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Abstract. This study presents the first-ever complete characterization of random errors in dual-polarimetric spectral observa-
tions of meteorological targets by cloud radars. The characterization is given by means of mathematical equations for joint
probability density functions (PDF) and error covariance matrices. The derived equations are checked for consistency using
real radar measurements. One of the main conclusions of the study is that the convenient representation of spectral polari-
metric measurements including differential reflectivity Zppg, correlation coefficient pgy, and differential phase ® pp is not
suited for the proper characterization of the error covariance matrix. This is because the aforementioned quantities are complex,
non-linear functions of the radar raw data and thus their error covariance matrix is commonly derived using simplified linear
relations and by neglecting the correlation of errors. This study formulates the spectral polarimetric measurements in terms of
a different set of quantities that allows for a proper analytic treatment of their error covariance matrix. The results given in this
study allow for utilization of spectral polarimetric measurements for advanced meteorological applications, among which are

variational retrieval techniques, data assimilation, and sensitivity analysis.

1 Introduction

Cloud radars are a major component of state-of-the-art, ground-based observation platforms (Illingworth et al., 2007; Kollias
et al., 2020). Their unique capabilities make these instruments extremely valuable for cloud and precipitation research. First,
these radars have Doppler capabilities, i.e. can independently characterize hydrometeors coexisting in the same volume but
moving with different speeds relative to the radar (Kollias et al., 2007). Second, the high sensitivity and vast dynamic range
make cloud radars capable of measuring return signals from a wide range of particles sizes, which is a challanging task for
other instruments like lidars (Biihl et al., 2013). Third, due to relatively low attenuation of microwave signals by liquid water,
cloud radars profile clouds up to the top even in presence of light-to-moderate rain. These capabilities promote cloud radars for
investigation of different formation and development processes throughout the lifecycle of clouds. For instance, cloud radars
help to characterize initial ice formation and development in mixed-phase clouds (Biihl et al., 2019), improve characterization
of pure liquid clouds (Rusli et al., 2017; Acquistapace et al., 2017), estimate rates of aggregation (Kneifel et al., 2015, 2016)
and riming (Kalesse et al., 2015; Moisseev et al., 2017; Kneifel and Moisseev, 2020), and quantitatively analyse solid and
liquid precipitation (Matrosov, 2005; Matrosov et al., 2006, 2008; Tridon and Battaglia, 2015; Tridon et al., 2017, 2019).
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Many cloud radars have dual-polarization capabilities. An interest in polarimetry-based methods in the cloud radar commu-
nity has been growing, which is indicated by a number of studies during the last decade (Matrosov et al., 2012; Oue et al., 2015;
Lu et al., 2015; Myagkov et al., 2016a, b; Matrosov et al., 2017; Oue et al., 2018; Myagkov et al., 2020). Vertically pointed
cloud radars often operate in the LDR-mode (Linear Depolarization Ratio), i.e transmit a linearly-polarized wave (either hor-
izontally or vertically) and receive co- and cross-polarized components of the backscattered signal (e.g Gorsdorf et al., 2015).
The LDR-mode is efficient for clutter removing and detection of the melting layer and columnar-shaped ice particles. As shown
by Matrosov et al. (2001), however, the applicability of the LDR mode at low elevation angles might be limited due to its high
sensitivity to the orientation of cloud particles. Therefore, scanning polarimetric cloud radars often have polarimetric modes
which are less sensitive to the orientation. One of such modes is the hybrid mode (also denoted as the STSR (Simultaneous
Transmittion and Simultaneous Reception) or STAR (Simulteneous Transmittion And Reception) mode in literature). Radars
with the hybrid mode emit the horizontal and vertical components of the transmitted wave simultaneously (Myagkov et al.,
2015; Bringi and Chandrasekar, 2001, Sec. 4.7). Cloud radars with the hybrid mode allow for adoption of polarimetry-based
methods having been developed during last several decades for centimetre-wavelength meteorological radars (further denoted
as precipitation radars).

Operational precipitation radars are used by weather services to continuously scan the atmosphere providing polarimetric
variables integrated for a scattering volume. In addition to the integrated quantities, cloud radars with the hybrid mode enable
spectrally-resolved polarimetric observations and, therefore, can provide the same set of polarimetric variables for different
types of cloud particles coexisting in the same resolution volume (Oue et al., 2015; Myagkov et al., 2016b, 2020). Spectral ob-
servations are in general possible with precipitation radars (Spek et al., 2008; Dufournet and Russchenberg, 2011; Pfitzenmaier
et al., 2018). Such measurements, however, are not performed by operational radars due to fast azimuth scanning.

Spectral polarimetry can be used for a development of advanced retrieval methods. For example variational retrievals devel-
oped for dual-frequency spectra (Tridon and Battaglia, 2015; Tridon et al., 2017) could be applied also to spectral polarimetry.
Moisseev and Chandrasekar (2007) presented first attempts to retrieve profiles of raindrop-size distributions using polarimetric
spectra from a precipitation radar. This approach, however, has not been yet explored in polarimetric cloud radars.

Recent review studies (Zhang et al., 2019; Morrison et al., 2020; Ryzhkov et al., 2020) demonstrate that polarimetric ob-
servations from precipitation radar networks are highly beneficial for the evaluation and development of numerical weather
prediction and cloud resolving models. The high value of polarimetric observations is given by their sensitivity to microphys-
ical properties of cloud and precipitation particles such as size, shape, number concentration, state of matter, density, and
orientation (Kumyjian, 2013). Polarimetric cloud radars are not yet widely used for model improvement. This, however, does
not indicate that cloud radar polarimetry is not informative relative to precipitation radars. Conversely, the cloud radar spectral
polarimetry can essentially complement available measurements.

The development of both quantitative retrievals and data assimilation algorithms requires the characterization of the system-
atic and random measurement errors. The former type of errors is solved by a calibration. Calibration aspects of polarimetric
quantities have been intensively studied for both precipitation and cloud radars (Chandrasekar et al., 2015) and are out of

the scope of this study. In the case of radar observations of meteorological targets, random errors can be characterized from
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measurements if raw (unaveraged) data are available. Cloud radars, however, rarely store raw data because of high data rate.
Therefore, commonly used approaches to characterize random errors are based on statistical models of the received radar sig-
nals. Random errors of radar signals can be represented by a joint probability density function (PDF) of amplitudes and phases
in the two orthogonal polarimetric channels. The joint PDF for polarimetric observations obtained for a single pulse can be
found in Middleton (1996, chapter 9.2). Single-pulse measurements, however, are rarely used in the radar meteorology because
of the low sensitivity and higher requirement for storage space. The observed radar spectra, almost always, result from the aver-
aging of a number of return pulses. Lee et al. (1994) showed a derivation of a joint probability density function of polarimetric
variables for the case of averaging. The authors used a number of assumptions applicable for Earth’s surface observations
using synthetic-aperture radars. It turns out that the same assumptions are applicable to spectral polarimetric observations of
meteorological targets. This allows for using a similar approach in analytic characterization of errors of spectral polarimetric
observations.

