-albedo situations, due to the strong 

influence of this trend in desert situations. The transversal angle position dependence is well captured. The parameterization 

for the with-SPEX scenario random errors is quite accurate and satisfactorily reproduces most of the L2 performance trends 

(for this scenario, we only filter with COD<0.6 and FOD<0.6). In addition, it can be noted that vegetation-albedo situations, 615 

the most representative of European surface, are those for which parameterizations best reproduce the computed exact L2 

performance. Similar results are obtained for 𝑋!!! (see supplements, where AKs parameterization results are also shown). 
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Overall, the means and standard deviations of parameterization approximation errors evaluated on all 324 situations and 

transversal angle positions that passed filters are given in Table 5. 

 620 
Figure 11. Parameterized (blue colour-scale) NanoCarb 𝑿𝑪𝑶𝟐  systematic (6th and 8th panels) and random errors (7th and 9th panels) 
compared to exact L2 error retrieval results (red colour-scale). Results are plotted as a function of the situation number: the five 
top panels detail the ALB (0.7 µm), SZA, CLH, COD and FOD values defining all the 324 situations. Grey-shaded areas denote 
situations for which retrievals did not satisfactorily converge or situations filtered out according to the retrieved COD and FOD 
values. 625 

Table 5. Parameterization approximation errors 

Variable Design scenario Systematic error Random error 

𝑿𝑪𝑶𝟐  no-SPEX 0.00 ± 0.36 ppm 0.00 ± 0.11 ppm 

 with-SPEX - 0.00 ± 0.05 ppm 

𝑿𝑪𝑯𝟒  no-SPEX 0.00 ± 2.04 ppb 0.00 ± 0.46 ppb 

 with-SPEX - 0.00 ± 0.24 ppb 
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6.2 Application of L2 performance parameterizations: 1st of July, 2015 example 

SCARBO ground tracks are calculated and auxiliary datasets are gathered to provide large spatial and temporal scale maps 

of the five selected error-critical parameters: ALB (at 0.7 µm, 1.6 µm and 2.0 µm), SZA, CLH, COD and FOD. We then use 

those maps to apply the previously obtained L2 performance parameterizations and yield systematic and random 𝑋!!! and 630 

𝑋!!! errors, as well as 𝑋!!! and 𝑋!!! column averaging kernels, that can then be used for L4 flux inversion studies. 

 

The SCARBO constellation considered in this study for the ground track computation is composed of 28 satellites on sun-

synchronous orbits of 605.498 km height, and separated on two orbital planes: one observing at 10 am (local time) and the 

second at 2 pm (local time). Orbital parameters are adjusted to have a repeating cycle of 7 days, and so that the second plane 635 

repeats the ground traces of the first one. As the provided L2 performance results already include the contribution of all 

along-track NanoCarb measurements, observations are sampled at the resolving spatial resolution of ~2.3 km in the across-

track direction, producing 85 soundings in a 200 km swath corresponding to transversal angle positions 𝜃! between 0° in 9° 

in absolute value.  

 640 

Only clear sky land observations are kept: cloud flagging is performed with the MODIS Atmosphere L2 Cloud Mask 

Product (Ackerman, S. A., Frey, 2015) and land/sea flagging with the Global Multi-resolution Terrain Elevation Data 

(GMTED2010) 30’’ product (Danielson, J.J., and Gesch, 2011). Given the date and time, the derived observation 

geolocations enable to yield the SZA dataset. 

 645 

Aerosol parameters COD, FOD and CLH are generated using the T255 Copernicus Atmospheric Monitoring Service 

(CAMS) reanalyses for aerosols (Flemming et al., 2017) interpolated at 15’’ resolution. The different aerosol types proposed 

in this product are separated in two classes, a fine mode and a coarse mode, according to their overall size. Coarse mode and 

fine mode optical depths (COD and FOD) datasets are then generated by summing the optical depths of the individual types 

belonging to each class. Finally, CAMS vertical mixing-ratios of aerosol types classified as coarse are processed to yield the 650 

average mass altitude that is used for the CLH dataset. 

 

In order to create a ground albedo dataset at our three reference wavelengths, we employ the ESA ADAM (A surface 

reflectance Database for ESA’s earth observation Missions) climatology (Bacour et al., 2020) that relies on MODIS surface 

reflectance data. In order to extrapolate reflectance values at our three reference wavelengths, the Étude CLImatologique des 655 

Propriétés optiques de fonds de Sol (ECLIPS) French ANR project data is used (mentioned in Bacour, 2019), finally yielding 

ALB_NIR, ALB_SWIR-1 and ALB_SWIR-2 parameter datasets. 
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In order to illustrate the application of the L2 performance parameterizations, we use the parameter datasets of the 1st of July 

2015 to compute parameterized 𝑋!!! systematic and random errors for the 10 am (local time) orbital plane satellites, for both 660 

no-SPEX and with-SPEX design scenarios. Figure 12 shows 0.2°x0.2° averaged ALB_NIR, ALB_SWIR-2, SZA, CLH, 

