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Abstract The authors have developed a system for the Antarctic stratospheric aerosol observation and sample-return using the 

combination of a rubber balloon, a parachute, and a gliding fixed-wing unmanned aerial vehicle (UAV). A rubber balloon can 

usually reach 20km to 30km in altitude, but it becomes difficult for the UAV designed as a low-subsonic UAV to directly glide 

back from the stratospheric altitudes because the quantitative aerodynamic characteristics necessary for the control system 15 

design at such altitudes are difficult to obtain. In order to make the observation and sample-return possible at such higher 

altitudes while avoiding the problem with the control system of the UAV, the method using the two-stage separation was 

developed and attempted in Antarctica. In two-stage separation method, the UAV first descends by a parachute after separating 

from the balloon at stratospheric altitude to a certain altitude wherein the flight control system of the UAV works properly. 

Then it secondly separates the parachute for autonomous gliding back to the released point on the ground. The UAV in which 20 

an optical particle counter and an airborne aerosol sampler were installed was launched on January 24, 2015 from S17 (69.028S, 

40.093E, 607 m MSL) near Syowa Station in Antarctica. The system reached 23km in altitude and the UAV successfully 

returned aerosol samples. In this paper, the details of the UAV system using the two-stage separation method including the 

observation flight results, and the preliminary results of the observation and analyses of the samples are shown. 

1 Introduction 25 

Various aerosols are drifting in the atmosphere and have influences on weather and climate change through the global heat 

balance and material balance (Stocker et al., 2013). Most of Antarctic surface is covered by thick ice for all year around, and 

Antarctica is the furthest place from the places where activities of live animals and plants, and artificial economic activities 

are conducted. Thus Antarctica is an optimal place for the observation of background aerosol because the concentration of 

aerosol is about a few percent of that in other areas. Antarctica is one of the cold sources in the global heat balance, but its 30 
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direct effect through aerosol is not so large because the amount of aerosol is small. However, it has something to do with the 

heat balance indirectly through clouds and precipitation, and the understanding of the distribution and varying mechanisms of 

them is indispensable not only for understanding the material balance and climate change prediction. 

Various aerosol observations have been conducted in the past, and several insights regarding the feature of the distribution and 

changing mechanisms of aerosols were obtained (Yamanouchi, 2010). However, the observation in Antarctica is forced to be 35 

conducted under various constraints such as low temperature, long polar nights, and insufficient observation facilities. There 

are several methods for the observation of aerosol concentration and aerosol sampling such as the method using a rubber 

balloon (Ito et al., 1986, Hayashi et.al., 1998, Hara et al., 2014), a tethered balloon (Hara et al., 2013), and a manned airplane 

(Iwasaka et al., 1985, Yamanouchi et al., 1999, Hara et al., 2006). All methods have advantages and disadvantages in terms of 

reachable altitude, cost, easiness of sample retrieval, required labour, and so on. The maximum observation altitude using a 40 

rubber balloon typically reaches about 20 to 30km which is far beyond that of a tethered balloon and a manned airplane, while 

its operation is relatively handy and its cost is low. However, it is often difficult especially in Antarctica to retrieve the 

observation instruments and aerosol samples which fell down on the surface of the ice floor or the frozen sea after the burst of 

the balloon. It is a big problem that we have almost no choice but to discard the expensive observation apparatuses which cost 

approximately ten thousand US$/unit every time. It is even fatal that we cannot retrieve the precious aerosol samples. Such 45 

problems hardly occur for a tethered balloon, but the reachable altitude is limited up to only several kilometres due to the 

strength and weight of a tether line. There are also no such limitations for manned airplanes, but the maximum reachable 

altitude is at most the lower layer of the stratosphere which is far below that of a free balloon. The operating cost of a manned 

airplane is huge compared to that of the method using a free balloon and a tethered balloon, and the cumbersome arrangement 

of flight schedule is always required unless we possess our own airplane and operating staffs. In particular, in order to operate 50 

manned airplanes in Antarctica, it requires not only huge cost but also requires several additional operational loads including 

the maintenance of the runway. 

