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Abstract 14 
Most studies on validation of satellite trace gas retrievals or atmospheric chemical transport models 15 
assume that pointwise measurements, which roughly represent the element of space, should 16 
compare well with satellite (model) pixels (grid box). This assumption implies that the field of 17 
interest must possess a high degree of spatial homogeneity within the pixels (grid box), which may 18 
not hold true for species with short atmospheric lifetimes or in the proximity of plumes. Results of 19 
this assumption often lead to a perception of a nonphysical discrepancy between data, resulting 20 
from different spatial scales, potentially making the comparisons prone to overinterpretation. 21 
Semivariogram is a mathematical expression of spatial variability in discrete data. Modeling the 22 
semivariogram behavior permits carrying out spatial optimal linear prediction of a random process 23 
field using kriging. Kriging can extract the spatial information (variance) pertaining to a specific 24 
scale, which in turn translating pointwise data to a gridded space with quantified uncertainty such 25 
that a grid-to-grid comparison can be made. Here, using both theoretical and real-world 26 
experiments, we demonstrate that this classical geostatistical approach can be well adapted to 27 
solving problems in evaluating model-predicted or satellite-derived atmospheric trace gases. This 28 
study suggests that satellite validation procedures using the present method must take kriging 29 
variance and satellite spatial response functions into account. We present the comparison of Ozone 30 
Monitoring Instrument (OMI) tropospheric NO2 columns against 11 Pandora Spectrometer 31 
Instrument (PSI) systems during the DISCOVER-AQ campaign over Houston. The least-squares 32 
fit to the paired data shows a low slope (OMI=0.76×PSI+1.18×1015 molecules cm−2, r2=0.67) 33 
which is indicative of varying biases in OMI. This perceived slope, induced by the problem of 34 
spatial scale, disappears in the comparison of the convolved kriged PSI and OMI 35 
(0.96×PSI+0.66×1015 molecules cm−2, r2=0.72) illustrating that OMI possibly has a constant 36 
systematic bias over the area. To avoid gross errors in comparisons made between gridded data 37 
versus pointwise measurements, we argue that the concept of semivariogram (or spatial auto-38 
correlation) should be taken into consideration, particularly if the field exhibits a strong degree of 39 
spatial heterogeneity at the scale of satellite and/or model footprints. 40 
  41 
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1. Introduction 42 
Most of the literature on validation of satellite trace gas retrievals or atmospheric chemical 43 

transport models assume that geophysical quantities within a satellite pixel or a model grid box 44 
are spatially homogeneous. Nevertheless, it has long been recognized that this assumption can 45 
often be violated; spatially coarse atmospheric models or satellites are often not able to represent 46 
features, nor physical processes, transpiring at fine spatial scales. Janjic et al. [2016] used the term 47 
of representation error to describe this complication. They posit that this problem is a result of 48 
two combined factors: unresolved spatial scales and physiochemical processes. To elaborate on 49 
this definition, let us assume that an atmospheric model simulating CO2 concentrations can 50 
represent the exact physiochemical processes but is fed with a constant CO2 emission rate. This 51 
model obviously cannot resolve the spatial distribution of CO2 concentration because we use an 52 
unresolved emission input. As another example, if we know the exact rates of CO2 emissions but 53 
use a model unable to resolve atmospheric dynamics, the spatial distribution of CO2 concentrations 54 
will be unrealistic due to unresolved physical processes. 55 

Numerous scientific studies have reported on this matter. The simulations of short lifetime 56 
atmospheric compounds such as nitrogen dioxide (NO2), isoprene, formaldehyde (HCHO), and 57 
the hydroxyl radical (OH) have been found to be strongly sensitive to the model spatial resolution 58 
[Vinken et al., 2011; Valin et al., 2011; Yu et al., 2016; Pan et al., 2017]. Likewise, the performance 59 
of weather forecast models in resolving non-hydrostatic components heavily relies on both model 60 
resolution and parametrizations used. For example, when Kendon et al. [2014], Souri et al. 61 
[2020a], and Wang et al. [2017] defined a higher spatial resolution in conjunction with more 62 
elaborate model physics, they were able to more realistically simulate extreme or local weather 63 
phenomena such as convection and sea-land breeze circulation.  64 

The spatial representation issue is not only limited to models. Satellite trace gas retrievals 65 
optimize the concentration of trace gases and/or atmospheric states to best match the observed 66 
radiance using an optimizer along with an atmospheric radiative transfer model. This procedure 67 
requires various inputs such as surface albedo, cloud and aerosol optical properties, and trace gas 68 
profiles, all of which come with different scales and representation errors. Moreover, the radiative 69 
transfer model by itself has different layers of complexity with regards to physics. A myriad of 70 
studies have reported that satellite-derived retrievals underrepresent spatial variability whenever 71 
the prognostic inputs used in the retrieval are spatially unresolved [e.g., Russell et al., 2011; 72 
Laughner et al., 2018; Souri et al., 2016; Goldberg et al., 2019; Zhao et al., 2020]. Additionally, 73 
the large footprint of some sensors relative to the scale of spatial variability of species inevitably 74 
leads to some degree of the representativity issues [e.g., Souri et al., 2020b, Tang et al., 2021; Judd 75 
et al., 2020]. It is because of this reason that several validation studies resorted to downscaling 76 
their relatively coarse satellite observations using high-resolution chemical transport models so 77 
that they could compare them to spatially finer datasets such as in-situ measurements [Kim et al., 78 
2018; Choi et al., 2020]. Nonetheless, their results largely arise from modeling experiments which 79 
might be biased. 80 

The validation of satellites or atmospheric models is widely done against pointwise 81 
measurements. Mathematically, a point is an element of space. Hence, it is not meaningful to 82 
associate a point with a spatial scale. If one compares a grid box to a point sample (i.e., apples to 83 
oranges), they are assuming that the point is the representative of the grid box. At this point, the 84 
fundamental question is: can the average of the spatial distribution of the underlying compound be 85 
represented by a single value measured at a subgrid location? This question was answered in 86 
Matheron [1963]. He advocated the notion of the semivariogram, a mathematical description of 87 
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the spatial variability, which finally led to the invention of kriging, the best unbiased linear 88 
estimator of a random field. A kriging model can estimate a geophysical quantity in a common 89 
grid. This is not exclusively special; a simple interpolation method such as the nearest neighbor 90 
has the same purpose. The power of kriging lies in the fact that it takes the data-driven spatial 91 
variability information into account and informs an error associated with the interpolated map. 92 
This strength not only makes kriging a relatively superior model over simplified interpolation 93 
methods, but also reflects the level of confidence pertaining to spatial heterogeneity dictated by 94 
both data and the semivariogram model used through its variance [Chilès and Delfiner, 2009]. 95 