COD and FOD cloud-free parameter maps. Unsurprisingly, albedo values are mostly representative of vegetation models 

(see Fig. 5), with rather high reflectance near 0.7 µm and low reflectance near 2.0 µm. Southern Spain and Italy, as well as 

Maghreb have more desert-like surface albedos. For the 1st of July, 2015, CAMS simulated aerosols are mostly present over 

Maghreb, Eastern Spain, France, United-Kingdom and Eastern Europe, with rather high fine mode optical depth and low 665 

coarse mode optical depths. These coarse mode aerosols have a rather low layer altitude, except over Germany, where a low-

COD layer reaches nearly 5 km. Figure 13 shows the corresponding parameterized 𝑋!!! systematic and random errors for 

both design scenarios (see supplements for 𝑋!!!). Those are computed for transversal angle positions lower than 6° in 

absolute values, as we do not consider the full NanoCarb swath in this work. Soundings are filtered with COD + FOD < 0.25 

and COD < 0.6 and FOD < 0.6 in no-SPEX and with-SPEX scenario cases, respectively, thus explaining the different 670 

number of soundings between these two scenarios. No-SPEX systematic errors mostly correlate with COD and CLH as 

already noted in Fig. 7. whereas no systematic error is given for with-SPEX scenario as per its hypotheses. Regarding 

random errors, they are lower in the with-SPEX scenario and decrease over more desert-like albedo situations as can be seen 

in Southern Spain and Italy as well as Maghreb. Finally, the stripping that can be noticed on random error maps corresponds 

to the loss of precision with the transversal position within the swath, as |θ!| gets closer to 6°. 675 
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Figure 12. ALB_NIR, ALB_SWIR-2, SZA, CLH, FOD and COD cloud-free parameter maps of the 1st of July 2015, averaged on a 
0.2°x0.2° grid.  

 
Figure 13. Parameterized 𝑿𝑪𝑶𝟐  systematic (top) and random (bottom) errors for the 1st of July 2015, for the no-SPEX (left) and 680 
with-SPEX (right) design scenario cases and averaged on a 0.2°x0.2° grid. 

7. Conclusions 

In this work, we have carried out the Level 2 performance assessment of the NanoCarb concept developed in the SCARBO 

project. For a set of 324 scattering-error-critical atmospheric and observational situations, we retrieved 𝑋!!! and 𝑋!!! 

directly from NanoCarb truncated interferograms by using the 5AI inverse scheme.  685 

 

First, as this concept constitutes an original approach to NIR and SWIR infrared measurements compared to state-of-the-art 

GHG satellite missions, we have analysed the vertical sensitivities and information content of the truncated interferograms. 

Retrievals are clearly sensitive to CO2 and CH4 with degrees of freedom close to 1.0, and the retrieved 𝑋!!! and 𝑋!!! are 

representative of all atmospheric layers as usual NIR and SWIR concepts.  690 

 

In order to establish the merits of coupling NanoCarb with the SPEXone instrument dedicated to aerosols, we have 

compared the results for two SCARBO satellite design scenarios: no-SPEX and with-SPEX. Systematic 𝑋!!! and 𝑋!!! 

retrieval errors originating from the presence of fine mode aerosols on the optical path can be significantly reduced by taking 

advantage of NanoCarb coupling with SPEXone. In addition, the performance of SPEXone for coarse mode aerosols also 695 

enables to reduce systematic 𝑋!!! errors where they are the largest, for typical European vegetation albedo situation with 
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SZA=50° and high COD for instance. Desert situations with low SZAs may still remain a challenge in case of transient 

desert dust contaminations for instance.  

 

Regarding precision, 𝑋!!! and 𝑋!!! random errors span 0.5 – 1 ppm and 4 – 6 ppb, respectively. Thus, for transversal angle 700 

positions lower than 6°, NanoCarb are compliant with the 1-ppm and 6-ppb precision objectives for 𝑋!!!  and 𝑋!!! , 

respectively, for situations with SZA ≤ 50°.  

 

These systematic and random retrieval column errors, as well as their vertical sensitivities, have been successfully 

parameterized as functions of the five selected scattering-error-critical parameters. Consequently, large L2 maps can be 705 

produced and distributed for L4 atmospheric GHG flux inversion performance assessments. 

 

This simulation study sheds light on the Level 2 performance of the peculiar NanoCarb truncated interferogram concept: it 

exhibits an interesting potential for providing meaningful information about greenhouse gas atmospheric concentrations, 

with a very compact imaging spectrometer. As for all simulation studies, there are implicit hypotheses that need to be 710 

considered: only scattering-error-critical situations have been considered and prior knowledge of the true synthetic state of 

the atmosphere and of the surface is assumed to be perfect, but for aerosol parameters in the no-SPEX scenario. In particular, 

the number of aerosol types, their optical properties and number of layers are considered to be exactly known. In addition, 

the instrumental model is also ideal: it implements the theoretical Fabry-Perot interferometer equations without considering 

any miscalibrated optical defect. However, as the SCARBO concept (NanoCarb coupled with SPEXone) reaches and even 715 

out-performs its precision objectives in this work with ideal hypotheses, we can expect some margins to cover for possible 

instrumental parameter imprecisions. This would be a next step towards an ultimately complete error budget that takes into 

account the critical instrumental (L1) and retrieval setup (L2) parameters that impact the overall performance of the 

SCARBO concept. 

