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Abstract. This study presents the first-ever complete characterization of random errors in dual-polarimetric spectral observa-

tions of meteorological targets by cloud radars. The characterization is given by means of mathematical equations for joint

probability density functions (PDF) and error covariance matrices. The derived equations are checked for consistency using

real radar measurements. One of the main conclusions of the study is that the convenient representation of spectral polari-

metric measurements including differential reflectivity ZDR, correlation coefficient ρHV , and differential phase ΦDP is not5

suited for the proper characterization of the error covariance matrix. This is because the aforementioned quantities are complex,

non-linear functions of the radar raw data and thus their error covariance matrix is commonly derived using simplified linear

relations and by neglecting the correlation of errors. This study formulates the spectral polarimetric measurements in terms of

a different set of quantities that allows for a proper analytic treatment of their error covariance matrix. The results given in this

study allow for utilization of spectral polarimetric measurements for advanced meteorological applications, among which are10

variational retrieval techniques, data assimilation, and sensitivity analysis.

1 Introduction

Cloud radars are a major component of state-of-the-art, ground-based observation platforms (Illingworth et al., 2007; Kollias

et al., 2020). Their unique capabilities make these instruments extremely valuable for cloud and precipitation research. First,

these radars have Doppler capabilities, i.e. can independently characterize hydrometeors coexisting in the same volume but15

moving with different speeds relative to the radar (Kollias et al., 2007). Second, the high sensitivity and vast dynamic range

make cloud radars capable of measuring return signals from a wide range of particles sizes, which is a challanging task for

other instruments like lidars (Bühl et al., 2013). Third, due to relatively low attenuation of microwave signals by liquid water,

cloud radars profile clouds up to the top even in presence of light-to-moderate rain. These capabilities promote cloud radars for

investigation of different formation and development processes throughout the lifecycle of clouds. For instance, cloud radars20

help to characterize initial ice formation and development in mixed-phase clouds (Bühl et al., 2019), improve characterization

of pure liquid clouds (Rusli et al., 2017; Acquistapace et al., 2017), estimate rates of aggregation (Kneifel et al., 2015, 2016)

and riming (Kalesse et al., 2015; Moisseev et al., 2017; Kneifel and Moisseev, 2020), and quantitatively analyse solid and

liquid precipitation (Matrosov, 2005; Matrosov et al., 2006, 2008; Tridon and Battaglia, 2015; Tridon et al., 2017, 2019).
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Many cloud radars have dual-polarization capabilities. An interest in polarimetry-based methods in the cloud radar commu-25

nity has been growing, which is indicated by a number of studies during the last decade (Matrosov et al., 2012; Oue et al., 2015;

Lu et al., 2015; Myagkov et al., 2016a, b; Matrosov et al., 2017; Oue et al., 2018; Myagkov et al., 2020). Vertically pointed

cloud radars often operate in the LDR-mode (Linear Depolarization Ratio), i.e transmit a linearly-polarized wave (either hor-

izontally or vertically) and receive co- and cross-polarized components of the backscattered signal (e.g Görsdorf et al., 2015).

The LDR-mode is efficient for clutter removing and detection of the melting layer and columnar-shaped ice particles. As shown30

by Matrosov et al. (2001), however, the applicability of the LDR mode at low elevation angles might be limited due to its high

sensitivity to the orientation of cloud particles. Therefore, scanning polarimetric cloud radars often have polarimetric modes

which are less sensitive to the orientation. One of such modes is the hybrid mode (also denoted as the STSR (Simultaneous

Transmittion and Simultaneous Reception) or STAR (Simulteneous Transmittion And Reception) mode in literature). Radars

with the hybrid mode emit the horizontal and vertical components of the transmitted wave simultaneously (Myagkov et al.,35

2015; Bringi and Chandrasekar, 2001, Sec. 4.7). Cloud radars with the hybrid mode allow for adoption of polarimetry-based

methods having been developed during last several decades for centimetre-wavelength meteorological radars (further denoted

as precipitation radars).

Operational precipitation radars are used by weather services to continuously scan the atmosphere providing polarimetric

variables integrated for a scattering volume. In addition to the integrated quantities, cloud radars with the hybrid mode enable40

spectrally-resolved polarimetric observations and, therefore, can provide the same set of polarimetric variables for different

types of cloud particles coexisting in the same resolution volume (Oue et al., 2015; Myagkov et al., 2016b, 2020). Spectral ob-

servations are in general possible with precipitation radars (Spek et al., 2008; Dufournet and Russchenberg, 2011; Pfitzenmaier

et al., 2018). Such measurements, however, are not performed by operational radars due to fast azimuth scanning.

Spectral polarimetry can be used for a development of advanced retrieval methods. For example variational retrievals devel-45

oped for dual-frequency spectra (Tridon and Battaglia, 2015; Tridon et al., 2017) could be applied also to spectral polarimetry.

Moisseev and Chandrasekar (2007) presented first attempts to retrieve profiles of raindrop-size distributions using polarimetric

spectra from a precipitation radar. This approach, however, has not been yet explored in polarimetric cloud radars.

Recent review studies (Zhang et al., 2019; Morrison et al., 2020; Ryzhkov et al., 2020) demonstrate that polarimetric ob-

servations from precipitation radar networks are highly beneficial for the evaluation and development of numerical weather50

prediction and cloud resolving models. The high value of polarimetric observations is given by their sensitivity to microphys-

ical properties of cloud and precipitation particles such as size, shape, number concentration, state of matter, density, and

orientation (Kumjian, 2013). Polarimetric cloud radars are not yet widely used for model improvement. This, however, does

not indicate that cloud radar polarimetry is not informative relative to precipitation radars. Conversely, the cloud radar spectral

polarimetry can essentially complement available measurements.55

The development of both quantitative retrievals and data assimilation algorithms requires the characterization of the system-

atic and random measurement errors. The former type of errors is solved by a calibration. Calibration aspects of polarimetric

quantities have been intensively studied for both precipitation and cloud radars (Chandrasekar et al., 2015) and are out of

the scope of this study. In the case of radar observations of meteorological targets, random errors can be characterized from
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measurements if raw (unaveraged) data are available. Cloud radars, however, rarely store raw data because of high data rate.60

Therefore, commonly used approaches to characterize random errors are based on statistical models of the received radar sig-

nals. Random errors of radar signals can be represented by a joint probability density function (PDF) of amplitudes and phases

in the two orthogonal polarimetric channels. The joint PDF for polarimetric observations obtained for a single pulse can be

found in Middleton (1996, chapter 9.2). Single-pulse measurements, however, are rarely used in the radar meteorology because

of the low sensitivity and higher requirement for storage space. The observed radar spectra, almost always, result from the aver-65

aging of a number of return pulses. Lee et al. (1994) showed a derivation of a joint probability density function of polarimetric

variables for the case of averaging. The authors used a number of assumptions applicable for Earth’s surface observations

using synthetic-aperture radars. It turns out that the same assumptions are applicable to spectral polarimetric observations of

meteorological targets. This allows for using a similar approach in analytic characterization of errors of spectral polarimetric

observations.70

A number of studies (e.g. Hogan (2007); Cao et al. (2013); Yoshikawa et al. (2014); Chang et al. (2016); Huang et al. (2020))

characterize the joint PDF of polarimetric radar measurements by the error covariance matrix. There are, however, problems

with existing approximations of the error covariance matrix for polarimetric observations. First, the elements in the main

diagonal of the error covariance matrix – variances of random errors – are found using the first-order Taylor approximation

following Bringi and Chandrasekar (2001). Conventional polarimetric variables such as differential reflectivity, correlation75

coefficient, and differential phase are , however, highly non-linear functions. Therefore, the approximation may lead to biases

in the error variance estimates especially when signal-to-noise ratios (SNR) and/or the number of averaged samples is low.

