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Abstract

Most studies on validation of satellite trace gas retrievals or atmospheric chemical transport models
assume that pointwise measurements, which roughly represent the element of space, should
compare well with satellite (model) pixels (grid box). This assumption implies that the field of
interest must possess a high degree of spatial homogeneity within the pixels (grid box), which may
not hold true for species with short atmospheric lifetimes or in the proximity of plumes. Results of
this assumption often lead to a perception of a nonphysical discrepancy between data, resulting
from different spatial scales, potentially making the comparisons prone to overinterpretation.
Semivariogram is a mathematical expression of spatial variability in discrete data. Modeling the
semivariogram behavior permits carrying out spatial optimal linear prediction of a random process
field using kriging. Kriging can extract the spatial information (variance) pertaining to a specific
scale, which in turn translating pointwise data to a gridded space with quantified uncertainty such
that a grid-to-grid comparison can be made. Here, using both theoretical and real-world
experiments, we demonstrate that this classical geostatistical approach can be well adapted to
solving problems in evaluating model-predicted or satellite-derived atmospheric trace gases. This
study suggests that satellite validation procedures using the present method must take kriging
variance and satellite spatial response functions into account. We present the comparison of Ozone
Monitoring Instrument (OMI) tropospheric NO> columns against 11 Pandora Spectrometer
Instrument (PSI) systems during the DISCOVER-AQ campaign over Houston. The least-squares
fit to the paired data shows a low slope (OMI=0.76xPSI+1.18x10'> molecules cm 2, r’=0.67)
which is indicative of varying biases in OMI. This perceived slope, induced by the problem of
spatial scale, disappears in the comparison of the convolved kriged PSI and OMI
(0.96xPSI+0.66x10'> molecules cm 2, r?=0.72) illustrating that OMI possibly has a constant
systematic bias over the area. To avoid gross errors in comparisons made between gridded data
versus pointwise measurements, we argue that the concept of semivariogram (or spatial auto-
correlation) should be taken into consideration, particularly if the field exhibits a strong degree of
spatial heterogeneity at the scale of satellite and/or model footprints.
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1. Introduction

Most of the literature on validation of satellite trace gas retrievals or atmospheric chemical
transport models assume that geophysical quantities within a satellite pixel or a model grid box
are spatially homogeneous. Nevertheless, it has long been recognized that this assumption can
often be violated; spatially coarse atmospheric models or satellites are often not able to represent
features, nor physical processes, transpiring at fine spatial scales. Janjic et al. [2016] used the term
of representation error to describe this complication. They posit that this problem is a result of
two combined factors: unresolved spatial scales and physiochemical processes. To elaborate on
this definition, let us assume that an atmospheric model simulating CO; concentrations can
represent the exact physiochemical processes but is fed with a constant CO> emission rate. This
model obviously cannot resolve the spatial distribution of CO2 concentration because we use an
unresolved emission input. As another example, if we know the exact rates of CO> emissions but
use a model unable to resolve atmospheric dynamics, the spatial distribution of CO; concentrations
will be unrealistic due to unresolved physical processes.

Numerous scientific studies have reported on this matter. The simulations of short lifetime
atmospheric compounds such as nitrogen dioxide (NO), isoprene, formaldehyde (HCHO), and
the hydroxyl radical (OH) have been found to be strongly sensitive to the model spatial resolution
[Vinken et al.,2011; Valinetal.,2011; Yuetal., 2016; Pan etal., 2017]. Likewise, the performance
of weather forecast models in resolving non-hydrostatic components heavily relies on both model
resolution and parametrizations used. For example, when Kendon et al. [2014], Souri et al.
[2020a], and Wang et al. [2017] defined a higher spatial resolution in conjunction with more
elaborate model physics, they were able to more realistically simulate extreme or local weather
phenomena such as convection and sea-land breeze circulation.

The spatial representation issue is not only limited to models. Satellite trace gas retrievals
optimize the concentration of trace gases and/or atmospheric states to best match the observed
radiance using an optimizer along with an atmospheric radiative transfer model. This procedure
requires various inputs such as surface albedo, cloud and aerosol optical properties, and trace gas
profiles, all of which come with different scales and representation errors. Moreover, the radiative
transfer model by itself has different layers of complexity with regards to physics. A myriad of
studies have reported that satellite-derived retrievals underrepresent spatial variability whenever
the prognostic inputs used in the retrieval are spatially unresolved [e.g., Russell et al., 2011;
Laughner et al., 2018; Souri et al., 2016; Goldberg et al., 2019; Zhao et al., 2020]. Additionally,
the large footprint of some sensors relative to the scale of spatial variability of species inevitably
leads to some degree of the representativity issues [e.g., Souri et al., 2020b, Tang et al., 2021; Judd
et al., 2020]. It is because of this reason that several validation studies resorted to downscaling
their relatively coarse satellite observations using high-resolution chemical transport models so
that they could compare them to spatially finer datasets such as in-situ measurements [Kim et al.,
2018; Choi et al., 2020]. Nonetheless, their results largely arise from modeling experiments which
might be biased.

The validation of satellites or atmospheric models is widely done against pointwise
measurements. Mathematically, a point is an element of space. Hence, it is not meaningful to
associate a point with a spatial scale. If one compares a grid box to a point sample (i.e., apples to
oranges), they are assuming that the point is the representative of the grid box. At this point, the
fundamental question is: can the average of the spatial distribution of the underlying compound be
represented by a single value measured at a subgrid location? This question was answered in
Matheron [1963]. He advocated the notion of the semivariogram, a mathematical description of
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the spatial variability, which finally led to the invention of kriging, the best unbiased linear
estimator of a random field. A kriging model can estimate a geophysical quantity in a common
grid. This is not exclusively special; a simple interpolation method such as the nearest neighbor
has the same purpose. The power of kriging lies in the fact that it takes the data-driven spatial
variability information into account and informs an error associated with the interpolated map.
This strength not only makes kriging a relatively superior model over simplified interpolation
methods, but also reflects the level of confidence pertaining to spatial heterogeneity dictated by
both data and the semivariogram model used through its variance [Chiles and Delfiner, 2009].