A number of studies (e.g. Hogan (2007); Cao et al. (2013); Yoshikawa et al. (2014); Chang et al. (2016); Huang et al. (2020))
characterize the joint PDF of polarimetric radar measurements by the error covariance matrix. There are, however, problems
with existing approximations of the error covariance matrix for polarimetric observations. First, the elements in the main
diagonal of the error covariance matrix — variances of random errors — are found using the first-order Taylor approximation
following Bringi and Chandrasekar (2001). Conventional polarimetric variables such as differential reflectivity, correlation
coefficient, and differential phase are , however, highly non-linear functions. Therefore, the approximation may lead to biases
in the error variance estimates especially when signal-to-noise ratios (SNR) and/or the number of averaged samples is low.
This problem becomes important for cloud radars collecting polarimetric variables with a high spatial, temporal, and spectral
resolution. Second, non-diagonal components of the error covariance matrix are typically set to zero assuming no correlation
between errors in measured quantities but validity and effects of this assumption are not discussed. The information content
of measurements is, however, higher when errors are correlated (chapter 3.2.6 in Rodgers, 2000) and therefore, non-negligible
off-diagonal elements of the covariance matrix should not be ignored.

This study will review the measurement method of spectral polarimetry with radars operating in the hybrid mode in Sec. 2. In
Sec. 3 the likelihood functions of the common polarimetric radar variables are rigorously derived. The error covariance matrix
of polarimetric measurements is derived in Sec. 4 by taking into account the correlations among the various measurement
random errors. In Sec. 5 the validity of expressions derived for the likelihood functions and error covariance matrix is checked

using real raw measurements from a cloud radar.

2 Spectral polarimetry in the hybrid mode

This section introduces known relations between a raw cloud radar signal, complex amplitudes, and spectral polarimetric
variables for observations of meteorological targets. These relations are based on the same set of assumptions introduced in

classical works of Doviak et al. (1979) and Bringi and Chandrasekar (2001) for precipitation radars.
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Since pulsed radars are currently more common in the meteorological community, we use the term "pulse” to refer to a type
of the transmitted radar signal in Secs. 2—4. For radars with frequency modulated continuous wave (FMCW) signals, however,
the term "chirp" should be used. Later, in the Sec. 5 we use measurements from a FMCW radar and therefore the term "chirp"

is used there.
2.1 Complex amplitudes of radar measurements

Radar polarimetric measurements are made in an orthogonal measurement basis defined by feeders of the antenna system. In
the hybrid mode the measurement basis is typically Cartesian and formed by the horizontal (h) and vertical (v) components.
Further this basis is denoted as the h—v basis. Dual-polarimetric cloud radars have two receivers dedicated to the orthogonal
polarimetric components of the received signal. For each transmitted pulse the receivers provide range profiles of in-phase I, ,,
and quadrature )5, components, where indices h and v denote the polarization state. Note, that this study does not cover
the radar signal processing to get the I, ,, and Q) ,, profiles. This information can be found in a radar handbook e.g. Skolnik
(2008, Chapter 6). Using Ny profiles of I}, +iQy and I, + iQ,,, where i is the imaginary unit, the radar calculates complex
Doppler spectra in the horizontal and vertical channel, respectively, applying the Fast Fourier Transformation (FFT) along the
time dimension. The complex Doppler spectra are represented by complex amplitudes S for each spectral component and each
range bin.

Different range bins as well as different spectral components are often considered to be statistically independent, because
the corresponding complex amplitudes result from non-coherent scattering of numerous independently moving particles. Some
correlation, however, can be expected due to sampling effects and the FFT spectral leakages (e.g. Sec. 5.3 in Marple, 2019). For
instance, the power scattered from particles located close to the end of a range bin is distributed between this and the following
range bins. These effects depend on filter properties and used FFT windows. It is challenging to give a general analytical
solution taking these effects into account. Therefore, these effects are out of the scope of this study. For the sake of simplicity
the following analysis is shown only for a single range bin and a single spectral component. Since movements of particles
in neighboring range and spectral bins are not related, statistical properties of an individual bin considered in the following
are not affected by sampling effects and spectral leakages. The neglection of the dependence of the neighboring bins leads to
an underestimation of the information entropy when a complete spectrum and/or spectral profile is analyzed. This worst case
assumption, however, allows for a relatively easy and universal characterization of measurement errors. Future studies may
improve the error characterization by considering the sampling and leakage effects.

In the following, Sy, and S, denote the measured complex amplitudes of the analysed spectral component in the horizontal

and vertical channels, respectively (the dot hereafter denotes a complex quantity). Introduce a measurement column-vector

7 = [Ru, Jn, Ry, Ju]" &)

with R and J being real and imaginary parts of a complex amplitude S, indices / and v denote the polarization state, T is the

transposition sign, the overhat hereafter is used to emphasize measured quantities. The probability density function (PDF) of
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m, given the true covariance matrix 3, of 1, can be written as follows:

i (] B) = (27) "2 det(D,,) T 3™ Bm, )

Note that throughout the study a PDF is a function of measured quantities (e.g. m in Eq. 2) with fixed parameters (e.g. 3,,
in Eq. 2). The same PDF is called a likelihood function if the measured quantities are fixed and the PDF is viewed as a function
of parameters.

Doviak et al. (1979) showed that for meteorological targets I and () components are jointly normal with zero mean, zero
correlation, and equal standard deviation. The authors explain that these properties are due to scattering from a large number
of particles moving in an unpredictable way in a scattering volume. Since Ng is much smaller than the number of particles in
a resolution volume, the properties are also valid for relations between Rh and jh and between Rq, and jv.

The measured complex amplitudes Sy, and S, however, can be correlated. Taking these properties into account, the true

covariance matrix X, is defined in the following way (Eq. 5.178 in Bringi and Chandrasekar (2001)):

0,2L 0 qQOnRoOy  SOROy
2
s 0 o —SOR0y  QOROy 3
"= : : 3)
qOh0y —SOp0y (o 0
SOpOy  QOROy 0 Jg,

where o7}, is the standard deviation of Rh and jh, 0, is the standard deviation of RU and jv, q is the correlation between IA%h

and RU, and s is the correlation between Rh and JA”.
2.2 Polarimetric variables

Unlike precipitation radars which perform rapid azimuth scans, cloud radars are typically pointed to a certain direction or make
slow scans to get non-broadened Doppler spectra. Doviak et al. (1979) showed (Eq. 5.2 in there) that the coherency between the
adjacent samples depends on the wavelength and the sample repetition period. Cloud radars typically have the pulse repetition
frequency in the order of 10 kHz and Ny, in the range from 128 to 1024. This results in getting a single spectrum every
0.01-0.1 s. For such sampling properties of cloud radars any significant coherency between adjacent samples of a spectral line
requires the spectral broadening not exceeding at most a few cm s~!. The turbulent spectral broadening, however, exceeds

few cm s !

even in stratiform non-precipitating clouds (Borque et al., 2016). Therefore, consecutive samples of complex
amplitudes for a spectral line can be considered to be independent.