This problem becomes important for cloud radars collecting polarimetric variables with a high spatial, temporal, and spectral

resolution. Second, non-diagonal components of the error covariance matrix are typically set to zero assuming no correlation

between errors in measured quantities but validity and effects of this assumption are not discussed. The information content80

of measurements is, however, higher when errors are correlated (chapter 3.2.6 in Rodgers, 2000) and therefore, non-negligible

off-diagonal elements of the covariance matrix should not be ignored.

This study will review the measurement method of spectral polarimetry with radars operating in the hybrid mode in Sec. 2. In

Sec. 3 the likelihood functions of the common polarimetric radar variables are rigorously derived. The error covariance matrix

of polarimetric measurements is derived in Sec. 4 by taking into account the correlations among the various measurement85

random errors. In Sec. 5 the validity of expressions derived for the likelihood functions and error covariance matrix is checked

using real raw measurements from a cloud radar.

2 Spectral polarimetry in the hybrid mode

This section introduces known relations between a raw cloud radar signal, complex amplitudes, and spectral polarimetric

variables for observations of meteorological targets. These relations are based on the same set of assumptions introduced in90

classical works of Doviak et al. (1979) and Bringi and Chandrasekar (2001) for precipitation radars.
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Since pulsed radars are currently more common in the meteorological community, we use the term "pulse" to refer to a type

of the transmitted radar signal in Secs. 2–4. For radars with frequency modulated continuous wave (FMCW) signals, however,

the term "chirp" should be used. Later, in the Sec. 5 we use measurements from a FMCW radar and therefore the term "chirp"

is used there.95

2.1 Complex amplitudes of radar measurements

Radar polarimetric measurements are made in an orthogonal measurement basis defined by feeders of the antenna system. In

the hybrid mode the measurement basis is typically Cartesian and formed by the horizontal (h) and vertical (v) components.

Further this basis is denoted as the h–v basis. Dual-polarimetric cloud radars have two receivers dedicated to the orthogonal

polarimetric components of the received signal. For each transmitted pulse the receivers provide range profiles of in-phase Ih,v100

and quadrature Qh,v components, where indices h and v denote the polarization state. Note, that this study does not cover

the radar signal processing to get the Ih,v and Qh,v profiles. This information can be found in a radar handbook e.g. Skolnik

(2008, Chapter 6). Using Nfft profiles of Ih + iQh and Iv + iQv , where i is the imaginary unit, the radar calculates complex

Doppler spectra in the horizontal and vertical channel, respectively, applying the Fast Fourier Transformation (FFT) along the

time dimension. The complex Doppler spectra are represented by complex amplitudes Ṡ for each spectral component and each105

range bin.

Different range bins as well as different spectral components are often considered to be statistically independent, because

the corresponding complex amplitudes result from non-coherent scattering of numerous independently moving particles. Some

correlation, however, can be expected due to sampling effects and the FFT spectral leakages (e.g. Sec. 5.3 in Marple, 2019). For

instance, the power scattered from particles located close to the end of a range bin is distributed between this and the following110

range bins. These effects depend on filter properties and used FFT windows. It is challenging to give a general analytical

solution taking these effects into account. Therefore, these effects are out of the scope of this study. For the sake of simplicity

the following analysis is shown only for a single range bin and a single spectral component. Since movements of particles

in neighboring range and spectral bins are not related, statistical properties of an individual bin considered in the following

are not affected by sampling effects and spectral leakages. The neglection of the dependence of the neighboring bins leads to115

an underestimation of the information entropy when a complete spectrum and/or spectral profile is analyzed. This worst case

assumption, however, allows for a relatively easy and universal characterization of measurement errors. Future studies may

improve the error characterization by considering the sampling and leakage effects.

In the following, Ṡh and Ṡv denote the measured complex amplitudes of the analysed spectral component in the horizontal

and vertical channels, respectively (the dot hereafter denotes a complex quantity). Introduce a measurement column-vector120

m̂= [R̂h, Ĵh, R̂v, Ĵv]
T (1)

with R̂ and Ĵ being real and imaginary parts of a complex amplitude Ṡ, indices h and v denote the polarization state, T is the

transposition sign, the overhat hereafter is used to emphasize measured quantities. The probability density function (PDF) of
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m̂, given the true covariance matrix Σm of m̂, can be written as follows:

fm (m̂|Σm) = (2π)−2 det(Σm)−
1
2 e−

1
2m̂

TΣmm̂. (2)125

Note that throughout the study a PDF is a function of measured quantities (e.g. m̂ in Eq. 2) with fixed parameters (e.g. Σm

in Eq. 2). The same PDF is called a likelihood function if the measured quantities are fixed and the PDF is viewed as a function

of parameters.

Doviak et al. (1979) showed that for meteorological targets I and Q components are jointly normal with zero mean, zero

correlation, and equal standard deviation. The authors explain that these properties are due to scattering from a large number130

of particles moving in an unpredictable way in a scattering volume. Since Nfft is much smaller than the number of particles in

a resolution volume, the properties are also valid for relations between R̂h and Ĵh and between R̂v and Ĵv .

The measured complex amplitudes Ṡh and Ṡv , however, can be correlated. Taking these properties into account, the true

covariance matrix Σm is defined in the following way (Eq. 5.178 in Bringi and Chandrasekar (2001)):

Σm =


σ2
h 0 qσhσv sσhσv

0 σ2
h −sσhσv qσhσv

qσhσv −sσhσv σ2
v 0

sσhσv qσhσv 0 σ2
v ,

 , (3)135

where σh is the standard deviation of R̂h and Ĵh, σv is the standard deviation of R̂v and Ĵv , q is the correlation between R̂h

and R̂v , and s is the correlation between R̂h and Ĵv .

2.2 Polarimetric variables

Unlike precipitation radars which perform rapid azimuth scans, cloud radars are typically pointed to a certain direction or make

slow scans to get non-broadened Doppler spectra. Doviak et al. (1979) showed (Eq. 5.2 in there) that the coherency between the140

adjacent samples depends on the wavelength and the sample repetition period. Cloud radars typically have the pulse repetition

frequency in the order of 10 kHz and Nftt in the range from 128 to 1024. This results in getting a single spectrum every

0.01–0.1 s. For such sampling properties of cloud radars any significant coherency between adjacent samples of a spectral line

requires the spectral broadening not exceeding at most a few cm s−1. The turbulent spectral broadening, however, exceeds

few cm s−1 even in stratiform non-precipitating clouds (Borque et al., 2016). Therefore, consecutive samples of complex145

amplitudes for a spectral line can be considered to be independent.

Since for meteorological targets R̂h is not correlated with Ĵh and R̂v is not correlated with Ĵv , the absolute phases of Ṡh

and Ṡv are uniformly distributed from 0 to 2π and, thus, uninformative. Therefore, the polarimetric observations in the hybrid

mode can be represented by a 2× 2 covariance matrix B (Eq. 4.130 in Bringi and Chandrasekar (2001)) instead of the true

covariance matrix Σm:150

B = eeT =

Bhh Ḃhv

Ḃ∗hv Bvv

 , (4)
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where

e= (Ṡh, Ṡv)
T; (5)

the overline indicates the expected value,Bhh andBvv have meaning of total powers of the horizontal and vertical components

of the received signal, respectively, Ḃhv is the covariance between the horizontal and vertical components of the received signal,155

and ∗ is the complex conjugation sign. Note, that in general Bhh, Bvv , and real and imaginary parts of Ḃhv can be calibrated

in any quantity that is proportional to the power (Watts) received by the radar; e.g. classical radar reflectivity (mm6 m−3) or

even arbitrary units (Myagkov et al., 2016a). Recall, that in this study the covariance matrix B corresponds to a single spectral

component. Such spectral representation of vector signals was introduced by Wiener (1930).

The elements of B are related to the statistics of the complex amplitudes Ṡh and Ṡv as follows:160

Bhh = var(R̂h) + var(Ĵh) = 2σ2
h, (6)

Bvv = var(R̂v) + var(Ĵv) = 2σ2
v , (7)

Ḃhv =Rhv + iJhv = (q+ js)σhσv, (8)

where Rhv and Jhv are real and imaginary parts of Ḃhv .