Different studies leveraged this classical geostatistical method to map the concentrations 96 
of different atmospheric compounds at very high spatial resolutions [Tadíc et al., 2017; Li et al., 97 
2019; Zhan et al., 2018; Wu et al., 2018]; To the best of our knowledge, Swall and Foley [2009] 98 
is the only study that used kriging for a chemical transport model validation with respect to surface 99 
ozone. They suggested that kriging estimation should be executed in grids rather than discrete 100 
points. Kriging uses a semivariogram model in a continuous form. Optimizing the kriging grid size 101 
(i.e., domain discretization) at which the estimation is performed is an essence to fully obtaining 102 
the maximum spatial information from data. Another important caveat with Swall and Foley 103 
[2009] is that averaging discrete estimates (points) to build grids is not applicable for remote 104 
sensing data. Depending on the optics and the geometry, the spatial response function can 105 
transform from an ideal box (simple average) to a sophisticated shape such as a super Gaussian 106 
function (weighted average) [Sun et al., 2018]. Moreover, the footprint of satellites is not spatially 107 
constant. We will address these complications in this study using both theoretical and real-world 108 
experiments. 109 

Our paper is organized with the following sections. Sections 2 is a thorough review of the 110 
concept of the semivariogram and kriging. We then provide different theoretical cases, their 111 
uncertainty, sensitivities with respect to difference tessellation, grid size, and the number of 112 
samples. Section 3 proposes a framework for satellite (model) validation using sparse point 113 
measurements and elaborates on the representation error using idealized experiments. Sections 4 114 
introduces several real-world experiments. 115 
2. Semivariogram and Ordinary Kriging Estimator 116 
2.1. Definition 117 

The semivariogram is a mathematical representation of the degree of spatial variability (or 118 
similarity) in a function describing a regionalized geophysical quantity (f), which is defined as 119 
[Matheron, 1963]: 120 

𝛾(ℎ) = 	
1
2𝑉

* [𝑓(𝑥 + 𝒉) − 𝑓(𝑥)]2
3

𝑑𝑉 (1) 

where x is a location in the geometric fields of V, f(x) is the value of a quantity at the location of x, 121 
and h is the vector of distance. If discrete samples are available rather than the continuous field, 122 
the general formula can be simplified to the experimental semivariogram defined as: 123 

𝛾(𝒉) = 	
1

2𝑁(𝒉) 6 [𝑍(𝑥8) − 𝑍(𝑥9)]2

:;<=;>:=|𝒉|@A

 (2) 

where 𝑍(𝑥8) (and 𝑍B𝑥9C) is discrete observations (or samples), N(h) is the number of paired 124 
observations separated by the vector of h. |.| operator indicates the length of a vector. The condition 125 
of :𝑥8 − 𝑥9: − |𝒉| ≤ 𝜀 is to allow certain tolerance for differences in the length of the vector. For 126 
simplicity, we only focus on an isotropic case meaning we rule out the directional (or angular) 127 
dependency in 𝛾(𝒉). Under this condition, the vector of h becomes scalar (h = |h|). 128 
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If a reasonable number of samples is present, one can describe 𝛾(ℎ) through a regression 129 
model (e.g., Gaussian or spherical shapes). The degree of freedom for this regression is: 130 
𝑑𝑜𝑓 = 𝑁 − 𝑝 (3) 

where p is the number of parameters defined in the model. For instance, to fit a Gaussian function 131 
to the semivariogram with three parameters (p=3), three paired (N=3) observations are required at 132 
minimum. Different regression models can be used to describe 𝛾(ℎ) depending on the 133 
characteristic of the quantity of interest. In this study, we will use a stable Gaussian function: 134 

𝛾(ℎ) = 	𝑎(1 − 𝑒=(
J
K)
LM): c0=1.5 (4) 

where a and b are fitting parameters. A non-linear least-squares algorithm based on Levenberg-135 
Marquardt method will be used to estimate the fitting parameters. 136 

The kriging estimator predicts a value of interest over a defined domain using a 137 
semivariogram model derived from samples [Chilès and Delfiner, 2009]. The kriging model is 138 
defined as [Matheron, 1963]: 139 
𝑍(𝑥) = 𝑌(𝑥) +𝑚(𝑥) (5) 

where 𝑌(𝑥) is a zero-mean random function, and 𝑚(𝑥) is a systematic drift. If we assume 140 
𝑚(𝑥) = 𝑎P, the model is called ordinary kriging. Similar to an interpolation problem, the 141 
estimation point (𝑍Q), is determined by linearly combining n number of samples with their weights 142 
(𝜆9): 143 

𝑍Q =6𝜆9

S

9TU

𝑍(𝑥9) + 𝜆P (6) 

where 𝑍Q is the estimation, 𝜆V is a constant weight, xj is the location of samples, , and 𝑍(𝑥9) is point 144 
data (i.e., samples). The mean squared error of this estimation can be written as 145 

𝐸(𝑍Q − 𝑍P)2 = Var	B𝑍Q − 𝑍PC +	[𝜆P + (6𝜆9

S

9TU

− 1)𝑎P\

2

 (7) 

Where 𝑍P is point observations (𝑍V = 𝑍(𝑥9)	, 𝑗 = 1,2,… , 𝑛), and 𝑎P is the mean of Z which is 146 
unknown. In order to estimate the weights, we are required to minimize Eq.7, but this cannot be 147 
done without knowing the exact value of 𝑎P. A solution is to assume 𝜆P = 0 and impose the 148 
following condition: 149 

6𝜆9

S

9TU

= 1 (8) 

This condition warrants 𝐸(𝑍Q − 𝑍P)  be zero and removes the need for the knowledge of 𝑎P. 150 
Therefore Eq.7 can be written as 151 

𝐸(𝑍Q − 𝑍P)2 = Var	B𝑍Q − 𝑍PC = 6 6 𝜆9U𝜆92𝛾9U92 − 2 6 𝜆9U𝛾9UP + 𝛾PP

S

9UTU

S

92TU

S

9UTU

 (9) 

where 𝛾9U92 is the spatial covariance between the point observations and 𝛾9UP is the spatial 152 
covariance of between the observations and the estimation point. The spatial covariance is modeled 153 
by a semivariogram. Using the method of Lagrange multiplier and considering the constraint on 154 
the weights, Eq.9 can be minimized by solving the following problem [Chilès and Delfiner, 2009]: 155 
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b