Different studies leveraged this classical geostatistical method to map the concentrations
of different atmospheric compounds at very high spatial resolutions [Tadic et al., 2017; Li et al.,
2019; Zhan et al., 2018; Wu et al., 2018]; To the best of our knowledge, Swall and Foley [2009]
is the only study that used kriging for a chemical transport model validation with respect to surface
ozone. They suggested that kriging estimation should be executed in grids rather than discrete
points. Kriging uses a semivariogram model in a continuous form. Optimizing the kriging grid size
(i.e., domain discretization) at which the estimation is performed is an essence to fully obtaining
the maximum spatial information from data. Another important caveat with Swall and Foley
[2009] is that averaging discrete estimates (points) to build grids is not applicable for remote
sensing data. Depending on the optics and the geometry, the spatial response function can
transform from an ideal box (simple average) to a sophisticated shape such as a super Gaussian
function (weighted average) [Sun et al., 2018]. Moreover, the footprint of satellites is not spatially
constant. We will address these complications in this study using both theoretical and real-world
experiments.

Our paper is organized with the following sections. Sections 2 is a thorough review of the
concept of the semivariogram and kriging. We then provide different theoretical cases, their
uncertainty, sensitivities with respect to difference tessellation, grid size, and the number of
samples. Section 3 proposes a framework for satellite (model) validation using sparse point
measurements and elaborates on the representation error using idealized experiments. Sections 4
introduces several real-world experiments.

2. Semivariogram and Ordinary Kriging Estimator
2.1. Definition
The semivariogram is a mathematical representation of the degree of spatial variability (or

similarity) in a function describing a regionalized geophysical quantity (f), which is defined as
[Matheron, 1963]:

v = 37 ] e+ m - rooray n

where x is a location in the geometric fields of V, f(x) is the value of a quantity at the location of x,
and h is the vector of distance. If discrete samples are available rather than the continuous field,
the general formula can be simplified to the experimental semivariogram defined as:
1
YW= sugs D, 1ZG) - ZG))F @
|xi—x;|-lhl<e

where Z(x;) (and Z (xj)) is discrete observations (or samples), N(h) is the number of paired
observations separated by the vector of A. |.| operator indicates the length of a vector. The condition
of |xi — xj| — |h| < € is to allow certain tolerance for differences in the length of the vector. For
simplicity, we only focus on an isotropic case meaning we rule out the directional (or angular)
dependency in y(h). Under this condition, the vector of & becomes scalar (2 = |h|).
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If a reasonable number of samples is present, one can describe y(h) through a regression
model (e.g., Gaussian or spherical shapes). The degree of freedom for this regression is:
dof =N —p 3)
where p is the number of parameters defined in the model. For instance, to fit a Gaussian function
to the semivariogram with three parameters (p=3), three paired (N=3) observations are required at
minimum. Different regression models can be used to describe y(h) depending on the
characteristic of the quantity of interest. In this study, we will use a stable Gaussian function:

y(h) = a(1 - e_(%)co): co=1.5 (4)
where a and b are fitting parameters. A non-linear least-squares algorithm based on Levenberg-
Marquardt method will be used to estimate the fitting parameters.

The kriging estimator predicts a value of interest over a defined domain using a
semivariogram model derived from samples [Chilés and Delfiner, 2009]. The kriging model is
defined as [Matheron, 1963]:

Z(x) =Y(x)+m(x) (5)
where Y(x) is a zero-mean random function, and m(x) is a systematic drift. If we assume
m(x) = ay, the model is called ordinary kriging. Similar to an interpolation problem, the
estimation point (2), is determined by linearly combining #» number of samples with their weights

n

2= z/ljZ(xj) + 7, (6)
=1

where Z is the estimation, 4, is a constant weight, x; is the location of samples, , and Z (x ;) is point

data (i.e., samples). The mean squared error of this estimation can be written as
2

n
E(Z —2)? = Var (Z — Z,) + |40 + (z A — 1ag (7)
j=1
Where Z, is point observations (Z, = Z(x;) ,j = 1,2,...,n), and a, is the mean of Z which is
unknown. In order to estimate the weights, we are required to minimize Eq.7, but this cannot be
done without knowing the exact value of a,. A solution is to assume 4, = 0 and impose the
following condition:

i A=1 (8)
j=1

This condition warrants E(Z — Z,) be zero and removes the need for the knowledge of a,.
Therefore Eq.7 can be written as

n n n
E(Z —Z,)* = Var (2 - Zo) = z z Aj1Aja¥jrj2 — 2 z Aj1¥j10 + Yoo )
j1=1j2=1 ji=1
where yjqj, is the spatial covariance between the point observations and y;o is the spatial
covariance of between the observations and the estimation point. The spatial covariance is modeled
by a semivariogram. Using the method of Lagrange multiplier and considering the constraint on
the weights, Eq.9 can be minimized by solving the following problem [Chilés and Delfiner, 2009]:
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u 1 1 0 1
where u is the Lagrange parameter and x is the location of estimation. The first term in the right
hand side of this equation shows the spatial variability described by the semivariogram model
among samples, whereas the second term indicates the modeled variability between samples and
the estimation point. The unknowns (the left hand side of the equation) have a unique solution if,
and only if, the semivariogram model is positive definite and the samples are unique [Chiles and
Delfiner, 2009]. The estimation error can be obtained by
n

0 =EQ2 =20 =) Ay —# (1
j=1
This equation is an important component in the kriging estimator. Not only can we estimate Z(x)
given a selection of data points, but also an uncertainty associated with such estimation can be
provided.

2.2. Theoretical Cases

2.2.1. Sensitivity to spatial variability of the field

The present section illustrates the application of ordinary kriging for several numerical
cases. Five idealized cases are simulated in a grid of 100100 pixels, namely, a constant field (C1),
a ramp starting from zero in the lower left to higher values in the upper right (C2), an intersection
with concentrated values in four corridors (C3), a Gaussian plume placed in the center (C4), and
multiple Gaussian plumes spread over the entire domain (C5). We randomly sample 200 data
points from each field as is, and successively create the semivariograms in 100 binned distances.
Except C1, which lacks a spatial variability thus y(h) = 0, other semivariograms are fit with the
stable Gaussian function. Using the semivariogram model, we optimize Eq.10 to estimate Z(x)
for each pixel (i.e., 100x100) with the estimation errors based on Eq.11. Figure 1 depicts the truth
field (Z(x)), semivariograms made from the samples, estimated values (Z(x)), difference of Z (x)
and Z(x), and error associated with the estimation.