Unmanned Aerial Vehicles (UAVs) have made a rapid progress after the 21st century due to the progress of several technologies 

such as microcomputers, micro electro mechanical system (MEMS) sensors, and the GPS navigation system. The UAVs are 

indispensable for military operations these days, and the number of scientific operations is also increasing in Polar region 55 

wherein the operation of manned airplanes is difficult. (Spiess et al.,2007, BAS,2008, Higashino et al.,2013, Higashino et al., 

2014, Funaki et al.,2014)．The authors have developed an innovative aerosol observation and sample-return system using the 

combination of a free balloon and a UAV (Higashino et al.,2014, Higashino et al, 2020). The system has proved its high 

capability by the five observation flights in Antarctica as one of the summer activities of the 54th Japanese Antarctic Research 

Expedition (JARE54) in 2014 in which the aerosol samples were retrieved successfully from the maximum altitude of 10km 60 

by the gliding UAV. This aerosol observation and sample-return method enabled not only the retrieval of the expensive 

observation instruments such as an optical particle counter (OPC) and an airborne aerosol sampler (AAS), but also enabled the 

retrieval of the priceless aerosol samples which are sometimes difficult to retrieve in the method using just a free balloon.  On 

the other hand, the maximum altitude where aerosol samples were collected was 10km in 2014, and it is not high enough 
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compared to the typical reachable altitude of a rubber balloon.  However, it is not easy to raise the start altitude of the UAV 65 

for gliding. It is mainly because the air density and pressure at higher altitudes decreases rapidly as the altitude increases in 

stratosphere, and the air density at 30km becomes approximately 1/100 of that at sea level. It causes various problems for the 

UAV, and it is difficult to design the control system of the UAV without knowing the aerodynamic characteristics at such 

higher altitudes. In order to avoid this problem, the authors have devised the method named “two-stage separation method”. 

 70 

2 Aerosol observation and sample-return method using two-stage separation 

 

How the method for aerosol observation and sample-return using the two-stage separation method works is shown in Fig.1. 

The observation and sampling instruments are installed in the UAV, and the UAV climbs up using the buoyancy of a balloon 

while observation and sampling are performed during the climb (Fig.1, 1). After reaching the maximum altitude, the balloon 75 

bursts or the UAV firstly separates the balloon intentionally and automatically (Fig.1, 2). The UAV descends down using a 

parachute to an altitude wherein the flight control system of the UAV works properly (Fig.1, 3). Then the UAV secondly 

separates the parachute automatically (Fig.1, 4), and starts gliding back to the sky over the released point on the ground 

autonomously (Fig.1, 5). The UAV descends down along the spiral glide path over the released point on the ground, and is 

recovered by a recovery parachute. (Fig.1, 6) This method enabled not only the aerosol observation and sampling up to high 80 

 

Fig.1 Aerosol observation and sample-return using the two-stage separation method 

https://doi.org/10.5194/amt-2021-234
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

stratospheric altitude, but also the retrieval of the expensive aerosol observation and sampling instruments, the precious aerosol 

samples, and the UAV safely from high altitudes using the existing UAV designed for low subsonic flight.  

 

3 The Observation and sample-return system 

3.1 The UAV and the Ground Station 85 

The UAV used for the aerosol observation and sample-return flights is shown in Fig.2, and its specifications are shown in 

Table 1. It has been modified from the UAV used in the same mission at lower altitude in Antarctica (Higashino, et al., 2014, 

Higashino, et al., 2020) by stretching its nose for a larger payload space, by equipping with flaps for slower flight speed at 

pull-up maneuverer just after separation, and named as “Phoenix-S”.  

 90 

 

Fig.2 Appearance of the Phoenix-S UAV mounted on a preparation stand 
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The flight control computer (FCC) system has originally developed by the primary author (Higashino, 2006) using a 

microcomputer Renesas H8S2638, micro electro mechanical system (MEMS) three-axis accelerometers and rate gyros, a 

differential pressure sensor, and a GPS receiver The UAV has been modified so that the flaps can be manipulated during the 

pull-up after dive for slower airspeed. The FCC is thermally insulated by putting it with the batteries in a box made of urethane 

foam covered by thermal blankets. The thermally insulated FCC hardware has been tested its functions in a thermostatic tank 95 

and a low pressure tank by simulating the temperature and pressure profile during the mission up to 30km in altitude. The FCC 

software has also been developed by the authors (Kawano et al.,2007) using C language, and modified for the two-stage 

separation. It has seven control modes, and the transition conditions for the entire mission are shown in Table 2. The FCC is 