𝜆U
⋮
𝜆S
𝜇
e = f

𝛾(𝑥U − 𝑥U)
⋮

𝛾(𝑥S − 𝑥U)
1

⋯
⋱⋯
⋯

𝛾(𝑥U − 𝑥S)
⋮

𝛾(𝑥S − 𝑥S)
1

1
⋮
1
0

i

=U

f
𝛾(𝑥U − 𝑥P)

⋮
𝛾(𝑥S − 𝑥P)

1

i (10) 

where 𝜇 is the Lagrange parameter and 𝑥P is the location of estimation. The first term in the right 156 
hand side of this equation shows the spatial variability described by the semivariogram model 157 
among samples, whereas the second term indicates the modeled variability between samples and 158 
the estimation point. The unknowns (the left hand side of the equation) have a unique solution if, 159 
and only if, the semivariogram model is positive definite and the samples are unique [Chilès and 160 
Delfiner, 2009]. The estimation error can be obtained by 161 

𝜎2 = 𝐸(𝑍Q − 𝑍P)2 =6𝜆9

S

9TU

𝛾9P − 𝜇 (11) 

This equation is an important component in the kriging estimator. Not only can we estimate 𝑍(𝑥) 162 
given a selection of data points, but also an uncertainty associated with such estimation can be 163 
provided.  164 
2.2. Theoretical Cases 165 
2.2.1. Sensitivity to spatial variability of the field 166 

The present section illustrates the application of ordinary kriging for several numerical 167 
cases. Five idealized cases are simulated in a grid of 100×100 pixels, namely, a constant field (C1), 168 
a ramp starting from zero in the lower left to higher values in the upper right (C2), an intersection 169 
with concentrated values in four corridors (C3), a Gaussian plume placed in the center (C4), and 170 
multiple Gaussian plumes spread over the entire domain (C5). We randomly sample 200 data 171 
points from each field as is, and successively create the semivariograms in 100 binned distances. 172 
Except C1, which lacks a spatial variability thus 𝛾(ℎ) = 0, other semivariograms are fit with the 173 
stable Gaussian function. Using the semivariogram model, we optimize Eq.10 to estimate 𝑍Q(𝑥) 174 
for each pixel (i.e., 100×100) with the estimation errors based on Eq.11. Figure 1 depicts the truth 175 
field (𝑍(𝑥)), semivariograms made from the samples, estimated values (𝑍Q(𝑥)), difference of 𝑍(𝑥) 176 
and 𝑍Q(𝑥), and error associated with the estimation. 177 

As for C1, the uniformity results in a constant semivariogram leading the estimation to be 178 
identical to the truth. This estimation signifies the unbiased characteristic of ordinary kriging. C1 179 
is never met in reality, however, it is possible to assume some degree of uniformity among data 180 
restrained to background values; a typical example of this can be seen in the spatial distribution of 181 
a number of trace gases in pristine environments such as NO2 [e.g., Wang et al., 2020] and HCHO 182 
[Wolfe et al., 2019]. Under this condition, any data point within the field (i.e., the satellite 183 
footprint) can be assumed to be representative of the spatial variability in truth.  184 

Concerning C2, the semivariogram shows a linear shape meaning data points at larger 185 
distances exhibit larger differences. Generally geophysical samples are uncorrelated at large 186 
distances, thereby one expects the semivarioram to increase more slowly as the distance gets 187 
further. The steady increase in 𝛾(ℎ) is indicative of a systematic drift in the data invalidating the 188 
assumption of 𝑚(𝑥) = 𝑎P. In many applications, a simple polynomial can explain 𝑚(𝑥) and 189 
subsequently be subtracted from the data points. An example of this problem is tackled by Onn 190 
and Zebker [2006]; it concerns the spatial variability of water vapor columns measured by GPS 191 
signals. Onn and Zebker [2006] observed a strong relationship between the water vapor columns 192 
and GPS altitudes resulting from the vertical distribution of water vapor in the atmosphere. 193 
Because of this complication, a physical drift model describing the vertical dependency was fit 194 



 6 

and removed from the measurements so that they could focus on the horizontal fluctuations. In 195 
terms of C2, one can effortlessly reproduce 𝑍(𝑥) by fitting a three-dimensional plane to barely 196 
three samples, indicating that the semivariogram is of little use.  197 

C3 is an example of an extremely inhomogeneous field manifested in the stabilized 198 
semivariogram at a value of 𝛾~500, called the sill [Chilès and Delfiner, 2009], indicating 199 
insignificant information (variance) from the samples beyond this distance (~20), called the range. 200 
Range is defined as the separation distance at which the total variance in data is extracted. The 201 
smaller the range is, the more heterogeneous the samples will be. While the estimated field roughly 202 
captures the shape of the intersections, it is spatially distorted at places with relatively sparse data 203 
points. The kriging model error is essentially a measure of the density of information. It converges 204 
to zero in the samples location and diverges to large values in gaps. 205 

C4 is a close example of a point source emitter with faint winds and turbulence. The 206 
semivariogram exhibits a bell shape. As samples get further from the source, the variance diverges, 207 
stabilizes, and then sharply decreases. This is essentially because many data points with low 208 
values, apart from each other, have negligible differences. This tendency is recognized as the hole 209 
effect which is characterized for high values to be systemically surrounded by low values (and 210 
vice versa). It is possible to mask this effect by fitting a semivariogram model stabilizing at certain 211 
sill (like the one in Figure 1). Nonetheless, if the semivariogram shows periodic holes, the fitted 212 
model should be modified to a periodic cosine model [Pyrcz and Deutsch, 2003]. 213 

The last case, C5, shows a less severe case of the hole effect previously observed in C4. 214 
This is due to the presence of more structured patterns in different parts of the domain. The range 215 
is roughly twice as large as the previous case (C4) denoting that there is more information 216 
(variance) among the samples at larger distances. A number of experiments using this particular 217 
case will be discussed in the following subsections. 218 
2.2.2. Sensitivity to the number of samples 219 

It is often essential to optimize the number of samples used for kriging. The kriging 220 
estimator somewhat recognizes its own capability at capturing the spatial variability through 221 
Eq.11. Thus, if the target is spatially too complex and/or the samples are too limited, the estimator 222 
essentially informs that 𝑍Q(𝑥P) is unreliable through large variance. However, there is a caveat; 223 
𝑌(𝑥) must be a Gaussian random model with a zero mean so that kriging can capture the statistical 224 
distribution of 𝑍Q given the data points. Except this case, the kriging variance can either be 225 
underestimated or overestimated depending on the level of skewness of the statistical distribution 226 
of 𝑌(𝑥) [Armstrong, 1994]. Figure 2 shows the kriging estimation for C5 using 5, 25, 50, 100, and 227 
500 random samples in the entire field. Immediately apparent is a better description of the 228 
semivariogram when larger number of samples are used, which in turn, results in a better 229 
estimation of 𝑍(𝑥). The optimum number of samples to reproduce 𝑍(𝑥) depends on the 230 
requirement for the relative error (𝜎/𝑍(𝑥)) being met at a given location. 231 
2.2.3. Sensitivity to the tessellation of samples 232 