As for C1, the uniformity results in a constant semivariogram leading the estimation to be
identical to the truth. This estimation signifies the unbiased characteristic of ordinary kriging. C1
is never met in reality, however, it is possible to assume some degree of uniformity among data
restrained to background values; a typical example of this can be seen in the spatial distribution of
a number of trace gases in pristine environments such as NO> [e.g., Wang et al., 2020] and HCHO
[Wolfe et al., 2019]. Under this condition, any data point within the field (i.e., the satellite
footprint) can be assumed to be representative of the spatial variability in truth.

Concerning C2, the semivariogram shows a linear shape meaning data points at larger
distances exhibit larger differences. Generally geophysical samples are uncorrelated at large
distances, thereby one expects the semivarioram to increase more slowly as the distance gets
further. The steady increase in y(h) is indicative of a systematic drift in the data invalidating the
assumption of m(x) = a,. In many applications, a simple polynomial can explain m(x) and
subsequently be subtracted from the data points. An example of this problem is tackled by Onn
and Zebker [2006]; it concerns the spatial variability of water vapor columns measured by GPS
signals. Onn and Zebker [2006] observed a strong relationship between the water vapor columns
and GPS altitudes resulting from the vertical distribution of water vapor in the atmosphere.
Because of this complication, a physical drift model describing the vertical dependency was fit
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and removed from the measurements so that they could focus on the horizontal fluctuations. In
terms of C2, one can effortlessly reproduce Z(x) by fitting a three-dimensional plane to barely
three samples, indicating that the semivariogram is of little use.

C3 is an example of an extremely inhomogeneous field manifested in the stabilized
semivariogram at a value of y~500, called the sill [Chilés and Delfiner, 2009], indicating
insignificant information (variance) from the samples beyond this distance (~20), called the range.
Range is defined as the separation distance at which the total variance in data is extracted. The
smaller the range is, the more heterogeneous the samples will be. While the estimated field roughly
captures the shape of the intersections, it is spatially distorted at places with relatively sparse data
points. The kriging model error is essentially a measure of the density of information. It converges
to zero in the samples location and diverges to large values in gaps.

C4 is a close example of a point source emitter with faint winds and turbulence. The
semivariogram exhibits a bell shape. As samples get further from the source, the variance diverges,
stabilizes, and then sharply decreases. This is essentially because many data points with low
values, apart from each other, have negligible differences. This tendency is recognized as the hole
effect which is characterized for high values to be systemically surrounded by low values (and
vice versa). It is possible to mask this effect by fitting a semivariogram model stabilizing at certain
sill (like the one in Figure 1). Nonetheless, if the semivariogram shows periodic holes, the fitted
model should be modified to a periodic cosine model [Pyrcz and Deutsch, 2003].

The last case, C5, shows a less severe case of the hole effect previously observed in C4.
This is due to the presence of more structured patterns in different parts of the domain. The range
is roughly twice as large as the previous case (C4) denoting that there is more information
(variance) among the samples at larger distances. A number of experiments using this particular
case will be discussed in the following subsections.

2.2.2. Sensitivity to the number of samples

It is often essential to optimize the number of samples used for kriging. The kriging
estimator somewhat recognizes its own capability at capturing the spatial variability through
Eq.11. Thus, if the target is spatially too complex and/or the samples are too limited, the estimator
essentially informs that Z(x,) is unreliable through large variance. However, there is a caveat;
Y (x) must be a Gaussian random model with a zero mean so that kriging can capture the statistical
distribution of Z given the data points. Except this case, the kriging variance can either be
underestimated or overestimated depending on the level of skewness of the statistical distribution
of Y (x) [Armstrong, 1994]. Figure 2 shows the kriging estimation for C5 using 5, 25, 50, 100, and
500 random samples in the entire field. Immediately apparent is a better description of the
semivariogram when larger number of samples are used, which in turn, results in a better
estimation of Z(x). The optimum number of samples to reproduce Z(x) depends on the
requirement for the relative error (o/Z(x)) being met at a given location.

2.2.3. Sensitivity to the tessellation of samples

A common application of kriging is to optimize the tessellation of data points for a fixed
number of samples to achieve a desired precision. In real-world practices, the objective of such
optimization is very purpose-specific, for example, one might prefer a spatial model representing
a certain plume in the entire domain. Different ways for data selection exist [e.g., Rennen, 2008],
but for simplicity, we focus on four categories: purely random, stratified random, a uniform grid,
and an optimized tessellation. Figure 3 demonstrates the estimation of C5 using 25 samples chosen
based on those four procedures.
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Concerning the random selection, the lack of samples over two minor plumes cause the
estimation to deviate largely from the truth. While a random selection may seem to be practical
because it is independent of the underlying spatial variability, it can suffer from under sampling
issues, thus being inefficient. As a remedy, it might be advantageous to group the domain into
similar zones and randomly sample from each, which is commonly known as stratified random
selection. We classify the domain into four zones by running the k-mean algorithm on the
magnitudes of Z(x) (not shown) and randomly sample six to seven points from each one (total 25).
We achieve a better agreement between the estimated field and the truth because we exploited
some prior knowledge (here the contrast between low and high values).

As for the uniform grid, we notice that there are fewer data points in the semivariogram
stemming from redundant distances which is indicative of correlated information. Nonetheless, if
the desired tessellation is neutral with regard to location meaning that all parts of the domain is
equal of scientific interest, the uniform grid is the most optimal design for the prediction of Z (x)
under an ideally isotropic case. A mathematical proof for this claim can be found in Chileés and
Delfiner [2009].

To execute the last experiment, we select 25 random samples for 1000 times and find the
optimal estimation by finding the minimum sum of |Z(x,) — Z(x)|. It is worth mentioning that
the optimized tessellation is essentially a local minimum based on 1000 kriging attempts. The
optimized location of samples seems to more clustered over areas with large spatial gradients. Not
too surprisingly, we observe the smallest discrepancy between the estimation and the truth.