Since for meteorological targets Rh is not correlated with jh and ]%U is not correlated with jv, the absolute phases of Sh
and Sv are uniformly distributed from O to 27 and, thus, uninformative. Therefore, the polarimetric observations in the hybrid
mode can be represented by a 2 x 2 covariance matrix B (Eq. 4.130 in Bringi and Chandrasekar (2001)) instead of the true

covariance matrix XJ,,,:

Bun B
B By

hv

B=cel =

) “)
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where
e=(Sh,9)"; 5)

the overline indicates the expected value, By, and B,,, have meaning of total powers of the horizontal and vertical components
of the received signal, respectively, By, is the covariance between the horizontal and vertical components of the received signal,
and * is the complex conjugation sign. Note, that in general By, B,,, and real and imaginary parts of Bhv can be calibrated
in any quantity that is proportional to the power (Watts) received by the radar; e.g. classical radar reflectivity (mm® m—3) or
even arbitrary units (Myagkov et al., 2016a). Recall, that in this study the covariance matrix B corresponds to a single spectral
component. Such spectral representation of vector signals was introduced by Wiener (1930).

The elements of B are related to the statistics of the complex amplitudes S, and S,, as follows:

By, = var(Ry,) + var(Jy,) = 207, ©)
By, = var(R,) + var(J,) = 202, (7)
Bho = Rpo +iJne = (q + j8)op0y, (8)

where Ry, and Jy,, are real and imaginary parts of Bh,u.
In the precipitation radar community, dual-polarized measurements are rarely represented by B. Instead a set of polarimetric
variables is used. Therefore, the same polarimetric variables (but spectrally resolved) are introduced in this study. Introduce a

vector

¢ = (Bun,Zpr,puv,®pp)’, ©)

where Zppr is the differential reflectivity, pgy is the correlation coefficient, and @ pp is the differential phase. In this study

Zpr, pav, and ®pp are defined for each spectral line using elements of corresponding B:

B
Zpr= BZ} (10)
R2 +J?
=\/7” 2, (11)
puv thBU'u
th
) = at — . 12
DP aan( th> (12)

Note, that elements of the matrix B are in general affected by noise. The noise in both polarimetric channels is not known
exactly. Typically, it is estimated from spectra using e.g. the algorithm from Hildebrand and Sekhon (1974). A subtraction of
noise levels from corresponding diagonal terms of the covariance matrix B to get an estimate of signal-only powers leads to
occasions when the covariance matrix is no longer positive semi-definite. In this case, pyy calculated from the noise corrected
covariance matrix can exceed 1, which is beyond the range of valid values. In order to avoid this problem, we characterize
radar measurements without noise subtraction. A further advantage of this approach is that spectral lines containing noise only

can also be correctly characterized.
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3 Likelihood of elements of the covariance matrix B

Assume the following problem. The state of the atmosphere is represented by the state vector . A forward model F' maps x

into a vector
F(x) = b= (Bnn, Rho, Jhos Buw)" (13)

in the space of observations. The actual measurement vector is

b= (B, Rhv, Jho, Buw)T = b+e, (14)
where

Bin = ($157), (1)
Ry =Re (<Shs>) (16)
Jpo = Im (<S'hs';>) : (17
Byo = <ss> (18)

are constituents of the measured covariance matrix B and e represents the vector of measurement random errors in each
component of b. In Egs. 15-18 Re and Im are the real and imaginary parts of a complex number. <> denotes averaging over
N, independent complex spectra calculated from non-overlapping time sequences. The estimators Eqs. 15-18 are the same as
given in Bringi and Chandrasekar (2001, Chapter 6.4.5). The only difference is that within this work the variables are calculated
using complex amplitudes for a spectral line instead of using I/Q components as is done by precipitation radars. What is the
likelihood of b given the state vector ? In the case the forward model provides a unique and accurate relation between x
and b, the problem is equivalent to finding fb(l;\b, Ny) — the likelihood of b- given the true vector of measurements b and
the number of averaged spectra IN,. The derivation of fb(l;\b, N,) provided in this section includes several steps. In Sec. 3.1
the polarimetric basis is changed to cancel the correlations between the orthogonal components of the measured vector. In
the new basis the likelihood function can be represented by a product of likelihood functions, each of which is a function of
only a single independent element. In Sec. 3.2 a formal derivation of the likelihood function in this new basis is provided. The
solution for fb(5|b7 N5) is given in Sec. 3.3 converting back to the original space and applying the rule of change of variables.
As it was mentioned above, the radar observations are often represented by the vector c. Therefore, Sec. 3.3 also provides the
likelihood f.(¢|b, Ny).

3.1 Diagonalization of the covariance matrix B

As it was previously mentioned, Sh and Sv are, in general, correlated. There is, however, always a basis, in which the projec-

tions of Sj, and S, become completely uncorrelated. This basis is further denoted as the c—x (co-polar and cross-polar) basis.
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The conversion of the vector e in the h—v basis to the vector ep in c—z basis is made using the unitary operator Q:

Se
ep=|{."]=Qe (19)
Sa

The calculation of the matrix Q is given in Appendix A. Real and imaginary parts of S, are jointly distributed normally with
the zero mean, zero correlation, and standard deviation .. Real and imaginary parts of S,, are also jointly distributed normally
with zero mean, zero correlation, but have, in general, a different standard deviation o.

The covariance matrix D of ep has the diagonal form and can be found as follows

D, 0
D= =Q'BQ. (20)
0 Dwx

In Eq. 20 } is the Hermitian conjugate. The elements of the matrix D can be found as follows:

Dee = @3 Bun + d1a]” Boo — 2911 (R12 Ry + J12Tho) 1)
Dacgc = |412‘2 th + Q%le) + 2(111 (R12th + J12th) (22)

where ¢,,,,, are elements of Q with n and m being indices of row and column, respectively;
q12 = Riz +iJ12. (23)

Similar to relations between the powers and the standard deviations given in Eqs. 6 and 44, o1 and o5 are related to D.. and

D,,, respectively:
D.. = var(R,) + var(J.) = 202 (24)

Dy, = var(R,) + var(J,) = 202 (25)

The measured values D,

Dew = Rey +ier, (26)
and ﬁm represent elements of the matrix D:

D=Q'BQ. (27)
Note, that the operator Q is the same as in Eq. 20 and not recalculated using B.

3.2 Likelihood function in the c—x basis

By definition, the off-diagonal elements of the covariance matrix D are zeros (see Eq. 20). This implies no correlation between

S, and S,. In this case, the likelihood function f;(d|b, N,), where

d= (-DccaRcw7Jc:c7D:z::c)Ta (28)
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can be written as a multiplication of likelihood functions of individual components:
Fa(dlb,No) = f(Declb, No) f (Rea|b, No) f (Jex b, No) f (Dai b, Ny ). (29)

PDFs of the individual components can be found as follows:

f(Declo, N, ) = {,Vgxém (029) : (30)
f (Duole. N, ) = ‘fgxgm (ﬁD) , (3D
() - B ()
I (Jealb, N ) = ﬁ;flév (B:Zp;l;b(zv) K, <|2i5i1|> 7 (33)

where X7 is the chi-squared distribution with & degrees of freedom,
a= (2N, +1)/2, (34)
b=(1-2N,)/2, (35)

I' is the gamma function, and K, is the Bessel function of the second kind of order u. Recall, that o and o, in Egs. 30-33 are
derived from the elements of b using Eqs. 21-22 and Eqs 24 and 25. Derivation and Monte Carlo evaluation of Eqs. 30-33 is
given in Appendix B. Appendix B3 shows how to handle Eqs. 32 and 33 when Rey and J., are close to 0.