A common application of kriging is to optimize the tessellation of data points for a fixed 233 
number of samples to achieve a desired precision. In real-world practices, the objective of such 234 
optimization is very purpose-specific, for example, one might prefer a spatial model representing 235 
a certain plume in the entire domain. Different ways for data selection exist [e.g., Rennen, 2008], 236 
but for simplicity, we focus on four categories: purely random, stratified random, a uniform grid, 237 
and an optimized tessellation. Figure 3 demonstrates the estimation of C5 using 25 samples chosen 238 
based on those four procedures. 239 
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Concerning the random selection, the lack of samples over two minor plumes cause the 240 
estimation to deviate largely from the truth. While a random selection may seem to be practical 241 
because it is independent of the underlying spatial variability, it can suffer from under sampling 242 
issues, thus being inefficient. As a remedy, it might be advantageous to group the domain into 243 
similar zones and randomly sample from each, which is commonly known as stratified random 244 
selection. We classify the domain into four zones by running the k-mean algorithm on the 245 
magnitudes of Z(x) (not shown) and randomly sample six to seven points from each one (total 25). 246 
We achieve a better agreement between the estimated field and the truth because we exploited 247 
some prior knowledge (here the contrast between low and high values).  248 

As for the uniform grid, we notice that there are fewer data points in the semivariogram 249 
stemming from redundant distances which is indicative of correlated information. Nonetheless, if 250 
the desired tessellation is neutral with regard to location meaning that all parts of the domain is 251 
equal of scientific interest, the uniform grid is the most optimal design for the prediction of 𝑍(𝑥) 252 
under an ideally isotropic case. A mathematical proof for this claim can be found in Chilès and 253 
Delfiner [2009]. 254 

To execute the last experiment, we select 25 random samples for 1000 times and find the 255 
optimal estimation by finding the minimum sum of |𝑍Q(𝑥P) − 𝑍(𝑥)|. It is worth mentioning that 256 
the optimized tessellation is essentially a local minimum based on 1000 kriging attempts. The 257 
optimized location of samples seems to more clustered over areas with large spatial gradients. Not 258 
too surprisingly, we observe the smallest discrepancy between the estimation and the truth.  259 

A lingering concern over the application of these numerical experiments is that the truth is 260 
assumed to be known. The truth is never known, by this means we may never exactly know how 261 
well or poorly the kriging estimator is performing. However, it is highly unlikely for some prior 262 
understandings or expectations of the truth to be absent. If this is the case, which is rare, a uniform 263 
grid should be intuitively preferred to deliver the local estimations of average values in uniform 264 
blocks. In contrast, if the prior knowledge is articulated by previous site visits, model predictions, 265 
theoretical experiments, pseudo-observations, or other relevant data, the tessellation needs to be 266 
optimized.  267 

It is important to recognize that the uncertainties associated with the prior knowledge 268 
directly affects the level of confidence in the final answer. Accordingly, the prior knowledge error 269 
should ultimately be propagated to the kriging variance. The determination of the prior error is 270 
often done pragmatically. For example, if the goal is to design the location of thermometer sites to 271 
capture surface temperature during heat waves using a yearly averaged map of surface 272 
temperature, it would be wise to specify a large error with this specific prior information to play 273 
down the proposed design. This is primarily because the averaged map underrepresents such an 274 
atypical case. A possible extension of this example would be to use a weather forecast model with 275 
quantified errors capable of capturing retrospective heat waves. Although a reasonable forecast in 276 
the past does not necessarily guarantee a reasonable one in the future, it is rational to assume for 277 
the uncertainty with a new tessellation design using the weather model forecast to be lower than 278 
that of using the averaged map.  279 

A general roadmap for the data tessellation design is shown in Figure 4. As proven in Chilès 280 
and Delfiner [2009], if the field is purely isotropic, the uniform grid is the most intuitive sensible 281 
choice when the prior information on the spatial variability is lacking. When the prior knowledge 282 
with quantified errors is available, an optimum tessellation can be achieved by running a large 283 
number of kriging models with suitable 𝛾(ℎ) and picking the one yielding the minimum difference 284 
between the prior knowledge and the estimation. The choice of the cost function (here L1 norm) 285 
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is purpose-specific. For example, if the reconstruction of a major plume was the goal, using a 286 
weighted cost function, geared towards capturing the shape of plume, would be more appropriate. 287 
2.2.4. Sensitivity to the grid size 288 

A kriging model can estimate a geophysical quantity at a desired location considering the 289 
data-driven spatial variability information. Since the kriging model is practically in a continuous 290 
form, the desired locations can be anywhere within the field of V. A question is whether or not it 291 
is necessary to map the data onto a very fine grid. There is a trade-off between the computational 292 
cost and the accuracy of the interpolated map. The range of the underlying semivariogram helps 293 
in finding the optimal solution. The greater the range (i.e., a more homogeneous field), the less 294 
important to map the data in a finer grid.  295 

Figure 5a depicts an experiment comparing the estimates of C2 at different grid sizes with 296 
the truth. The departure of the estimate from the truth is rather negligible for several coarse grids 297 
(e.g., 10×10). The homogeneous field, manifested by the large range (Figure 1), allows for a 298 
reasonable estimation of 𝑍(𝑥) at coarse resolutions with inexpensive computational costs. Figure 299 
5b shows the same experiment but on C5 with the optimized tessellation. As opposed to the 300 
previous experiment, the estimate substantially diverges from the truth when increasing the grid 301 
size, suggesting that a finer resolution should be used for fields with smaller ranges (i.e., 302 
heterogeneous fields).  303 

The complexity of directly using the range for choosing the optimal grid size arises from 304 
the fact that the level of spatial homogeneity can vary within the domain. In fact, the range is 305 
derived from a semivariogram model representing a crude estimate of varying ranges occurring at 306 
various scales. It is intuitively clear that depending on the degree of heterogeneity, which is 307 
spatiotemporally variable, the grid size needs to be adaptively adjusted [Bryan, 1999]. For the sake 308 
of simplicity, but at a higher computational cost, we adopt a numerical solution which is to first 309 
simulate on a coarse grid, then on a finer one until the difference with respect to the previous grid 310 
size across all pixels reaches to an acceptable value (<1%). We name this output (1×1) with the 311 
optimized tessellation for C5 as C5opt. 312 
3. Comparison of points to satellite pixels 313 
3.1. Synching the scales between the gridded field and satellite pixels 314 