A lingering concern over the application of these numerical experiments is that the truth is
assumed to be known. The truth is never known, by this means we may never exactly know how
well or poorly the kriging estimator is performing. However, it is highly unlikely for some prior
understandings or expectations of the truth to be absent. If this is the case, which is rare, a uniform
grid should be intuitively preferred to deliver the local estimations of average values in uniform
blocks. In contrast, if the prior knowledge is articulated by previous site visits, model predictions,
theoretical experiments, pseudo-observations, or other relevant data, the tessellation needs to be
optimized.

It is important to recognize that the uncertainties associated with the prior knowledge
directly affects the level of confidence in the final answer. Accordingly, the prior knowledge error
should ultimately be propagated to the kriging variance. The determination of the prior error is
often done pragmatically. For example, if the goal is to design the location of thermometer sites to
capture surface temperature during heat waves using a yearly averaged map of surface
temperature, it would be wise to specify a large error with this specific prior information to play
down the proposed design. This is primarily because the averaged map underrepresents such an
atypical case. A possible extension of this example would be to use a weather forecast model with
quantified errors capable of capturing retrospective heat waves. Although a reasonable forecast in
the past does not necessarily guarantee a reasonable one in the future, it is rational to assume for
the uncertainty with a new tessellation design using the weather model forecast to be lower than
that of using the averaged map.

A general roadmap for the data tessellation design is shown in Figure 4. As proven in Chilés
and Delfiner [2009], if the field is purely isotropic, the uniform grid is the most intuitive sensible
choice when the prior information on the spatial variability is lacking. When the prior knowledge
with quantified errors is available, an optimum tessellation can be achieved by running a large
number of kriging models with suitable y(h) and picking the one yielding the minimum difference
between the prior knowledge and the estimation. The choice of the cost function (here L1 norm)
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is purpose-specific. For example, if the reconstruction of a major plume was the goal, using a
weighted cost function, geared towards capturing the shape of plume, would be more appropriate.

2.2.4. Sensitivity to the grid size

A kriging model can estimate a geophysical quantity at a desired location considering the
data-driven spatial variability information. Since the kriging model is practically in a continuous
form, the desired locations can be anywhere within the field of V. A question is whether or not it
is necessary to map the data onto a very fine grid. There is a trade-off between the computational
cost and the accuracy of the interpolated map. The range of the underlying semivariogram helps
in finding the optimal solution. The greater the range (i.e., a more homogeneous field), the less
important to map the data in a finer grid.

Figure 5a depicts an experiment comparing the estimates of C2 at different grid sizes with
the truth. The departure of the estimate from the truth is rather negligible for several coarse grids
(e.g., 10x10). The homogeneous field, manifested by the large range (Figure 1), allows for a
reasonable estimation of Z(x) at coarse resolutions with inexpensive computational costs. Figure
5b shows the same experiment but on C5 with the optimized tessellation. As opposed to the
previous experiment, the estimate substantially diverges from the truth when increasing the grid
size, suggesting that a finer resolution should be used for fields with smaller ranges (i.e.,
heterogeneous fields).

The complexity of directly using the range for choosing the optimal grid size arises from
the fact that the level of spatial homogeneity can vary within the domain. In fact, the range is
derived from a semivariogram model representing a crude estimate of varying ranges occurring at
various scales. It is intuitively clear that depending on the degree of heterogeneity, which is
spatiotemporally variable, the grid size needs to be adaptively adjusted [Bryan, 1999]. For the sake
of simplicity, but at a higher computational cost, we adopt a numerical solution which is to first
simulate on a coarse grid, then on a finer one until the difference with respect to the previous grid
size across all pixels reaches to an acceptable value (<1%). We name this output (1x1) with the
optimized tessellation for C5 as CS5opt.

3. Comparison of points to satellite pixels

3.1. Synching the scales between the gridded field and satellite pixels

To minimize the complications of different spatial scales between two gridded data, we
first need to upscale the finer resolution data to match the coarse ones. In case of numerical
chemical transport or weather forecast models, the size of the grid box is definitive. Likewise, a
satellite footprint, mainly dictated by the sensor design, the geometry, and signal-to-noise
requirements [Platt et al., 2021], is known. However, the grid size of the kriging estimation is a
variable subject to optimization which has been discussed previously.

When we compare the grid size of the kriging estimate to that of a satellite (or a model),
three situations arise: First, the kriging spatial resolution is coarser than the satellite, a condition
occurring when either the field is homogeneous or the field is under sampled. In situations where
the field is homogeneous (y(h) = 0), it is safe to directly compare the data points to the satellite
measurements without having to use kriging. If the under sampling is the case (see Figure 2 with
5 samples), it is sensible to first investigate if the field is homogeneous within the satellite footprint
using different data (if any). If the homogeneity is met, we either can compare two datasets without
kriging or to match the size of kriging grid cell with the satellite footprint and statistically involve
the kriging variance in the comparison (discussed later); nonetheless, the kriging estimate beyond
the location of samples must be used with extra caution because their variance very quickly
departures from zero to extremely large numbers (see Figure 1). Thus, there is a compromise
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between increasing the number of paired samples between two datasets and enhancing the level of
confidence in statistics. If independent observations suggest that there might be large heterogeneity
within a satellite footprint, it is strongly advised against quantitatively comparing the points to the
satellite observations. Second, the number of samples is fewer than three observations in the field
so it is in principal impossible to build a semivariogram. Validating a satellite under this condition
is prone to misinterpretation because the spatial heterogeneity cannot be modeled. Nonetheless, if
one presumes a good degree of homogeneity within the sensor footprint (such as very high-
resolution remote sensing airborne data), the direct comparison of point measurements might be
possible. Third, the satellite footprint is coarser than the kriging estimate. Under this condition, we
upscale the kriging map to match the spatial resolution of the satellite using

Z,=Z;%S= fZ}(x)S(x —y)dy (12)

where S is the spatial response function, Z. is the coarse kriging field, <*> is the convolution
operator, y is shift, and Z 7 18 the fine field. In discrete form we can rewrite Eq.12 in

2.1i,j1 =zsz[i—m,j—n]5[m,n] (13)

where m and n are the dimension of the response function. The mathematical formulation of
S[m, n] for a number of satellites can be represented by two-dimensional super Gaussian functions
as discussed in Sun et al. [2018]. Atmospheric models have a uniform response to the simulated

values within a grid box, therefore S[m,n] = ﬁ Jmn, Where J is the matrix of ones. In the same
way, the kriging variance should be convolved through

acz[i,j]=zzaf2[i—m,j—n]52[m,n] (14)

where a superscript of 2 denotes squaring, and o2 and afz are the kriging variance in the coarse

and the fine grids, respectively.