In the precipitation radar community, dual-polarized measurements are rarely represented by B. Instead a set of polarimetric165

variables is used. Therefore, the same polarimetric variables (but spectrally resolved) are introduced in this study. Introduce a

vector

c= (Bhh,ZDR,ρHV ,ΦDP )T , (9)

where ZDR is the differential reflectivity, ρHV is the correlation coefficient, and ΦDP is the differential phase. In this study

ZDR, ρHV , and ΦDP are defined for each spectral line using elements of corresponding B:170

ZDR =
Bhh
Bvv

, (10)

ρHV =

√
R2
hv + J2

hv

BhhBvv
, (11)

ΦDP = atan
(
− Jhv
Rhv

)
. (12)

Note, that elements of the matrix B are in general affected by noise. The noise in both polarimetric channels is not known

exactly. Typically, it is estimated from spectra using e.g. the algorithm from Hildebrand and Sekhon (1974). A subtraction of175

noise levels from corresponding diagonal terms of the covariance matrix B to get an estimate of signal-only powers leads to

occasions when the covariance matrix is no longer positive semi-definite. In this case, ρHV calculated from the noise corrected

covariance matrix can exceed 1, which is beyond the range of valid values. In order to avoid this problem, we characterize

radar measurements without noise subtraction. A further advantage of this approach is that spectral lines containing noise only

can also be correctly characterized.180
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3 Likelihood of elements of the covariance matrix B

Assume the following problem. The state of the atmosphere is represented by the state vector x. A forward model F maps x

into a vector

F (x) = b= (Bhh,Rhv,Jhv,Bvv)
T (13)

in the space of observations. The actual measurement vector is185

b̂= (B̂hh, R̂hv, Ĵhv, B̂vv)
T = b+ ε, (14)

where

B̂hh =
〈
ṠhṠ

∗
h

〉
, (15)

R̂hv = Re
(〈
ṠhṠ

∗
v

〉)
, (16)

Ĵhv = Im
(〈
ṠhṠ

∗
v

〉)
, (17)190

B̂vv =
〈
ṠvṠ

∗
v

〉
, (18)

are constituents of the measured covariance matrix B̂ and ε represents the vector of measurement random errors in each

component of b̂. In Eqs. 15–18 Re and Im are the real and imaginary parts of a complex number. <> denotes averaging over

Ns independent complex spectra calculated from non-overlapping time sequences. The estimators Eqs. 15–18 are the same as

given in Bringi and Chandrasekar (2001, Chapter 6.4.5). The only difference is that within this work the variables are calculated195

using complex amplitudes for a spectral line instead of using I/Q components as is done by precipitation radars. What is the

likelihood of b̂ given the state vector x? In the case the forward model provides a unique and accurate relation between x

and b, the problem is equivalent to finding fb(b̂|b,Ns) – the likelihood of b̂ – given the true vector of measurements b and

the number of averaged spectra Ns. The derivation of fb(b̂|b,Ns) provided in this section includes several steps. In Sec. 3.1

the polarimetric basis is changed to cancel the correlations between the orthogonal components of the measured vector. In200

the new basis the likelihood function can be represented by a product of likelihood functions, each of which is a function of

only a single independent element. In Sec. 3.2 a formal derivation of the likelihood function in this new basis is provided. The

solution for fb(b̂|b,Ns) is given in Sec. 3.3 converting back to the original space and applying the rule of change of variables.

As it was mentioned above, the radar observations are often represented by the vector c. Therefore, Sec. 3.3 also provides the

likelihood fc(ĉ|b,Ns).205

3.1 Diagonalization of the covariance matrix B

As it was previously mentioned, Ṡh and Ṡv are, in general, correlated. There is, however, always a basis, in which the projec-

tions of Ṡh and Ṡv become completely uncorrelated. This basis is further denoted as the c–x (co-polar and cross-polar) basis.
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The conversion of the vector e in the h–v basis to the vector eD in c–x basis is made using the unitary operator Q:

eD =

Ṡc
Ṡx

= Qe (19)210

The calculation of the matrix Q is given in Appendix A. Real and imaginary parts of Ṡc are jointly distributed normally with

the zero mean, zero correlation, and standard deviation σc. Real and imaginary parts of Ṡx are also jointly distributed normally

with zero mean, zero correlation, but have, in general, a different standard deviation σx.

The covariance matrix D of eD has the diagonal form and can be found as follows

D =

Dcc 0

0 Dxx

= Q†BQ. (20)215

In Eq. 20 † is the Hermitian conjugate. The elements of the matrix D can be found as follows:

Dcc = q2
11Bhh + |q̇12|2Bvv − 2q11 (R12Rhv + J12Jhv) (21)

Dxx = |q̇12|2Bhh + q2
11Bvv + 2q11 (R12Rhv + J12Jhv) (22)

where q̇nm are elements of Q with n and m being indices of row and column, respectively;

q̇12 =R12 + iJ12. (23)220

Similar to relations between the powers and the standard deviations given in Eqs. 6 and 44, σ1 and σ2 are related to Dcc and

Dxx, respectively:

Dcc = var(Rc) + var(Jc) = 2σ2
c (24)

Dxx = var(Rx) + var(Jx) = 2σ2
x (25)

The measured values D̂cc,225

D̂cx = R̂cx + iĴcx, (26)

and D̂xx represent elements of the matrix D̂:

D̂ = Q†B̂Q. (27)

Note, that the operator Q is the same as in Eq. 20 and not recalculated using B̂.

3.2 Likelihood function in the c–x basis230

By definition, the off-diagonal elements of the covariance matrix D are zeros (see Eq. 20). This implies no correlation between

Ṡc and Ṡx. In this case, the likelihood function fd(d̂|b,Ns), where

d̂= (D̂cc, R̂cx, Ĵcx, D̂xx)T, (28)
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can be written as a multiplication of likelihood functions of individual components:

fd(d̂|b,Ns) = f(D̂cc|b,Ns)f(R̂cx|b,Ns)f(Ĵcx|b,Ns)f(D̂xx|b,Ns). (29)235

PDFs of the individual components can be found as follows:

f
(
D̂cc|b,Ns

)
=
Ns
σ2
c

χ2
2Ns

(
Ns
σ2
c

D̂cc

)
, (30)

f
(
D̂xx|b,Ns

)
=
Ns
σ2
x

χ2
2Ns

(
Ns
σ2
x

D̂xx

)
, (31)

f
(
R̂cx|b,Ns

)
=

(2Ns)
a|R̂cx|−b√

π22Ns(σcσx)aΓ(Ns)
Kb

(
|2NsR̂cx|
σcσx

)
, (32)

f
(
Ĵcx|b,Ns

)
=

(2Ns)
a|Ĵcx|−b√

π22Ns(σcσx)aΓ(Ns)
Kb

(
|2NsĴcx|
σcσx

)
, (33)240

where χ2
k is the chi-squared distribution with k degrees of freedom,

a= (2Ns + 1)/2, (34)

b= (1− 2Ns)/2, (35)

Γ is the gamma function, and Kµ is the Bessel function of the second kind of order µ. Recall, that σc and σx in Eqs. 30–33 are

derived from the elements of b using Eqs. 21–22 and Eqs 24 and 25. Derivation and Monte Carlo evaluation of Eqs. 30–33 is245

given in Appendix B. Appendix B3 shows how to handle Eqs. 32 and 33 when R̂cx and Ĵcx are close to 0.

3.3 Likelihood function in the h–v basis

Applying the rule of changing variables in a multivariate PDF (e.g. Walpole et al., 2012, Theorem 7.4) fb(b̂|b,Ns) can be

found from Eqs. 29 as follows:

fb(b̂|b,Ns) = fd(d̂|b,Ns). (36)250

As shown in Appendix B5, the determinant of the Jacobian of the transformation from b̂ to d̂ is equal to 1.