To minimize the complications of different spatial scales between two gridded data, we 315 
first need to upscale the finer resolution data to match the coarse ones. In case of numerical 316 
chemical transport or weather forecast models, the size of the grid box is definitive. Likewise, a 317 
satellite footprint, mainly dictated by the sensor design, the geometry, and signal-to-noise 318 
requirements [Platt et al., 2021], is known. However, the grid size of the kriging estimation is a 319 
variable subject to optimization which has been discussed previously.  320 

When we compare the grid size of the kriging estimate to that of a satellite (or a model), 321 
three situations arise: First, the kriging spatial resolution is coarser than the satellite, a condition 322 
occurring when either the field is homogeneous or the field is under sampled. In situations where 323 
the field is homogeneous (𝛾(ℎ) ≅ 0), it is safe to directly compare the data points to the satellite 324 
measurements without having to use kriging. If the under sampling is the case (see Figure 2 with 325 
5 samples), it is sensible to first investigate if the field is homogeneous within the satellite footprint 326 
using different data (if any). If the homogeneity is met, we either can compare two datasets without 327 
kriging or to match the size of kriging grid cell with the satellite footprint and statistically involve 328 
the kriging variance in the comparison (discussed later); nonetheless, the kriging estimate beyond 329 
the location of samples must be used with extra caution because their variance very quickly 330 
departures from zero to extremely large numbers (see Figure 1). Thus, there is a compromise 331 
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between increasing the number of paired samples between two datasets and enhancing the level of 332 
confidence in statistics. If independent observations suggest that there might be large heterogeneity 333 
within a satellite footprint, it is strongly advised against quantitatively comparing the points to the 334 
satellite observations. Second, the number of samples is fewer than three observations in the field 335 
so it is in principal impossible to build a semivariogram. Validating a satellite under this condition 336 
is prone to misinterpretation because the spatial heterogeneity cannot be modeled. Nonetheless, if 337 
one presumes a good degree of homogeneity within the sensor footprint (such as very high-338 
resolution remote sensing airborne data), the direct comparison of point measurements might be 339 
possible. Third, the satellite footprint is coarser than the kriging estimate. Under this condition, we 340 
upscale the kriging map to match the spatial resolution of the satellite using 341 

𝑍Qm = 𝑍Qn ∗ 𝑆 = q𝑍Qn(𝑥)𝑆(𝑥 − 𝑦)𝑑𝑦 (12) 

where 𝑆 is the spatial response function, 𝑍Qm is the coarse kriging field, <*> is the convolution 342 
operator, y is shift, and 𝑍Qn is the fine field. In discrete form we can rewrite Eq.12 in 343 

𝑍Qm[𝑖, 𝑗] =66𝑍Qn[𝑖 − 𝑚, 𝑗 − 𝑛]
St

𝑆[𝑚, 𝑛] (13) 

where m and n are the dimension of the response function. The mathematical formulation of 344 
𝑆[𝑚, 𝑛] for a number of satellites can be represented by two-dimensional super Gaussian functions 345 
as discussed in Sun et al. [2018]. Atmospheric models have a uniform response to the simulated 346 
values within a grid box, therefore 𝑆[𝑚, 𝑛] = U

t×S
𝐽t,S, where J is the matrix of ones. In the same 347 

way, the kriging variance should be convolved through 348 

𝜎m2[𝑖, 𝑗] = 66𝜎n2[𝑖 − 𝑚, 𝑗 − 𝑛]
St

𝑆2[𝑚, 𝑛] (14) 

where a superscript of 2 denotes squaring, and 𝜎m2 and 𝜎n2 are the kriging variance in the coarse 349 
and the fine grids, respectively. 350 

To demonstrate the upscaling procedure, we use C5opt (1×1) and upscale it at six grid sizes 351 
(m,m) of 5×5, 10×10, 15×15, 20×20, 25×25, and 30×30. For simplicity, we consider 𝑆 = U

tw 𝐽t,t; 352 
this spatial response function results in averaging the values in the grid boxes. Figure 6 shows the 353 
resultant map overplotted with the samples along with the error estimation. Two tendencies from 354 
this experiment can be identified: First, the discrepancy of the point data and 𝑍Q is becoming more 355 
noticeable as the grid size grows; this directly speaks to the notion of the spatial representativeness; 356 
large grid boxes are less representative of sub-grid values. Second, the gradients of the field along 357 
with the estimation error become smoother primarily due to convolving the field with the spatial 358 
response function, which acts as a low pass filter. 359 

We further directly compare 𝑍Q to the samples (i.e., observations) shown in Figure 7. We 360 
see an excellent comparison between 𝑍Q at 1×1 resolution with the observations underscoring the 361 
unbiasedness characteristic of the kriging estimator. Conversely, the upscaled field gradually 362 
diverges from the observations. This divergence is the problem of scale. 363 
3.2. Point to pixel vs pixel to pixel 364 

To elaborate on the problem of scale, we design an idealized experiment theoretically 365 
validating pseudo satellite observations against some pseudo point measurements. The pseudo 366 
satellite observations are created by upscaling the C5 truth (Z) to 30×30 grid footprint considering 367 
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𝑆 = U
tw 𝐽t,t, meaning that the satellite is observing the truth but in a different scale (Figure S1). 368 

The pseudo point measurements are the ones used for C5opt. Figure 8a shows the direct 369 
comparison of the satellite pixel with the point observations. By ignoring the fundamental fact that 370 
these two datasets are inherently different in nature, displaying the same geophysical quantity by 371 
at different scales, we observe a perceived discrepancy (r2=0.64). The comparison suggests a 372 
wrong conclusion that the satellite observations are biased-low. This discrepancy is unrelated to 373 
any observational or physical errors, rendering any physical interpretation of the comparison 374 
biased due to spatial-scale differences in the data sets. Figure 8b depicts the comparison of each 375 
grid box of the upscaled kriging estimate (30×30) with that of the satellite. This direct comparison 376 
shows a strong degree of agreement (r2=0.98), shaking off the erroneous idea of directly comparing 377 
point to gridded data when the field exhibits substantial spatial heterogeneity.  378 

Yet, the comparison misses an important point: the kriging estimate is considered error-379 
free. We attempt to incorporate the kriging variance through a Monte Carlo linear regression 380 
method. Here, the goal is to find an optimal linear fit (𝑦 = 𝑎𝑥 + 𝑏 + 𝜀) such that 𝜒2 =381 
∑ [{=n(;<,|,})]w