3.3 Likelihood function in the h—v basis

Applying the rule of changing variables in a multivariate PDF (e.g. Walpole et al., 2012, Theorem 7.4) f,(b|b, N,) can be
found from Eqgs. 29 as follows:

f5(b|b,N,) = fa(d|b, Ny). (36)

As shown in Appendix B35, the determinant of the Jacobian of the transformation from btodis equal to 1.

Likelihood f.(¢&|b, Ny) of a vector
&= (Bun,Zpr.puv,®pp) (37)
can be found by multiplying f,(b|b, N,) by |J | with
Joo = =B} Zpppav (38)
being the Jacobian of the transformation from ¢ to b (see Appendix B6):
fe(€|b.N.) = B} Zpprv fo(blb,Ny). (39)

Equations 36, and 39 can be used for the maximum likelihood optimization and Bayesian inference methods. Ready-to-use

MATLAB implementations of these equations are provided in the supplement.
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4 Error covariance matrices

A number of problems such as optimal estimation, data assimilation, and sensitivity analysis require the covariance matrix
of the measurement errors. Unfortunately, an analytical integration of Egs. 29, 36, and 39 required for the statistical moment
calculation is challenging. In this section, however, known relations for calculation of variances and covariances after a linear

transformation are used.
4.1 Error covariance matrix of b

The covariance matrix B estimated from measurements is related to the matrix D as follows:
B =QDQ". (40)

Therefore, the elements of the vector b can be found as linear combinations of the elements of the vector d:

B = ¢} Dec + d12|* Daw + 2q11 (312Rcz + J12jcz> ; (41)
Rpo = qi1Ri2 (-sz - bcc) + (¢}, — Ry + J1,) Rey —2R12J12Jcq (42)
Jno = 011712 (Do = Dec) + (ahy + By = JB) Jew — 2Rz 12 R 43)
Dyy = |d12* Dee + ¢} Do — 211 (R12ch + J12jcz) ; (44)
or in matrix form:
i) 2q11Rq2 2q11J12 \q'12|2
b —quRi2 i — R+ % —2R12J12 qi1R12 d— Md 45)
—q11J12 —2Ri12J12 ¢+ R — Tty qudie
|Q12|2 —2q11 R12 —2q11J12 i

In this case, as shown in Wilks D.S. (chapter 10.4.3), the error covariance matrix > of b can be calculated from the error

covariance matrix >4 of d:

Y, = M2 M7, (46)
where
402 /N, 0 0 0
0 o202 /N, 0 0
Yq= 47)
0 0 0202 /N, 0
0 0 0 40t /N,

The off-diagonal terms of >, are set to O taking into account that the elements of d are not correlated. The derivation of
diagonal terms — variances of elements of d-is given in Appendix C. A ready-to-use MATLAB implementation of Eq. 46 is

provided in the supplement.

10
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4.2 Error covariance matrix of ¢

As it was shown in Sec. 4.1, the error covariance matrix 3, can be used to characterize uncertainties of spectral radar ob-
servations. In this study, however, the error covariance of the vector ¢ is also obtained. It will be further demonstrated that a
representation of measurement uncertainties for ¢ is deficient.

Recall that the calculation of ¢ includes highly nonlinear functions. Therefore, the error covariance matrix 3. of the vector
¢ is estimated using the first-order Taylor approximation. Bringi and Chandrasekar (2001) used a similar approach to calculate

variances of polarimetric variables.
2. =8%,87, (48)

where S is the sensitivity matrix:

0Bpn,  ORpy  0Jny 0B,y
OBrn,  ORpy  0Jny 0B,y

S = 49
Opav  Opuv  Opuv  Opmv “9)
OBnn  ORp, 0Jne 0By
0®pp 0Ppp 0Ppp 0OPpp
thh ath 8th anv
Substituting Eqs. 10 — 12 into Eq. 49
1 0 0 0
B! 0 0 —Bup B2
S = . . . . : . (50)
—0.5By| B0 Byt ®  Rio| Bhol ™ (BunBuw) ™ Jho|Bho| = (BrnBuw) % —0.5|Bpy| By ° By l®
0 _th‘Bhv|72 th|Bhv‘72 0

A ready-to-use MATLAB implementation of Eq. 48 is provided in the supplement.

5 Consistency checks on radar observations

In order to check consistency of Eqs. 36, 39, 46 and 48 with radar measurements, I/Q data collected with a W-band cloud
radar with the hybrid polarimetric mode were used (Myagkov and Unal, 2021). The radar is a part of a dual-frequency system
owned and operated by the Technical University of Delft in Cabauw, the Netherlands. Technical specifications of the radar can
be found in Myagkov et al. (2020). The radar uses frequency modulated continuous signals. Kiichler et al. (2017) explain the
operation principle and shows that the radar profiles the atmosphere using several chirp types. Each chirp type is dedicated to
a certain distance range. During measurements chirp types are switched consequently. For each chirp type a number of chirps
(chirp sequence hereafter) is processed continuously. Operational settings used during I/Q measurements are listed in Table 1.

Measurements were made during a rain event on 21 June 2021 at 7:44 UTC. I/Q measurements provide high data rate of

about 900 MB min~!. Therefore, about 3 min of I/Q measurements were collected for the analysis. The radar was pointed

11
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Table 1. Operational setting of the used W-band radar

Parameter Chirp type 1~ Chirp type 2 Chirp type 3
Covered distance [km] 0.1-1.2 1.2-4.9 4.9-15
Range resolution [m] 29.8 29.8 55
Number of chirps in a sequence 7168 7168 9216
Chirp repetition frequency [kHz] 9.2 7.5 5

to 45° elevation. Since different chirp types have different properties, in the following only I/Q data collected with the first
chirp type are used. Since the first chirp sequence covers the lowest part of the atmosphere, the analyzed data correspond to
rain. As explained in Sec. 2, no noise subtraction is required to describe the statistics of the measurements. We therefore, use
all available spectral lines, including those containing noise only. 90% of spectral noise power was from 0.2-1.3x1072 [a.u].
Signal-to-noise ratio (defined here as a ratio of signal power in a spectral line divided by the mean spectral noise power in the
same range bin) specified in linear units was from 0 (no signal) to 10°. We would like to emphasize, that no filtering based
on signal-to-noise ratio was applied. Taking into account that the first chirp type has 37 range bins, in total 2.2 x 102 chirp

sequences (15.9 x 106 chirps) are available in each polarimetric channel.
5.1 Processing

All I/Q measurements within a chirp sequence in every polarimetric channel are split into 224 continuous blocks. Each block
contains 32 I/Q pairs. The FFT with the Blackman weighting window is applied to each block to get complex Doppler spectra.
Then the 224 blocks are split into 28 sub-blocks with 8 spectra in each sub-block. Within each sub-block elements of the vector
b are calculated according to Eqs. 15-18 with Ny = 8 for every spectral line. For each b the vector ¢ is obtained. Note, that
for this Eqs. 10-12 were applied to elements of b instead of b. Using vectors b and & within a sequence the error covariance
matrices ib and f)c are calculated numerically. The overhat here indicate that the error covariance matrices are estimated from
measurements.

