

1 **Global Evaluation and Application of the Precipitable Water Vapor**
2 **Product from MERSI-II onboard the Fengyun-3D Satellite**

3 Wengang Zhang^{1,2}, Ling Wang^{2,3}, Yang Yu¹, Guirong Xu¹, Xiuqing Hu^{2,3}, Zhikang Fu¹, Chunguang Cui¹

4 ¹Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological
5 Administration, Wuhan 430205, China

6 ²Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological
7 Administration, Beijing 100081, China

8 ³National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

9 Correspondence to: [Wengang Zhang_Ling Wang \(wengang812lingw@whihr.comcma.cn\)](mailto:Wengang_Zhang_Ling_Wang@whihr.comcma.cn)

10 **Abstract.** The global evaluation of precipitable water vapor (PWV) derived from the advanced Medium Resolution Spectral
11 Imager (MERSI-II) onboard FengYun-3D is performed herein by comparing with the PWV from the Integrated Global
12 Radiosonde Archive (IGRA) based on a total of 626 462 sites (54214 57,219 match-ups) in total during 2018–2021. The
13 monthly averaged PWVs from MERSI-II and IGRA both presents the-a decreasing distribution opposite to latitude, with of
14 great PWV from mostly found in the tropics to the polar regions. In general, a good sound consistency exists between the
15 PWVs of MERSI-II and IGRA, and their correlation coefficient is 0.9400 951 and root mean squared error (RMSE) is 0.31 36
16 cm. The histogram of MB shows that the MB is concentrated around zero and mostly located within the range from -1.00 cm
17 to 0.50 cm. The peak values of mean bias (MB) and the mean relative bias (MRB) are 0.00 cm and -2.38%, with the standard
18 deviations of 0.25 cm and 16.8%, respectively. For most sites, the PWV is underestimated with the MB between -0.28 41 cm
19 and 0.05 cm. However, there is also overestimated PWV, which is mostly distributed in the surrounding areas of the Black
20 Sea and the middle of South America. The peak values of MB are found in February and July over the Southern and Northern
21 Hemisphere, respectively. More than 66.91% of retrievals falling within the except error (EE) envelope during all months.
22 Overall, the MRB and RMSE become larger with the increasing temporal and distance discrepancy, and it is contrast for EE
23 and correlation coefficient. Besides, the distance discrepancy impacts the evaluation more. The application of PWV product
24 over Qinghai Tibet Plateau shows that the transport of water vapor along the Brahmaputra Grand Canyon is obvious and it is
25 more significant in July. There is a slight underestimation of MERSI-II PWV for all seasons with the MB value below -0.18
26 cm, with the bias being the largest magnitude in summer. This is probably due to the presence of thin clouds, which weaken
27 the radiation signal observed by the satellite. We also find that there is a larger bias in the Southern Hemisphere, with a large
28 value and significant variation of PWV. The binned error analysis revealed that the MB and RMSE increased with the
29 increasing value of PWV, but there is an overestimation for PWV smaller than 1.0 cm. In addition, there is a higher MB and
30 RMSE with a larger spatial distance between the footprint of the satellite and the IGRA station, and the RMSE ranged from
31 0.33 cm to 0.47 cm.

33 Water vapor is an important component~~part~~ of the atmosphere and widely known as ~~the most~~an important greenhouse
 34 gas ~~and since~~ it can significantly affect climate change, the radiation balance, and the hydrological cycle (Kiehl & Trenberth,
 35 1997; Held & Soden, 2000; Dessler & Wong, 2009; Zhao et al., 2012). The spatiotemporal variations of water vapor are
 36 essential for understanding the formations of clouds and mesoscale meteorological systems in that cloud, and precipitation
 37 always rely on ~~the~~ changes in~~of~~ water vapor (Trenberth et al., 2003). Furthermore, water vapor can also influence the
 38 atmospheric transmittance, and the upward radiance over the view of~~measured by the~~ satellite ~~sensor is also affected by water~~
 39 vapor. Therefore, the information of water vapor is highly required to correct atmospheric effects in the satellite-based retrieval
 40 algorithm for land surface temperature (Meng et al., 2017).

41 Considering the critical role of water vapor, technologies aiming at the measurement of atmospheric water vapor have
 42 been developed. The precipitable water vapor (PWV), which means the integrated water vapor contained in a vertical column
 43 of a cross-sectional area, is an important indicator for the total atmospheric water vapor condition. The two major methods
 44 used for measuring PWV are satellite-based and ground-based technologies. Several ground-based measurements, such as
 45 radiosonde ~~-(~~Durre et al., 2009~~-)~~, global position system (GPS) receivers (Bevis et al., 1992), microwave radiometer (MWR)
 46 (Westwater, 1978) and sun photometer (Alexandrovet al., 2009), have been deployed to monitor the variability of water vapor.
 47 However, the spatial coverage of ground-based measurements is limited and inhomogeneous, and it is difficult to obtain a wide
 48 range of observations from multiple sources to support ~~the~~ studies for the distribution of PWV ~~in~~on both a regional and
 49 global scales. This is because the uncertainties ~~in~~of different measurements are not completely consistent, and they have
 50 distinct discrepancies, even in the and magnitudes (Chen & Liu, 2016; Wang et al., 2016). Different from ~~the~~ ground-based
 51 measurements, the satellite-based measurement is more useful for the temporal analysis of PWV over a wide area. In
 52 particular~~Especially~~, the polar~~polar~~-orbiting satellite-based measurements of water vapor have ~~the~~a considerable advantage
 53 due to their global coverage with satisfactory temporal and spatial resolutions. Therefore, the polar~~polar~~-orbiting satellite-
 54 based PWV product is widely used for understanding the global distribution of water vapor. As is commonly known~~As we all~~
 55 know, the well knowledge of global water vapor distributions is especially important for global atmospheric models aiming to
 56 predict weather or climate. Thus, the water vapor products retrieved via polar~~polar~~-orbiting satellites have become essential
 57 input parameters to sustain numerical models of the atmosphere, especially where global water vapor information is required
 58 within a short time span, and the assimilation of PWV has been proved~~proven~~ that it can~~to~~ help improve precipitation forecasts
 59 (Rakesh et al., 2009).

60 Over the past few decades, the satellite-based PWV retrieval algorithms are~~have been developed with the~~ observations
 61 from different sensors, which mainly can be divided into four main types according to the spectral region: (1) visible (VIS),
 62 (2) near-infrared (NIR), (3) thermal infrared (TIR), and (4) microwave (MW). There are three major satellite-borne sensors

63 that can provide the global ~~near infrared (NIR)~~ PWV products. The Moderate Resolution Imaging Spectroradiometer (MODIS)
64 onboard the Terra and Aqua ~~polar~~-orbiting satellite platforms is one of the most important instruments for obtaining
65 global PWV, and ~~it~~ has been widely used for a few decades since the launching of Terra spacecraft in 1999. The Medium
66 Resolution Imaging Spectrometer (MERIS) is one of ten instruments built in Envisat, which was launched on 1 March 2002,
67 but the mission was terminated on 8 April 2012 ~~because of due to~~ the loss of contact with the satellite. For ~~the~~ Chinese Feng Yun
68 3 (FY-3) meteorological series satellite, one of the major payloads onboard is the Medium Resolution Spectral Imager
69 (MERSI), which primarily monitors the ocean, land, atmosphere, etc. FY-3D is the ~~Chinese~~ second-generation ~~Chinese~~ polar-
70 orbiting meteorological satellite, equipped with the advanced MERSI (MERSI-II), and ~~it is was~~ launched on 15 November
71 2017. For MERIS, the PWV retrieval algorithm ~~employing employeds~~ the ratio of top of atmosphere (TOA) radiance at one
72 water vapor absorption channel (~~around~~ 900 nm) to ~~the~~ TOA radiance at ~~the atmospheric window channel such as~~ 885 nm,
73 ~~which is outside water vapor absorption region~~ (Bennartz and Fischer, 2001). However, both the algorithms for NIR PWV
74 derivation of MODIS and MERSI-II adopt the ~~ratios of~~ reflected solar radiance ~~ratios~~ between three NIR water vapor
75 absorption channels and two non-absorption channels (Gao and Kaufman, 2003; Wang et al., 2021). The setup of non-
76 absorption channels of MERSI-II is ~~the~~ same as that of MERSI but the absorption channels of MERSI-II are similar ~~with to~~
77 those of MODIS. ~~Besides~~Furthermore, the prelaunch and orbital calibration and characterization of MERSI-II were conducted
78 to ensure the quality of its products (Xu et al., 2018).

79 It is ~~strongly~~-necessary to evaluate the satellite-based PWV product ahead of its application in atmospheric science
80 research. The PWV from MODIS has been extensively evaluated ~~through by~~ comparing it with the PWV derived from other
81 measurements. The GPS PWV is widely used for the evaluation of PWV derived from MODIS (Liu et al., 2006; Prasad and
82 Singh, 2009; Lu et al., 2011). Ground-based MWR, which can measure integrated water vapor with high temporal resolution
83 and has a reliable measurement under clear sky condition, is also used for the evaluation of MERIS PWV (Li et al., 2003).
84 ~~Additionally~~In addition, the radiosonde PWV, calculated from the integration of specific humidity, has been recognized to be
85 a useful benchmark, being used ~~in for the~~ evaluation ~~of~~ the MODIS PWV in China (Liu et al., 2015), the Iberian Peninsula
86 (Sobrino et al., 2014), and Hong Kong (Liu et al., 2013). However, ~~up to now~~, few studies have focused on the evaluation of
87 the MERSI-II PWV ~~up to now~~, and the lack of effective assessments greatly limits the application of the MERSI-II PWV
88 product, ~~because since~~ the accuracy of the product ~~cannot has not~~ been fully acknowledged.

89 Integrated Global Radiosonde Archive (IGRA) is the greatest and most comprehensive collection dataset of historical and
90 near real-time global quality-assured radiosonde observations. It has been used extensively in a variety of studies, including
91 model verification, atmospheric processes, and climate research. Moreover, the radiosonde PWV is also widely applied in the
92 assessments of measurements from other platforms, especially ~~satellite satellite~~-derived PWV around the world (Adeyemi and
93 Schulz, 2012; Antón et al., 2015; Niilo et al., 2016). Consequently, the IGRA data are selected for the evaluation of the PWV
94 derived from MERSI-II in this study.

95

96 The purpose of this paper is to evaluate the MERSI-II PWV globally by comparing it with the global IGRA observations.
 97 We are ~~trying seeking~~ to explore the global performance of FY-3D MERSI-II PWV and ~~analyzing analyzing~~ the influence
 98 factors in the evaluation. ~~Besides, the application of MERSI-II PWV on the study for the distribution of PWV over Qinghai-~~
 99 ~~Tibet Plateau (QTP) is also discussed.~~ The structure of this paper is arranged as follows: Data sources and details are discussed
 100 in Section 2. Section 3 presents the ~~merging procedures~~ methodology ~~of the merging procedures~~ applied in the sample selection.
 101 The evaluation results of MERSI-II PWV against the PWV from IGRA are presented in Section 4. In the final section, A
 102 discussion and conclusion of the aforementioned results are given in the final section.

103 2 Data description

104 The satellite-based PWV product used in this paper is derived from FY-3D MERSI-II, and the ground-based
 105 measurements are the ~~PWV data AERONET and IGRA~~ derived ~~from AERONET and IGRA PWV data~~.

106 2.1 MERSI-II PWV

107 FY-3D, which was successfully launched on 15 November 2017, is the fourth and latest satellite of ~~the Chinese~~ second-
 108 generation Chinese polar-orbiting meteorological satellite. It is operated in a sun-synchronous orbit at an average altitude of
 109 830.73 km, passing over the equator at 13:40 local time (Yang et al., 2019). The MERSI is one of the major instruments carried
 110 by FY-3 series satellites, and the MERSI-II onboard FY-3D is an upgraded version of the first-generation instrument. A series
 111 of comprehensive prelaunch calibrations have been operated to ensure the high quality of the products from MERSI-II (Xu et
 112 al., 2018), which ~~was is~~ from MERSI and has been significantly improved with high-precision on-board calibration and lunar
 113 calibration capabilities (Wu et al., 2020). Besides, MERSI-II has 25 channels with a spectral coverage from 0.412 μm to 12.0
 114 μm , and the NIR PWV products of FY-3D are retrieved with three water absorption channels (bands 16, 17, and 18) and two
 115 non-absorption channels (bands 15 and 19) in the 0.8–1.3 μm range with a spatial resolution of 1 km \times 1 km at nadir (Wang
 116 et al., 2021). The positions and widths of NIR channels used by MERSI-II and MODIS are given in Table 1. The water vapor
 117 absorption channels of MERSI-II, which is now similar with to those of MODIS, are reselected because the three absorption
 118 bands have different sensitivities to various water vapor conditions. Therefore, MERSI-II is more useful in the retrieval of
 119 water vapor under different conditions (dry, medium, and humid).