To demonstrate the upscaling procedure, we use C5opt (1x1) and upscale it at six grid sizes
(m,m) of 5x5, 10x10, 15x15, 20%20, 25%25, and 30x30. For simplicity, we consider S = #}m,m;
this spatial response function results in averaging the values in the grid boxes. Figure 6 shows the
resultant map overplotted with the samples along with the error estimation. Two tendencies from
this experiment can be identified: First, the discrepancy of the point data and Z is becoming more
noticeable as the grid size grows; this directly speaks to the notion of the spatial representativeness;
large grid boxes are less representative of sub-grid values. Second, the gradients of the field along
with the estimation error become smoother primarily due to convolving the field with the spatial
response function, which acts as a low pass filter.

We further directly compare Z to the samples (i.e., observations) shown in Figure 7. We
see an excellent comparison between Z at 1x1 resolution with the observations underscoring the
unbiasedness characteristic of the kriging estimator. Conversely, the upscaled field gradually
diverges from the observations. This divergence is the problem of scale.

3.2. Point to pixel vs pixel to pixel

To elaborate on the problem of scale, we design an idealized experiment theoretically
validating pseudo satellite observations against some pseudo point measurements. The pseudo
satellite observations are created by upscaling the C5 truth (Z) to 30x30 grid footprint considering
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S = # Jm m, meaning that the satellite is observing the truth but in a different scale (Figure S1).

The pseudo point measurements are the ones used for CS5opt. Figure 8a shows the direct
comparison of the satellite pixel with the point observations. By ignoring the fundamental fact that
these two datasets are inherently different in nature, displaying the same geophysical quantity by
at different scales, we observe a perceived discrepancy (7°=0.64). The comparison suggests a
wrong conclusion that the satellite observations are biased-low. This discrepancy is unrelated to
any observational or physical errors, rendering any physical interpretation of the comparison
biased due to spatial-scale differences in the data sets. Figure 8b depicts the comparison of each
grid box of the upscaled kriging estimate (30x30) with that of the satellite. This direct comparison
shows a strong degree of agreement (7=0.98), shaking off the erroneous idea of directly comparing
point to gridded data when the field exhibits substantial spatial heterogeneity.

Yet, the comparison misses an important point: the kriging estimate is considered error-
free. We attempt to incorporate the kriging variance through a Monte Carlo linear regression
method. Here, the goal is to find an optimal linear fit (y = ax + b + €) such that y? =
y = fGuab)? y—f(xia.b)]?

o3+a?o? is minimized. o and oy are the variances of y (here the satellite) and x (the kriging
Varlance), respectively. We set the errors of y to zero, and randomly perturb the errors of x based
on a normal distribution with zero mean and a standard deviation equal to that of kriging estimate
15,000 times. The average of optimized a and b coefficients derived from each fit are then
estimated and their deviation at 95% confidence interval assuming a Gaussian distribution is
determined. Figure 8b,c show the linear fit with and without considering the kriging error estimate.
The linear fit without involving the kriging error gives a strong impression that it is nearly perfect,
following closely to the paired observations. This is essentially explainable by the primary goal of
x? which is to minimize the L2 norm of residuals (y — f(x;, a, b)), portraying a very optimistic
picture of the satellite validation. The linear fit considering the kriging errors is different. The
uncertainties associated with a and b are larger since x is variable (shown in horizontal error bars).
The optimal fit gravitates towards the points with smaller standard deviations as they impose a
larger weight. The confidence in the linear fit at higher values is lower due to their errors being
large. This fit is a more realistic portrayal of the satellite validation.

Figure 9 summarizes the general roadmap for satellite (and model) validations against point
measurements. To fit the semivariogram with at least two parameters, we are required to have
three samples at minimum. Therefore, it is implausible to derive the spatial information from the
point data where sampling is extremely sparse (<3 samples within the field). The only case of
directly comparing point and satellite pixels is when the field within satellite footprint or the field
in general is rather homogeneous confirmed by independent data/models. Having more samples
allows to acquire some information on the spatial heterogeneity. The information carried by the
data is considered more and more robust with increasing the number of samples. Subsequently,
the kriging map along with its variance derived from a reasonable semivariogram at an optimized
grid resolution should be convolved with the satellite response function so that we can conduct an
apples-to-apples comparison. A real-world example on the satellite validation will be shown later.
4. Real-world experiments
4.1. Spatial distribution of NO:

We begin with focusing on tropospheric NO> columns observed by TROPOMI sensor
[Copernicus Sentinel data processed by ESA and Koninklijk Nederlands Meteorologisch Instituut
(KNMI), 2019; Boersma et al., 2018] at ~13:30 LST. We choose NO; primarily due to its spatial
heterogeneity [e.g., Souri et al., 2018; Nowlan et al., 2016, 2018; Valin et al., 2011; Judd et al.,
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2020]. We oversample good quality pixels (qa_flag>0.75) through a physical-based gridding
approach [Sun et al., 2018] over Texas at 3x3 km? resolution in four seasons in 2019. We extract
samples by uniformly selecting the NO: columns in the center of each 30x30 km? block. The
semivariogram along with its model are calculated, and then we krige the samples. Figure 10 shows
the NO2 columns map for four different seasons, the semivariogram, the kriging estimates, and the
differences between the estimate and the field. High levels of NO; are confined to cities indicating
the sources being predominantly anthropogenic. Wintertime NO> columns are larger than
summertime mainly due to meteorological conditions and the OH cycle, the major sink of NO».
All semivariograms exhibit the hole effect. This is because of high values of NO: being
systematically surrounded by low values. Regardless of the season, we fit the stable Gaussian to
variances at distances smaller than 2.5° (~275 km?). The by parameter explaining the length scale
is found to be 0.94, 0.88, 0.71, and 0.83 degree for DJF, MAM, JJA, and SON, respectively. These
numbers strongly coincide with the seasonal lifetime of NO; [Shah et al., 2020]; wintertime NO»
columns are spatially more uniform around the sources thus in relative sense, they are more
homogeneous (spatially correlated) than those in warmer seasons. On the other hand, the shorter
NOx lifetime in summer results in a steeper gradient of NO> concentrations. This tendency should
not be generalized because transport and various NOx sources including biomass burning, soil
emissions, and lightning and can have large spatiotemporal variability resulting in different length
scales in different times of a year. The differences between the kriging estimate and the field show
some spatial structures indicating that NO; is greatly heterogenous.