The calculation of the likelihood functions using Egs. 36 and 39 require b. The approximation of covariance matrices using
Eqgs. 46 and 48 requires the matrix B. In order to estimate b and B, elements of the vector b are averaged over 28 sub-blocks
available within a single chirp sequence. These averaged values are assumed to be elements of the vector b from which the

matrix B is obtained. Using B and Ny = 8, ¥} and X, are calculated for each chirp sequence as shown in Fig. 1.
5.2 Filtering

The random error analysis provided in this study is only applicable to volume-distributed scattering and noise. As discussed
in Sec. 2, in this case ]A%h is not correlated with jh and Rv is not correlated with jv. However, radar observations in general

contain scattering from atmospheric plankton, ground clutter, and coherent receiver noise, which do not fulfil the assumption.
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Figure 1. Schematic illustration of the error covariance matrix calculation.
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Figure 2. Distributions of the ratio of mean power over the power standard deviation for the horizontal (blue line) and vertical (yellow

line) channels. The expected distribution is shown with the red line. The black vertical line indicates the threshold corresponding to the 5th

In order to filter out spectral lines with correlated real and imaginary parts, a simple filtering rule was applied. It is known,
that for a signal with uncorrelated in-phase and quadrature components, its mean power and power standard deviation are
related to each other (Eq. 5.193 in Bringi and Chandrasekar, 2001). Figure 2 shows distributions of the mean power over

the power standard deviation calculated in the horizontal and vertical polarization channels shown by blue and yellow lines,
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respectively. It can be seen that the mode of the distributions is close to the theoretical value of /N, = 2.8. The distributions,
however, have a considerable tail on the left side. These small values of the ratio are expected for correlated in-phase and
quadrature components. Thus, a threshold in the ratio of the mean power over the standard deviation of power can be used to
filter out unwanted spectral lines. In order to specify the threshold, the Monte Carlo approach was used. 15.9 x 10% random
complex values with normal distribution, zero mean, and the standard deviation of 1 were generated. The same processing
as for measured I/Q data was applied to the generated complex values. The distribution of the ratio of the mean power over
the power standard deviation for the generated data (denoted as expected distribution) is shown in Fig. 2 by the red line. The
expected distribution has much smaller tail on the left side relative to the ones of the measured distributions. The threshold of
2.3 used for filtering is chosen as the 5th percentile of the expected distribution. Vectors b and & are excluded from the analysis
if for the corresponding spectral component within a chirp sequence the ratio of the mean power over the power standard

deviation is below the threshold in at least one of the polarimetric channels. The amount of excluded data is about 18 %.
5.3 Evaluation of f,(b|b, N,) and f3(&|b, N,)

Recall, that b is estimated from measurements by averaging all available sub-blocks within a chirp sequence. b, however, can
also be estimated by maximization of the likelihood functions given in Egs. 36 and 39. In this case, an optimization algorithm
needs to be employed to find a set of elements of b corresponding to the global maximum in either Eq. 36 or Eq. 39. This study
uses a derivative-free optimization method available by default in MATLAB (Lagarias et al., 1998). Since the optimization
method minimizes a function, the likelihood functions were not used directly. Instead, the following cost functions were used

for the minimization:

28

Cb:*ZlOglo(fb(iﬂb,Ns))’ (51)
1=1
28

Ce =~ _logio(fe(elb,Ny)). o
1=1

Here the index [ runs over 28 sub-blocks within a chirp sequence. Equations 51 and 52 take into account that the consecutive
b are not correlated. In this case the total likelihood of 28 vectors b is a product of likelihood of each individual b. In order to
avoid an overflow of double numbers, the logarithm was used. In this case the logarithm of the product is replaced by the sum of
logarithms. The logarithm is monotonically increasing function and, therefore, it does not change the position of the maximum
of the likelihood function. Finally, the minus sign was introduced to have a smaller value of a cost function corresponding to
a higher value of the likelihood. For the evaluation, 1000 chirp sequences were chosen randomly for the maximum likelihood
estimation using fb(l;\b, N,). In each chirp sequence a single spectral line was randomly chosen for the analysis. Thus, there
are 28 vectors b available in each of the 1000 chirp sequences. For each sequence, the optimization algorithm requires an initial
guess of b. In order to avoid local minima, 5 different initial guesses were used, which are a coefficient P multiplied by the first
b in the analyzed chirp sequence. The values of P were 0.5, 0.75, 1, 1.25, and 1.5. The solution giving the lowest cost function

out of the 5 outcomes was chosen as the result. Similarly the maximum likelihood estimation using f.(&|b, Ns) was done using

14
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Figure 3. Comparison of elements of b estimated by the averaging over 28 sub-blocks (x-axis) with those estimated by the maximum
likelihood approach (y-axis). fb(13|b, N, ) was used for panels (a)-(d). f.(&|b, Ns) was used for panels (e)—(h). Each panel contains 1000
points described in text. Linear regressions are shown by red solid lines. Each panel has a text box with the slope of the corresponding
linear regression. Uncertainties of the slopes were estimated using the bootstrapping. Note, that units are not critical for the evaluation of the

correctness of the derived likelihood functions. Therefore, arbitrary units (a.u) are used.

independently chosen 1000 chirp sequences. Figure 3 shows a comparison of elements of b estimated by the averaging over
28 sub-blocks and those estimated by the maximum likelihood approach. All panels show a good agreement indicated by the
close-to-unity slope of the linear regression. Both f,(b|b, N,) (results in the first row of Fig. 3) and f.(é|b, N,) (results in the

second row of Fig. 3) show the same level of agreement and, therefore, can be used with no difference.
5.4 Evaluation of X,

Diagonal elements of > — variances of th, Z DR, PHV, and P pp — were checked against those calculated using Eqgs. 6.139a,
6.141, 6.144, and 6.143 in Bringi and Chandrasekar (2001), respectively. Taking into account, that samples for a spectral
line are not correlated, approximations for variances of Ehh, A DR, PV, and ) pp based on the equations in Bringi and

Chandrasekar (2001) are:
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Figure 4. Comparison of variances of (a) Bhn, (b) Zbr, © puv,and (d) ¢ DP. Approximations developed in this study are on the x-axis.
Approximations from Bringi and Chandrasekar (2001) are on the y-axis. pgy is color-coded in panels (c) and (d) to illustrate at which
values of prv approximations lead to erroneous values (see details in text). Note, that units are not critical for the evaluation of the derived

equations. Therefore, arbitrary units (a.u) are used in the panel (a).