120 Table 1 Characteristics of NIR channels used in PWV retrievals of MERSI-II and MODIS

MERSI-II				MODIS			
Band No.	Position (nm)	Width (nm)	Window channel	Band No.	Position (nm)	Width (nm)	Window channel
15	865	20	yes	2	865	40	yes

16	905	20	no	17	905	30	no
17	936	20	no	18	936	10	no
18	940	50	no	19	940	50	no
19	1030	20	yes	5	1240	20	yes

121 For the NIR channels, typically with a small aerosol optical thickness that can be ignored, the TOA radiance observed by
 122 a downward-looking satellite sensor can be calculated as the following:

123 $TOA_{\lambda} = T_{\lambda} \times \rho_{\lambda}$ (1)

124 where TOA_{λ} , T_{λ} and ρ_{λ} are the apparent reflectance, total atmospheric transmittance and surface bidirectional reflectance
 125 at the channel with a wavelength of λ , respectively. The term $T(\lambda)$ contains information of the total amount of water vapor in
 126 the Sun–surface–sensor path.

127 For most types of land surfaces, the reflectance between 850 and 1250 nm changes approximately linearly with the
 128 wavelength, therefore, the transmittance of the absorption channel will be calculated by a three-channel ratio of the absorption
 129 channel with a combination of two window channels. For the iron-rich soil, the vegetation and snow, although the reflectance
 130 does not linearly correlate with the wavelength, the reasonable estimates of water vapor transmittances over these surface types
 131 can also be given with the three-channel ratio techniques (Gao and Kaufman, 2003).

132 By using the MODerate resolution atmospheric TRANsmision (MODTRAN), the transmittances of the five MERSI-II
 133 channels as a function of the total water vapor amount under six different atmospheric conditions were calculated, according
 134 to the six standard atmospheric models defined in MODTRAN4.3. And Furthermore, the results are defined as the
 135 transmittance–water vapor lookup table. Based on the solar zenith angle and surface temperature, the atmosphere model can
 136 be selected from the six standard atmospheric models, and then the combined two-way water vapor content was derived using
 137 a table-searching procedure. Note that there are no PWV retrievals in the region with a solar zenith angle above 72°, which
 138 means the observation time is close to night, due to the weak energy at the satellite’s entrance. Subsequently, the derived total
 139 water vapor amount will be converted to the vertical column water vapor amount based on the solar and the observational
 140 geometries. The Absorption coefficients of atmospheric water vapor are very different over the three absorption channels. As
 141 a result, the derived water vapor values from the three channels are different even under the same atmospheric condition. In
 142 order to solve this problem, a mean water vapor value is obtained from the water vapor values derived from three absorption
 143 channels, by multiplying with the corresponding weight in each channel. A more detailed description about of the algorithm
 144 of MERSI-II PWV can be found in Wang et al. (2020).

145 The NIR PWV products derived from MERSI-II have been routinely produced at the National Satellite Meteorological
 146 Center, China and can be accessed on the website of <http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx>. The operational
 147 NIR PWV products include the Level-2 5-min granule product and Level-3 global daily, 10-day, and monthly mean products.
 148 The Level-2 products are generated on a pixel-by-pixel basis (i.e., 1 km × 1 km) from standard MERSI-II L1B radiance datasets

149 as well as ancillary data from the L1B geolocation and the cloud mask (CLM) product of MERSI-II. The outputs from the
150 Level 2 product include the total weighted column water vapor amount on a pixel-by-pixel basis, independently derived PWV
151 from one of the water vapor absorption channels, and an associated quality assurance parameter that indicates whether the
152 inversion algorithm has a two-channel or three-channel ratio and whether a pixel is clear or ~~As we all know, the NIR PWV~~
153 ~~product from MERSI-II is the total column amount of water vapor over cloudless land of the globe as well as above clouds.~~
154 ~~Besides, over the oceanic areas with sun glint the PWV product can also be obtained. However, in order to consist with the~~
155 ~~ground-based measurements, only the cloudy. The Level-2 5-min granule PWV product over cloudless land area is used~~
156 ~~evaluated in this study. and The~~ the data span is from September 2018 to June 2021 with a spatial resolution of 1 km \times 1 km.

157 2.2 Radiosonde

158 The Integrated Global Radiosonde Archive (IGRA), which is a collection of historical and near real-time global
159 radiosonde observations, is archived and distributed by the National Centers for Environmental Information (NCEI), formerly
160 known as the National Climatic Data Center (NCDC), and ~~it~~ can be accessed at <ftp://ftp.ncdc.noaa.gov/pub/data/igra>. Version
161 2 of IGRA (IGRA 2) is used in this study. A total of 33 data sources, including 10 out of 11 source datasets used in IGRA 1,
162 have been integrated into IGRA 2, which was fully operational on August 15, 2016, and has a higher spatial and temporal
163 coverage. Therefore, compared to IGRA 1, the IGRA 2 contains nearly twice as many sounding stations and 30% more
164 soundings. Sounding-derived parameters are recorded according to separated station files and continue to be updated daily,
165 and PWV is one of the derived parameters. PWV will be calculated if the pressure, temperature, and dew point depression are
166 available from ~~the~~ surface to ~~at the~~ level of 500 hPa (Durre et al., 2009). The calculation involves the acquirement of specific
167 humidity at each observation level and then the integration of specific humidity between the surface and the level of 500 hPa,
168 so ~~that~~ IGRA-derived PWV is recognized as surface-to-500-hPa PWV. ~~As discussed by Turner et al. (2003), the PWV obtained~~
169 ~~from radiosonde has an approximate 5% dry bias compared to that derived from the MWR. Therefore, there is an~~
170 ~~underestimation of PWV evaluation for taking the IGRA-derived PWV as a reference, and the bias found in the tropical areas~~
171 ~~is ~9% (Zhang et al. 2018).~~ Due to the time range of IGRA data, there are only ~~625-462~~ out of 1535 global IGRA stations ~~that~~
172 can be matched with the FY-3D MERSI-II PWV products.

173 2.3 AERONET

174 The federated Aerosol Robotic Network (AERONET) is a network of ground-based Cimel Electronique Sun photometry,
175 which can measure beam irradiance and directional sky radiance routinely during the daytime in clear conditions (Holben et
176 al., 1998). AERONET was established by NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de
177 Normalisation Satellitaire), primarily aiming to provide public domain dataset of global aerosol optical and microphysical

178 properties. In addition, based on the measurements at the 940 nm water-vapor channel and the atmospheric window bands
 179 centered at 870 nm and 1020 nm, PWV was also calculated (Che et al., 2016). The AERONET version 3 database provides
 180 three levels of data: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened and quality-assured),
 181 and ~~it~~ can be accessed at <https://aeronet.gsfc.nasa.gov>. Level 2.0 dataset, which is used in this study, signifies an automatically
 182 cloud-cleared, manually quality-controlled dataset with pre- and post-field calibrations applied. All the instruments in the
 183 AERONET are annually calibrated with reference to the world standard: the Mauna Loa Observatory (Malderen et al., 2014).
 184 Thus, the measuring accuracies of different AERONET stations are accurate and consistent (Liu et al., 2013). As discussed by
 185 Pérez-Ramírez et al. (2014), PWV obtained from AERONET has a dry bias of approximately 0.16 cm against ~~the~~ radiosonde
 186 PWV and it is reasonable for ~~the~~ meteorological studies.

187 3 Methodology

188 3.1 Statistical indicators

189 The common statistical indicators, such as the mean bias (MB, perfect value = 0), the mean relative bias (MRB, perfect
 190 value = 0), correlation coefficient (CC, perfect value = 1) and the root mean squared error (RMSE, perfect value = 0), are used
 191 to evaluate the precision of the retrieved PWV from MERSI-II. ~~The MB, which can indicate the tendency of underestimation~~
 192 ~~or overestimation, is desirable to be close to zero. The MRB can be defined as the percentage deviation between the derived~~
 193 ~~and observed PWVs, and its perfect value is 0. CC is an indicator that can quantify the agreement between PWVs of MERSI~~
 194 ~~II and IGRA, and the closer of the CC to 1 means a better coherence. The RMSE reflects the actual deviations between the~~
 195 ~~paired derived value and reference value, and lower RMSE values are preferred with a perfect value of 0. Besides, we adopt~~
 196 ~~the percentage of matching data falling within an expected error (EE) envelope and it is expressed as EE value in this paper.~~
 197 ~~EE envelope is popularly used in the evaluation of aerosol retrievals, and an EE value of >66% indicates satisfactory agreement~~
 198 ~~(Levy et al., 2010). In addition, the EE envelope defined as $\pm 15\%$ is also used in the validation analysis of MODIS derived~~
 199 ~~PWV product the same (Martins et al., 2019).~~ All ~~the~~ calculations of indicators are presented as follows:

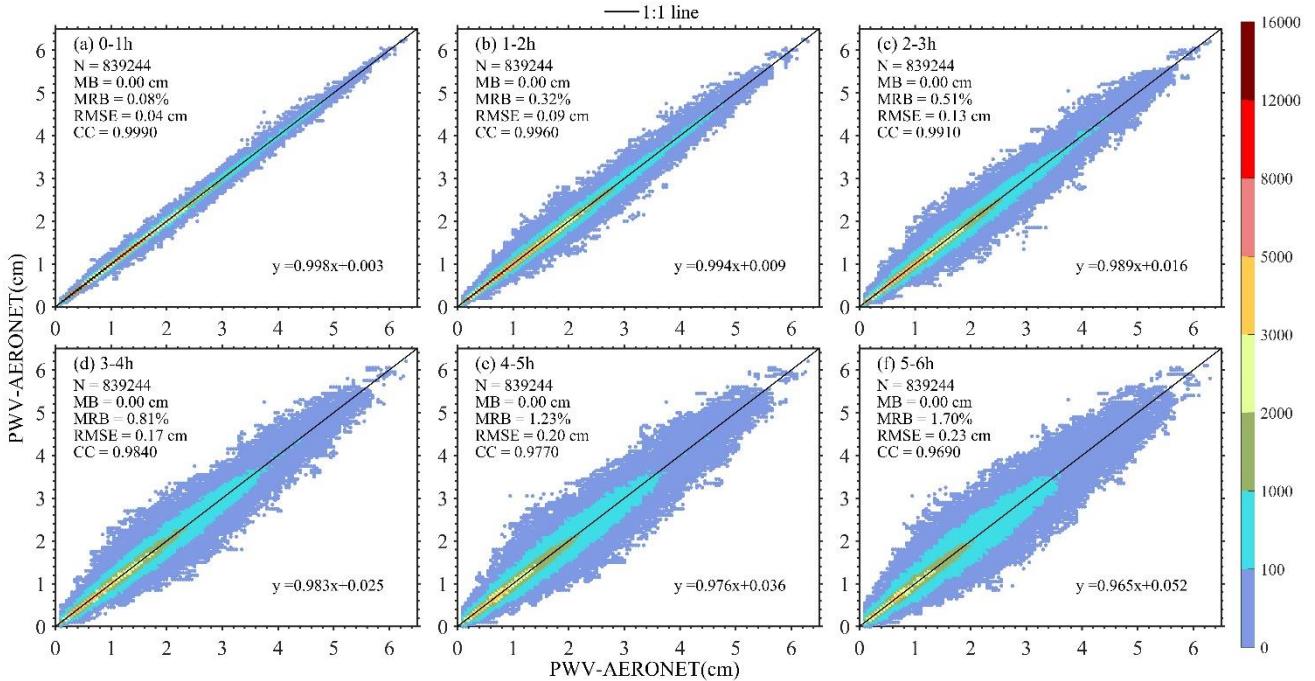
$$200 MB = \frac{1}{N} \sum_{i=1}^N (PWV_{si} - PWV_{gi}) , \quad (22)$$

$$201 MRB = \frac{1}{N} \sum_{i=1}^N \left(\frac{PWV_{si} - PWV_{gi}}{PWV_{gi}} \right) \times 100\% , \quad (23)$$

$$202 CC = \frac{\sum_{i=1}^N (PWV_{si} - \overline{PWV}_{si})(PWV_{gi} - \overline{PWV}_{gi})}{\sqrt{\sum_{i=1}^N (PWV_{si} - \overline{PWV}_{si})^2 \sum_{i=1}^N (PWV_{gi} - \overline{PWV}_{gi})^2}} , \quad (24)$$

203
$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^N (PWV_{si} - PWV_{gi})^2} \quad (45)$$

204 ~~$$EE = \pm(0.05 + 0.15 \times PWV_g)$$~~
$$(5)$$

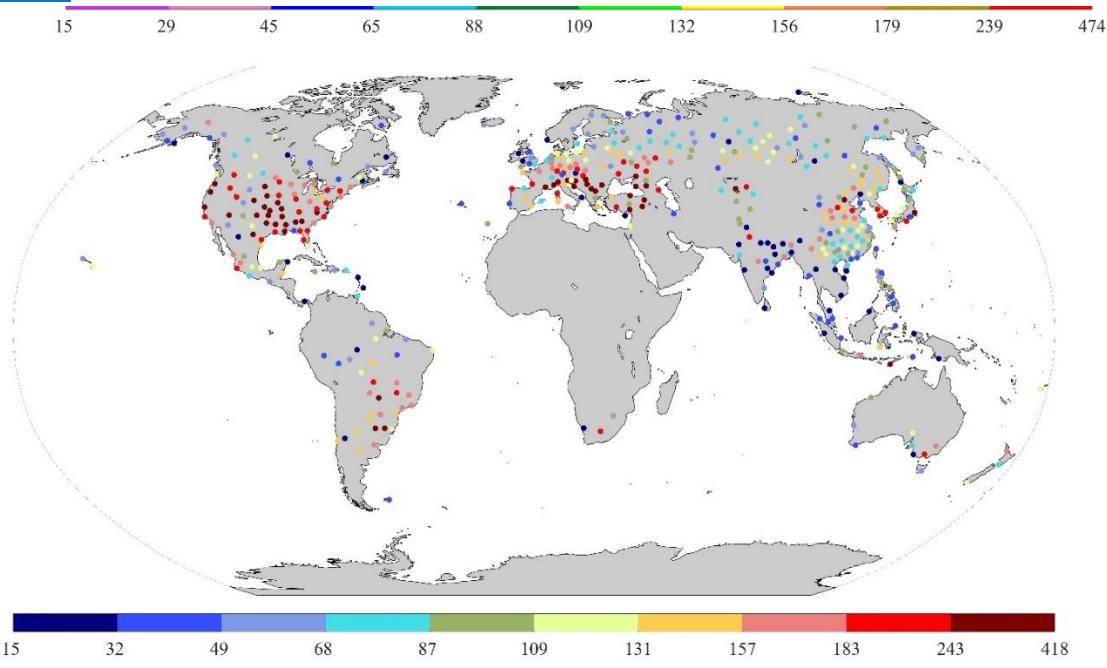

205 where PWV_s is the MERSI-II PWV product, PWV_g is the IGRA PWV product, and N is the total number of match-up.