~�w�|w~�w
 is minimized. 𝜎{2 and 𝜎;2 are the variances of y (here the satellite) and x (the kriging 382 

variance), respectively. We set the errors of y to zero, and randomly perturb the errors of x based 383 
on a normal distribution with zero mean and a standard deviation equal to that of kriging estimate 384 
15,000 times. The average of optimized a and b coefficients derived from each fit are then 385 
estimated and their deviation at 95% confidence interval assuming a Gaussian distribution is 386 
determined. Figure 8b,c show the linear fit with and without considering the kriging error estimate. 387 
The linear fit without involving the kriging error gives a strong impression that it is nearly perfect, 388 
following closely to the paired observations. This is essentially explainable by the primary goal of 389 
𝜒2 which is to minimize the L2 norm of residuals (𝑦 − 𝑓(𝑥8, 𝑎, 𝑏)), portraying a very optimistic 390 
picture of the satellite validation. The linear fit considering the kriging errors is different. The 391 
uncertainties associated with a and b are larger since x is variable (shown in horizontal error bars). 392 
The optimal fit gravitates towards the points with smaller standard deviations as they impose a 393 
larger weight. The confidence in the linear fit at higher values is lower due to their errors being 394 
large. This fit is a more realistic portrayal of the satellite validation. 395 

Figure 9 summarizes the general roadmap for satellite (and model) validations against point 396 
measurements. To fit the semivariogram with at least two parameters, we are required to have 397 
three samples at minimum. Therefore, it is implausible to derive the spatial information from the 398 
point data where sampling is extremely sparse (<3 samples within the field). The only case of 399 
directly comparing point and satellite pixels is when the field within satellite footprint or the field 400 
in general is rather homogeneous confirmed by independent data/models. Having more samples 401 
allows to acquire some information on the spatial heterogeneity. The information carried by the 402 
data is considered more and more robust with increasing the number of samples. Subsequently, 403 
the kriging map along with its variance derived from a reasonable semivariogram at an optimized 404 
grid resolution should be convolved with the satellite response function so that we can conduct an 405 
apples-to-apples comparison. A real-world example on the satellite validation will be shown later. 406 
4. Real-world experiments 407 
4.1. Spatial distribution of NO2 408 

We begin with focusing on tropospheric NO2 columns observed by TROPOMI sensor 409 
[Copernicus Sentinel data processed by ESA and Koninklijk Nederlands Meteorologisch Instituut 410 
(KNMI), 2019; Boersma et al., 2018] at ~13:30 LST. We choose NO2 primarily due to its spatial 411 
heterogeneity [e.g., Souri et al., 2018; Nowlan et al., 2016, 2018; Valin et al., 2011; Judd et al., 412 
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2020]. We oversample good quality pixels (qa_flag>0.75) through a physical-based gridding 413 
approach [Sun et al., 2018] over Texas at 3×3 km2 resolution in four seasons in 2019. We extract 414 
samples by uniformly selecting the NO2 columns in the center of each 30×30 km2 block. The 415 
semivariogram along with its model are calculated, and then we krige the samples. Figure 10 shows 416 
the NO2 columns map for four different seasons, the semivariogram, the kriging estimates, and the 417 
differences between the estimate and the field. High levels of NO2 are confined to cities indicating 418 
the sources being predominantly anthropogenic. Wintertime NO2 columns are larger than 419 
summertime mainly due to meteorological conditions and the OH cycle, the major sink of NO2. 420 
All semivariograms exhibit the hole effect. This is because of high values of NO2 being 421 
systematically surrounded by low values. Regardless of the season, we fit the stable Gaussian to 422 
variances at distances smaller than 2.5o (~275 km2). The b0 parameter explaining the length scale 423 
is found to be 0.94, 0.88, 0.71, and 0.83 degree for DJF, MAM, JJA, and SON, respectively. These 424 
numbers strongly coincide with the seasonal lifetime of NO2 [Shah et al., 2020]; wintertime NO2 425 
columns are spatially more uniform around the sources thus in relative sense, they are more 426 
homogeneous (spatially correlated) than those in warmer seasons. On the other hand, the shorter 427 
NOx lifetime in summer results in a steeper gradient of NO2 concentrations. This tendency should 428 
not be generalized because transport and various NOx sources including biomass burning, soil 429 
emissions, and lightning and can have large spatiotemporal variability resulting in different length 430 
scales in different times of a year. The differences between the kriging estimate and the field show 431 
some spatial structures indicating that NO2 is greatly heterogenous. 432 
4.2. Optimized tessellation over Houston 433 

The preceding TROPOMI data enabled us to optimize a tessellation of ground-based point 434 
spectrometers over Houston. Our goal here is to propose an optimized network for winter 2021 435 
given our knowledge on the spatial distribution of NO2 columns in winter 2019 measured by 436 
TROPOMI. The assumption of using a retrospective NO2 field for informing a hypothetical future 437 
campaign is not entirely unrealistic. If we have a consistent number of pixels from TROPOMI 438 
between two years, it is unlikely for the spatial variance of NO2 to be substantially different for 439 
the same season. We follow the framework proposed in Sect. 2.2.3 involving randomly selecting 440 
samples from the field (for 50000 iteration), and calculating kriging estimates for a given number 441 
of spectrometers. We then chose the optimum tessellation based on the minimum sum of |𝑍Q(𝑥P) −442 
𝑍(𝑥)|.  443 

Figure 11 shows the optimized tessellation given 5, 10, 15, and 20 spectrometers over 444 
Houston. The Houston plume is better represented with more samples being used. All cases share 445 
the same feature; the optimized samples are clustered in the proximity or within the plume. This 446 
tendency is clearly intuitive. We are required to place the spectrometers in locations where a 447 
substantial gradient (variance) in the field is expected. The difference between kriging estimate 448 
and the TROPOMI observations using 20 samples does not substantially differ in comparison to 449 
the one using 15 samples. Therefore, to keep the cost low, a preferable strategy is to keep the 450 
number of spectrometers as low as possible while achieving a reasonable accuracy. Based on the 451 
presented results, the optimized tessellation using 15 samples is preferred among others because it 452 
achieves roughly the same accuracy as the one with 20 samples. 453 
4.3. Validating OMI tropospheric NO2 columns during DISCOVER-AQ 2013 campaign using 454 
Pandora 455 