4.2. Optimized tessellation over Houston

The preceding TROPOMI data enabled us to optimize a tessellation of ground-based point
spectrometers over Houston. Our goal here is to propose an optimized network for winter 2021
given our knowledge on the spatial distribution of NO, columns in winter 2019 measured by
TROPOMI. The assumption of using a retrospective NO field for informing a hypothetical future
campaign is not entirely unrealistic. If we have a consistent number of pixels from TROPOMI
between two years, it is unlikely for the spatial variance of NO; to be substantially different for
the same season. We follow the framework proposed in Sect. 2.2.3 involving randomly selecting
samples from the field (for 50000 iteration), and calculating kriging estimates for a given number
of spectrometers. We then chose the optimum tessellation based on the minimum sum of | Z(x,) —
Z(x)]|.

Figure 11 shows the optimized tessellation given 5, 10, 15, and 20 spectrometers over
Houston. The Houston plume is better represented with more samples being used. All cases share
the same feature; the optimized samples are clustered in the proximity or within the plume. This
tendency is clearly intuitive. We are required to place the spectrometers in locations where a
substantial gradient (variance) in the field is expected. The difference between kriging estimate
and the TROPOMI observations using 20 samples does not substantially differ in comparison to
the one using 15 samples. Therefore, to keep the cost low, a preferable strategy is to keep the
number of spectrometers as low as possible while achieving a reasonable accuracy. Based on the
presented results, the optimized tessellation using 15 samples is preferred among others because it
achieves roughly the same accuracy as the one with 20 samples.

4.3. Validating OMI tropospheric NO; columns during DISCOVER-AQ 2013 campaign using
Pandora

In order to understand ozone pollution [e.g., Mazzuca et al., 2016; Pan et al., 2017; Pan et
al., 2015], characterize anthropogenic emissions [Souri et al., 2016, 2018], and validate satellite
data [Choi et al., 2020], an intensive air quality campaign was made in September 2013 over
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Houston (DISCOVER-AQ). The campaign encompassed a large suite of Pandora spectrometer
instrument (PSI) (11 stations) measuring total NO> columns with a high precision (2.7x10
molecules cm2) and a moderate nominal accuracy (2.7x10'> molecules cm™?) under the clear-sky
condition [Herman et al., 2009]. We remove the observations with an error of >0.05 DU,
contaminated by clouds, and averaged them over the month of September at 13:30 LST (+ 30
mins). We attempt to validate OMI tropospheric NO2 columns version 3.0 [Bucsela et al., 2013]

refined in Souri et al. [2016] with the 4-km model profiles. The OMI sensor resolution varies from
13x34 km? at nadir to ~40x160 km? at the edge of the scan line. Biased pixels were removed based
on cloud fraction > 0.2, terrain reflectivity > 0.3, and main (xtrack) quality flags =0. Following
Sun et al. [2018], we oversample high quality pixels in the month of September 2013 over Houston
at 0.2x0.2° resolution. To remove the stratospheric contributions from PSI measurements, we
subtract OMI stratospheric NO; (2.8+0.16 x10'> molecules cm?) from the total columns over the
area. Figure 12 shows the monthly-averaged tropospheric NO; columns measured by OMI
overplotted by 11 PSIs. The elevated NO; levels (up to ~6x10'> molecules cm™2) are seen over the
center of Houston.

We then follow the validation framework shown in Figure 9 in which the number of point
measurements and the level of heterogeneity are the main factors in deciding if we should directly
compare them to the satellite pixels. Figure 13 shows the monthly-averaged PSI measurements
along with the semivariogram and resulting kriging estimate at an optimized resolution (~2 km? =
13800 data over the entire region) and errors. The distribution of semivariogram suggests that there
is a strong degree of spatial heterogeneity, necessitating the use of kriging. We fit a stable Gaussian

to the semivariogram resultingin2.23 X (1 —e _(%)1'5). The spatial information (variance) levels
off at 0.19° (~21 km) with a maximum variance equal to 2.23 molecules? cm*. The measurements
beyond this range (21 km) have a minimal weight due to this length scale. It is because of this
reason that we see the kriging estimate converges to a fixed value at places being further than this
range. The kriging errors of those grid boxes are constantly large (40% relative error). The
optimum grid size for kriging is found to be 2 km? (<1% difference across all grid boxes).
Subsequently, we use the super Gaussian spatial response function described in Sun et al. [2018]
to convolve both the kriging estimate and error within (see Figure S2). Figure 14 shows the
differences between the kriging estimate and error before and after convolution. The response
function (OMI pixel) tends to be on average coarser than 2 km? resulting in smoothing of both the
kriging estimate and error.

We ultimately conduct two different sets of comparison: directly comparing PSI to OMI
pixels, and comparing convolved kriged PSI to OMI. It is worth noting that PSI measurements are
monthly-averaged; similarly OMI data are oversampled in a monthly basis. In terms of the PSI,
we only account for grid boxes whose kriging error is below 1.2x10'> molecules cm™2 (1193
samples, 8% of total kriging grid boxes). As for the grid-to-grid comparison, the kriging variance
is considered in the linear polynomial fitted to the data through the Monte Carlo of chi-square with
5,000 iterations. The variability with the OMI stratospheric NO, columns (0.16 x10'> molecules
cm2) is added to the PSI error for both analyses. The left and right panels of Figure 15 show the
comparisons. As for the direct comparison of actual points (PSI) to pixels (OMI), the PSI
measurements indicate a deviation of the slope (r>=0.66) from the unity line. This suggests that
there is an unresolved magnitude-dependent systematic error. The grid-to-grid comparison not
only offers a clearer picture of the distribution of data points, but also it hints at the offset being
rather constant (0.66:+0.18x10'> molecules cm2; r>=0.72). We also observe that the statistics
between the satellite and the benchmark are moderately improved. This comparison in general
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provides an important implication: the varying offsets in a plume shape environment (high to low
values) are not necessarily due to variable offsets in the satellite retrieval, as the kriging estimate
suggests that those varying offsets in point-to-pixel comparison, manifested in slope = 0.76, are a
result of varying spatial scales.