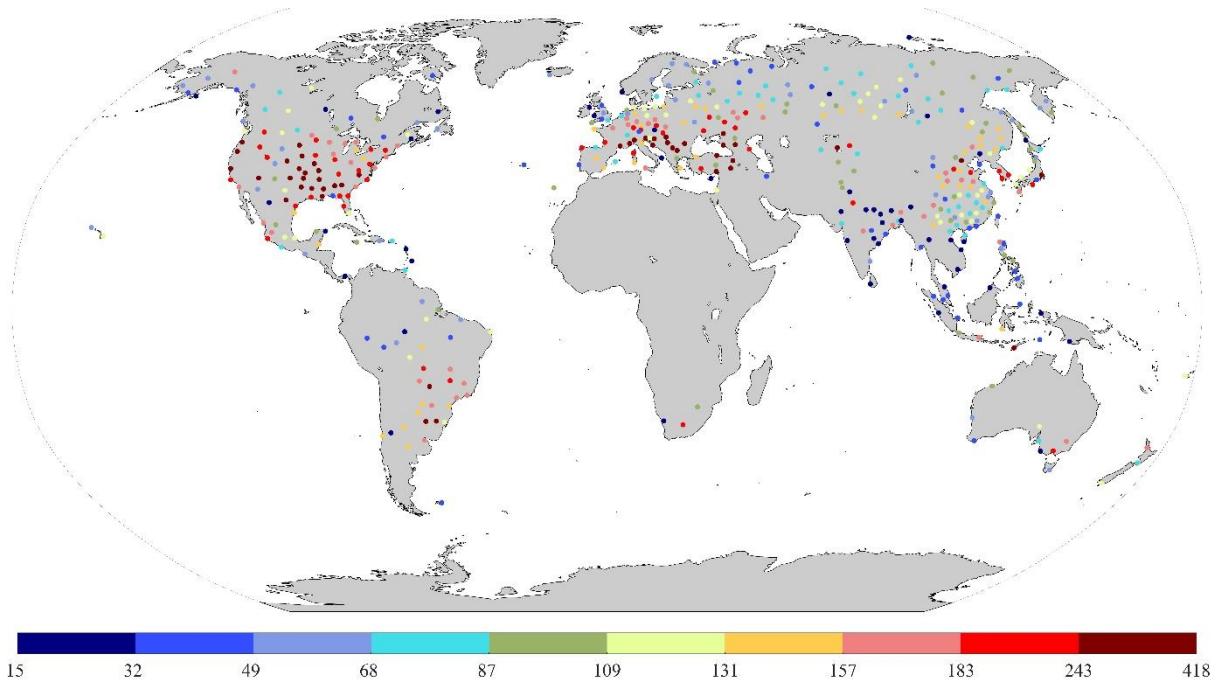
206 **3.2 Collocation strategy**

207 As we have mentioned above, FY-3D is ~~primary~~ operated in a ~~sun~~Sun-synchronous orbit with an equator crossing time
 208 at 13:40 local time. However, ~~the~~ radiosonde is released at 00:00 UTC and 12:00 UTC and there is a significant temporal
 209 discrepancy between satellite and radiosonde at most sites. ~~Besides~~Furthermore, the distribution of radiosonde site is sparse
 210 over ~~the~~ globe. For the evaluation of PWV from global reanalysis models with a temporal resolution of 6 h, temporal window
 211 of ± 3 h and distance of ± 50 km is employed in the comparison with PWV from Maritime Aerosol Network (Pérez-Ramírez
 212 et al., 2019).

213 In order to determine the temporal collocation window that can adequately match the satellite observations with the
 214 ground-based measurements, the consistency ~~consistencies~~ between the existing AERONET PWV and the temporal averaged
 215 AERONET PWV ~~measurements~~ in various temporal discrepancy intervals from 1 h to 6 h ~~with a step of 1 h, that is, 0—1 h,~~
 216 ~~1—2 h, and so on etc., is are analyzed analyzed respectively~~. In processing, only the existing AERONET PWV point, which that
 217 has ~~the~~ matching data averaged AERONET PWV in each temporal discrepancy interval, is selected for the ~~comparison~~
 218 ~~reliability~~ determination of the temporal collocation window. ~~Therefore, there is the same number of collocations for all the~~
 219 temporal discrepancy intervals. The results are presented in Figure 1, and ~~obviously as evidenced~~, there is a good consistency
 220 ~~at in~~ all situations with the CC larger than 0.9690 and the slope ~~is~~ larger than 0.965. Although MRB and RMSE become larger
 221 with the increasing temporal interval, their values are less than 1.70% and 0.23 cm, respectively. Moreover, it can be observed
 222 that the MB values of all comparisons are 0.00 cm, which suggests that the ~~biases are is~~ distributed equally around zero. ~~More~~
 223 ~~than 80.92% match points are within the EE and the largest value is 99.97% when the temporal discrepancy is within 1 h.~~
 224 Therefore, we ~~make the conclusion conclude~~ that the temporal collocation window for PWV evaluation can be set to 6 h.
 225

PWV-AERONET(cm)


226

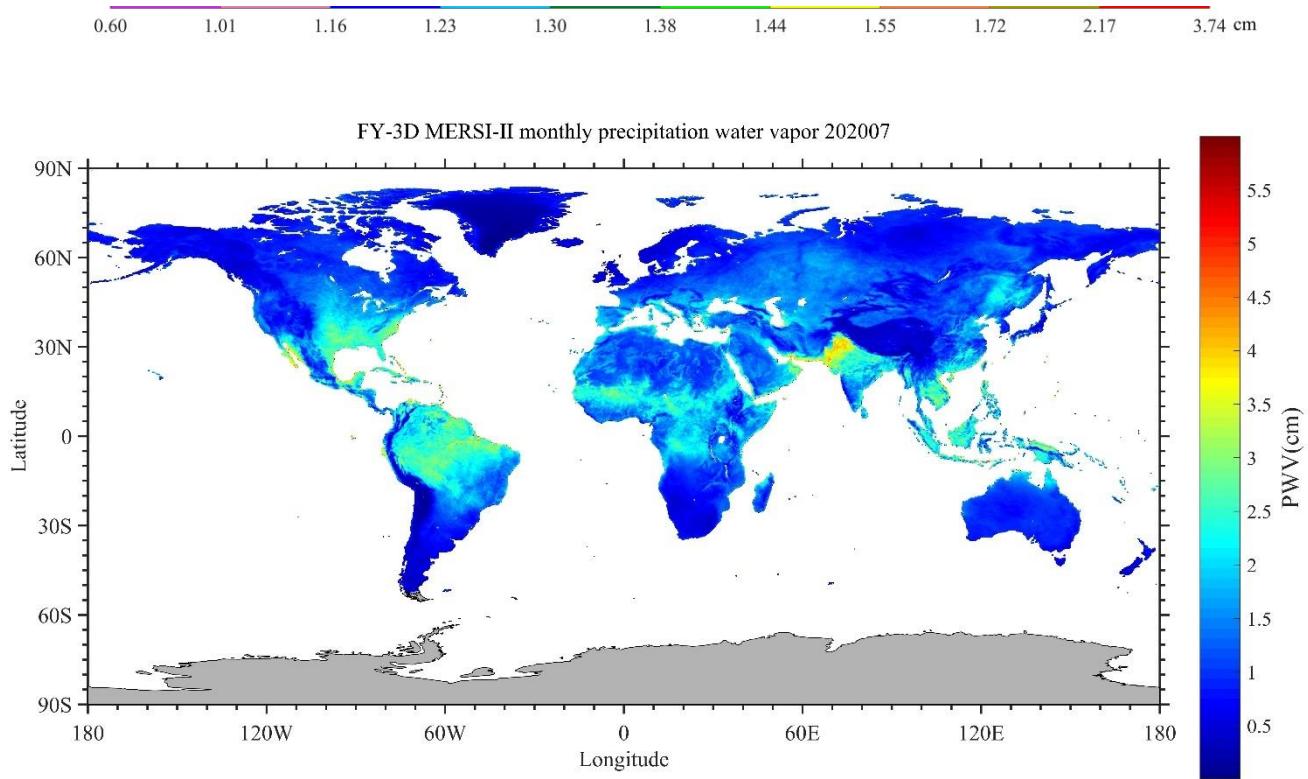

227 Figure 1 Scatter plots of PWV derived from AERONET in different temporal discrepancy intervals and (a)–(f) present the
 228 temporal discrepancy of 0–1 h, 1–2 h, 2–3 h, 3–4 h, 4–5 h and 5–6 h, respectively. The solid line represents the 1:1
 229 line, dashed lines are the envelope lines of EE. The color-bar depicts the number density of match-ups for each bin of PWV in
 230 a 0.01 cm×0.01 cm grid. Proportion of matching data falling into EE envelope is presented by EE value.

231 For the MERSI-II, the spatial resolution at nadir is 1 km \times 1 km for NIR bands, which are used for the retrieval of PWV.
 232 It is not perfectly justifiable that the PWV in an image pixel represents the surrounding averaged PWV (Ichoku et al., 2002),
 233 and during the ascending of balloon, its lateral drift should also be considered. Therefore, we use the standard deviation
 234 (STD) the spatial averaged PWV of within a box with of 9×9 pixels to eliminate the invalid PWV measurement was calculated.
 235 Furthermore, only when all pixels within the box were confidently proved to be clear by the MERSI-II CLM product, the
 236 pixel is marked as reliable and the PWV of the central pixel is replaced by the spatially averaged PWV value. In operation, we
 237 set a general principle that the STD of this selected box must be less than 0.25 cm and the value of the STD dividing the
 238 minimum within the selected box must be less than 1. Otherwise, the data pixel is marked as unreliable and will not be selected
 239 for the comparison. This is because the PWV in clear sky is considered as less varied in a local area based on the analysis of
 240 PWV derived from AERONET. In addition, the cloud mask (CLM) product of MERSI-II is applied in the collection of
 241 comparison samples of MERSI-II PWV and radiosonde PWV. For the MERSI-II CLM product, there are four clear sky
 242 confidence levels (confidently clear, probably clear, probably cloudy, cloudy) for each pixel and they are denoted by the values
 243 of 3, 2, 1, and 0, respectively. Only the situation in which all pixels of the selected box are confidently clear is considered and

244 collected for MERSI-II PWV product. Unfortunately, there is no cloud measurement in the radiosonde observation, so the
245 cloud detection method with the relative humidity threshold of sounding is employed here (Zhang, 2010), and then the
246 cloudless radiosonde PWV dataset is established.