32
VAR, = # (53)
272 (1 — p?
VAR, 4 = W’ (54)
(1- P%{V)Q
VAR, = —HV/7 (55)
" 2Nuphpy
(1- P%{V)
VARgy = ————=, (56)
2N.phry
(57)
respectively.

Figure 4 shows that VAR, VAR 4, and VARg match exactly ¥.(1,1), X.(2,2), and X.(4,4), respectively. VAR ,, how-
ever, agrees with ¥.(3,3) only at values of pgy > 0.95. Below this value VAR, overestimates the variance of py-. At values
of pyv close to 0, VAR, has unrealistically high values, which result from pfy in the denominator of Eq. 55.

Figure 4d also shows unrealistic values with both approximations of the dpp variance. Taking into account that dpp can
take values within the range from 0 to 27 rad, the variance of dpp exceeding 103 rad? is definitely erroneous. The high
variance of & p corresponds to values of pgy < 0.3. This effect results from the first-order Taylor approximation of Eq. 12
which is a highly non-linear function.

A comparison of the error covariance matrices 3. with the calculated one ¥, is shown in Fig. 5. Panels (f), (k), and (p)
indicate considerable differences caused by the first-order Taylor approximation in variances of ZpR, pHV, and dpp, respec-
tively. The results also reveal that the first-order Taylor approximation cannot adequately represent most of the non-diagonal

components of the error covariance matrix.
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Figure 5. Comparison of 3. estimated from the radar measurements with 3. obtained from Eq. 48. Elements of X, are given on the x-axes.
Elements of 3. are given on the y-axes. The first and the second numbers in brackets indicate the row and the column of the corresponding
matrix, respectively. Linear regressions are shown by red lines. Slopes of the linear regressions and Pearson correlations are given in boxes
in each panel. Uncertainties in the slope and the correlation are represented by + one standard deviation of the corresponding parameter.
The standard deviations are obtained using the bootstrapping. Panels without linear regressions show elements for which Eq. 48 gives only
near-zero values. Note, that units are not critical for the evaluation of the derived equations. Therefore, arbitrary units (a.u) are used. Also

note that only values on the x and y axes on an individual panel should be compared. Value on different panels should not be compared.
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The standard deviations are obtained using the bootstrapping. Note, that units are not critical for the evaluation of the derived equations.
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5.5 Evaluation of X

Figure 6 shows a comparison of elements of error covariance matrices 3, estimated from the radar measurements with those
calculated using Eq. 46. Estimated and calculated elements are in a good agreement. Linear regressions shown in the panels
by red lines have slopes close to 1. Pearson correlations between estimated and calculated elements exceed 0.96. These results
indicate an agreement of the theoretical calculation with measurements and, thus, confirm correctness of Eq. 46. It is, thus,
concluded that any application of spectral polarimetric measurements which require the estimate of the error covariance matrix
(e.g. variational retrievals, data assimilation, and sensitivity analysis) should be performed in the space of observations b rather

than ¢.

6 Summary and outlook

Spectral and polarimetric cloud radar observations have a great potential in the cloud science (Kollias et al., 2020). Decades
of such measurements have been already collected by e.g. the ARM (Atmospheric Radiation Measurement) and CLOUDNET
communities. An advanced application of these vast datasets requires an accurate characterization of measurement uncer-
tainties. Systematic errors in moment radar data and polarimetric variables have been discussed in many studies. Random
measurement errors, in contrast, are rarely considered in literature. The are three main problems in existing random-error-
characterization methods, namely (1) a lack of joint PDF for averaged polarimetric measurements, (2) neglection of non-
diagonal components of the error covariance matrix, and (3) inaccuracy of the first-order approximation in variances of polari-
metric variables. This study, thus, aims to provide solutions for these three problems.

Equations provided in Sec. 3 give an exact mathematical solution for the joint PDFs of spectral polarimetric observations.
The PDFs are given for two equivalent representations of the measurements: (1) b= (B;L;L,Rh,l,,J;W,Bw)T, and 2) c=
(Bhh, Zpr,puav,®p p)T. The obtained equations take into account non-coherent averaging of spectra, which is applied by a
majority of cloud radars to improve the sensitivity. Maximum likelihood estimators of b based on Eqs. 36 and 39 were compared
with the estimator based on longer averaging. The comparison was based on dual-polarimetric cloud radar observations. The
comparison showed a good agreement. Both PDFs can be equivalently used for methods based on the maximum likelihood
and Bayesian inference.

Section 4 is focused on the error covarince matrix required for a number of applications such as data assimilation, sensitivity
analysis, and variational retrievals. The error covariance matrices X5 and X, for b and ¢, respectively, are obtained using the
characteristic functions of the PDFs described in Sec. 3. Since the calculation of the ¢ includes highly non-linear functions, >,
was derived using the first-order Taylor approximation. The same approach was used by Bringi and Chandrasekar (2001) to
get equations for variances of polarimetric observations.

The error covariance matrices were evaluated using I/Q observations from a polarimetric W-band radar. It is illustrated
that elements of Y. have considerable differences from those estimated from the measurements. First, we found differences
in variances of Zpg, pgv, Ppp of up to factor of 10, 5, and 100, respectively. Second, the calculated variance of ®pp

shows unrealistically high values by far exceeding the range of possible values. Third, most of the off-diagonal terms of X,
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are not correlated with corresponding values estimated from observations. We relate the differences to the first-order Taylor
425 approximation. The Taylor approximation assumes linear relations between elements of the vector b and the elements of
the vector ¢, while the relations include highly non-linear functions. In contrast, ¥, agrees well with the observations. The
correlation between calculated elements of X, with those estimated from the observations exceeds 0.965.
Thus, based on the results found within this study, it is recommended to use the vector b to represent polarimetric cloud
radar observations for applications requiring the error covariance matrix. This representation has a better characterization of
430 random errors in comparison with widely used representation c. When the signal to noise ratio is high (> 35 dB), however, the
variances are quite low and the Taylor approximation may give reasonable results.
In order to demonstrate a practical application of the developed characterization of the measurements errors, a few retrieval
techniques are being currently developed. The first one is an improvement of the ice-share retrieval described in Myagkov
et al. (2016a). Another one is an adoption of the drop-size-distribution from Tridon and Battaglia (2015) for dual-polarimeteric

435 cloud radar observations.

Code and data availability. 1/Q data used in this study are available on Zenodo (Myagkov and Unal, 2021, https://doi.org/10.5281/zenodo.5126813).
MATLAB code used to process 1/Q data is provided in the supplement to this paper. Ready-to-use MATLAB implementations for Egs. 36,

39, 46, and 48 are given in the supplement.