Table 1  Specifications of the Phoenix-S UAV 

Item Value 

Wing span 2.9[m] 

Total weight 10.5[kg] 

Payload weight 2.0[kg] 

Wing area 0.58[m2] 

Maximum L/D ratio 14 

Maximum airspeed 40[m/s @ sea level] 

Power plant Electric motor 

Time for powered flight 5[minutes] 

 

Table 2 Control modes of the FCC software and the conditions for mode transition 

 

Mode name Transition condition Function 

Launch Command from GS (ground station) Maintains trim positions of all control surfaces 

Separation 
sh h  Separates the parachute 

Pull-up 
a sV V  Pulls-up the nose of the UAV for the following gliding mode 

Glider 
a cV V  Controls airspeed and course for waypoint flight 

Normal Command from the RC transmitter Controls airspeed, course, and altitude for waypoint flight 

Manual Command from the RC transmitter Controls the UAV manually 

 

Emergency 

Command from GS (ground 

station)  or 

command from the RC transmitter   

or 

minh h  except in launch mode 

Deploys recovery parachute 

h  : GPS altitude,  sh : second separation altitude,  minh : minimum parachute deployment altitude 

aV : airspeed of the UAV,  sV : stalling airspeed of the UAV,  cV : commanded airspeed 
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in the launch mode at the beginning of the observation flight until the UAV descend down by the parachute to the second 

separation altitude. All control surfaces are maintained as pre-set positions in the launch mode. The first separation is 100 

performed either by the burst of the balloon or the separator which is connected between the balloon and the descent parachute. 

After the descent by the parachute, the FCC transitions into the separation mode and separates the parachute when the altitude 

h  becomes smaller than the pre-set separation altitude s
h . The FCC immediately transitions into the pull-up mode, and the 

airspeed a
V  exceeds the stalling speed s

V . It transitions into the gliding mode soon after the airspeed a
V  exceeds the 

commanded gliding speed c
V . The UAV glides back toward the sky over the released point on the ground.  105 

The conventional rate-based gain scheduling PID controller (Kawano et al.,2007) has been implemented in the FCC based on 

the mathematical model of the UAV obtained by combining the estimated values using DATCOM (DATCOM, 1975), the 

wind tunnel test results performed at the low-speed wind tunnel at Kyushu University, and the flight test results at lower 

altitudes. 

The ground station was used in order not only to monitor flight trajectory and flight status but also to send commands to the 110 

UAV if necessary. The separation of the balloon and the parachute from the UAV is basically performed automatically, and it 

can also be done manually from the ground station. 

 

3.2 The UAV-balloon system 

Fig.3 shows the UAV-balloon just after release, and its components are described in the figure. The UAV was suspended from 115 

the balloon, and a parachute (an orange object in the middle of the line seen in Fig.3) was connected between the balloon and 

the UAV for the descent after first separation. Another small parachute seen just below the balloon in Fig.3 was also connected 

in order to prevent the descent parachute from collapsing by the fragments of the burst balloon. The third parachute for the 

final recovery on the ground was stowed in the fuselage of the UAV, and cannot be seen in the figure. The length of the line 

between the UAV and the parachute was approximately 50m in order to avoid contamination due to the balloon and the 120 

parachutes. A shock-absorbing spring and an unwinder which rolls the line off and delays its extension during initial ascent 

were also connected between the descent parachute and the UAV for easy release. The size of the descent parachute was 

determined so that the descent speed becomes approximately 7 m/s Equivalent Air Speed (EAS). The rubber balloon called 

TA3000(TOTEX Co. Ltd.) of which weight is 3000g was used. The parachute separator mounted on the belly of the UAV was 

composed of a combination of a quick-release snap shackle and a servo motor driven by the FCC. The end loop of the line was 125 

hooked up to the snap shackle via a line guide attached to the tail of the UAV in order to avoid the entanglement between the 

line and the tail control surfaces of the UAV. Another separator using a microprocessor, a pressure sensor, and hot wire could 

be connected between the balloon and the descent parachute in order for the intended balloon separation at a specific altitude, 

but it was not used this time. 
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 130 