247 In this study, the threshold of the horizontal distance between an IGRA station and the footprint of MERSI-II is set to be
248 50 km (Qin et al., 2012; Pérez-Ramírez et al., 2019). In processing, all the reliable PWV retrievals derived from MERSI-II
249 within ± 6 h of the radiosonde release time are all-collected and only the spatial closest PWV retrieval of MERSI-II within 100
250 a 50 km distanced from the IGRA site is selected and matched up-with the IGRA-derived PWV. Figure 2 illustrates the
251 available sample numbers of radiosonde sites over the globe during from 2018–2021, with a totally total of 626 462 sites. The
252 sample numbers of all sites vary from 15 to 474418, and observations are concentrated in the Northern Hemisphere. Around
253 the equator, few samples are get obtained due to the high occurrence frequency of clouds and precipitation. Most frequently
254 sampled places are China, Europe, and northern North America, where IGRA sites are densely distributed, while there are few
255 match-ups in Africa because since radiosonde stations associated with IGRA in this region are sparserarely seen there (Durre
256 et al., 2018).
257

260 Figure 2 Number of matchups between MERSI-II and IGRA PWV observations for each site ~~during from~~ 2018–2021.

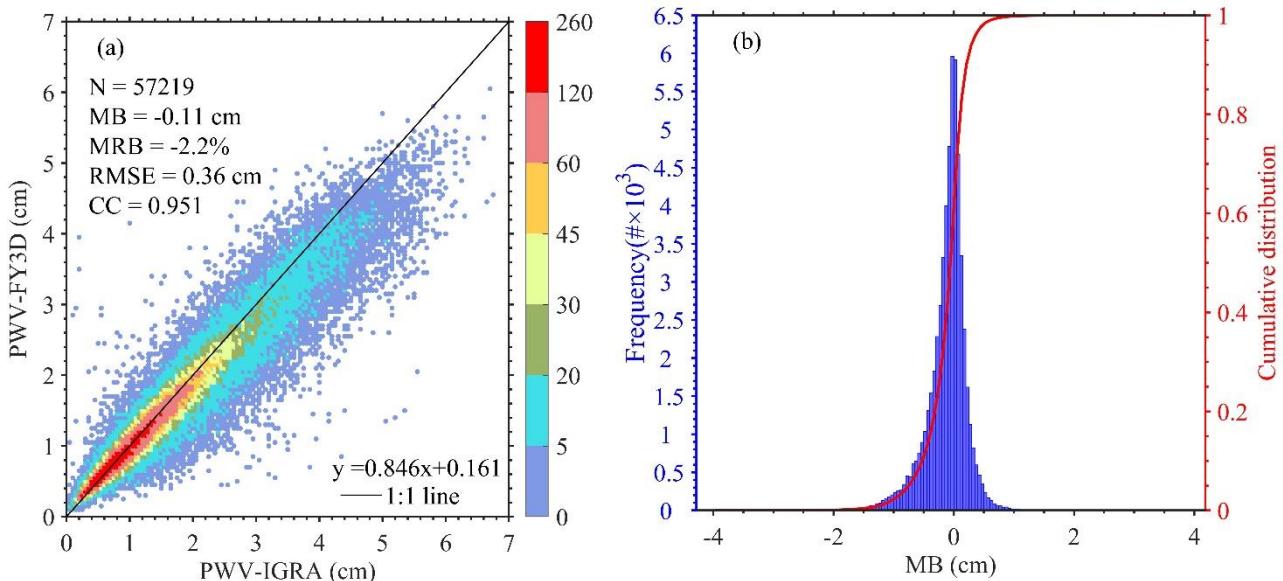

261 **4 Results and Discussion**

262 **4.1 Global comparisonevaluation of PWV derived from MERSI-II**

263 Figure 3 illustrates the global monthly averaged PWV obtained from the MERSI-II ~~and IGRA under clear sky conditions~~.
 264 ~~for the month of July in 2020. In general, both the averaged PWV derived from MERSI-II and IGRA shows the a decreasing~~
 265 ~~distribution of decreasing value PWV with the increasing opposite to latitude, with and~~ large PWV values ~~are~~ mostly found in
 266 the tropics but rare in high latitudes. ~~High PWV values (> 3.0 cm) are mostly detected in the Amazon rainforest of South~~
 267 ~~America, East West and South Asia, southeastern China, Southeast Asian islands, and central Africa. The significantly high~~
 268 ~~PWV center in West Asia is mainly contributed by the Indian moon during the summer season. The PWV contents over the~~
 269 ~~Qinghai-Tibet Plateau and Greenland are small because of the high altitude and high latitude, respectively. Furthermore, due~~
 270 ~~to the winter season of July in the Southern Hemisphere, small PWV contents are also presented over the southern parts of~~
 271 ~~South America and Africa, as well as Australia. Around the tropics with latitude between 20°S and 20°N, the greatest PWV~~
 272 ~~values are found with most PWV values above 2.17 cm. Lower PWV values are presented in mid latitude, but the variability~~
 273 ~~of PWV is the largest here with the values range from 0.60 cm to 2.17 cm. The PWV values in high latitudes are the lowest~~

274 and most sites have the PWV values below 1.44 cm. The global distribution of averaged PWV is uneven and generally
275 characterized by one low and two high PWV centers. The low center is in the east of Russia and the northeast of China, with
276 PWV below 1.16 cm measured at most sites. The two high centers are in the surrounding areas of the Bay of Bengal and the
277 middle part of South America, with most PWV values larger than 1.72 cm.

278


279

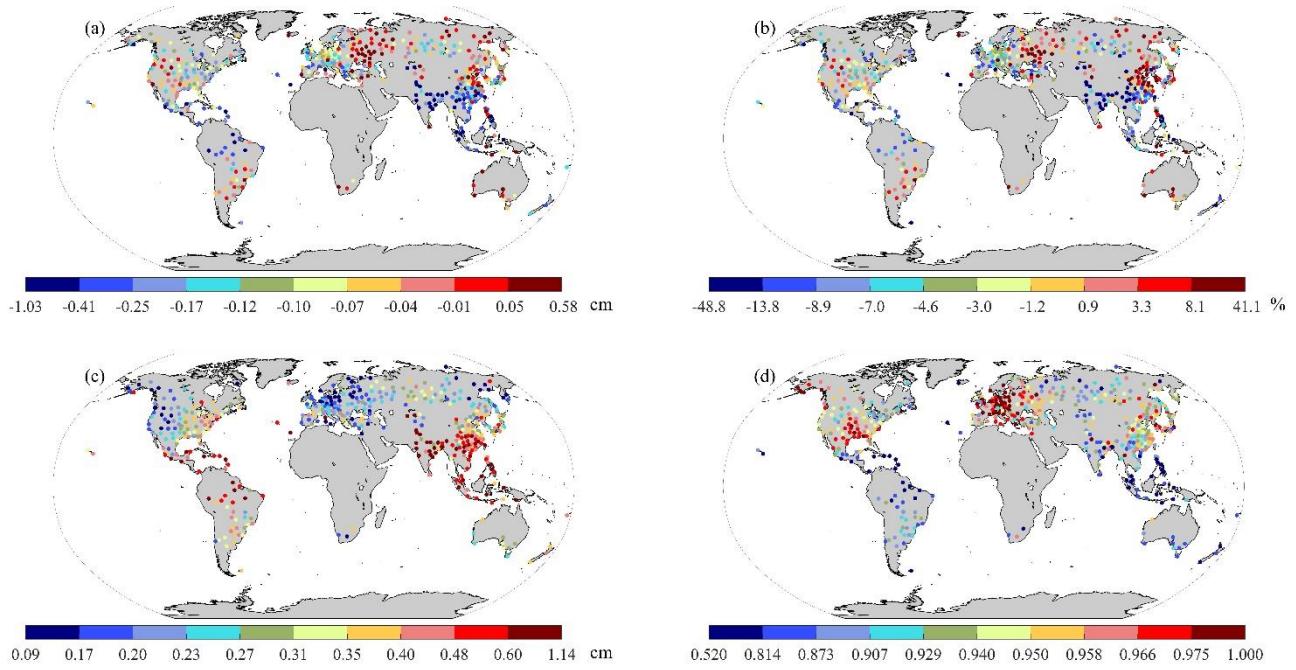
280 Figure 3 Global averaged Level-3 NIR precipitable water vapor (PWV) image derived from FY3D MERSI-II in July 2020.
281 Global averages of PWV derived from MERSI II (a) and IGRA (b) for each site.

282 Figure 4a shows the scatter plots of PWV derived from MERSI-II against IGRA observations. There are 54214-57,219
283 match-ups in total and the MERSI-II (IGRA) PWV ranges from 0.1(0.05) cm to 46.07 (56.978) cm, with a high number
284 density between 0.20 cm and 2.00 cm. Moreover, It is found that the MERSI-II and IGRA PWV measurements are well
285 correlated with CC of 0.9400951, while the retrieved PWV from MERSI-II is slightly underestimated, with an MB of -0.09
286 121 cm and an MRB of -1.902.2%. Besides Furthermore, the RMSE is 0.31-36 cm and the EE value is satisfactory (75.36%),
287 and the statistical biases are slightly larger than those from the evaluation of MODIS over globe by comparing with the
288 observations of AERONET (Martins et al., 2019). It is eonsiderable-considered that the satellite has a larger temporal
289 discrepancy with radiosonde than AERONET, which has a high temporal resolution of about 1 min, and from the discussion

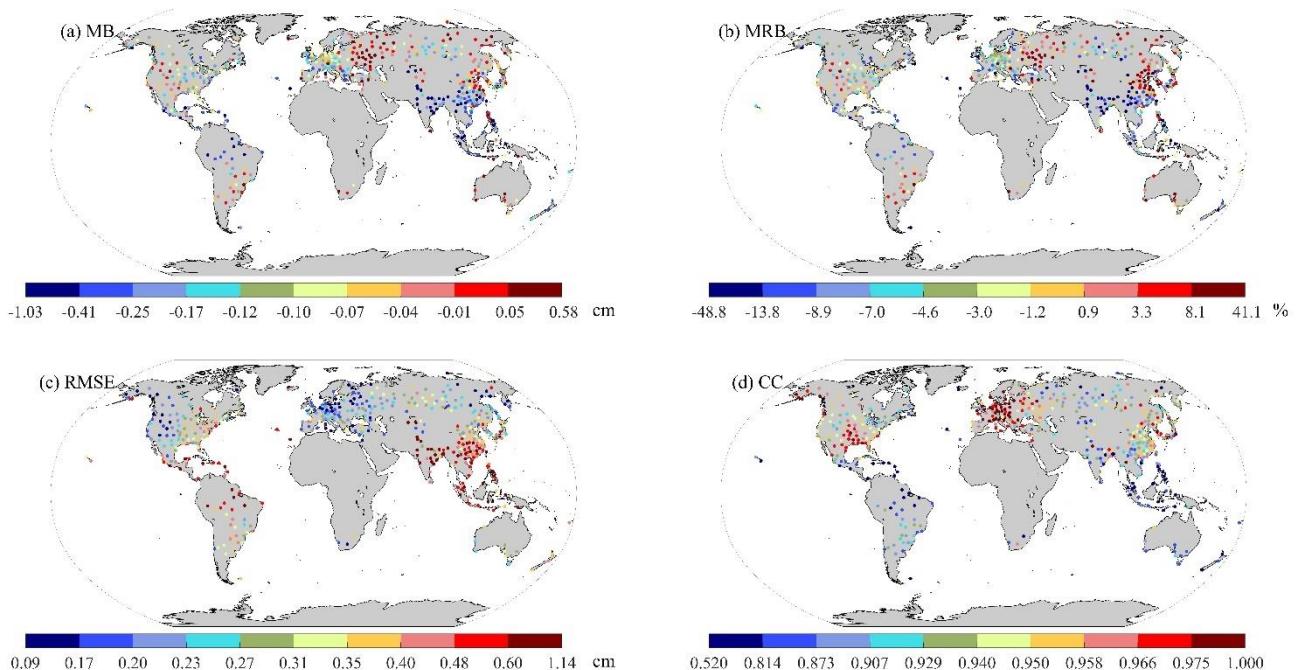
290 in section 3.2, the large temporal discrepancy this will also cause the an increasing error bias in the evaluation of the MERSI-
 291 II-PWV product. Although the reasonable MB and MRB have been found in the evaluation of all sites, there are some individual
 292 points with the unnormal MB and MRB. Therefore, the top 1% and bottom 1% of MB and MRB are not present in the histogram
 293 in order to show an intuitive acknowledge of distributions of MB and MRB. Figure 4b reveals the distribution of MB between
 294 FY-3D MERSI-II and IGRA with a bin width of 0.05 cm, and notably, the MB is concentrated around zero and there is a small
 295 flattening towards negative values the bias distribution is left skewed, which means that there are more negative MB values. -
 296 However Moreover Besides, the peak value of MB is 0.00 cm and there are 2320.8% of all points within the interval from -
 297 0.05 cm to 0.05 cm, and the standard deviation (STD) of MB is 0.25-34 cm. It can be concluded that there is a high accuracy
 298 for the MERSI-II PWV product, as evidenced by the low MB and STD which are similar with to those in the evaluation of
 299 ground-based GPS PWV against radiosonde PWV (Wang et al., 2007). Although the MB is mainly distributed between -1.00
 300 cm and 0.50 cm, it is observed that there are also some points with a large MB value. As presented in figure 4b, the large MB
 301 is mostly with a negative value, and this is mainly due to the different situations observed by the radiosonde and satellite
 302 because of the radiosonde drift and the large temporal discrepancy between MERSI-II and IGRA observations. Due to the lack
 303 of cloud measurement in the radiosonde observation, the PWV from IGRA possibly contains the point that in the cloudy
 304 conditions, which is proved to haveing a larger water content than clear conditions (Zhang et al., 2015). For the most of large
 305 positive MRB, there is a large temporal discrepancy of more than 4 h, and this can beis recognized as the primary reason for
 306 the high positive MRB. For the MRB shown in Figure 4c, the distribution is also centered around zero but with a right skewed
 307 pattern, and the peak value of MRB is 2.38% with the STD of 16.8%. The highest frequency of interval ranges from -4.0% to
 308 -2.0%, with more than 5.9% of all retrievals falling within this interval. And this result is comparable to the accuracy of MODIS
 309 NIR PWV product, which is compared with MWR PWV and with a 5% -10% error range (Gao & Kaufman, 2003). Besides,
 310 the analysis and explorations of high MB and MRB values indicate that the dominant large values of MB and MRB are caused
 311 by the matchups with high temporal discrepancy or large distance between FY-3D and IGRA observations.