Summary

There needs to be increased attention to the spatial representativity in the validation of
satellite (model) against pointwise measurements. A point is the element of space, whereas satellite
(model) pixels (grid box) are (at best) the product of the integration of infinitesimal points and a
normalized spatial response function. If the spatial response function is assumed to be an ideal
box, the resulting grid box will represent the average. Essentially, no justifiable theory exists to
accept that the averaged value of a population should absolutely match with a sample, unless all
samples are identical (i.e., a spatially homogeneous field). This glaring fact is often overlooked in
the atmospheric science community. At a conceptual level, we are required to translate pointwise
data to the grid format (i.e., rasterization). This can be done by modeling the spatial autocorrelation
(or semivariogram) extracted from the spatial variance (information) among measured sample
points. Assuming that the underlying field is a random function with an unknown mean, the best
linear unbiased predictions of the field can be achieved by kriging using the modeled
semivariograms.

In this study, we discussed methods for the kriging estimation of several idealized cases.
Several key tendencies were observed through this experiment: first, the range corresponded to the
degree of spatial heterogeneity; a larger range indicated the less presence of heterogeneity. Second,
the kriging variance explaining the density of information quickly diverged from zero to large
values when the field exhibited large spatial heterogeneity. This tendency mandates increasing the
number of samples (observations) for those cases. Third, while the semivariogram models were
constructed from discrete pair of samples, they are mathematically in a continuous form. It is
because of this reason that we determined the optimal spatial resolution of the kriging estimate by
incrementally making the grids finer and finer until a desired precision (=1%) was met.

The present study applied kriging to achieve an optimum tessellation given a certain
number of samples such that the difference between our prior knowledge of the field, articulated
by previous observations, models or theory, and the estimation is minimal. Usually there is
uncertainty about the prior knowledge that should be propagated to the final estimates. The
optimum tessellation for a range of idealized and real-world data consistently voted for placing
more samples in areas where the gradients in the measurements were significant such as those
close to point emitters.

This study also revisited the spatial representativity issue; it limits the realistic
determination of biases associated with satellites (models). In one experiment, we convolved the
kriging estimate for a multi-plume field with a box filter but various sizes. The perfect agreement
(=1.0) between the samples (point) and kriging output (pixel) seen at a high spatial resolution
gradually vanished with coarsening of the resolution of grid boxes (»=0.8). We also directly
compared samples (point) with pseudo satellite observations (showing the truth) with a coarse
spatial resolution which led to a flawed conclusion about the satellite being biased-low. We
modeled the semivariogram of those samples, estimated the field using kriging, and convolved
with the pseudo-satellite spatial response function. The direct comparison of this output with that
of the satellite showed a completely different story suggesting that the data were rather free of any
bias. A serious caveat with using a spatial model (here kriging) is that it consists of errors: the
estimations being further from samples are less certain. It is widely known that discounting the
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measurement/model errors in true straight-line relationship between data can introduce artifacts.
To consider the kriging variance in the comparisons we employed a Monte Carlo method on chi-
square optimization which ultimately allowed us to not only provide a set of solutions within the
range of the uncertainty of the kriging model, but also to assign smaller weights on gross estimates.

We further validated monthly-averaged Ozone Monitoring Instrument (OMI) tropospheric
NO:> columns using 11 Pandora Spectrometer Instrument (PSI) observations over Houston during
NASA’s DISCOVER-AQ campaign. A pixel-to-point comparison between two dataset suggested
varying biases in OMI manifested in a slope far from the identity line. By contrast, the kriging
estimate from the PSI measurements, convolved with the OMI spatial response function, resulted
in an inter-comparison slope close to the unity line. This suggested that there was only a constant
systematic bias (0.66+0.18x10'> molecules cm?) associated with the OMI observations which
does not vary with tropospheric NO; column magnitudes.

The central tenants of satellite and model validation are pointwise measurements. Our
experiments paved the way for a clear roadmap explaining how to transform these pointwise
datasets to a comparable spatial scale relative to satellite (model) footprints. It is no longer
necessary to ignore the problem of scale. The validation against point measurements can be
carefully conducted in the following steps:

1. Construct the experimental semivariogram if the number of point measurements
allows (usually >= 3 within the field; the field can vary depending on the length
scale of the compound).

ii. Drop the quantitative assessment if the number of point measurements are
insufficient to gain spatial variance and the prior knowledge suggests a high
likelihood of spatial heterogeneity within the field.

iii. Choose an appropriate function to model the semivariogram.

iv. Estimate the field with kriging (or any other spatial estimator capable of digesting
the semivariogram) and calculate the variance.

V. Estimate the optimum grid resolution of the estimate.

vi. Convolve the kriging estimate and its variance with the satellite (model) spatial
response function (which is sensor specific).

vii.  Conduct the direct comparison of the convolved kriged output and the satellite
(model) considering their errors through a Monte Carlo (or a weighted least-squares
method).

Recent advances in satellite trace gas retrievals and atmospheric models have helped
extend our understanding of atmospheric chemistry but an important task before us in improving
our knowledge on atmospheric composition is to embrace the semivariogram (or spatial auto-
correlation) notion when it comes to validating satellites/models using pointwise measurements,
so that we can have more robust quantitative applications of the data and models.
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Figure 1. (first column) Five theoretical fields randomly sampled with 200 points (dots), namely,
a constant field (C1), a ramp starting from zero in the lower left to higher values in the upper right
(C2), an intersection with concentrated values in four corridors (C3), a Gaussian plume placed in
the center (C4), and multiple Gaussian plumes spread over the entire domain (C5). (second column)
the corresponding isotropic semivariograms computed based on Eq.2; the red line shows the stable
Gaussian fitted to the semivariogram based on Levenberg-Marquardt method. (third column) The
kriging estimate at the same resolution of the truth (i.e., 1x1) based on Eq.6. (fourth column) The
difference between the estimate and the truth. (fifth column) the kriging standard error based on
Eq.11.
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Figure 2. (first column) The multi-plume case (C5) randomly sampled with different number of
samples (5, 25, 50, 100, and 500), (second column) the corresponding isotropic semivariogram,