Appendix A: Diagonalization matrix Q

440 The operator Q, which is used to diagonalize the covariance matrix B in Eq. 20, is calculated as follows (Kanareykin et al.,

1968, chapter 2.5):

q11 d12
Q=" , (A1)
—q12 411
where
L2\ 0.5
a = <1+ d ) : (A2)
445 g1z = —d"qu, (A3)
B*
d hv (A4)

05 [TrB + /TiB? — 4det(B)] — B,

In Eq. A4 Tr is the matrix trace.
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Appendix B: Derivation of likelihood functions
B1 Change of variables in a PDF

Consider a vector a with n random variables a;__,,. Assume the joint PDF f,(a) of the variables is known. The joint PDF

fy(y) of a vector

y=0Gla) (B1)
can be found changing the variables in f,(a):

fy() =131 [T ()] (B2)
where G~! is reverse transformation from y to a and J is the determinant of the Jacobian of the transformation a = G~!(y).
B2 Likelihood functions for D.. and D,

It is known, that the PDF of z; being a sum of squares of independent standard normal samples (i.e. distributed normally with
0 mean and standard deviation of 1) is the chi-squared distribution X% (zs), where the degree of freedom k shows how many

samples have been summed. Taking into account that:

. N N2 N, N2
Dee = NLo2 {00—2 S Re (Sc)l 40523 Im (sc)l } , (B3)
=1 =1

where the first and the second summed terms in the curly brackets are sums of squares of independent standard normal samples,

the likelihood function f (l/\7cc|ac7 NS) can be found by changing the variable z5 to Nyo_ Qﬁc:

. N Ny ~
f(Decores N ) = =X, ((TQDCC) . (B4)

The factor of 2 in the degree of freedom is because there are 2N, summed components in the curly brackets in Eq. B3. The

equation for lA)M is derived in a similar manner as for DCC resulting in:
. N, N, »
oz s\ of
B3 Likelihood functions for R., and J.,

Nadarajah and Pogédny (2016) provide a solution for the PDF of an averaged multiplication z,,, of two standard normal variables.
For two uncorrelated variables the PDF is defined as follows:

ntD/290-2) 5, (/2 .
fz(zm) - ﬁl"(n/2) (1-n)/2 (n|zm‘)a (B6)

where n is the number of averaged multiplications, I' is the gamma function, and K, is the Bessel function of the second kind

of order p.
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R, is calculated as follows:

lﬁ;Re (5. Re (1) + lﬁ?m (5.)m (sx)] } | -

where the term in the curly brackets is an average over 2Ny multiplications of independent standard normal samples. In this

Rer = 20,0,

1
2N,0.0,

case, the likelihood function f (Rcz|o'c, oz,NS> can be found by changing z,, by (20601)’1]:261:

f (ch|0070'3:7N9)

2N,)®| Rex| ™ Ny|Rey
(2N,)° | Res| m( (Rl.l|)7 .

- /722Ns (0,.0,)°T (Ns) oo

where a = (2N, +1)/2, b= (1—-2N;)/2, T is the gamma function, and K, is the Bessel function of the second kind of order
1. When R., — 0, the modified Bessel function K, (NS\RW|(UCU$)_1) — 00. Therefore, for R, close to 0, the following
approximation based on Egs. 9.6.6 and 9.6.8 from Abramowitz and Stegun (1972) should be used:

N,I(=b)

RCI Cy I?NS) ~ N — /AT N
f( loe,0 2y/mo.0,T'(Ns)

(B9)

Formulas for J., are defined in a similar manner:

T (QNS)”JACJC‘*Z) N8|jcz|
cx|Vcy x,Ns = K 5 B1
f (Jeeloes ) T2 (0000 ) TN\ oo (B1O)

with the approximation for J.a close to 0:

. NGF(_b)
f(ch‘O'c,U;m s) QﬁJCUmP(NS)

B4 Monte Carlo evaluation of Eqs. B4, BS, B§, and B10

(B11)

For the equation evaluation a simulated dataset was generated. In total 1000 sets of distributions were simulated using the Monte
Carlo approach. A single set included distributions of Bcc, Bm, RCI, and jcx. For a single set 10° vectors b were generated. A
single vector b resulted from N, randomly generated vectors m. For a single set of distributions a single covariance matrix B
was taken. The elements of the covariance matrix B and N were randomly generated according to the following rules (values

have linear arbitrary units):
1. By, is a sum of mean powers of signal Py, and noise P,,j,.
2. B,, is a sum of mean powers of signal P, and noise P,,,.
3. Pih=P.,,=1
4. Pgp and Ps, were randomly and independently generated using the uniform distribution from 1 to 5.

5. By, was calculated as pgy e'®PP /Py, P, .
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Table B1. Percentage of test-statistic values exceeding critical values for different significance levels. Percentages are given in %. Names of

4 columns on the right side of the table indicate for which distribution a percentage is given.

Significance level ~ Critical value  f (ﬁcc|ac,N5) f (ch'UC7Ns) f (jc:L'|O'C7Ns) f (ﬁwx|0c7Ns)

0.95 16.919 6.9 52 5.8 59
0.975 19.023 3.8 34 2.7 2.9
0.99 21.666 1.0 1.3 1.0 1.2

6. prv was chosen randomly using the uniform distribution from O to 1.
7. ®pp was chosen randomly using the uniform distribution from 0 to 27.
8. N, was chosen as a random integer number in the range from 2 to 80.

From the covariance matrix B the true covariance matrix ¥,, was obtained. 10° x N vectors m were generated according
to the PDF given in Eq. 2. Then, 10° elements of the b were calculated according to Eqs. 15-18. Elements of the vector d were
derived from the vectors b using Eq. 27.

Using the 10° vectors d individual histograms for each of the variables BCC, Bm, ]A%m, and jm are derived. A histogram has
10 bins covering the range from the minimum to maximum values of the corresponding variable. Widths of bins were adjusted
to have 10000 samples in each bin. For the same bins the expected number of samples is calculated using the corresponding
PDEF. Since integration of Eqs. B4, B5, B8, and B10 is challenging, the integration is done numerically. Then the Pearson’s
chi-squared test is applied. The same procedure is repeated for all 1000 sets of distributions. Thus, for each PDF (Egs. B4, BS,
B8, and B10) 1000 test-statistic values were obtained.

The Pearson’s chi-squared test implies a comparison of the test-statistic values with a critical values for a given level of
significance. A test-statistic value exceeding the critical value would indicate that there is a chance (equal to the significance
level) that the data significantly differs from the PDF. There is, however, a small chance that the conclusion that the data differs
from the PDF is erroneous. Table B1 shows the percentage of the test-statistic values exceeding critical values. It can be seen
that the amount of test-statistic values exceeding corresponding critical values is very close to the theoretical values, i.e. 5, 2.5,

and 1 % at 0.95, 0.975, and 0.99 significance levels, respectively. This confirms the validity of the obtained PDFs.
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515 B5 Jacobian J4 of the transformation from btod

Using Eqgs. 21-22 J4 can be written as follows:

Joa =

8Dcc 8-Dcc a-Dcc a-Dcc
thh ath ath anv
aRcr aRcm 8Rcz 8Rcz
thh 6Rh'u ath 8Bv'u o
0Jee  0Jewy 0Jew  OJew |
OBrn  ORpy  0Jny 0By
O0Dyy 0Dpy 0Dy 0Dy
thh ath ath an'u
Q%l
|G12|?
q11 P12
q11J12