313

314 Figure 4 (a) Total density scatterplot of the PWV derived from MERSI-II against that of IGRA ~~for all sites for each bin of PWV~~
 315 ~~in a 0.05 cm × 0.05 cm grid. The solid line represents the 1:1 line~~
 316 MERSI-II and IGRA PWV superimposed on a cumulative distribution curve.


317 **4.2 Evaluation of MERSI-II PWV product in different locations**

318 Figure 5 shows the geographical distributions of PWV comparison statistics ~~of 462 sites~~ between MERSI-II and IGRA
 319 over ~~the globe. In order to equally present the statistical indicators, all sites are approximately separated into approximately~~
 320 ~~ten equal parts, that is, the site number of each part is ~43. Consequently, the steps of comparison statistics are not equidistant~~
 321 ~~in the presentation. As we can see from the MB distribution in Figure 5a, the MB mostly presents a low values between -0.28~~
 322 ~~41 cm and 0.05 cm at 80% of the sites. About 80% of all sites have negative MB values, and this indicates that PWVs derived~~
 323 ~~from MERSI-II are primarily underestimated compared with IGRA PWV values. There are 10% of all m~~
 324 ~~Most sites with larger an high MB values larger than -0.28 41 cm, and most sites are distributed in the west and south of Asia, with a large mean~~
 325 ~~PWV content but a small number of match-ups. Besides Furthermore, attributed to the monsoon climate, there is a large~~
 326 ~~seasonal variation over this region, particularly in the south foothill of the Himalayas (Chen and Liu, 2016).~~
 327 Those sites with overestimated PWV values of MERSI-II are mostly distributed in the surrounding areas of the Black Sea and the central South
 328 ~~America, and most of them have the MB values larger than 0.05 cm. It is also found in the evaluation of the PWV product~~
 329 ~~derived from MODIS onboard Terra and Aqua, and that the MB of MERSI-II is slightly smaller, especially compared with~~
 330 ~~that of Terra (Martins et al., 2019). In general, the distribution of the MRB (Figure 5b) is similar with to that of the MB at most~~


331 sites. However, there are two areas that have slight discrepancies between them. One area is in eastern Russia and northeastern
 332 China, where there are some sites with ~~the-a~~ large MRB values above ~~4.453.3~~%, although ~~with the-a small MB values are~~
 333 ~~small over this aera with the values range ranging~~ from ~~-0.08-10~~ cm to 0.05 cm. As we can see from figure 3, there is a low
 334 averaged PWV value in this region, and this is the dominant reason for the great MRB values but with small MB values over
 335 this ~~aerea~~. Another area is ~~the middle part of central~~ South America, where the sites have large MB values and comparatively
 336 low MRB values, and this is because ~~of~~ the large mean PWV values in this region. The larger evaluation ~~error-bias~~ of PWVs
 337 derived from MODIS and reanalysis products ~~has also have had~~ been found in the middle of South America, with most sites
 338 ~~have had~~ the MB and RMSE both larger than 0.40 cm (Lu, 2019; Wang et al., 2020). Figure 4c depicts the distributions
 339 of RMSE for all sites and ~~most sites have a small RMSE present low values with 90% of sites~~ below ~~0.49-48~~ cm. The large
 340 RMSE values are primarily found at low latitudes, mostly in South and Southeast Asia. However, in the east of Europe, there
 341 are small RMSE with values below ~~0.21-231~~ cm at most sites. In general, there is a good agreement between MERSI-II and
 342 IGRA PWV at most sites with the CC value above ~~0.8782873~~. The ~~highly~~ correlated sites are mainly distributed around the
 343 east of Europe and have ~~the~~ CC values larger than ~~0.9557958~~, while ~~the~~ low CC values ~~that~~ smaller than ~~0.8213-814~~ are
 344 predominantly concentrated around the equator. ~~There are large biases but small CC values over the equator, and it that is~~
 345 ~~possibly due to the following: 1) large residual IGRA PWV above 500 hPa (Boukabara et al., 2010); 2) high content and~~
 346 ~~variation of PWV (Chen and Liu, 2016); 3) the covered surface with the reflectance does not linearly correlate with the~~
 347 ~~wavelength (Gao and Kaufman, 2003); and 4) a small number of samples. In addition, the temporal discrepancy can also lead~~
 348 ~~to the bias because the discrepancy in the equatorial region is slightly larger than in other regions overall. As discussed by~~
 349 ~~Alraddawi et al (2018), for MODIS PWV, there are also noteworthy latitudinal decreases for MB, MRB and RMSE.~~

350

351

352

353 Figure 5 The geographical distributions of PWV comparison statistics between MERSI-II and IGRA. [\(a\) MB](#); [\(b\) MRB](#); [\(c\) RMSE](#); [\(d\) CC](#).

355 **4.2-3 The annual performance of MERSI-II PWV product temporal variations analysis**

356 As we have mentioned above, PWV presents a notable temporal variation, and the seasonal variation is a key point to
 357 characterize the climatic change of PWV. Therefore, a seasonal comparison between the PWVs derived from MERSI-II and
 358 IGRA is firstly analyzed in this section. The annual performance of the MERSI-II PWV product by season was evaluated and
 359 the results are given in Table 2. It is noted that the number of samples in each season is significantly different.

360 Table 2 Seasonal Monthly statistics of comparison between PWVs derived from MERSI-II and IGRA in the Northern
 361 (Southern) Hemisphere

Season	N	Slope	MB (cm)	MRB (%)	RMSE (cm)	CC
MAM	11866(1232)	0.833(0.859)	-0.09(-0.10)	-1.8(-1.4)	0.31(0.39)	0.954(0.953)
JJA	15935(2187)	0.807(0.873)	-0.18(-0.05)	-5.3(1.7)	0.41(0.34)	0.931(0.953)
SON	16196(2176)	0.836(0.858)	-0.11(-0.06)	-2.5(0.3)	0.34(0.41)	0.945(0.933)
DJF	6558(1069)	0.852(0.799)	-0.05(-0.17)	3.8(-3.9)	0.31(0.49)	0.944(0.921)

362 The number of match-ups ranges from 6558 (1069) to 16196 (2187) in the Northern (Southern) Hemisphere for all seasons.

363 In all seasons, the slope values are all less than 0.873, which is the fit-slope in winter in the Southern Hemisphere. The MERSI-
 364 II PWV is underestimated for all seasons, and the MB is less than -0.18 cm. The MB is obviously large in the warm season,
 365 and it is more significant during the summer. With abundant water vapor in summer, clouds are easily to form, however, thin
 366 clouds are difficult to be measured by satellite due to their low optical depth (Solbrig, 2009; Naumann and Kiemle, 2020).
 367 Therefore, the higher underestimation of PWV in summer is probably triggered by the weakened or covered radiation signal
 368 under the thin cloud. For MRB, the variation is within a large range, and the largest MRB is in summer both over both the
 369 Northern and Southern Hemisphere, with values being -5.3% and -3.9%, respectively. For the largest MRB during winter in
 370 the Northern Hemisphere, it is this may be related to the points with a small PWV value but a high positive MB, because
 371 we firstly calculate the MRB for each match-up and then average all MRB values in seasons. In addition, MRB is mostly
 372 negative during the warm season, but positive in the cold season. The RMSE in the Northern Hemisphere is slightly smaller
 373 than that in the Southern Hemisphere, where the greatest RMSE value is 0.49 cm in summer. There is a large oceanic coverage
 374 in the Southern Hemisphere, with the larger mean PWV than that in the Northern Hemisphere (Chen and Liu, 2016). Thus,
 375 it this is the possible reason accounting for large RMSE in the Southern Hemisphere. in consideration of considering the
 376 increasing bias of the remote sensing PWV with the larger PWV value. Besides Moreover, there is a better an improved
 377 correlation between PWV derived from MERSI-II and IGRA, and all CC values are larger than 0.921.

378

379 Figure 6. The four seasons in the Northern Hemisphere are defined as follows: spring (MAM), summer (JJA), autumn
 380 (SON) and winter (DJF), and it is opposite in the Southern Hemisphere. There are slight underestimations of MERSI-II derived
 381 PWV for all the four seasons. The MBs in summer and autumn are both large with the magnitude greater than 0.09 cm but

382 with negative values, and the MB value is larger in summer. With abundant water vapor in summer, clouds easily form,
383 however, thin clouds are difficult to be measured by satellite due to their low optical depth (Selbig, 2009; Naumann and
384 Kiemle, 2020). Therefore, the higher underestimation of PWV in summer is probably triggered by the weakened or covered
385 radiation signal under the thin cloud. The RMSE is within 0.35 cm in all the four seasons, especially in winter when the RMSE
386 is 0.27 cm and MB is at the value of -0.04 cm. Besides, the MRB also presents the similar seasonal variations, with a peak
387 value in summer and a minimum value in spring. The MRB is positive in winter, and this may be related to the small PWVs
388 with a high positive MB in winter. Moreover, the PWV derived from MERSI II has strong correlations with IGRA PWV and
389 the CC is larger than 0.9080 in all seasons. However, the EE values, ranging between 73.10% (winter) and 77.47% (summer),
390 do not show obvious seasonal variations.

391 PWV-IGRA (cm) PWV-IGRA (cm)

392 Figure 6 Seasonal scatterplots for the PWV comparison between MERSI II and IGRA in (a) spring, (b) summer, (c) autumn
393 and (d) winter.

394 In addition, the monthly performance of the MERSI II PWV product is also evaluated. Table 1 demonstrates the results
395 compared with PWV of IGRA. The number of match-ups ranges from 1847 (224) to 5956 (742) in the Northern (Southern)
396 Hemisphere. The MERSI II PWV is underestimated in all months, and the underestimation is more significant in the Northern
397 Hemisphere. The slope values are less than -0.832, which is the fit slope in March. However, the fit slope in the Southern
398 Hemisphere is greater than 0.801 except in January and February, and the greatest and smallest values are 0.874 (June) and
399 0.754 (February). Most of MB values are less than 0.10 cm and the peak MB values mainly appear in February in the Southern
400 Hemisphere and July in the Northern Hemisphere. For MRB, the variation is within a large range, and the largest MRBs are
401 in June and July over the Southern and Northern Hemispheres, with values being 4.06% and 5.43%, respectively. During
402 warm seasons, MRB is negative in most cases, but positive in cold seasons. The RMSE in the Northern Hemisphere is slightly
403 smaller than that in the Southern Hemisphere, where the greatest RMSE value is 0.40 cm in December. Besides, there is a
404 better correlation between PWVs derived from MERSI II and IGRA in the Northern Hemisphere, and all CC values are larger
405 than 0.9070 except in July. The percentages of within EE envelope lines are all larger than 66%, which is the threshold value
406 of satisfactory consistency.

407

408 4.3.4 The influence-Influencing factors on evaluation

409 As we mentioned above, there is a higher bias with the larger PWV value, and this is found in the evaluation of MODIS
410 PWV product (Martins et al., 2019). Besides, Furthermore, the impact of the spatial distance between the footprint of the satellite
411 and the IGRA station on the evaluation of PWV is also considered in the validation of HY-2A CMR PWV (Wu et al., 2020b).
412 In this section, the influencing factors, such as the value of IGRA PWV, and the spatial distance between the footprint of the

413 satellite and the IGRA station, are all explored in order to quantify their effects on the evaluation of MERSI-II PWV. s with
 414 different temporal and distance intervals are compared with the IGRA PWV in order to explore the effects of dissimilar
 415 discrepancies of time and distance on the evaluation of MERSI-II PWV. Furthermore, the altitude difference has an important
 416 influence on the accuracy evaluation of PWV, so we also present the deviation of MERSI-II PWV for each class of station
 417 altitude. Besides, the statistics in different latitudes is presented for analyzing the accuracy of MERSI-II PWV over different
 418 regions. Table 3 illustrates the evaluation results of the MERSI-II PWV in different intervals of IGRA PWV and spatial
 419 distance. All metrics are calculated using all match-ups.

420 Table 3 Statistics of the global evaluation of MERSI-II PWV in different PWV and distance ranges.

	Intervals	N	Slope	MB (cm)	MRB (%)	RMSE (cm)	CC
IGRA_PWV (cm)	(0, 1]	15528	0.869	0.04	9.0	0.17	0.754
	(1, 2]	21698	0.878	-0.06	-3.7	0.26	0.709
	(2, 3]	11831	0.842	-0.19	-7.8	0.41	0.556
	(3, 4]	5493	0.867	-0.35	-10.1	0.57	0.483
	(4, 5]	2122	0.664	-0.55	-12.3	0.72	0.358
	>5	547	0.636	-0.94	-17.4	1.10	0.347
Spatial distance_(km)	(0, 5]	31216	0.860	-0.08	-0.6	0.33	0.952
	(5, 10]	19972	0.844	-0.14	-3.4	0.38	0.953
	(10, 20]	4800	0.813	-0.19	-6.1	0.42	0.951
	>20	1231	0.792	-0.20	-5.9	0.47	0.933

421 Firstly, the IGRA PWV is binned and compared with the comparison results between the MERSI-II PWV. Most match-ups
 422 are located at the IGRA PWV interval ranging from 1.0 to 2.0 cm, and there are the least not many samples above 5.0 cm. The
 423 MB and RMSE gradually increase with the increasing content of PWV, from 0.04 cm and 0.17 cm to -0.94 cm and 1.10 cm,
 424 respectively. Besides, Moreover, the fit-slope value is generally decreasing with the increasing content of PWV, and it can be
 425 concluded that there is an obvious underestimation when the PWV is larger than 5.0 cm. This result is similar to the conclusion
 426 drawn by Martins et al. (2019) in the evaluation of the PWV from MODIS, however, the slope is smaller. There is a good
 427 agreement between the IGRA PWV and MERSI-II PWV for dry conditions (<1.0 cm), with the highest CC value of 0.754.
 428 However, a slightly large discrepancy is observed in wet conditions (> 5.0 cm). For MRB, there is a positive value of 9.0% in
 429 the 0.0–1.0 cm interval of 0.0–1.0 cm, and this is also caused by the small PWV value. In contrast, all MRB is negative and
 430 the value of MRB is increasing with the content of PWV above 1.0 cm.