Likelihood fc(ĉ|b,Ns) of a vector

ĉ= (B̂hh, ẐDR, ρ̂HV , Φ̂DP ) (37)

can be found by multiplying fb(b̂|b,Ns) by |Jcb| with

Jcb =−B3
hhZ

−3
DRρHV (38)255

being the Jacobian of the transformation from ĉ to b̂ (see Appendix B6):

fc(ĉ|b,Ns) =B3
hhZ

−3
DRρHV fb(b̂|b,Ns). (39)

Equations 36, and 39 can be used for the maximum likelihood optimization and Bayesian inference methods. Ready-to-use

MATLAB implementations of these equations are provided in the supplement.
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4 Error covariance matrices260

A number of problems such as optimal estimation, data assimilation, and sensitivity analysis require the covariance matrix

of the measurement errors. Unfortunately, an analytical integration of Eqs. 29, 36, and 39 required for the statistical moment

calculation is challenging. In this section, however, known relations for calculation of variances and covariances after a linear

transformation are used.

4.1 Error covariance matrix of b265

The covariance matrix B̂ estimated from measurements is related to the matrix D̂ as follows:

B̂ = QD̂Q†. (40)

Therefore, the elements of the vector b̂ can be found as linear combinations of the elements of the vector d̂:

B̂hh = q2
11D̂cc + |q̇12|2 D̂xx + 2q11

(
R12R̂cx + J12Ĵcx

)
, (41)

R̂hv = q11R12

(
D̂xx− D̂cc

)
+
(
q2
11−R2

12 + J2
12

)
R̂cx− 2R12J12Ĵcx (42)270

Ĵhv = q11J12

(
D̂xx− D̂cc

)
+
(
q2
11 +R2

12− J2
12

)
Ĵcx− 2R12J12R̂cx (43)

D̂vv = |q̇12|2 D̂cc + q2
11D̂xx− 2q11

(
R12R̂cx + J12Ĵcx

)
, (44)

or in matrix form:

b̂=


q2
11 2q11R12 2q11J12 |q̇12|2

−q11R12 q2
11−R2

12 + J2
12 −2R12J12 q11R12

−q11J12 −2R12J12 q2
11 +R2

12− J2
12 q11J12

|q̇12|2 −2q11R12 −2q11J12 q2
11

 d̂= Md̂. (45)

In this case, as shown in Wilks D.S. (chapter 10.4.3), the error covariance matrix Σb of b̂ can be calculated from the error275

covariance matrix Σd of d̂:

Σb = MΣdM
T , (46)

where

Σd =


4σ4

c/Ns 0 0 0

0 σ2
cσ

2
x/Ns 0 0

0 0 σ2
cσ

2
x/Ns 0

0 0 0 4σ4
x/Ns

 (47)

The off-diagonal terms of Σd are set to 0 taking into account that the elements of d̂ are not correlated. The derivation of280

diagonal terms – variances of elements of d̂ – is given in Appendix C. A ready-to-use MATLAB implementation of Eq. 46 is

provided in the supplement.
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4.2 Error covariance matrix of c

As it was shown in Sec. 4.1, the error covariance matrix Σb can be used to characterize uncertainties of spectral radar ob-

servations. In this study, however, the error covariance of the vector ĉ is also obtained. It will be further demonstrated that a285

representation of measurement uncertainties for ĉ is deficient.

Recall that the calculation of ĉ includes highly nonlinear functions. Therefore, the error covariance matrix Σc of the vector

ĉ is estimated using the first-order Taylor approximation. Bringi and Chandrasekar (2001) used a similar approach to calculate

variances of polarimetric variables.

Σc = SΣbS
T , (48)290

where S is the sensitivity matrix:

S =



∂Bhh
∂Bhh

∂Bhh
∂Rhv

∂Bhh
∂Jhv

∂Bhh
∂Bvv

∂ZDR
∂Bhh

∂ZDR
∂Rhv

∂ZDR
∂Jhv

∂ZDR
∂Bvv

∂ρHV
∂Bhh

∂ρHV
∂Rhv

∂ρHV
∂Jhv

∂ρHV
∂Bvv

∂ΦDP
∂Bhh

∂ΦDP
∂Rhv

∂ΦDP
∂Jhv

∂ΦDP
∂Bvv


(49)

Substituting Eqs. 10 – 12 into Eq. 49

S =


1 0 0 0

B−1
vv 0 0 −BhhB−2

vv

−0.5|Ḃhv|B−0.5
vv B−1.5

hh Rhv|Ḃhv|−1(BhhBvv)
−0.5 Jhv|Ḃhv|−1(BhhBvv)

−0.5 −0.5|Ḃhv|B−0.5
hh B−1.5

vv

0 −Jhv|Ḃhv|−2 Rhv|Ḃhv|−2 0

 . (50)

A ready-to-use MATLAB implementation of Eq. 48 is provided in the supplement.295

5 Consistency checks on radar observations

In order to check consistency of Eqs. 36, 39, 46 and 48 with radar measurements, I/Q data collected with a W-band cloud

radar with the hybrid polarimetric mode were used (Myagkov and Unal, 2021). The radar is a part of a dual-frequency system

owned and operated by the Technical University of Delft in Cabauw, the Netherlands. Technical specifications of the radar can

be found in Myagkov et al. (2020). The radar uses frequency modulated continuous signals. Küchler et al. (2017) explain the300

operation principle and shows that the radar profiles the atmosphere using several chirp types. Each chirp type is dedicated to

a certain distance range. During measurements chirp types are switched consequently. For each chirp type a number of chirps

(chirp sequence hereafter) is processed continuously. Operational settings used during I/Q measurements are listed in Table 1.

Measurements were made during a rain event on 21 June 2021 at 7:44 UTC. I/Q measurements provide high data rate of

about 900 MB min−1. Therefore, about 3 min of I/Q measurements were collected for the analysis. The radar was pointed305
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Table 1. Operational setting of the used W-band radar

Parameter Chirp type 1 Chirp type 2 Chirp type 3

Covered distance [km] 0.1–1.2 1.2–4.9 4.9–15

Range resolution [m] 29.8 29.8 55

Number of chirps in a sequence 7168 7168 9216

Chirp repetition frequency [kHz] 9.2 7.5 5

to 45◦ elevation. Since different chirp types have different properties, in the following only I/Q data collected with the first

chirp type are used. Since the first chirp sequence covers the lowest part of the atmosphere, the analyzed data correspond to

rain. As explained in Sec. 2, no noise subtraction is required to describe the statistics of the measurements. We therefore, use

all available spectral lines, including those containing noise only. 90% of spectral noise power was from 0.2–1.3×10−3 [a.u].

Signal-to-noise ratio (defined here as a ratio of signal power in a spectral line divided by the mean spectral noise power in the310

same range bin) specified in linear units was from 0 (no signal) to 106. We would like to emphasize, that no filtering based

on signal-to-noise ratio was applied. Taking into account that the first chirp type has 37 range bins, in total 2.2× 103 chirp

sequences (15.9× 106 chirps) are available in each polarimetric channel.

5.1 Processing

All I/Q measurements within a chirp sequence in every polarimetric channel are split into 224 continuous blocks. Each block315

contains 32 I/Q pairs. The FFT with the Blackman weighting window is applied to each block to get complex Doppler spectra.

Then the 224 blocks are split into 28 sub-blocks with 8 spectra in each sub-block. Within each sub-block elements of the vector

b̂ are calculated according to Eqs. 15–18 with Ns = 8 for every spectral line. For each b̂ the vector ĉ is obtained. Note, that

for this Eqs. 10–12 were applied to elements of b̂ instead of b. Using vectors b̂ and ĉ within a sequence the error covariance

matrices Σ̂b and Σ̂c are calculated numerically. The overhat here indicate that the error covariance matrices are estimated from320

measurements.

The calculation of the likelihood functions using Eqs. 36 and 39 require b. The approximation of covariance matrices using

Eqs. 46 and 48 requires the matrix B. In order to estimate b and B, elements of the vector b̂ are averaged over 28 sub-blocks

available within a single chirp sequence. These averaged values are assumed to be elements of the vector b from which the

matrix B is obtained. Using B and Ns = 8, Σb and Σc are calculated for each chirp sequence as shown in Fig. 1.325

5.2 Filtering

The random error analysis provided in this study is only applicable to volume-distributed scattering and noise. As discussed

in Sec. 2, in this case R̂h is not correlated with Ĵh and R̂v is not correlated with Ĵv . However, radar observations in general

contain scattering from atmospheric plankton, ground clutter, and coherent receiver noise, which do not fulfil the assumption.