3.3 Aerosol Observation System 

An optical particle counter (OPC: ADS-04-UAV, YGK Co. Ltd.) and an airborne aerosol sampler (AAS, Arios Co. Ltd.) were 

installed in the fuselage of the UAV, and a radio sonde (GPS sonde, RS06G, Meisei Electric Co. Ltd.) was installed in a pod 

at the right wing tip as shown in Fig.4. The specifications of the OPC is shown in Table 3. The OPC accumulates number of 

particles by 10 different threshold sizes ranging from 0.3 to 11.4  μm in diameter for every 4 seconds. The specification of the 135 

AAS is shown in Table 4. The AAS has been originally developed for the balloon-borne aerosol sampling (Okada et al., 1997) 

and has been modified for the sampling using a UAV. The AAS is a 2-stage cascade impactor with up to 16 sets of collection 

media and micro mesh grids. The collection grids are changed automatically in sequential way at every 5 minutes which 

corresponds to 1.2km in altitude range assuming 4m/s in rate of climb.  Two kinds of substrates, a carbon substrate and a nitron 

substrate were alternately set as shown in Table 5. The carbon substrates were prepared for the analyses of morphology by a 140 

SEM (Scanning Electron Microscope) and for the analyses of elements by an EDX (Energy dispersive X-ray analyzer). The 

Parachute for supporting the fragments 

 

Fig.3 Phoenix-S UAV climbing by a balloon 

50m 

Backup separator 

Descent parachute 

Unwinder 

Phoenix-S UAV 

Parachute separator 

(o 
(on the belly) 

(o 

of the balloon after burst 

Parachute for supporting the fragments 
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nitron substrates were specially prepared for the detection of nitrate ions which make crystals by the reaction with nitron, and 

can be identified by the SEM. Ambient air was introduced to the OPC and the AAS respectively through two separate stainless-

steel pipes of which inner diameter is 4.7 mm and the length is 50 mm as shown in Fig.4. The pipes were stood vertically 

against the side wall of the UAV fuselage. The radio sonde (GPS sonde) transmits temperature, humidity, OPC count, and 145 

AAS status data to the ground station by the FM radio waves with its carrier frequency of 403 MHz.  

 

 

Fig.4 Installation of the optical counter and the onboard aerosol sampler in the fuselage, 

and the radio sonde(GPS sonde) in the wing-tip pod 

OPC

AAS

OPC Inlet AAS Inlet

Flight Control 
System

Wingtip

GPS sonde

Table 3 Specifications of the Optical Particle Counter (OPC) 

Light source Device 

Wave length 

Output power 

Laser diode 

780nm, linear polarization 

50mW 

Receiving optics (side wall scattering) 

Crossing angle of axis 

Half angle of collection 

 

90 degrees 

60 degrees 

Measurement Flow rate 

Integration 

50 cm3/s 

4 s 

Power 

Size 

DC 

Dimensions 

Weight 

12V, 0.8A 

109x92x150mm 

700g 
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4 Prediction of the Flight Trajectory 

4.1 Prediction Model 

In order to perform the observation and sample-return mission successfully, the authors have developed a prediction system 150 

of the overall flight trajectory from the climb phase by the balloon, the descent phase by the parachute, and to the gliding phase 

of the UAV. It considers the climbing speed of the balloon, the drag characteristics of the descent parachute and the UAV, and 

the lift to drag ratio of the UAV estimated by the wind tunnel tests. The latest prediction of wind speed and direction known 

Table 4 Specifications of the Airborne Aerosol Sampler (AAS) 

Method 2 stage cascade inertial 

impactor 

50% cut-off diameter 

 

1st 1.4 μm , 2nd 0.25 μm at 1atm for sphere 

with 1g/cm3 

Sampling Trigger 

Flow rate 

Integration 

Number of samples 

Pressure (900hPa, adjustable) or manual 

1.6 liter/minute 

5 minutes(adjustable, corresponds to 1.2km 

16 sets 

Data output 

Power 

Size 

2 channels in voltage 

DC 

Dimensions 

Weight 

Stage rotation motor, sampling pump 

12V, 0.7A(max.) 