431 and the IGRA PWV at different temporal intervals are shown in Figure 7. The MRB has significant differences at
 432 different temporal intervals. For MRB, the largest value of -3.73% appears under the condition with temporal discrepancy of
 433 0–1 h, and the minimum value is -1.13% when the temporal discrepancy is 1–2 h. Moreover, the EE value varies obviously
 434 from 68.04% to 88.82%, and the value decreases with the increasing temporal discrepancy. RMSE changes from 0.23 cm to

435 0.36 cm with the increasing temporal discrepancy. PWVs from MERSI II in all situations are highly correlated to the IGRA
 436 PWV with the CC values larger than 0.9320 in general, and they have the best correlation when the temporal discrepancy is
 437 less than 1 h. However, there is no noteworthy difference in different temporal intervals for MB. The MB with the temporal
 438 discrepancy of 1–2 h gets to the minimum at the value of 0.06 cm, and it is slightly different in other situations with values
 439 range from 0.07 cm to 0.10 cm. What's more, the slope of fitted line indicates that there is an obvious underestimation in the
 440 retrievals of PWV from MERSI II, and the most underestimated PWV is in the condition of 4–6 h temporal discrepancy with
 441 the slope value of 0.826. When it is clear sky, there is a slight temporal variation of atmosphere water vapor, resulting in the
 442 unapparent differences at different temporal discrepancy intervals. Figure 7d shows the comparison with the temporal interval
 443 of 4–6 h. Obviously, there is a great number of points about half of all at this interval, and this is because the matchups are
 444 mostly located over East Asia and North America, where a temporal discrepancy of 4–6 h exists between the passing time of
 445 FY 3D and the release time of radiosonde.

PWV-IGRA (cm) PWV-KAUB (cm)

446

447 Figure 7 Scatterplots of the PWV comparison between MERSI II and IGRA at temporal intervals of (a) 0–1 h, (b) 1–2 h, (c) 2–
 448 4 h and (d) 4–6 h.

449 Figure 8 presents the results of comparison between the MERSI-II PWV and the IGRA PWV comparison in different
 450 distance intervals are also presented in Table 3. Most points are located within the 0–5 km distance interval of 0–5 km,
 451 and the number of points is 28756_31,216 out of all 54214_57,219 points. The MB increases with the extension of the distance
 452 between the IGRA station and the footprint of MERSI-II, and the largest MB is -0.15_20 cm when the distance is within the
 453 range of larger than 20–100 km. For the MRB, a more obvious difference is present within the 0–20 km distance range of 0–20
 454 km, as the value increases from -0.496% to -5.936.1% with the increasing distance. However, there is a slightly smaller MRB
 455 when the distance is larger than 20 km, and this probably has a relationship with the small number of samples. The RMSE has
 456 a satisfied value ranging from 0.33 cm to 0.47 cm, and is also becoming larger with the increasing distance. In all distance
 457 intervals, the RMSE has a satisfied value within the range of 0.28–0.40 cm. The large RMSE in the distance condition of above
 458 20–100 km is mainly caused by the obvious underestimation of MERSI-II PWV at some points. Overall, a good correlation
 459 exists between MERSI-II PWV and IGRA PWV with the CC value larger than 0.906_0933, which is less than that in the effect
 460 of temporal discrepancy on evaluation. Besides, there are larger MB, MRB and RMSE in the evaluation of MERSI-II PWV
 461 with different distance discrepancy intervals. Consequently, the discrepancy of distance is a more influential factor than
 462 temporal discrepancy on the evaluation of PWV. Most points are located within the EE, and the EE value gets to decrease with
 463 the rise in distance and the value is all above 68.58%.

PWV-IGRA (cm) PWV-KAUB (cm)

464

465 Figure 8 Scatterplots of the PWV comparison between MERSI II and IGRA at the distance intervals of (a) 0–5 km, (b) 5–10
 466 km, (c) 10–20 km and (d) 20–100 km.

467 Table 2 illustrates the comparison results of the MERSI II PWV in different intervals of altitude and latitude. Note that
468 only the observations in April are selected in the comparison rather than the annual mean value (MEAN), and this is because
469 averaging will smooth out the influence of altitude and latitude, which is highly related with the local climate situation, on the
470 PWV retrievals. First, most observations are collected at low altitude below 200 m, and the MEAN of PWV is largest in the
471 low altitude. The STD becomes smaller with the increase of altitude, which indicates that the PWV tends to be stabilized.
472 There is a small slope of linear fit in the high altitude, so we make the conclusion that MERSI II PWV has an underestimation,
473 and the MB value alters from -0.08 cm to -0.02 cm for all altitudes. The largest MB appears in the sites with high altitude, and
474 RMSE also has the largest value of 0.28 cm, and it is also found in the evaluation of AIRS PWV (Qin et al., 2012). This is
475 because PWV is highly dependent on the altitude (Jiang et al., 2019), however, there is no height correction that can be used
476 to eliminate false signals especially over complex terrain during the processing of MERSI II PWV. The height correction is
477 used in the validation of HY 2A PWV product and it is proved that can significantly reduce the RMSE from 0.50 cm to 0.21
478 cm, especially for the sites over 1000 m.

479 In addition, the EE value ranges from 71.04% to 79.42% at all altitudes, and it is least in high altitude sites. There are
480 also larger MB and RMSE in the low altitude below 100 m, with the values are -0.07 cm and 0.28 cm, respectively. In the hazy
481 conditions with high humidity over the low altitude sites, the uncertainty in the amount of haze is one of the largest error
482 sources in the retrievals of PWV (Gao and Kaufman, 2003), however, the influence of haze is hardly corrected completely in
483 the MERSI II PWV retrieval algorithm. There is a high correlation between MERSI II PWV and IGRA PWV, and the CC
484 value is all above 0.8950. and the comparison of altitudes within 100-200 m presents a better performance.

485 The latitudinal distribution of PWV plays a key role in the study on the climatic change of global water vapor.
486 Consequently, the latitude is divided in a step length of 15-20 degrees to analyze latitudinal performance of MERSI II PWV
487 product. Most of its samples are distributed from 20°N to 50°N, with the number of match-ups being totally 4249. The MEAN
488 of PWV presents an obviously distribution opposite to latitude, with the largest value of 2.94 cm within 0°N-20°N. Meanwhile,
489 the STD value in this region is also the largest, with the value of 1.01 cm. There also exists underestimation to the fit slope
490 value ranging from 0.716 to 0.860. Furthermore, the MB and MRB values are mostly negative as well, and the largest values
491 of MB and MRB are within 0°N-20°N and 20°N-35°N, respectively. MERSI II PWV has a great accuracy over high latitudes
492 of the Southern Hemisphere, and the RMSE is less than 0.19 cm above the latitude of 35°S. However, around the equator, the
493 RMSE is large with the value greater than 0.43 cm. As discussed by Alraddawi et al (2018), for MODIS PWV, there are also
494 noteworthy latitudinal decreases in MB, MRB and RMSE. With abundant water vapor around the equator, the cloud is easily
495 formed and can misify the PWV derived from MERSI II because the MERSI II can only measure the conditions above clouds.
496 In addition, the temporal discrepancy can also lead to the bias because the discrepancy in the equatorial region is slight larger
497 than in other regions overall.

498 Table 2 Summary statistics of MERSI II PWV retrievals for different altitudes and latitudes in April.

	Intervals	N	MEA (cm)	STD (cm)	Slope	MB (cm)	MRB (%)	RMSE (cm)	CC
Altitude (m)	[50-100]	2593	1.24	0.79	0.828	-0.07	-1.25	0.28	0.940 θ
	[100-200]	1188	1.03	0.68	0.837	-0.02	2.38	0.22	0.949 θ
	[200-500]	1477	0.99	0.63	0.780	-0.06	-0.67	0.23	0.946 θ
	[500-2600]	1067	1.04	0.60	0.767	-0.08	-2.07	0.28	0.895 θ
Latitude (°N)	[52-35]	85	1.36	0.43	0.809	-0.07	-3.67	0.28	0.799 θ
	[35-20]	217	1.71	0.64	0.772	0.00	2.67	0.36	0.830 θ
	[20-0]	67	2.66	0.90	0.716	-0.13	-2.12	0.43	0.889 θ
	[0-20]	140	2.94	1.01	0.764	-0.20	-3.89	0.54	0.867 θ
	[20-35]	1226	1.59	0.82	0.729	-0.16	-5.22	0.39	0.904 θ
	[35-50]	3023	0.93	0.45	0.771	-0.05	-0.05	0.19	0.915 θ
	[50-60]	1467	0.76	0.35	0.860	0.00	1.89	0.13	0.927 θ
	[60-76]	100	0.64	0.28	0.838	0.00	2.97	0.11	0.925 θ

499 5 Application of PWV product in Qinghai-Tibet Plateau

500 The Qinghai-Tibet Plateau (QTP) plays an important role in regional weather and climate, especially for East Asia. As
 501 we all know, water vapor can significantly affect climate change, radiation balance and hydrological cycle. Thus, studying for
 502 the atmospheric water vapor distribution over QTP is useful to understand the influence of QTP on the weather and climate.
 503 However, the ground-based observations of PWV are sparse and unevenly distributed, so it is difficult to investigate the

504 distribution of PWV over QTP with ground based observations. Satellite based measurement has been widely used in the
505 analysis on the distribution of PWV over QTP owing to its advantage of large area coverage. In this section, the seasonal
506 variation and distribution of PWV over TP are analyzed with the MERSI-II measurements from September 2018 to June 2021.

507 Figure 9 (a, b) show the distribution of PWV over QTP during the warm (April to September) and cold (October to March)
508 seasons. The PWV shows a distribution consistent with altitude, and there is high PWV in low altitude but small PWV in high
509 altitude. The large PWV is centered in the Bay of Bengal, with values above 4.0 cm and 2.0 cm in warm and cold seasons,
510 respectively. The small PWV is mainly located over the western part of Tibet and it is more significant in cold season with a
511 large area having the PWV less than 0.5 cm. Around the Brahmaputra River, which is a precipitation center over QTP, an
512 obvious water vapor transport path lies along the Brahmaputra Grand Canyon. The water vapor from the Bay of Bengal region
513 is transported into QTP through this path, making a higher PWV in this area. Therefore, a comparison between the two stations
514 of Motuo and Shimian is analyzed to shed light on the role of the Brahmaputra Grand Canyon in the transport of water vapor.
515 The two stations, Motuo and Shimian, are situated at similar latitudes but different longitudes (Figure 9e). It is noted that the
516 altitude of Motuo station is 1279.0 m, higher than the altitude of Shimian station (875.1 m). Figure 9d shows the annual
517 variation of PWV at both sites represented as box diagrams, which are defined as follows: bottom and top of boxes denote the
518 25th and 75th percentiles with the horizontal lines inside the box being the median. The dotted lines represent the range of the
519 adjacent value, which is the most extreme value that is not an outlier, and the outliers are marked by crosses (Zhang et al.,
520 2020). As we have discussed above, it is reasonable that large PWV should be found in a low altitude generally. However, the
521 trends of PWV at the two sites are similar, and there are nearly identical PWV mean values for both sites. Besides, the annual
522 variation of PWV shows that the PWV of Motuo site is obviously higher than that of Shimian in July, which means that the
523 PWV transport of the Brahmaputra Grand Canyon is more significant at this moment.

524 Longitude(°E) Month

525 Figure 9 The distribution of PWV over QTP in (a) warm and (b) cold seasons. (c) Map illustrating the Motuo and Shimian
526 stations. (d) Statistics of PWV at Motuo (red line) and Shimian (blue line) stations represented as box diagrams. Bottom and
527 top of boxes denote the 25th and 75th percentiles, with the horizontal lines inside the box being the median value; the dotted
528 lines represent the range of the adjacent value, which is the most extreme value that is not an outlier; the outliers are marked
529 by crosses. The lines are the mean seasonal PWV.

530

531 **6.5 Summary and Conclusions**

532 In this paper, we have evaluated the global PWV product derived from FY-3D/MERSI-II by comparison comparing to
533 with the PWV from 462626 IGRA stations, with 54214-57219 match-up points during the period from September 2018 to

534 June 2021. There is a good agreement between the average PWVs from FY 3D/MERSI II and IGRA, but the FY 3D/MERSI
535 II PWV is slightly underestimated. The monthly averaged PWV derived from MERSI-II shows a distribution of decreasing
536 values with an increasing latitude. The averaged PWV from MERSI-II and IGRA both are presented as the distribution opposite
537 to latitude, and generally featured with one low center over the east of Russia and the northeast of China, and two high PWV
538 areas concentrated in the surrounding areas of the Bay of Bengal and the central part of South America.