12



B (Eq. 3)

Q (Appendix A)

D (Eq. 15) M (Eq. 33)

∑d (Eq. 35)

∑b (Eq. 33)

∑c (Eq. 36)

S (Eq. 38)

B (Eq. 3)

Q (Appendix A)

D (Eq. 15) M (Eq. 33)

∑d (Eq. 35)

∑b (Eq. 33)

∑c (Eq. 36)

S (Eq. 38)

Figure 1. Schematic illustration of the error covariance matrix calculation.
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Figure 2. Distributions of the ratio of mean power over the power standard deviation for the horizontal (blue line) and vertical (yellow

line) channels. The expected distribution is shown with the red line. The black vertical line indicates the threshold corresponding to the 5th

percentile of the distribution for the randomly generated complex numbers.

In order to filter out spectral lines with correlated real and imaginary parts, a simple filtering rule was applied. It is known,330

that for a signal with uncorrelated in-phase and quadrature components, its mean power and power standard deviation are

related to each other (Eq. 5.193 in Bringi and Chandrasekar, 2001). Figure 2 shows distributions of the mean power over

the power standard deviation calculated in the horizontal and vertical polarization channels shown by blue and yellow lines,
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respectively. It can be seen that the mode of the distributions is close to the theoretical value of
√
Ns = 2.8. The distributions,

however, have a considerable tail on the left side. These small values of the ratio are expected for correlated in-phase and335

quadrature components. Thus, a threshold in the ratio of the mean power over the standard deviation of power can be used to

filter out unwanted spectral lines. In order to specify the threshold, the Monte Carlo approach was used. 15.9× 106 random

complex values with normal distribution, zero mean, and the standard deviation of 1 were generated. The same processing

as for measured I/Q data was applied to the generated complex values. The distribution of the ratio of the mean power over

the power standard deviation for the generated data (denoted as expected distribution) is shown in Fig. 2 by the red line. The340

expected distribution has much smaller tail on the left side relative to the ones of the measured distributions. The threshold of

2.3 used for filtering is chosen as the 5th percentile of the expected distribution. Vectors b̂ and ĉ are excluded from the analysis

if for the corresponding spectral component within a chirp sequence the ratio of the mean power over the power standard

deviation is below the threshold in at least one of the polarimetric channels. The amount of excluded data is about 18 %.

5.3 Evaluation of fb(b̂|b,Ns) and fb(ĉ|b,Ns)345

Recall, that b is estimated from measurements by averaging all available sub-blocks within a chirp sequence. b, however, can

also be estimated by maximization of the likelihood functions given in Eqs. 36 and 39. In this case, an optimization algorithm

needs to be employed to find a set of elements of b corresponding to the global maximum in either Eq. 36 or Eq. 39. This study

uses a derivative-free optimization method available by default in MATLAB (Lagarias et al., 1998). Since the optimization

method minimizes a function, the likelihood functions were not used directly. Instead, the following cost functions were used350

for the minimization:

Cb =−
28∑
l=1

log10(fb(b̂|b,Ns)), (51)

Cc =−
28∑
l=1

log10(fc(ĉ|b,Ns)). (52)

Here the index l runs over 28 sub-blocks within a chirp sequence. Equations 51 and 52 take into account that the consecutive

b̂ are not correlated. In this case the total likelihood of 28 vectors b̂ is a product of likelihood of each individual b̂. In order to355

avoid an overflow of double numbers, the logarithm was used. In this case the logarithm of the product is replaced by the sum of

logarithms. The logarithm is monotonically increasing function and, therefore, it does not change the position of the maximum

of the likelihood function. Finally, the minus sign was introduced to have a smaller value of a cost function corresponding to

a higher value of the likelihood. For the evaluation, 1000 chirp sequences were chosen randomly for the maximum likelihood

estimation using fb(b̂|b,Ns). In each chirp sequence a single spectral line was randomly chosen for the analysis. Thus, there360

are 28 vectors b̂ available in each of the 1000 chirp sequences. For each sequence, the optimization algorithm requires an initial

guess of b. In order to avoid local minima, 5 different initial guesses were used, which are a coefficient P multiplied by the first

b̂ in the analyzed chirp sequence. The values of P were 0.5, 0.75, 1, 1.25, and 1.5. The solution giving the lowest cost function

out of the 5 outcomes was chosen as the result. Similarly the maximum likelihood estimation using fc(ĉ|b,Ns) was done using
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Figure 3. Comparison of elements of b estimated by the averaging over 28 sub-blocks (x-axis) with those estimated by the maximum

likelihood approach (y-axis). fb(b̂|b,Ns) was used for panels (a)–(d). fc(ĉ|b,Ns) was used for panels (e)–(h). Each panel contains 1000

points described in text. Linear regressions are shown by red solid lines. Each panel has a text box with the slope of the corresponding

linear regression. Uncertainties of the slopes were estimated using the bootstrapping. Note, that units are not critical for the evaluation of the

correctness of the derived likelihood functions. Therefore, arbitrary units (a.u) are used.

independently chosen 1000 chirp sequences. Figure 3 shows a comparison of elements of b estimated by the averaging over365

28 sub-blocks and those estimated by the maximum likelihood approach. All panels show a good agreement indicated by the

close-to-unity slope of the linear regression. Both fb(b̂|b,Ns) (results in the first row of Fig. 3) and fc(ĉ|b,Ns) (results in the

second row of Fig. 3) show the same level of agreement and, therefore, can be used with no difference.

5.4 Evaluation of Σc

Diagonal elements of Σc – variances of B̂hh, ẐDR, ρ̂HV , and Φ̂DP – were checked against those calculated using Eqs. 6.139a,370

6.141, 6.144, and 6.143 in Bringi and Chandrasekar (2001), respectively. Taking into account, that samples for a spectral

line are not correlated, approximations for variances of B̂hh, ẐDR, ρ̂HV , and Φ̂DP based on the equations in Bringi and

Chandrasekar (2001) are:
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Figure 4. Comparison of variances of (a) B̂hh, (b) ẐDR, (c) ρ̂HV , and (d) ˆΦDP . Approximations developed in this study are on the x-axis.

Approximations from Bringi and Chandrasekar (2001) are on the y-axis. ρHV is color-coded in panels (c) and (d) to illustrate at which

values of ρHV approximations lead to erroneous values (see details in text). Note, that units are not critical for the evaluation of the derived

equations. Therefore, arbitrary units (a.u) are used in the panel (a).

VARbhh =
B2
hh

Ns
, (53)

VARzdr =
2Z2

DR(1− ρ2
HV )

Ns
, (54)375

VARρ =
(1− ρ2

HV )2

2Nsρ2
HV

, (55)

VARΦ =
(1− ρ2

HV )

2Nsρ2
HV

, (56)

(57)

respectively.

Figure 4 shows that VARbhh, VARzdr, and VARΦ match exactly Σc(1,1), Σc(2,2), and Σc(4,4), respectively. VARρ, how-380

ever, agrees with Σc(3,3) only at values of ρHV > 0.95. Below this value VARρ overestimates the variance of ρ̂HV . At values

of ρHV close to 0, VARρ has unrealistically high values, which result from ρHV in the denominator of Eq. 55.

Figure 4d also shows unrealistic values with both approximations of the Φ̂DP variance. Taking into account that Φ̂DP can

take values within the range from 0 to 2π rad, the variance of Φ̂DP exceeding 103 rad2 is definitely erroneous. The high

variance of Φ̂DP corresponds to values of ρHV < 0.3. This effect results from the first-order Taylor approximation of Eq. 12385

which is a highly non-linear function.