80x105x130mm 

650g 

 

Table 5  Sampling altitude ranges and film types for AAS on 24th Jan. 2015 

sample 

No. 

sampling altitude(m)  film 

type start stop top 

14 22,135 21,337 23,048 nitron 

13 20,868 22,135  carbon 

12 19,564 20,853  nitron 

11 18,349 19,547  carbon 

10 17,062 18,326  nitron 

9 15,707 17,042  carbon 

8 14,163 15,694  nitron 

7 12,264 14,148  carbon 

6 10,214 12,231  nitron 

5 8,149 10,190  carbon 

4 6,165 8,116  nitron 

3 4,366 6,137  carbon 

2 2,698 4,340  nitron 

1 1,114 2,675  carbon 

 

 

https://doi.org/10.5194/amt-2021-234
Preprint. Discussion started: 10 August 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

as Grid Point Value (GPV) data issued by Japan Meteorological Agency are also used. GVP data can be downloaded for free 

for research and educational purposes at the site of Research Institute for Sustainable Humanosphere, Kyoto University, Japan 155 

(GPV data download site).  

In the climb phase, position equations of the balloon-UAV system described in the North-East-Down (NED) coordinate system 

in which its origin is located at the released point of the balloon are shown from eq. (1) to eq.(3). They are numerically 

integrated until the altitude reaches the assumed first separation altitude. 

 160 

 

   

, , (1)

, , 2

( ) (3)

x

y

x w x y z

y w x y z

z c const







 

where  , ,xw x y z  and  , ,yw x y z are wind speed components in x (East) and y (North) direction at the position 

 , ,x y z respectively. Horizontal wind speed and direction data are taken from the GPV data, and are corrected for the three 

dimensional position by linear interpolation. No vertical wind speed is considered because no prediction is given in the GPV 

data. We assumed the climbing speed of the balloon-UAV system as constant from 5 to 7 m/s, and it can be specified arbitrarily. 165 

In the descent phase, the position equations for the horizontal position are the same as eq.(1) and eq.(2), but the vertical position 

of the parachute-UAV system is shown as eq. (4). The position of the system in descent phase is calculated by numerically 

integrating eq.(1), eq.(2), and eq.(4) until it reaches the second separation altitude. 

  2 / (4)Dz mg z SC  

where m  is mass of the parachute-UAV system, g is gravitational acceleration,  z is air density which is a function of 170 

altitude, S is area of the parachute, and DC  is drag coefficient of the parachute-UAV system. We chose the parachute size S  

and DC  in eq.(4) so that the descent speed becomes approximately 7m/s in equivalent air speed (EAS), but true air speed 

expressed as eq.(4) changes depending on air density  z even if the equivalent air speed is assumed as constant (7m/s).  

After reaching the second separation altitude, the UAV separates the descent parachute, and the UAV starts gliding back to 

the released point.  The position equations in this gliding phase are shown from eq.(5) to eq.(7). 175 

     

       

 

cos cos , , (5)

cos sin , , 6

sin (7)

x

y

x V w x y z

y V w x y z

z V

 

 



 

 



 

Where V is the true airspeed of the UAV,   is gliding angle, and   is course direction angle of the UAV measured 

from North. After the separation from the descent parachute, the UAV dives, pulls-up, and turns towards the released point on 

the ground, but the time for these processes are relatively short, and they are omitted in the prediction for simplicity. In gliding 
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phase, the UAV glides at the commanded air speed of 28 m/s in EAS, and the true air speed (TAS) changes depending on air 180 

density, i.e. flight altitude. The air speed command of 28 m/s was determined considering the best glide speed of the UAV 

which gives the furthest flight distance determined by the wind tunnel test results, and the mean wind speed based on the 

examination of the GPV data. The performance of the trajectory prediction will be evaluated in the next section together with 

the actual flight trajectory. 

 185 

5  Results of observation flights 

5.1 Results of trajectory prediction and the observation flights 

Three aerosol observation and sample-return flights including one test flight were attempted in Antarctica as shown in Table 

6 as one of the 56th JARE (Japanese Antarctica Research Expedition) summer activities in January 2015. Prior to the 

observation flight, its flight trajectory was predicted using the developed prediction code as mentioned previously. Go/NoGo 190 

decision was made considering multiple information sources not only the result of the flight trajectory prediction, but also 

the weather forecasts of Antarctic Mesoscale Prediction System (UCAR, 2021), “Balloon Trajectory Forecasts” of Wyoming 

University (UWYO, 2021), and in-situ weather observation on the ground.  