539 Overall, PWVs derived from MERSI-II and IGRA have are in good agreement with the CC value of 0.9400951. However,
540 there is a slight underestimation for the FY-3D/MERSI-II PWV, and The the values of MB and MRB are -0.09-11 cm and -
541 1.902.2%, respectively, while the RMSE is 0.31-36 cm with a satisfactory EE value of 75.36%. The histograms of MB and
542 MRB indicates that the values of MB value and MRB both approaches zero and mostly distributes between -1.00 cm and 0.50
543 cm, however, the distribution patterns are is with a left-skewed distribution pattern and right skewed, respectively. The peak
544 values of MB and MRB are 0.00 cm and 2.38%, with STDs are 0.25 cm and 16.8%.

545 For all sites, the MB value is low and 80% of the most sites have the a values between -0.28-41 cm and 0.05 cm. In the
546 west and south of Asia, the MERSI-II PWV is obviously underestimated with an MB value larger than -0.41 cm. However,
547 the overestimated PWV are mostly distributed in the surrounding areas of the Black Sea and the middle part of central South
548 America. Large MRB values are mostly located in eastern Russia, northeastern China, and central South America. Most
549 sites have a small RMSE90% of all sites have low RMSE values below 0.49-48 cm, and CC values above 0.8213873. Lastly,
550 it is observed that there are large MB and RMSE values while there are small CC values around the equator, especially in
551 South and Southeast Asia.

552 The MERSI-II PWV is in good agreement with the PWV obtained from IGRA with all CC values larger than 0.921. There
553 is a slight underestimation of MERSI-II PWV for all seasons with an MB value below -0.18 cm, and it is significant in the
554 summer. In addition, the MRB and RMSE also have the largest magnitude in summer. The underestimation of PWV in summer
555 is probably due to the presence of thin clouds, which weaken the radiation signal observed by the satellite. We found the MRB
556 with a positive value in the winter, and this is mainly due to the low PWV then. For RMSE, there is a larger value in the
557 Southern Hemisphere and the greatest RMSE value is 0.49 cm in summer.

558 In winter, the values of MB and RMSE are the lowest, being -0.04 cm and 0.27 cm, respectively. For MRB, it has
559 maximum value in summer but minimum value in spring, and apart from that, the MRB is positive in winter due to the small
560 PWV with a high positive MB in winter. The CC value is larger than 0.9080 in all four seasons and the EE value varies from
561 73.10% to 77.47%. There is a significant monthly variation in the evaluation of MERSI-II PWV product. The peak MBs are
562 in February and July over the Southern and Northern Hemisphere, respectively. The largest RMSE is 0.40 cm in December in
563 Southern Hemisphere. Besides, there is a better correlation between PWVs derived from MERSI-II and IGRA in Southern
564 Hemisphere, and all CC values are larger than 0.9070 except in July. The EE values during all months are larger than 66%,
565 indicating that there is a satisfactory coherence between the PWVs from MERSI-II and IGRA.

566 In addition, the influencee-influencing factors on the evaluation are also discussed. First of all, there is an obvious effect
567 of binned IGRA PWV on the evaluation, and in general, the MB and RMSE are both increasing with the IGRA PWV. In the
568 dry condition (<1.0 cm), there is a positive MRB value of 9.0%, and this is also mainly due to the low PWV value. Nevertheless,
569 the MRB is all negative and increases with an IGRA PWV above 2.0 cm. the influence of temporal discrepancy between the
570 passing time of FY 3D and the release time of radiosonde is analyzed. There are some differences within different temporal
571 intervals. MRB has the largest value with temporal discrepancy of 0-1 h and the minimum value is found when the temporal
572 discrepancy is 1-2 h. EE value declines with the ascending temporal discrepancy from 68.04% to 88.82%. However, there is
573 no noteworthy difference in MB within different temporal intervals and the MB value changes from 0.06 cm to 0.10 cm. For
574 RMSE, the greatest value is 0.36 cm, seen at the temporal discrepancy of 4-6 h. All of CC values are larger than 0.9320 and
575 the best correlation is found when the temporal discrepancy is less than 1 h. Subsequently, the evaluations within different
576 distance intervals are presented in order to reveal the effect of distance between the footprint of FY 3D the satellite and
577 radiosonde the IGRA sites location. The MB varies positively with the growth of the the increasing distance, and the largest
578 MB is -0.15-20 cm within the distance of above 20-100 km. The MRB is increasing increases from -0.496% to -5.936.1% with
579 the distance increasing distance from 0 to 20 km. The RMSE also increases with the distance increased and the large RMSE
580 is mainly caused by the obvious underestimation of MERSI-II PWV at some points with the spatial distance larger than 20 km.
581 However, the CC value is less than that in different temporal intervals, besides, there are larger MB, MRB and RMSE in the
582 evaluation of MERSI-II PWV with different distance discrepancy intervals, and this can be concluded as the discrepancy of
583 distance has more effect on the evaluation of PWV than temporal discrepancy. In general, large MB and RMSE are both
584 distributed at the high altitude stations, with the values of 0.08 cm and 0.28 cm, and the STD becomes smaller with the
585 increase of altitude. However, the least EE value is found in high altitude sites. From the analysis of latitudinal performance
586 of MERSI-II PWV, the MEAN of PWV shows a distribution opposite to latitude. The largest values of MB and MRB are
587 within 0°N-20°N and 20°N-35°N, respectively. The RMSE is less than 0.19 cm above the latitude of 35°S, however, the
588 RMSE has large value around the equator with the value greater than 0.43 cm.

589 The global evaluation of the MERSI-II PWV product can explore a wide variety of applications of this product, and the
590 analysis of the influencing factors on the evaluation can be helpful for improving the PWV retrieval algorithm. Although we
591 have partially explained the underestimation of the PWV from MERSI-II, other influencing factors, such as the solar zenith
592 angle, the precision of the transmittance calculation and the uncertainty of the radiation signals should be studied in the future.
593 Furthermore, how to quantitate the influence of aerosols (e.g., dust, haze) and thin cirrus clouds on the PWV retrieval is also
594 a key problem that should be explored in the application of the PWV product.

595 Finally, the PWV product derived from MERSI-II is employed to analyze the PWV distribution over QTP. In Both warm
596 and cold seasons, the large PWV is concentrated in the Bay of Bengal, and the values are above 4.0 cm and 2.0 cm, respectively.
597 As the distribution of PWV shows in clear sky condition, the water vapor transport path along the Brahmaputra Grand Canyon

598 is obviously with a large PWV. What's more, the comparison between the monthly variations of PWV at Motuo and Shimian
599 sites suggests that the two stations both enjoy the nearly identical PWV mean values. In terms of the altitudes of the two
600 stations, the results indicate that the Brahmaputra Grand Canyon plays a key role in the transport of water vapor, especially in
601 July.

602 **Data availability**

603 The MERSI-II PWV product is available from <http://satellite.nsdc.org.cn/PortalSite/Data/Satellite.aspx>, the IGRA data is
604 available from <ftp://ftp.ncdc.noaa.gov/pub/data/igra>, and the global AERONET data are provided at
605 <https://aeronet.gsfc.nasa.gov>. The altitude data set is provided by Geospatial Data Cloud site, Computer Network Information
606 Center, Chinese Academy of Sciences at <http://www.gscloud.cn>. The processed data are available from Zenodo
607 (<https://doi.org/10.5281/zenodo.5563205>[10.5281/zenodo.5105083](https://doi.org/10.5281/zenodo.5105083)).

608 **Author contributions**

609 Conceptualization, ZWG and WL; data curation, WL, YY and HQX; formal analysis, ZWG, YY and XGR; writing-original
610 draft preparation, ZWG; writing-review and editing, ZWG and WL; supervision, XGR and HXQ; funding acquisition, XGR
611 and CCG. All authors have reviewed and agreed on the final version of the manuscript.

612 **Competing interests**

613 The authors declare that they have no conflict of interest.

614 **Acknowledgments**

615 This work is supported by The Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No.
616 2019QZKK0105); National Natural Science Foundation of China (NSFC) under Grant No. 41705019 and 41620104009; the
617 Hubei Meteorological Bureau project under Grant No. 2018Q04; and NSFC under Grant No. 91637211. We appreciate the
618 National Satellite Metrological Center of China Meteorological Administration (CMA) for providing the MERSI-II PWV
619 product, the National Climatic Data Center (NCDC) for providing IGRA data, and the principal investigators and their staff
620 for establishing and maintaining the AERONET sites used in this study. The altitude data set is provided by Geospatial Data
621 Cloud site, Computer Network Information Center, Chinese Academy of Sciences.

622 **References**

623 Adeyemi, B. and Schulz, J.: Analysis of water vapor over nigeria using radiosonde and satellite data, *J. Appl. Meteor. Climatol.*,
624 51, 1855-1866, <https://doi.org/10.1175/JAMC-D-11-0119.1>, 2012.

625 Alexandrov, M. D., Schmid, B., Turner, D. D., Cairns, B., Oinas, V., Lacis, A.A., Gutman S. I., Westwater, E. R. Smirnov,
626 A., and Eilers J.: Columnar water vapor retrievals from multifilter rotating shadow band radiometer data, *J. Geophys. Res.*
627 *Atmos.*, 114, D02306, <https://doi.org/10.1029/2008JD010543>, 2009.

628 Alraddawi, D., Sarkissian, A., Keckhut, P., Bock, O., Noël, S., and Bekki, S.: Comparison of total water vapour content in the
629 Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY, *Atmos. Meas. Tech.*, 11(5), 2949-2965,
630 <https://doi.org/10.5194/amt-11-2949-2018>, 2018.

631 Antón, M., Loyola, D., Román, R., and Vömel, H.: Validation of GOME-2/MetOp-A total water vapour column using
632 reference radiosonde data from the GRUAN network, *Atmos. Meas. Tech.*, 8, 1135-1145, <https://doi.org/10.5194/amt-8-1135-2015>, 2015.

633 Bennartz, R., and Fischer, J.: Retrieval of columnar water vapour over land from back-scattered solar radiation using the
634 Medium Resolution Imaging Spectrometer (MERIS), *Remote Sens. Environ.*, 78(3), 274-283,
635 [https://doi.org/10.1016/S0034-4257\(01\)00218-8](https://doi.org/10.1016/S0034-4257(01)00218-8), 2001.

636 Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of
637 atmospheric water vapor using the Global Positioning System, *J. Geophys. Res. Atmos.*, 97(D14), 15787-15801,
638 <https://doi.org/10.1029/92JD01517>, 1992.

639 Boukabara, S., Garrett, K., and Chen, W.: Global Coverage of Total Precipitable Water Using a Microwave Variational
640 Algorithm, IEEE T. Geosci. Remote, 48, 3608-3621, <https://doi.org/10.1109/TGRS.2010.2048035>, 2010.

641 Che, H. Z., Gui, K., Chen, Q. L., Zheng, Y., Yu, J., Sun, T. Z., Zhang, X. Y., and Shi, G. Y.: Calibration of the 936 nm water-
642 vapor channel for the China aerosol remote sensing NETwork (CARSNET) and the effect of the retrieval water-vapor on
643 aerosol optical property over Beijing, China, *Atmos. Pollut. Res.*, 7(5), 743-753,
644 <https://doi.org/10.1016/j.apr.2016.04.003>, 2016.

645 Chen, B. and Liu, Z.: Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and
646 NCEP reanalyses, radiosonde, GPS, and microwave satellite, *J. Geophys. Res. Atmos.*, 121, 11442-11462,
647 <https://doi.org/10.1002/2016JD024917>, 2016.

648 Dessler, A.E. and Wong, S.: Estimates of the water vapor climate feedback during El Niño–Southern Oscillation, *J. Climate*,
649 22(23), 6404-6412, <https://doi.org/10.1175/2009JCLI3052.1>, 2009.

650 Durre, I., Williams Jr., C. N., Yin, X. G., and Vose, R. S.: Radiosonde-based trends in precipitable water over the Northern
651 Hemisphere: An update, *J. Geophys. Res. Atmos.*, 114, D05112, <https://doi.org/10.1029/2008JD010989>, 2009.

652 Durre, I., Yin, X., Vose, R. S., Applequist, S., and Arnfield, J.: Enhancing the Data Coverage in the Integrated Global
653 Radiosonde Archive, J. Atmos. Ocean. Tech., 35(9), 1753-1770, <https://doi.org/10.1175/JTECH-D-17-0223.1>, 2018.

654 Gao, B. C. and Kaufman, Y. J.: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-
655 infrared channels, *J. Geophys. Res. Atmos.*, 108, D13, <https://doi.org/10.1029/2002JD003023>, 2003.

656 Held, I. M. and Soden, B. J.: Water vapor feedback and global warming, *Annu. Rev. Energy Environ.*, 25, 441-475,

658 https://doi.org/10.1146/annurev.energy.25.1.441, 2000.

659 Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima,
660 T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET—A federated instrument network and data archive for aerosol
661 characterization, *Remote Sens. Environ.*, 66(1), 1-16, [https://doi.org/10.1016/S0034-4257\(98\)00031-5](https://doi.org/10.1016/S0034-4257(98)00031-5), 1998.