 720 

This first step in assessing NanoCarb L2 performance has also enabled to point out geophysical variable information 

entanglements in NanoCarb truncated interferograms, when examining the retrieval degrees of freedom. These include 

entanglements between albedo and surface pressure, albedo and CO2, albedo and CH4 and finally CH4 and H2O that had not 

been taken into account for the NanoCarb optimized OPD selection and model used in this work. Because of the very nature 

of NanoCarb measurements, these entanglements also evolve within the FOV, leading to an increase of 𝑋!!! and 𝑋!!! 725 

random errors on the swath edges. This specificity impacts the achievable swath for a given precision objective. It is 

consequently critical for the design of the SCARBO constellation, which results from a compromise between the number of 

satellites, the coverage and revisit possibilities. Thus, by identifying the limitations to disentangled GHG sensitivity within 

NanoCarb truncated interferograms, this work has also paved the way for future improvements of the whole concept design. 
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Appendix A 730 

Combining NanoCarb measurements in the along-track dimension 

With its current design, the NanoCarb instrument can gather up to 𝑛 = 102 independent truncated interferograms over the 

same exact fixed ground location. It corresponds to a unique state of the atmosphere that we seek to estimate from all the 

available measurements. Algorithmically speaking, using (Rodgers, 2000) notations and following his guidance in part 4.1.1, 

this can be achieved by including all 𝑛 NanoCarb truncated interferograms inside the same measurement vector 𝒚 =735 

[𝒚𝟏,… ,𝒚𝒏] to retrieve one unique posterior state 𝒙. This posterior state maximizes the probability 𝑃(𝒙|𝒚𝟏,… ,𝒚𝒏) that can be 

expressed with Bayes theorem, and because measurements 𝒚𝒊 are independent, as: 

𝑃 𝒙 𝒚𝟏,… ,𝒚𝒏 = ! 𝒚𝟏,…,𝒚𝒏 𝒙 !(𝒙)
!(𝒚𝟏,…,𝒚𝒏)

= 𝑃(𝒙) ! 𝒚𝒊 𝒙
!(𝒚𝒊)

!
!!!   (A1) 

Assuming Gaussian statistics for both state and measurements, and a linear forward model described by its jacobian matrices 

𝑲𝒊 corresponding to the measurement 𝒚𝒊, we can express the a posteriori covariance matrix 𝑺 of the unique posterior state 𝒙 740 

as: 

𝑺 =  𝑺𝒂!𝟏 + 𝑲𝒊
𝑻𝑺𝒆,𝒊!𝟏𝑲𝒊

𝒏
𝒊!𝟏

!!
  (A2) 

with 𝑺𝒂, the a priori covariance matrix of the a priori state vector 𝒙𝒂, and 𝑺𝒆,𝒊, the a priori covariance matrix of the individual 

measurement 𝒚𝒊. At the same time, for all individual a posteriori states 𝒙!, retrieved from the individual independent 

measurements 𝒚𝒊, their a posteriori covariance matrix 𝑺! can be expressed as: 745 

𝑺! =  𝑺𝒂!𝟏 + 𝑲𝒊
𝑻𝑺𝒆,𝒊!𝟏𝑲𝒊

!!
   (A3) 

Thus, using Eq. (A2) and Eq. (A3), we can express 𝑺 as a function of individual a posteriori covariance matrices 𝑺!: 

𝑺!! = 𝑺𝒂!𝟏 +  (𝑺!!𝟏 − 𝑺𝒂!𝟏)𝒏
𝒊!𝟏    (A4) 

Regarding the unique a posteriori state 𝒙, we have: 

𝒙 = 𝒙𝒂 + 𝑺 𝑲𝒊
𝑻𝑺𝒆,𝒊!𝟏(𝒚𝒊 − 𝑲𝒊𝒙𝒂)!

!!!    (A5) 750 

and at the same time, individual a posteriori states 𝒙!, retrieved from the individual independent measurements 𝒚𝒊 also 

verify: 

𝒙! = 𝒙𝒂 + 𝑺!𝑲𝒊
𝑻𝑺𝒆,𝒊!𝟏(𝒚𝒊 − 𝑲𝒊𝒙𝒂)   (A6) 

Thus, using Eq. (A5) and Eq. (A6), we can express 𝒙 as a function of individual a posteriori states 𝒙!: 

𝑺!!(𝒙 − 𝒙𝒂) = 𝑺!!!(𝒙! − 𝒙𝒂)!
!!!    (A7) 755 

 

In conclusion, assuming all individual a posteriori state vectors 𝒙! are obtained with their respective posterior covariance 

matrices 𝑺!!!, Eq. (A4) and Eq. (A7) explain how to combine them in order to compute the unique posterior state 𝒙 and its 

covariance matrix 𝑺. 
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