In order to understand ozone pollution [e.g., Mazzuca et al., 2016; Pan et al., 2017; Pan et 456 
al., 2015], characterize anthropogenic emissions [Souri et al., 2016, 2018], and validate satellite 457 
data [Choi et al., 2020], an intensive air quality campaign was made in September 2013 over 458 
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Houston (DISCOVER-AQ). The campaign encompassed a large suite of Pandora spectrometer 459 
instrument (PSI) (11 stations) measuring total NO2 columns with a high precision (2.7×1014 460 
molecules cm−2) and a moderate nominal accuracy (2.7×1015 molecules cm−2) under the clear-sky 461 
condition [Herman et al., 2009]. We remove the observations with an error of >0.05 DU, 462 
contaminated by clouds, and averaged them over the month of September at 13:30 LST (± 30 463 
mins). We attempt to validate OMI tropospheric NO2 columns version 3.0 [Bucsela et al., 2013] 464 
refined in Souri et al. [2016] with the 4-km model profiles. The OMI sensor resolution varies from 465 
13×34 km2 at nadir to ~40×160 km2 at the edge of the scan line. Biased pixels were removed based 466 
on cloud fraction > 0.2, terrain reflectivity > 0.3, and main (xtrack) quality flags =0. Following 467 
Sun et al. [2018], we oversample high quality pixels in the month of September 2013 over Houston 468 
at 0.2×0.2o resolution. To remove the stratospheric contributions from PSI measurements, we 469 
subtract OMI stratospheric NO2 (2.8±0.16 ×1015 molecules cm−2) from the total columns over the 470 
area. Figure 12 shows the monthly-averaged tropospheric NO2 columns measured by OMI 471 
overplotted by 11 PSIs. The elevated NO2 levels (up to ~6×1015 molecules cm−2) are seen over the 472 
center of Houston.  473 

We then follow the validation framework shown in Figure 9 in which the number of point 474 
measurements and the level of heterogeneity are the main factors in deciding if we should directly 475 
compare them to the satellite pixels. Figure 13 shows the monthly-averaged PSI measurements 476 
along with the semivariogram and resulting kriging estimate at an optimized resolution (~2 km2 = 477 
13800 data over the entire region) and errors. The distribution of semivariogram suggests that there 478 
is a strong degree of spatial heterogeneity, necessitating the use of kriging. We fit a stable Gaussian 479 

to the semivariogram resulting in 2.23 × (1 − 𝑒=(
J
M.��)

�.�
). The spatial information (variance) levels 480 

off at 0.19o (~21 km) with a maximum variance equal to 2.23 molecules2 cm−4. The measurements 481 
beyond this range (21 km) have a minimal weight due to this length scale. It is because of this 482 
reason that we see the kriging estimate converges to a fixed value at places being further than this 483 
range. The kriging errors of those grid boxes are constantly large (40% relative error). The 484 
optimum grid size for kriging is found to be 2 km2 (<1% difference across all grid boxes). 485 
Subsequently, we use the super Gaussian spatial response function described in Sun et al. [2018] 486 
to convolve both the kriging estimate and error within (see Figure S2). Figure 14 shows the 487 
differences between the kriging estimate and error before and after convolution. The response 488 
function (OMI pixel) tends to be on average coarser than 2 km2 resulting in smoothing of both the 489 
kriging estimate and error. 490 

We ultimately conduct two different sets of comparison: directly comparing PSI to OMI 491 
pixels, and comparing convolved kriged PSI to OMI. It is worth noting that PSI measurements are 492 
monthly-averaged; similarly OMI data are oversampled in a monthly basis. In terms of the PSI, 493 
we only account for grid boxes whose kriging error is below 1.2×1015 molecules cm−2 (1193 494 
samples, 8% of total kriging grid boxes). As for the grid-to-grid comparison, the kriging variance 495 
is considered in the linear polynomial fitted to the data through the Monte Carlo of chi-square with 496 
5,000 iterations. The variability with the OMI stratospheric NO2 columns (0.16 ×1015 molecules 497 
cm−2) is added to the PSI error for both analyses. The left and right panels of Figure 15 show the 498 
comparisons. As for the direct comparison of actual points (PSI) to pixels (OMI), the PSI 499 
measurements indicate a deviation of the slope (r2=0.66) from the unity line. This suggests that 500 
there is an unresolved magnitude-dependent systematic error. The grid-to-grid comparison not 501 
only offers a clearer picture of the distribution of data points, but also it hints at the offset being 502 
rather constant (0.66±0.18×1015 molecules cm−2; r2=0.72). We also observe that the statistics 503 
between the satellite and the benchmark are moderately improved. This comparison in general 504 
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provides an important implication: the varying offsets in a plume shape environment (high to low 505 
values) are not necessarily due to variable offsets in the satellite retrieval, as the kriging estimate 506 
suggests that those varying offsets in point-to-pixel comparison, manifested in slope = 0.76, are a 507 
result of varying spatial scales. 508 
Summary 509 

There needs to be increased attention to the spatial representativity in the validation of 510 
satellite (model) against pointwise measurements. A point is the element of space, whereas satellite 511 
(model) pixels (grid box) are (at best) the product of the integration of infinitesimal points and a 512 
normalized spatial response function. If the spatial response function is assumed to be an ideal 513 
box, the resulting grid box will represent the average. Essentially, no justifiable theory exists to 514 
accept that the averaged value of a population should absolutely match with a sample, unless all 515 
samples are identical (i.e., a spatially homogeneous field). This glaring fact is often overlooked in 516 
the atmospheric science community. At a conceptual level, we are required to translate pointwise 517 
data to the grid format (i.e., rasterization). This can be done by modeling the spatial autocorrelation 518 
(or semivariogram) extracted from the spatial variance (information) among measured sample 519 
points. Assuming that the underlying field is a random function with an unknown mean, the best 520 
linear unbiased predictions of the field can be achieved by kriging using the modeled 521 
semivariograms. 522 

In this study, we discussed methods for the kriging estimation of several idealized cases. 523 
Several key tendencies were observed through this experiment: first, the range corresponded to the 524 
degree of spatial heterogeneity; a larger range indicated the less presence of heterogeneity. Second, 525 
the kriging variance explaining the density of information quickly diverged from zero to large 526 
values when the field exhibited large spatial heterogeneity. This tendency mandates increasing the 527 
number of samples (observations) for those cases. Third, while the semivariogram models were 528 
constructed from discrete pair of samples, they are mathematically in a continuous form. It is 529 
because of this reason that we determined the optimal spatial resolution of the kriging estimate by 530 
incrementally making the grids finer and finer until a desired precision (=1%) was met. 531 

The present study applied kriging to achieve an optimum tessellation given a certain 532 
number of samples such that the difference between our prior knowledge of the field, articulated 533 
by previous observations, models or theory, and the estimation is minimal. Usually there is 534 
uncertainty about the prior knowledge that should be propagated to the final estimates. The 535 
optimum tessellation for a range of idealized and real-world data consistently voted for placing 536 
more samples in areas where the gradients in the measurements were significant such as those 537 
close to point emitters. 538 