A comparison of the error covariance matrices Σ̂c with the calculated one Σc is shown in Fig. 5. Panels (f), (k), and (p)

indicate considerable differences caused by the first-order Taylor approximation in variances of ẐDR, ρ̂HV , and Φ̂DP , respec-

tively. The results also reveal that the first-order Taylor approximation cannot adequately represent most of the non-diagonal

components of the error covariance matrix.390
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Figure 5. Comparison of Σ̂c estimated from the radar measurements with Σc obtained from Eq. 48. Elements of Σc are given on the x-axes.

Elements of Σ̂c are given on the y-axes. The first and the second numbers in brackets indicate the row and the column of the corresponding

matrix, respectively. Linear regressions are shown by red lines. Slopes of the linear regressions and Pearson correlations are given in boxes

in each panel. Uncertainties in the slope and the correlation are represented by ± one standard deviation of the corresponding parameter.

The standard deviations are obtained using the bootstrapping. Panels without linear regressions show elements for which Eq. 48 gives only

near-zero values. Note, that units are not critical for the evaluation of the derived equations. Therefore, arbitrary units (a.u) are used. Also

note that only values on the x and y axes on an individual panel should be compared. Value on different panels should not be compared.
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(a) Σb(1,1) (b) Σb(1,2) (d) Σb(1,4)

(e) Σb(2,1) (f) Σb(2,2) (g) Σb(2,3) (h) Σb(2,4)

(l) Σb(3,4)(k) Σb(3,3)(j) Σb(3,2)(i) Σb(3,1)

(m) Σb(4,1) (n) Σb(4,2) (o) Σb(4,3) (p) Σb(4,4)

(c) Σb(1,3)

Figure 6. Comparison of Σ̂b estimated from the radar measurements with Σb obtained from Eq. 46. Elements of Σb are given on the x-axes.

Elements of Σ̂b are given on the y-axes. The first and the second numbers in brackets indicate the row and the column of the corresponding

matrix, respectively. Linear regressions are shown by red lines. Slopes of the linear regressions and Pearson correlations are given in boxes

in each panel. Uncertainties in the slope and the correlation are represented by ± one standard deviation of the corresponding parameter.

The standard deviations are obtained using the bootstrapping. Note, that units are not critical for the evaluation of the derived equations.

Therefore, arbitrary units (a.u) are used.
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5.5 Evaluation of Σb

Figure 6 shows a comparison of elements of error covariance matrices Σ̂b estimated from the radar measurements with those

calculated using Eq. 46. Estimated and calculated elements are in a good agreement. Linear regressions shown in the panels

by red lines have slopes close to 1. Pearson correlations between estimated and calculated elements exceed 0.96. These results

indicate an agreement of the theoretical calculation with measurements and, thus, confirm correctness of Eq. 46. It is, thus,395

concluded that any application of spectral polarimetric measurements which require the estimate of the error covariance matrix

(e.g. variational retrievals, data assimilation, and sensitivity analysis) should be performed in the space of observations b̂ rather

than ĉ.

6 Summary and outlook

Spectral and polarimetric cloud radar observations have a great potential in the cloud science (Kollias et al., 2020). Decades400

of such measurements have been already collected by e.g. the ARM (Atmospheric Radiation Measurement) and CLOUDNET

communities. An advanced application of these vast datasets requires an accurate characterization of measurement uncer-

tainties. Systematic errors in moment radar data and polarimetric variables have been discussed in many studies. Random

measurement errors, in contrast, are rarely considered in literature. The are three main problems in existing random-error-

characterization methods, namely (1) a lack of joint PDF for averaged polarimetric measurements, (2) neglection of non-405

diagonal components of the error covariance matrix, and (3) inaccuracy of the first-order approximation in variances of polari-

metric variables. This study, thus, aims to provide solutions for these three problems.

Equations provided in Sec. 3 give an exact mathematical solution for the joint PDFs of spectral polarimetric observations.

The PDFs are given for two equivalent representations of the measurements: (1) b= (Bhh,Rhv,Jhv,Bvv)
T, and (2) c=

(Bhh,ZDR,ρHV ,ΦDP )
T. The obtained equations take into account non-coherent averaging of spectra, which is applied by a410

majority of cloud radars to improve the sensitivity. Maximum likelihood estimators of b based on Eqs. 36 and 39 were compared

with the estimator based on longer averaging. The comparison was based on dual-polarimetric cloud radar observations. The

comparison showed a good agreement. Both PDFs can be equivalently used for methods based on the maximum likelihood

and Bayesian inference.

Section 4 is focused on the error covarince matrix required for a number of applications such as data assimilation, sensitivity415

analysis, and variational retrievals. The error covariance matrices Σb and Σc for b and c, respectively, are obtained using the

characteristic functions of the PDFs described in Sec. 3. Since the calculation of the c includes highly non-linear functions, Σc

was derived using the first-order Taylor approximation. The same approach was used by Bringi and Chandrasekar (2001) to

get equations for variances of polarimetric observations.

The error covariance matrices were evaluated using I/Q observations from a polarimetric W-band radar. It is illustrated420

that elements of Σc have considerable differences from those estimated from the measurements. First, we found differences

in variances of ZDR, ρHV , ΦDP of up to factor of 10, 5, and 100, respectively. Second, the calculated variance of ΦDP

shows unrealistically high values by far exceeding the range of possible values. Third, most of the off-diagonal terms of Σc
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are not correlated with corresponding values estimated from observations. We relate the differences to the first-order Taylor

approximation. The Taylor approximation assumes linear relations between elements of the vector b and the elements of425

the vector c, while the relations include highly non-linear functions. In contrast, Σb agrees well with the observations. The

correlation between calculated elements of Σb with those estimated from the observations exceeds 0.965.

Thus, based on the results found within this study, it is recommended to use the vector b to represent polarimetric cloud

radar observations for applications requiring the error covariance matrix. This representation has a better characterization of

random errors in comparison with widely used representation c. When the signal to noise ratio is high (> 35 dB), however, the430

variances are quite low and the Taylor approximation may give reasonable results.

In order to demonstrate a practical application of the developed characterization of the measurements errors, a few retrieval

techniques are being currently developed. The first one is an improvement of the ice-share retrieval described in Myagkov

et al. (2016a). Another one is an adoption of the drop-size-distribution from Tridon and Battaglia (2015) for dual-polarimeteric

cloud radar observations.435

Code and data availability. I/Q data used in this study are available on Zenodo (Myagkov and Unal, 2021, https://doi.org/10.5281/zenodo.5126813).

MATLAB code used to process I/Q data is provided in the supplement to this paper. Ready-to-use MATLAB implementations for Eqs. 36,

39, 46, and 48 are given in the supplement.

Appendix A: Diagonalization matrix Q

The operator Q, which is used to diagonalize the covariance matrix B in Eq. 20, is calculated as follows (Kanareykin et al.,440

1968, chapter 2.5):

Q =

 q11 q̇12

−q̇∗12 q11

 , (A1)

where

q11 =

(
1 +

∣∣∣ḋ∣∣∣2)−0.5

, (A2)

q̇12 =−ḋ∗q11, (A3)445

d=
Ḃ∗hv

0.5
[
TrB +

√
TrB2− 4det(B)

]
−Bvv

. (A4)

In Eq. A4 Tr is the matrix trace.
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Appendix B: Derivation of likelihood functions

B1 Change of variables in a PDF

Consider a vector a with n random variables a1...n. Assume the joint PDF fa(a) of the variables is known. The joint PDF450

fy(y) of a vector

y =G(a) (B1)

can be found changing the variables in fa(a):

fy(y) = |J|fa
[
G−1(y)

]
, (B2)

where G−1 is reverse transformation from y to a and J is the determinant of the Jacobian of the transformation a=G−1(y).455

B2 Likelihood functions forDcc andDxx

It is known, that the PDF of zs being a sum of squares of independent standard normal samples (i.e. distributed normally with

0 mean and standard deviation of 1) is the chi-squared distribution χ2
k(zs), where the degree of freedom k shows how many

samples have been summed. Taking into account that:

D̂cc =N−1
s σ2

c

{
σ−2
c

Ns∑
l=1

Re
(
Ṡc

)2

l
+σ−2

c

Ns∑
l=1

Im
(
Ṡc

)2

l

}
, (B3)460

where the first and the second summed terms in the curly brackets are sums of squares of independent standard normal samples,

the likelihood function f
(
D̂cc|σc,Ns

)
can be found by changing the variable zs to Nsσ−2

c D̂c:

f
(
D̂cc|σc,Ns

)
=
Ns
σ2
c

χ2
2Ns

(
Ns
σ2
c

D̂cc

)
. (B4)

The factor of 2 in the degree of freedom is because there are 2Ns summed components in the curly brackets in Eq. B3. The

equation for D̂xx is derived in a similar manner as for D̂cc resulting in:465

f
(
D̂xx|σx,Ns

)
=
Ns
σ2
x

χ2
2Ns

(
Ns
σ2
x

D̂xx

)
. (B5)

B3 Likelihood functions forRcx and Jcx

Nadarajah and Pogány (2016) provide a solution for the PDF of an averaged multiplication zm of two standard normal variables.