Fig.5 shows the flight trajectory of flight No.2 in which the maximum altitude reached 23km, and aerosol sample at 22km was 

returned. The first separation was planned at 30km in altitude, but the rubber balloon burst at 23km. The UAV started descent 195 

by the parachute until 12km, and then started gliding by separating the parachute. After the UAV arrived over the released 

point, it continued gliding over the released point along a rectangular pattern as shown in Fig.5. Finally, the UAV was 

recovered by another parachute on the ice floor as shown in Fig.6. All these processes are carried out autonomously except for 

the final recovery by the parachute. 

 200 

Table 6  Results of the observation and sample-return flights in Jan. 2015 

Flight No. No.1 No.2 No.3 

Max. altitude (km) for aerosol 

concentration observation 
6 23 16 

Cause of max. altitude Intentional Burst Burst 

Max. altitude (km) for aerosol sampling 6 22 N.A. 

Aerosol sample returned Yes Yes No 
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Fig.7 compares the actual trajectory in flight No.2 in a horizontal plane in red solid line with the four predicted trajectories for 

two different times using GPV data issued at two different times. The observation flight was planned around 15:00UTC on 

 

 Fig.5 Trajectory of flight No.2 on 24th Jan. 2015 

 

Fig.6 Final recovery of the UAV by a parachute 
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24th January 2015, but the GPV forecast data only for 12:00UTC and 18:00UTC are available. For this reason, the flight 

trajectory starts at12:00 UTC and 18:00 UTC were predicted using the GPV data issued at one day and two days before the 

flight. The trend of the change in flight trajectory predictions how the balloon-UAV system would drift looks rotating to the 205 

left as indicated as red arrows in the figure, and they look getting closer to that in actual trajectory. Although the difference 

between the horizontal positions of the separation points in actual flight and the last prediction were approximately 6 km, the 

prediction can be said to be relatively reliable. 

 

 

Fig.7 Actual trajectory of flight No.2 on 24th Jan. 2015 in the horizontal  

plane and the predicted trajectories at different forecasted time 
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5.2 Preliminary results of the aerosol observation and sampling 210 

5.2.1 Concentration of aerosols observed by the OPC 

 The vertical profiles of aerosol concentrations in accumulation mode are shown in Fig.8. Stratospheric aerosol layer is seen 

between 9.5 km (tropopause) and 23 km in altitude, and it is composed of three sublayers with maximum concentrations of 2, 

2.5, and 3.7 particles/cm3 for d > 0.3 
μm

 at around 16, 12, and 10 km in altitude respectively. These concentrations looks 

different from the typical concentration profile in Antarctic summer stratospheric aerosol layer of which maximum 215 

concentration is approximately 1.0 particles/cm3 without sublayers (Kizu et al., 2010). One of the possibilities for explaining 

the difference is the injection of volcanic ash. Mt. Kelut (7° 55’ 48” S, 112° 18’ 29” E, 1731m) erupted at 22:50 LT on February 

13, 2014 (NASA 2021), and it is reported that ash clouds were found around 20 km and its plume seemed to reach around 30 

km in altitude. Although further investigation is necessary, there is a possibility of volcanic injections in stratosphere which 

spread globally and reached Antarctic stratosphere. 220 

 

Fig.8 Vertical profile observed by UAV borne OPC on January 24, 2015 

left: aerosol concentration, right temperature, numbers show sample ID shown in Table 5 
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5.2.2 Constituent analyses by SEM/EDX 

Sampling altitude ranges and film types on the observation flight No.2 on 24th Jan. 2015 are summarized in Table 7. The 

inclusion of sulfuric acid and mineral examined by morphology, and the characteristics observed by X-ray analyses are 

summarized in the column of “sulfate” and “mineral” in Table 7.  The particles including Si and Al are classified as “mineral”, 225 

and S (sulfur) as “sulfate”.  Two examples of a SEM image of particles on nitron regent thin film are shown in Fig.9 and Fig.10.  

The particles in Fig.9 were collected at 14.2～15.7 km in altitude, and the particles in Fig.10 were collected at 10.2～12.2 km. 