662 ~~Jiang, J., Zhou, T., and Zhang, W.: Evaluation of satellite and reanalysis precipitable water vapor data
663 sets against radiosonde observations in central Asia, *Earth Space Sci.*, 6,
664 https://doi.org/10.1029/2019EA000654, 2019.~~

665 Kiehl, J. T. and Trenberth, K. E.: Earth's annual global mean energy budget, *B. Am. Meteorol. Soc.*, 78, 197-208,
666 [https://doi.org/10.1175/1520-0477\(1997\)078%3C0197:EAGMEB%3E2.0.CO;2](https://doi.org/10.1175/1520-0477(1997)078%3C0197:EAGMEB%3E2.0.CO;2), 1997.

667 ~~Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoe, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global
668 evaluation of the Collection 5 MODIS dark-target aerosol products over land, *Atmos. Chem. Phys.*,
669 10(21), 10399-10420, <https://doi.org/10.5194/acp-10-10399-2010>, 2010.~~

670 Li, Z. H., Muller, J. P., Cross, P., Albert, P., Hewison, T., Watson, R., Fischer, J., and Bennartz, R.: Validation of MERIS near
671 IR water vapour retrievals using MWR and GPS measurements, MERIS user workshop, ESA ESRIN, Frascati, Italy, 10-
672 13 Nov 2003, 2003.

673 Liu, H. L., Tang, S. H., Zhang, S. L., and Hu, J. Y.: Evaluation of MODIS water vapour products over China using radiosonde
674 data, *Int. J. Remote Sens.*, 36(2), 680-690, <https://doi.org/10.1080/01431161.2014.999884>, 2015.

675 Liu, J. M., Liang, H., Sun, Z. A., and Zhou, X. J.: Validation of the Moderate-Resolution Imaging Spectroradiometer
676 precipitable water vapor product using measurements from GPS on the Tibetan Plateau, *J. Geophys. Res. Atmos.*, 111,
677 D14103, <https://doi.org/10.1029/2005JD007028>, 2006.

678 Liu, Z. Z., Wong, M. S., Nichola, J. and Chan, P. W.: A multi-sensor study of water vapour from radiosonde, MODIS and
679 AERONET: a case study of Hong Kong, *Int. J. Climatol.*, 33, 109-120, <https://doi.org/10.1002/joc.3412>, 2013.

680 Lu, N.: Biases and abrupt shifts of monthly precipitable water from Terra MODIS, *Remote Sens.*, 11(11), 1315.
681 <https://doi.org/10.3390/rs11111315>, 2019.

682 Lu, N., Qin, J., Yang, K., Gao, Y., Xu, X. D., and Koike, T.: On the use of GPS measurements for Moderate Resolution
683 Imaging Spectrometer precipitable water vapor evaluation over southern Tibet, *J. Geophys. Res. Atmos.*, 116, D23117,
684 <https://doi.org/10.1029/2011JD016160>, 2011.

685 Malderen, R. V., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., Mazière, M. D., Wagner, T., Backer, H. D., and Bruyninx,
686 C.: A multi-site intercomparison of integrated water vapour observations for climate change analysis, *Atmos. Meas. Tech.*,
687 7, 2487-2512, <https://doi.org/10.5194/amt-7-2487-2014>, 2014.

688 Martins, V. S., Lyapustin A., Wang, Y. J., Giles, D. M., Smirnov, A., Slutsker, I., and Korkin S. Global validation of columnar
689 water vapor derived from EOS MODIS-MAIAC algorithm against the ground-based AERONET observations, *Atmos.*
690 *Res.*, 225, 181-192, <https://doi.org/10.1016/j.atmosres.2019.04.005>, 2019.

691 Meng, X. C., Cheng, J. and Liang, S. L.: Estimating land surface temperature from Feng Yun-3C/MERSI data using a new
692 land surface emissivity scheme, *Remote Sens.*, 9(12), 1247, <https://doi.org/10.3390/rs9121247>, 2017.

693 ~~Naumann, A. K. and Kiemle, C.: The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in~~

694 [the trades, Atmos. Chem. Phys., 20, 6129-6145, https://doi.org/10.5194/acp-20-6129-2020, 2020.](https://doi.org/10.5194/acp-20-6129-2020, 2020.)

695 Niilo, K., Jukka, K., Viktoria, S., Johanna, T., Margherita, G., and Pieter, V.: Validation of GOME-2/Metop total column water
696 vapour with ground-based and in situ measurements, *Atmos. Meas. Tech.*, 9, 1533-1544, <https://doi.org/10.5194/amt-9-1533-2016>, 2016.

697 Pérez-Ramírez, D., Whiteman, D. N., Smirnov, A., Lyamani, H., Holben, B. N., Pinker, R., Andrade, M., and Alados-
698 Arboledas, L.: Evaluation of AERONET precipitable water vapor versus microwave radiometry, GPS, and radiosondes
699 at ARM site, *J. Geophys. Res. Atmos.*, 119, 9596-9613, <https://doi.org/10.1002/2014JD021730>, 2014.

700 Pérez-Ramírez, D., Smirnov, A., Pinker, R. T., Petrenko, M., Román, R., Chen, W., Ichoku, C., Noël, S., Abad, G. G., Lyamani,
701 H., and Holben, B. N.: Precipitable water vapor over oceans from the Maritime Aerosol Network: Evaluation of global
702 models and satellite products under clear sky conditions, *Atmos. Res.*, 215, 294-304,
703 <https://doi.org/10.1016/j.atmosres.2018.09.007>, 2019.

704 Prasad, A. K. and Singh, R. P.: Validation of MODIS Terra, AIRS, NCEP/DOE AMIP-II Reanalysis-2, and AERONET Sun
705 photometer derived integrated precipitable water vapor using ground-based GPS receivers over India, *J. Geophys. Res.*
706 Atmos., 114, D05107, <https://doi.org/10.1029/2008JD011230>, 2009.

707 Qin, J., Yang, K., Koike, T., Lu, H., Ma, Y. M. and Xu, X. D.: Evaluation of AIRS precipitable water vapor against ground-
708 based GPS measurements over the Tibetan Plateau and its surroundings, *J. Meteorol. Soc. Jpn.*, 90, 87-98,
709 <https://doi.org/10.2151/jmsj.2012-C06>, 2012.

710 Rakesh, V., Randhir, S., Pal, P. K., and Joshi, P. C.: Impacts of satellite-observed winds and total precipitable water on WRF
711 short-range forecasts over the Indian region during the 2006 summer monsoon, *Wea. Forecasting*, 24, 1706-1731,
712 <https://doi.org/10.1175/2009WAF2222242.1>, 2009.

713 Sobrino, J. A., Juan, C. J., Cristian, M. and Guillem, S.: Evaluation of Terra/MODIS atmospheric profiles product (MOD07)
714 over the Iberian Peninsula: a comparison with radiosonde stations, *Int. J. Digit. Earth*, 8(10), 1-13,
715 <https://doi.org/10.1080/17538947.2014.936973>, 2014.

716 [Solbrig, J. E.: Thin cloud length scales using CALIPSO and CloudSat data, M.S. thesis, Department of Atmospheric Sciences,](https://doi.org/10.1175/2009WAF2222242.1)
717 [Texas A&M University, Texas, U.S.A, 62 pp., 2009.](https://doi.org/10.1175/2009WAF2222242.1)

718 Trenberth, K. E., Dai, A. G., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, *B. Am. Meteorol.*
719 Soc., 84(9), 1205-1218, <https://doi.org/10.1175/BAMS-84-9-1205>, 2003.

720 [Turner, D. D., Lesht, B. M., Clough, S. A., Liljegren, J. C., Revercomb, H. E., and Tobin, D. C.: Dry Bias and Variability in](https://doi.org/10.1175/2009WAF2222242.1)
721 [Vaisala RS80-H Radiosondes: The ARM Experience, J. Atmos. Ocean. Tech., 20, 117-132, \[https://doi.org/10.1175/1520-0426\\(2003\\)020<0117:DBAVIV>2.0.CO;2\]\(https://doi.org/10.1175/1520-0426\(2003\)020<0117:DBAVIV>2.0.CO;2\), 2003.](https://doi.org/10.1175/2009WAF2222242.1)

722 Wang, L., Hu, X. Q., Xu, N., and Chen, L. Water vapor retrievals from near-infrared channels of the advanced Medium
723 Resolution Spectral Imager instrument onboard the Fengyun-3D satellite, *Adv. Atmos. Sci.*,
724 <https://doi.org/10.1007/s00376-020-0174-8>, 2021.

725 Wang, J. H., Dai, A. G., and Mears, C.: Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS,
726 radiosonde, and microwave satellite measurements, *J. Climate*, 29(14), 5205-5222. <https://doi.org/10.1175/JCLI-D-15-0485.1>, 2016.

730 Wang, J. H., Zhang, L. Y., Dai, A. G., Hove, T. V., and Baelen, J. V.: A near-global, 2-hourly data set of atmospheric
731 precipitable water from ground-based GPS measurements, *J. Geophys. Res. Atmos.*, 112, D11107.
732 <https://doi.org/10.1029/2006JD007529>, 2007.

733 Wang, S. M., Xu, T. H., Nie, W. F., Jiang, C. H., Yang, Y. G., Fang, Z. L., Li M. W., and Zhang Z.: Evaluation of precipitable
734 water vapor from five reanalysis products with ground-based GNSS observations, *Remote Sens.*, 12(11), 1817,
735 <https://doi.org/10.3390/rs12111817>, 2020.

736 Westwater, E. R.: The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave
737 radiometry, *Radio Sci.*, 13(4), 677-685, <https://doi.org/10.1029/RS013i004p00677>, 1978.

738 Wu, R. H., Zhang, P., Xu, N., Hu, X. Q., Chen, L., Zhang, L., and Yang, Z. D.: FY-3D MERSI on-orbit radiometric calibration
739 from the lunar view, *Sensors*, 20(17), 4690, <https://doi.org/10.3390/s20174690>, 2020a.

740 Wu, Z., Liu, Y., Liu, Y., Wang, J., He, X., Xu, W., Ge, M., and Schuh, H.: Validating HY-2A CMR precipitable water vapor
741 using ground-based and shipborne GNSS observations, *Atmos. Meas. Tech.*, 13, 4963–4972, [https://doi.org/10.5194/amt-13-4963-2020](https://doi.org/10.5194/amt-
742 13-4963-2020), 2020b.

743 Xu, N., Niu, X. H., Hu, X. Q., Wang, X. H., Wu, R. H., Chen, S. S., Chen, L., Sun L., Ding L., Yang Z. D., and Zhang, P.:
744 Prelaunch calibration and radiometric performance of the advanced MERSI II on FengYun-3D, *IEEE T. Geosci. Remote*,
745 56, 4866-4875, <https://doi.org/10.1109/TGRS.2018.2841827>, 2018.

746 Yang, Z. D., Zhang, P., Gu, S. Y., Hu, X. Q., Tang, S. H., Yang, L. K., Xu, N., Zhen, Z. J., Wang L., Wu, Q., Dou, F. L., Liu, R.
747 X., Wu, X., Zhu, L., Zhang, L. Y., Wang, S. J., Sun, Y. Q., and Bai, W. H.: Capability of Fengyun-3D satellite in earth
748 system observation, *J. Meteorol. Res-PRC.*, 33(6), 1113-1130, <https://doi.org/10.1007/s13351-019-9063-4>, 2019.

749 Zhao, T. B., Dai, A. G., and Wang, J. H.: Trends in tropo-spheric humidity from 1970 to 2008 over China from a homogenized
750 radiosonde dataset, *J. Climate*, 25, 4549-4567, <https://doi.org/10.1175/jcli-d-11-00557.1>, 2012.

751 Zhang, F. Z., Barriot, J.-P., Xu, G. C., and Yeh, T.-K.: Metrology assessment of the accuracy of precipitable water vapor
752 estimates from GPS data acquisition in tropical areas: the Tahiti case, *Remote Sens.*, 10 (5), 758,
753 <https://doi.org/10.3390/rs10050758>, 2018.

754 Zhang, J. Q., Chen, H. B., Li, Z. Q., Fan, X. H., Peng, L., Yu, Y., and Cribb, M.: Analysis of cloud layer structure in Shouxian,
755 China using RS92 radiosonde aided by 95 GHz cloud radar, *J. Geophys. Res. Atmos.*, 115, D00K30,
756 <https://doi.org/10.1029/2010JD014030>, 2010.

757 Zhang, W. G., Xu, G. R., Wan, R., He, W. H., and Feng, G. L.: Analysis of the characteristic of liquid water and water vapor
758 detected by ground-based microwave radiometer, *Torrential Rain and Disasters*, 34 (4), 367-374, 2015. (in Chinese with
759 English abstract)
Zhang, W. G., Xu, G. R., Xi, B. K., Ren, J., Wan, X., Zhou, L. L., Cui C. G., and Wu, D. Q.: Comparative
760 study of cloud liquid water and rain liquid water obtained from microwave radiometer and micro rain radar observations
761 over central China during the monsoon, *J. Geophys. Res. Atmos.*, 125, e2020JD032456,
762 <https://doi.org/10.1029/2020JD032456>, 2020.