520 Taking into account Egs. A2 and A3, Jyq = 1.

|d12]? —2q11 Rq2 —2q11J12
2
q 2q11 12 2q11J12
P, = (¢4 +1q2)*. (B12)
—quiRi2 g1 — Ris +Jis —2R12J12
—q11J12 —2Ry2J12 a1 + Ry — i

B6 Jacobian J; of the transformation from ¢ to b

Using Eqgs. 21-22 J;, can be written as follows:

0 0

70-5thpHV COS(@DP)ZB}%'S th COS((I)DP)ZB?{'5 7thpHV SiIl((I)DI:-)ZB%5

OBpy,  O0Bpn,  OBpp  OBpy
0Bn,  0Zpr Opmv O0Ppp
ath 8th ath 8th
J._ OBn,  0Zpr Opmv O0®pp
< 8th ath at]hv ath
OBwn  0Zpr  Opmv  0%Ppp
an)q) aBU/U 8B'UT) aBU/U
O0Bpn  ORpy 0Jhe 0By
1 0
P Z—O.5
505 PHV C.OS( DP) 13(})35
puvsin(®pp)Zpg

-1
ZDR

—O.SthpHVSin(CI)Dp)ZB}%’S th Sin(@Dp)ZB%B _thpHV COS((I)DP)ZB(I);‘E5

~BunZph,

0 0

- By, Zphpny  (BI3)
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Appendix C: Variances of elements of the vector d

To derive solutions for mean and variances of elements of d, the distribution of the elements is represented by characteristic
functions. A y-th raw statistical moment M., of a random variable with a characteristic function ¢(t) can be found as follows:

. d7o(t)
i
My =i dt7 li=0’

(ChH

The calculation of derivatives of the characteristic functions is in general easier to obtain than integration of the corresponding
PDFs.

The characteristic function of the chi-squared distribution Xﬁ (z5) is
ds(t) = (1 —2it)~F/2, (€2)

Therefore, the characteristic function for DCC for a given o, and Ny can be written in the following way:

202\
ce(t)=11— < C3
()= (1- 221 ©3)
The mean value and variance of ﬁcc are calculated as follows:
= 1do..(t
Do = 180l g2 (C4)
i dt li=0
- d% e (t) —2 4ot
Dcc :_7‘ _Dcc === C5
var(De) a2 lizo N, ©)
Similarly,
= 1 depys(t) 9
Dyp =220 —202, C6
i dt =0 e (€6)
- 4ot
D,,)=—-—=%. 7
var(Dy) = (€7)
Based on Nadarajah and Pogény (2016) the characteristic function corresponding to f, (z,) is
2 —n/2
0. (t) = (1+2) . (C8)
n
Therefore, the characteristic function for Rcz and jCI for given o, 0, and Nj is as follows:
olot? —Ns/2
Pea(t) = <1 + 1\72) (C9)
As expected for a multiplication of two uncorrelated variables, the mean values of }A%cw and jw
= = 1dees(t)
Rey=Jex =~ ‘ = C10
i dt lt=0 ( )
The variance of f%cz and jcm can be found as follows:
: L Pou(t) okl
Var(Rcz) :Var(Jcm) :—T‘t:O: 27]\[‘; (Cll)
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Table D1. Main symbols used throughout the study. The overdot indicates a complex number. Indices h and v indicate the polarization of

the receiver channel. The overhat indicates a measured quantity.

Symbol Description

r Gamma function
prv and prv Correlation coefficient for a spectral line

Ppp and ® pp  Differential phase for a spectral line

Oh Standard deviation of Ry, and Jj,
Ou Standard deviation of R, and J,,
Oc Standard deviation of R and .J,
Oz Standard deviation of Rr and jT
Ym Error covariance matrix of m
Y4 Error covariance matrix of d
> and f]b Error covariance matrix of b
Y. and f)c Error covariance matrix of ¢
(1) characteristic function
s (t) characteristic function for z,
Dee(t) characteristic function for D...
ez () characteristic function for R, and Je,
o=(t) characteristic function for z,
i chi-squared distribution with k£ degrees of freedom
* Complex conjugation sign
T Hermitian conjugate sign
b the column vector elements of which are Byn, Rhv, Jho, and By,
b the column vector elements of which are th, th, j;w, and Bm,
Band B 2 X 2 covariance matrix describing polarimetric measurements in a single spec-

tral line in the h — v basis

Bnn, Bry, and  elements of the covariance matrix B

By

By and By, diagonal elements of the covariance matrix B

c the column vector elements of which are Byn, Zpr, pav,and ®pp
¢ the column vector elements of which are th, A DR, PHV, and o DP
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Table D2. Continue of Table D1.

Symbol Description
d Column vector elements of which are f)cc, Rcz, jcz, and 1311
De¢cand Dy, Diagonal elements of the covariance matrix D

Dee ,]:)M, and
-DCI
Dand D

Ih o
J12
Jea
Jy, and J,
Jho
Jho
Jbd
Jeb

Elements of the covariance matrix D

2 x 2 covariance matrix describing polarimetric measurements in a single spec-
tral line in the ¢ — z basis

measurement column vector in the h — v basis

measurement column vector in the ¢ — z basis

PDF of ﬁcc for a given b and N,

PDF of Rcm for a given b and N,

PDF of jcz for a given b and N,

PDF of ljm for a given b and N,

joint PDF of m for a given %,,,

joint PDF of d fora given b and Ny

joint PDF of b for a given b and N,

joint PDF of ¢ for a given b and N,

Imaginary unit

Measured in-phase component measured by the radar receiver in a range bin
Imaginary part of g2

Imaginary part of Dex

Imaginary parts of Sy, and S, respectively

Imaginary part of Bhe

Imaginary part of the covariance between Sy, and S,

Jacobian of the transformation from b to d

Jacobian of the transformation from ¢ to b

Bessel function of the second kind of order p

Measurement vector, which elements are real and imaginary parts of S n and S'v
~-th raw statistical moment of a random variable

Number of spectra used for averaging

Number of pulses/chirps used to calculate the Doppler spectra

Measured quadrature component measured by the radar receiver in a range bin
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Table D3. Continue of Table D1.

Symbol Description

Q Matrix used to diagonalize the matrix B

qi1, ¢i2, and  Elements of the matrix Q

q22

q correlation between Rh and Rv

s correlation between Ry, and .J,,

Ria real part of g2

Ry, and R, real parts of Sy, and S, respectively

Rpy real part of Bh

R Real part of the covariance between Sy, and S,

Rew Real part of Dea

.S"h,,, Measured complex amplitude for a spectral line

S the 4 x 4 sensitivity matrix

T the transposition sign

t argument of a characteristic function

VARy1R Variance of Bh n, approximated from Bringi and Chandrasekar (2001)

VAR 4r Variance of Z pr approximated from Bringi and Chandrasekar (2001)
VAR, Variance of pgv approximated from Bringi and Chandrasekar (2001)
VARs Variance of ® pp approximated from Bringi and Chandrasekar (2001)
Zprand Zpr  Differential reflectivity for a spectral line

Zs a sum of squares of independent standard normal samples

Zm averaged multiplication of two standard normal variables

Appendix D: Table of symbols
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