For two uncorrelated variables the PDF is defined as follows:

fz(zm) =
n(n+1)/22(1−n)/2|zm|(n−1)/2

√
πΓ(n/2)

K(1−n)/2 (n|zm|) , (B6)470

where n is the number of averaged multiplications, Γ is the gamma function, and Kµ is the Bessel function of the second kind

of order µ.
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R̂cx is calculated as follows:

R̂cx = 2σcσx

{
1

2Nsσcσx

[
Ns∑
l=1

Re
(
Ṡc

)
Re
(
Ṡx

)
+

Ns∑
l=1

Im
(
Ṡc

)
Im
(
Ṡx

)]}
, (B7)

where the term in the curly brackets is an average over 2Ns multiplications of independent standard normal samples. In this475

case, the likelihood function f
(
R̂cx|σc,σx,Ns

)
can be found by changing zm by (2σcσx)−1R̂cx:

f
(
R̂cx|σc,σx,Ns

)
=

(2Ns)
a|R̂cx|−b√

π22Ns(σcσx)aΓ(Ns)
Kb

(
Ns|R̂cx|
σcσx

)
, (B8)

where a= (2Ns+ 1)/2, b= (1−2Ns)/2, Γ is the gamma function, and Kµ is the Bessel function of the second kind of order

µ. When R̂cx→ 0, the modified Bessel function Kb

(
Ns|R̂cx|(σcσx)−1

)
→∞. Therefore, for R̂cx close to 0, the following

approximation based on Eqs. 9.6.6 and 9.6.8 from Abramowitz and Stegun (1972) should be used:480

f
(
R̂cx|σc,σx,Ns

)
≈ NsΓ(−b)

2
√
πσcσxΓ(Ns)

. (B9)

Formulas for Ĵcx are defined in a similar manner:

f
(
Ĵcx|σc,σx,Ns

)
=

(2Ns)
a|Ĵcx|−b√

π22Ns(σcσx)aΓ(Ns)
Kb

(
Ns|Ĵcx|
σcσx

)
, (B10)

with the approximation for Ĵcx close to 0:

f
(
Ĵcx|σc,σx,Ns

)
≈ NsΓ(−b)

2
√
πσcσxΓ(Ns)

. (B11)485

B4 Monte Carlo evaluation of Eqs. B4, B5, B8, and B10

For the equation evaluation a simulated dataset was generated. In total 1000 sets of distributions were simulated using the Monte

Carlo approach. A single set included distributions of B̂cc, B̂xx, R̂cx, and Ĵcx. For a single set 105 vectors b̂ were generated. A

single vector b̂ resulted from Ns randomly generated vectors m. For a single set of distributions a single covariance matrix B

was taken. The elements of the covariance matrix B and Ns were randomly generated according to the following rules (values490

have linear arbitrary units):

1. Bhh is a sum of mean powers of signal Psh and noise Pnh.

2. Bvv is a sum of mean powers of signal Psv and noise Pnv .

3. Pnh = Pnv = 1

4. Psh and Psv were randomly and independently generated using the uniform distribution from 1 to 5.495

5. Ḃhv was calculated as ρHV eiΦDP
√
PshPsv .
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Table B1. Percentage of test-statistic values exceeding critical values for different significance levels. Percentages are given in %. Names of

4 columns on the right side of the table indicate for which distribution a percentage is given.

Significance level Critical value f
(
D̂cc|σc,Ns

)
f
(
R̂cx|σc,Ns

)
f
(
Ĵcx|σc,Ns

)
f
(
D̂xx|σc,Ns

)
0.95 16.919 6.9 5.2 5.8 5.9

0.975 19.023 3.8 3.4 2.7 2.9

0.99 21.666 1.0 1.3 1.0 1.2

6. ρHV was chosen randomly using the uniform distribution from 0 to 1.

7. ΦDP was chosen randomly using the uniform distribution from 0 to 2π.

8. Ns was chosen as a random integer number in the range from 2 to 80.

From the covariance matrix B the true covariance matrix Σm was obtained. 105×Ns vectors m were generated according500

to the PDF given in Eq. 2. Then, 105 elements of the b̂ were calculated according to Eqs. 15–18. Elements of the vector d̂ were

derived from the vectors b̂ using Eq. 27.

Using the 105 vectors d̂ individual histograms for each of the variables B̂cc, B̂xx, R̂cx, and Ĵcx are derived. A histogram has

10 bins covering the range from the minimum to maximum values of the corresponding variable. Widths of bins were adjusted

to have 10000 samples in each bin. For the same bins the expected number of samples is calculated using the corresponding505

PDF. Since integration of Eqs. B4, B5, B8, and B10 is challenging, the integration is done numerically. Then the Pearson’s

chi-squared test is applied. The same procedure is repeated for all 1000 sets of distributions. Thus, for each PDF (Eqs. B4, B5,

B8, and B10) 1000 test-statistic values were obtained.

The Pearson’s chi-squared test implies a comparison of the test-statistic values with a critical values for a given level of

significance. A test-statistic value exceeding the critical value would indicate that there is a chance (equal to the significance510

level) that the data significantly differs from the PDF. There is, however, a small chance that the conclusion that the data differs

from the PDF is erroneous. Table B1 shows the percentage of the test-statistic values exceeding critical values. It can be seen

that the amount of test-statistic values exceeding corresponding critical values is very close to the theoretical values, i.e. 5, 2.5,

and 1 % at 0.95, 0.975, and 0.99 significance levels, respectively. This confirms the validity of the obtained PDFs.
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B5 Jacobian Jbd of the transformation from b̂ to d̂515

Using Eqs. 21–22 Jbd can be written as follows:

Jbd =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Dcc

∂Bhh

∂Dcc

∂Rhv

∂Dcc

∂Jhv

∂Dcc

∂Bvv
∂Rcx
∂Bhh

∂Rcx
∂Rhv

∂Rcx
∂Jhv

∂Rcx
∂Bvv

∂Jcx
∂Bhh

∂Jcx
∂Rhv

∂Jcx
∂Jhv

∂Jcx
∂Bvv

∂Dxx

∂Bhh

∂Dxx

∂Rhv

∂Dxx

∂Jhv

∂Dxx

∂Bvv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

q2
11 |q̇12|2 −2q11R12 −2q11J12

|q̇12|2 q2
11 2q11R12 2q11J12

q11R12 −q11R12 q2
11−R2

12 + J2
12 −2R12J12

q11J12 −q11J12 −2R12J12 q2
11 +R2

12− J2
12

∣∣∣∣∣∣∣∣∣∣∣
= (q2

11 + |q12|2)4. (B12)

Taking into account Eqs. A2 and A3, Jbd = 1.520

B6 Jacobian Jcb of the transformation from ĉ to b̂

Using Eqs. 21–22 Jcb can be written as follows:

Jcb =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Bhh
∂Bhh

∂Bhh
∂ZDR

∂Bhh
∂ρHV

∂Bhh
∂ΦDP

∂Rhv
∂Bhh

∂Rhv
∂ZDR

∂Rhv
∂ρHV

∂Rhv
∂ΦDP

∂Jhv
∂Bhh

∂Jhv
∂ZDR

∂Jhv
∂ρHV

∂Jhv
∂ΦDP

∂Bvv
∂Bhh

∂Bvv
∂Rhv

∂Bvv
∂Jhv

∂Bvv
∂Bvv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

ρHV cos(ΦDP )Z−0.5
DR −0.5BhhρHV cos(ΦDP )Z−1.5

DR Bhh cos(ΦDP )Z−0.5
DR −BhhρHV sin(ΦDP )Z−0.5

DR

ρHV sin(ΦDP )Z−0.5
DR −0.5BhhρHV sin(ΦDP )Z−1.5

DR Bhh sin(ΦDP )Z−0.5
DR −BhhρHV cos(ΦDP )Z−0.5

DR

Z−1
DR −BhhZ−2

DR 0 0

∣∣∣∣∣∣∣∣∣∣∣
=525

−B3
hhZ

−3
DRρHV (B13)
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Appendix C: Variances of elements of the vector d̂

To derive solutions for mean and variances of elements of d̂, the distribution of the elements is represented by characteristic

functions. A γ-th raw statistical moment Mγ of a random variable with a characteristic function φ(t) can be found as follows:

Mγ = i−γ
dγφ(t)

dtγ

∣∣∣
t=0

, (C1)530

The calculation of derivatives of the characteristic functions is in general easier to obtain than integration of the corresponding

PDFs.

The characteristic function of the chi-squared distribution χ2
k(zs) is

φs(t) = (1− 2it)−k/2. (C2)

Therefore, the characteristic function for D̂cc for a given σc and Ns can be written in the following way:535

φcc(t) =

(
1− 2iσ2

c t

Ns

)−Ns

(C3)

The mean value and variance of D̂cc are calculated as follows:

D̂cc =
1

i

dφcc(t)

dt

∣∣∣
t=0

= 2σ2
c , (C4)

var(D̂cc) =−d
2φcc(t)

dt2

∣∣∣
t=0
− D̂cc

2

=
4σ4

c

Ns
. (C5)

Similarly,540

D̂xx =
1

i

dφxx(t)

dt

∣∣∣
t=0

= 2σ2
x, (C6)

var(D̂xx) =
4σ4

x

Ns
. (C7)

Based on Nadarajah and Pogány (2016) the characteristic function corresponding to fz(zm) is

φz(t) =

(
1 +

t2

n2

)−n/2
. (C8)

Therefore, the characteristic function for R̂cx and Ĵcx for given σc, σx, and Ns is as follows:545

φcx(t) =

(
1 +

σ2
cσ

2
xt

2

N2
s

)−Ns/2

. (C9)

As expected for a multiplication of two uncorrelated variables, the mean values of R̂cx and Ĵcx

R̂cx = Ĵcx =
1

i

dφcx(t)

dt

∣∣∣
t=0

= 0. (C10)

The variance of R̂cx and Ĵcx can be found as follows:

var(R̂cx) = var(Ĵcx) =−d
2φcx(t)

dt2

∣∣∣
t=0

=
σ2
cσ

2
x

2Ns
. (C11)550
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Table D1. Main symbols used throughout the study. The overdot indicates a complex number. Indices h and v indicate the polarization of

the receiver channel. The overhat indicates a measured quantity.

Symbol Description

Γ Gamma function

ρHV and ρ̂HV Correlation coefficient for a spectral line

ΦDP and Φ̂DP Differential phase for a spectral line

σh Standard deviation of R̂h and Ĵh

σv Standard deviation of R̂v and Ĵv

σc Standard deviation of R̂c and Ĵc

σx Standard deviation of R̂x and Ĵx

Σm Error covariance matrix of m̂

Σd Error covariance matrix of d̂

Σb and Σ̂b Error covariance matrix of b̂

Σc and Σ̂c Error covariance matrix of ĉ

φ(t) characteristic function

φs(t) characteristic function for zs

φcc(t) characteristic function for D̂cc

φcx(t) characteristic function for R̂cx and Ĵcx

φz(t) characteristic function for zm

χ2
k

chi-squared distribution with k degrees of freedom

∗ Complex conjugation sign

† Hermitian conjugate sign

b the column vector elements of which are Bhh, Rhv , Jhv , and Bvv

b̂ the column vector elements of which are B̂hh, R̂hv , Ĵhv , and B̂vv

B and B̂ 2×2 covariance matrix describing polarimetric measurements in a single spec-

tral line in the h− v basis

Bhh, Ḃhv , and

Bvv

elements of the covariance matrix B

B̂hh and B̂vv diagonal elements of the covariance matrix B̂

c the column vector elements of which are Bhh, ZDR, ρHV , and ΦDP

ĉ the column vector elements of which are B̂hh, ẐDR, ρ̂HV , and Φ̂DP
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Table D2. Continue of Table D1.

Symbol Description

d̂ Column vector elements of which are D̂cc, R̂cx, Ĵcx, and D̂xx

Dcc and Dxx Diagonal elements of the covariance matrix D

D̂cc ,D̂vv , and

D̂cx

Elements of the covariance matrix D̂

D and D̂ 2×2 covariance matrix describing polarimetric measurements in a single spec-

tral line in the c−x basis

e measurement column vector in the h− v basis

eD measurement column vector in the c−x basis

f(D̂cc|b,Ns) PDF of D̂cc for a given b and Ns

f(R̂cx|b,Ns) PDF of R̂cx for a given b and Ns

f(Ĵcx|b,Ns) PDF of Ĵcx for a given b and Ns

f(D̂xx|b,Ns) PDF of D̂xx for a given b and Ns

fm(m̂|Σm) joint PDF of m̂ for a given Σm

fd(d̂|b,Ns) joint PDF of d̂ for a given b and Ns

fb(b̂|b,Ns) joint PDF of b̂ for a given b and Ns

fc(ĉ|b,Ns) joint PDF of ĉ for a given b and Ns

i Imaginary unit

Ih,v Measured in-phase component measured by the radar receiver in a range bin

J12 Imaginary part of q̇12

Ĵcx Imaginary part of D̂cx

Ĵh and Ĵv Imaginary parts of Ṡh and Ṡv , respectively

Jhv Imaginary part of Ḃhv

Ĵhv Imaginary part of the covariance between Ṡh and Ṡv

Jbd Jacobian of the transformation from b̂ to d̂

Jcb Jacobian of the transformation from ĉ to b̂

Kµ Bessel function of the second kind of order µ

m̂ Measurement vector, which elements are real and imaginary parts of Ṡh and Ṡv

Mγ γ-th raw statistical moment of a random variable

Ns Number of spectra used for averaging

Nfft Number of pulses/chirps used to calculate the Doppler spectra

Qh.v Measured quadrature component measured by the radar receiver in a range bin
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Table D3. Continue of Table D1.

Symbol Description

Q Matrix used to diagonalize the matrix B

q11, q̇12, and

q22

Elements of the matrix Q

q correlation between R̂h and R̂v

s correlation between R̂h and Ĵv

R12 real part of q̇12

R̂h and R̂v real parts of Ṡh and Ṡv , respectively

Rhv real part of Ḃhv

R̂hv Real part of the covariance between Ṡh and Ṡv

R̂cx Real part of D̂cx

Ṡh,v Measured complex amplitude for a spectral line

S the 4× 4 sensitivity matrix
T the transposition sign

t argument of a characteristic function

VARbhh Variance of B̂hh approximated from Bringi and Chandrasekar (2001)

VARzdr Variance of ẐDR approximated from Bringi and Chandrasekar (2001)

VARρ Variance of ρ̂HV approximated from Bringi and Chandrasekar (2001)

VARΦ Variance of Φ̂DP approximated from Bringi and Chandrasekar (2001)

ZDR and ẐDR Differential reflectivity for a spectral line

zs a sum of squares of independent standard normal samples

zm averaged multiplication of two standard normal variables

Appendix D: Table of symbols
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