All particles in Fig.9 are crystal-like ones, and it implies that the inclusion of nitrate ion occurred. However, it is against our 

expectations that the nitric acid can be formed because the air temperature at the altitude was relatively high (around -45 

degrees Celcius) for the inclusion of nitrate ion. A similar morphology was found from the cold stratosphere in Arctic winter 230 

(Iwasaka et al., 1993) in which the air temperature was lower than -80 degrees Celcius, but the sizes of the crystals in Fig.9 

looks smaller than 1 
μm

, and they are smaller than those found from the cold stratosphere in Arctic winter. They indicate 

unusual inclusion of nitrate ion in stratospheric aerosols under "warm" summer conditions. It is difficult to understand how 

they are produced in view of common knowledge. There are several possibilities for explaining the cause of the result such as 

quaternary aerosol of HCl/HNO3/H2SO4/H2O caused by high HCl concentration by volcanic injection, high HNO3 235 

concentration caused by oxidation of N2 with high energy reaction by thunder, residue of HNO3 in stratospheric aerosols by 

hysteresis of production of ternary aerosols of HNO3/H2SO4/H2O in winter. However further investigation is necessary to 

understand how they are produced. 

Two types of particles are seen in Fig.10 judging from their appearances. One is spherical, and it looks like a liquid droplet. 

The same type particles occupies most of the particles. The other looks like a crystal. The analysis showed that the crystal-like 240 

Table 7 Type of individual aerosol by SEM/EDX analyses (24th Jan. 2015) 

sample 

No. 

sampling altitude(m) film 

type 
sulfate nitrate mineral 

start stop 

10 17,062 18,326 nitron major non non 

9 15,707 17,042 carbon major - non 

8 14,163 15,694 nitron - major non 

7 12,264 14,148 carbon major - non 

6 10,214 12,231 nitron major minor non 

5 8,149 10,190 carbon major - rare 

4 6,165 8,116 nitron major minor rare 

3 4,366 6,137 carbon major - rare 

2 2,698 4,340 nitron - minor rare 
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particles are nitric acid particles, while the droplet-like particles did not include nitric acid.  It implies that they are composed 

of sulfuric acid. Similar crystals were not found between 17.1 and 18.3 km in altitude. 

 

6 Conclusion 

The authors have proposed the “two-stage separation method” for the stratospheric aerosol observation and sample-return 245 

using the combination of a rubber balloon, a descent parachute, and a gliding UAV. In this method, observation instruments 

are installed in the UAV, and the UAV suspended by the balloon climbs up to stratospheric altitudes while aerosol observation 

and sampling are conducted. After reaching the target altitude or the burst of the balloon, the UAV descends down by the 

descent parachute to a certain altitude at which the flight control system of the UAV works properly. The UAV is then separated 

 

Fig.9  Morphology of aerosols sampled on nitron thin film collected  
at 14.2～15.7 km, on January 24, 2015 
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from the descent parachute, and it starts gliding back to the released point on the ground autonomously.  This method was 250 

attempted and proved to be quite effective in Antarctica in one of the JARE56 summer activities.  The aerosol observation up 

to the altitude of 23km and aerosol sampling up to 22km were achieved. The UAV started gliding from 12km in altitude and 

the UAV as well as the samples and the observation instruments are successfully recovered. 

A trajectory prediction system using the aerodynamic characteristics of the UAV and GPV data was developed. It was used 

for the Go/NoGo decision of the operation, and the comparison of the predicted flight trajectories and the actual flight trajectory 255 

showed relatively good agreement. 

The obtained vertical aerosol concentration profile showed three sub-layers in the stratosphere, and the concentrations of them 

were unusually high compared to a typical concentration level of the stratospheric aerosol layer in Antarctic summer which 

does not have sub-layers. Although further investigation is necessary, there is a possibility of volcanic injections in stratosphere 

due to the eruption of Mt.Kelut on February 13, 2014. By constituent analyses of the returned sample, a number of nitric acid 260 

particles were found in the stratosphere in spite of the relatively high temperature around -45 degrees Celsius for the inclusion 

of nitrate ion. Although all the results regarding the aerosol concentration profile and constituent analyses by SEM require 

further investigation, the results showed that the system using the balloon-assisted UAV using two-stage-separation method is 

 

Fig.10  Morphology of aerosols sampled on nitron thin film collected  

at 10.2～12.2 km, on January 24, 2015 
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quite useful, and it has a capability to produce more opportunities to observe and collect aerosol samples which may lead to 

new knowledge. 265 
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