(third column) the kriging estimate, (fourth column) the difference between the estimate and the
truth, and (fifth column) the kriging standard error.
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807 Figure 3. The multi-plume case (C5) randomly sampled by four different sampling strategies

808 using a constant number of samples (25). The sampling strategies include purely random (first
809 row), stratified random (second row), uniform grids (third row), and an optimized tessellation

810 proposed based on kriging (fourth row). Columns represent the truth, the isotropic semivariogram,
811 the kriging estimate, the difference between the estimate and the truth, and the kriging standard
812 error.
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815 Figure 4. A schematic illustrating a framework for optimum sampling (tessellation) strategy. The
816 prior knowledge refers to any data being able of describing our quantity of interest including site-
817 visits, theoretical models, satellite observations, emissions, and etc.
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822 Figure 5. Finding an optimum grid size for kriging. (a) The kriging estimates of the ramp (C2) at
823 different grid resolutions ranging from 25x25 pixel to 0.2x0.2. (b) The kriging estimates of the
824 multi-plume (C5) with optimized samples shown in Figure 3 for different grid resolutions. C2 is
825 more homogeneous than C5, as a result, it is less sensitive to the resolution of the kriging

826 estimate. The optimum grid resolution for C2 is 10x10, whereas it is 1x1 for C5. These numbers
827 are based on observing negligible difference (<1%) between the kriging estimate at the optimum
828 resolution and the one computed at a finer resolution step. We call the optimum output for C5 as
829 CSopt.
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834  Figure 6. (first row) C50pt outputs convolved with an ideal box kernel with different sizes (1x1
835  up to 30x30) overlaid by the C50pt optimum samples. (second row) the associated kriging errors
836  convolved with the same kernel. The coarser the resolution is, the larger the discrepancy between
837  the samples and the estimates is.
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Figure 7. Illustrating the problem of spatial scale: comparisons of the kriging estimates at seven
different spatial scales with the samples used for the C5opt estimation. The perceived
discrepancies are purely due to the spatial representativeness.

25x25 200 30x30
r=0.888 r=0.854
150
. ° 100 L .
® o
o, 501 4@ *%
g‘ o
L
Or
100 200 0 100



847

Satellite

848
849
a) | b | S .
25)dsregardm'g Spatlall Represqntatlveness 5 (%onsmermg Spatlal.Represeptatlveness 200 Consudgrmg the'kn‘gﬂg variance
r = 0.801 Ry r = 0.991 /A Fit
MB = 8.134 , MB = 0.891 ’ - -95% confidence level
MAB = 19.400 R4 MAB = 3.835 Al 7 pa
RMSE = 40.668 , RMSE = 3.562 , ,’ ,
190 22_6 64 ,,’ 1 99T R2=0.08 al 1 1997 re=0.07 / , /7
4 v ,/——r—
4 v 7
’ 7 / ’
4 7 / 4
100} ’ 1 100} s 1 100} ’ P
4 4 / L
Vi 4 ’ 7’
’ / / s .
Vs 7/ 4 7 s
[} 7 7 1—F——
’ / VAP ’
S0t A 1 S0t o 1 SO =S
,' ,, < g
>4 . ] = —
0 z Y=09"X+-0.2 0 ‘e Y=11*X+-29 0#(1.410.6)*X+(—10.9¢19.2)
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Point Observations Grid Observations Grid Observations
851

852 Figure 8. (a) the direct comparison of pseudo observations of a satellite observing the C5 case at
853 30x%30 resolution versus the 25 samples used for C5opt. (b) same for y-axis, but the point samples
854 are transformed to grid boxes using kriging convolved with the satellite spatial response function
855 (ideal box with 30%30 kernel size). The differences in statistics between these two experiments
856 speak to the problem of scale. (b) ignores the kriging errors but (c) incorporates them using a

857 Monte Carlo method. Note that the best linear fit has changed indicating that the consideration of
858 the kriging variance is critical. MB = mean bias (point minus satellite), MAB = mean absolute
859 bias, RMSE = root mean square error, R? = coefficient of determination.
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Figure 10. (first column) The spatial distribution of TROPOMI tropospheric NO2 columns
oversampled in four different seasons at 3x3 km? spatial resolution. (second column) The
corresponding semivariogram from samples selected from uniform 30x30 km? blocks (shown
with black dots in the first column) along the fitted stable Gaussian model (red line). (third
column) the kriging estimates, and (fourth column) their differences with respect to the
observations.
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876  Figure 11. Finding an optimum sample tessellation for wintertime over Houston given different

877  number of spectrometers (5, 10, 15, and 20).
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Figure 12. The spatial distribution of OMI tropospheric NO> columns oversampled at the resolution
at 0.2x0.2° over Houston in September 2013. The plot is overlaid by surface Pandora spectrometer
instrument averaged over the same month. The surface measurements originally measured the total
columns, therefore we subtract the stratospheric columns provided by the OMI data (2.84+0.16 x10'?
molecules cm™2) from the total columns to focus on the tropospheric part.
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Figure 13. The Pandora tropospheric NO> measurements (made from subtracting the total columns
from the OMI stratospheric NO; columns) during September 2013, the corresponding
semivariogram, the kriging estimates, and the kriging standard errors. Note that the semivariogram
suggests a large degree of spatial heterogeneity occurring at different spatial scales.
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897 Figure 14. Convolving both kriging estimates and errors with the OMI spatial response function

898 formulated in Sun et al. [2018]. The differences against the pre-convolved fields are also depicted.
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901
902 Figure 15. (left): the direct comparison of OMI tropospheric NO> columns with 11 pointwise
903 Pandora measurements in September 2013 over Houston. (right) same for y-axis, but the PSI
904 measurements are translated to grid boxes using kriging convolved with the OMI spatial response
905 function. PSI tropospheric NO2 columns are estimated based on subtracting the OMI stratospheric
906 NO; columns (2.8+0.16 x10'*> molecules cm2) from the total columns. We only consider kriging
907 estimates whose errors are below 1.2x10'> molecules cm™2. The kriging variance is also considered
908 using the Monte Carlo method applied on y?. The slope has improved after considering the
909 modeled spatial representativeness. MB = mean bias (OMI vs Pandora), MAB = mean absolute
910 bias, RMSE =root mean square error.
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