This study also revisited the spatial representativity issue; it limits the realistic 539 
determination of biases associated with satellites (models). In one experiment, we convolved the 540 
kriging estimate for a multi-plume field with a box filter but various sizes. The perfect agreement 541 
(r=1.0) between the samples (point) and kriging output (pixel) seen at a high spatial resolution 542 
gradually vanished with coarsening of the resolution of grid boxes (r=0.8). We also directly 543 
compared samples (point) with pseudo satellite observations (showing the truth) with a coarse 544 
spatial resolution which led to a flawed conclusion about the satellite being biased-low. We 545 
modeled the semivariogram of those samples, estimated the field using kriging, and convolved 546 
with the pseudo-satellite spatial response function. The direct comparison of this output with that 547 
of the satellite showed a completely different story suggesting that the data were rather free of any 548 
bias. A serious caveat with using a spatial model (here kriging) is that it consists of errors: the 549 
estimations being further from samples are less certain. It is widely known that discounting the 550 
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measurement/model errors in true straight-line relationship between data can introduce artifacts. 551 
To consider the kriging variance in the comparisons we employed a Monte Carlo method on chi-552 
square optimization which ultimately allowed us to not only provide a set of solutions within the 553 
range of the uncertainty of the kriging model, but also to assign smaller weights on gross estimates. 554 

We further validated monthly-averaged Ozone Monitoring Instrument (OMI) tropospheric 555 
NO2 columns using 11 Pandora Spectrometer Instrument (PSI) observations over Houston during 556 
NASA’s DISCOVER-AQ campaign. A pixel-to-point comparison between two dataset suggested 557 
varying biases in OMI manifested in a slope far from the identity line. By contrast, the kriging 558 
estimate from the PSI measurements, convolved with the OMI spatial response function, resulted 559 
in an inter-comparison slope close to the unity line. This suggested that there was only a constant 560 
systematic bias (0.66±0.18×1015 molecules cm−2) associated with the OMI observations which 561 
does not vary with tropospheric NO2 column magnitudes. 562 

The central tenants of satellite and model validation are pointwise measurements. Our 563 
experiments paved the way for a clear roadmap explaining how to transform these pointwise 564 
datasets to a comparable spatial scale relative to satellite (model) footprints. It is no longer 565 
necessary to ignore the problem of scale. The validation against point measurements can be 566 
carefully conducted in the following steps: 567 

 568 
i. Construct the experimental semivariogram if the number of point measurements 569 

allows (usually >= 3 within the field; the field can vary depending on the length 570 
scale of the compound). 571 

ii. Drop the quantitative assessment if the number of point measurements are 572 
insufficient to gain spatial variance and the prior knowledge suggests a high 573 
likelihood of spatial heterogeneity within the field. 574 

iii. Choose an appropriate function to model the semivariogram. 575 
iv. Estimate the field with kriging (or any other spatial estimator capable of digesting 576 

the semivariogram) and calculate the variance. 577 
v. Estimate the optimum grid resolution of the estimate. 578 
vi. Convolve the kriging estimate and its variance with the satellite (model) spatial 579 

response function (which is sensor specific). 580 
vii. Conduct the direct comparison of the convolved kriged output and the satellite 581 

(model) considering their errors through a Monte Carlo (or a weighted least-squares 582 
method). 583 

 584 
Recent advances in satellite trace gas retrievals and atmospheric models have helped 585 

extend our understanding of atmospheric chemistry but an important task before us in improving 586 
our knowledge on atmospheric composition is to embrace the semivariogram (or spatial auto-587 
correlation) notion when it comes to validating satellites/models using pointwise measurements, 588 
so that we can have more robust quantitative applications of the data and models. 589 
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Figures: 786 

 787 
Figure 1. (first column) Five theoretical fields randomly sampled with 200 points (dots), namely, 788 
a constant field (C1), a ramp starting from zero in the lower left to higher values in the upper right 789 
(C2), an intersection with concentrated values in four corridors (C3), a Gaussian plume placed in 790 
the center (C4), and multiple Gaussian plumes spread over the entire domain (C5). (second column) 791 
the corresponding isotropic semivariograms computed based on Eq.2; the red line shows the stable 792 
Gaussian fitted to the semivariogram based on Levenberg-Marquardt method. (third column) The 793 
kriging estimate at the same resolution of the truth (i.e., 1×1) based on Eq.6. (fourth column) The 794 
difference between the estimate and the truth. (fifth column) the kriging standard error based on 795 
Eq.11.  796 
  797 
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 798 

 799 
Figure 2. (first column) The multi-plume case (C5) randomly sampled with different number of 800 
samples (5, 25, 50, 100, and 500), (second column) the corresponding isotropic semivariogram, 801 
(third column) the kriging estimate, (fourth column) the difference between the estimate and the 802 
truth, and (fifth column) the kriging standard error. 803 

 804 
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 806 
Figure 3. The multi-plume case (C5) randomly sampled by four different sampling strategies 807 
using a constant number of samples (25). The sampling strategies include purely random (first 808 
row), stratified random (second row), uniform grids (third row), and an optimized tessellation 809 
proposed based on kriging (fourth row). Columns represent the truth, the isotropic semivariogram, 810 
the kriging estimate, the difference between the estimate and the truth, and the kriging standard 811 
error. 812 
  813 
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 814 
Figure 4. A schematic illustrating a framework for optimum sampling (tessellation) strategy. The 815 
prior knowledge refers to any data being able of describing our quantity of interest including site-816 
visits, theoretical models, satellite observations, emissions, and etc. 817 
 818 
  819 
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 820 

 821 
Figure 5. Finding an optimum grid size for kriging. (a) The kriging estimates of the ramp (C2) at 822 
different grid resolutions ranging from 25×25 pixel to 0.2×0.2. (b) The kriging estimates of the 823 
multi-plume (C5) with optimized samples shown in Figure 3 for different grid resolutions. C2 is 824 
more homogeneous than C5, as a result, it is less sensitive to the resolution of the kriging 825 
estimate. The optimum grid resolution for C2 is 10×10, whereas it is 1×1 for C5. These numbers 826 
are based on observing negligible difference (<1%) between the kriging estimate at the optimum 827 
resolution and the one computed at a finer resolution step. We call the optimum output for C5 as 828 
C5opt. 829 

 830 
 831 
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 833 
Figure 6. (first row) C5Opt outputs convolved with an ideal box kernel with different sizes (1×1 834 
up to 30×30) overlaid by the C5Opt optimum samples. (second row) the associated kriging errors 835 
convolved with the same kernel. The coarser the resolution is, the larger the discrepancy between 836 
the samples and the estimates is. 837 
 838 
 839 
 840 
  841 



 26 

 842 
Figure 7. Illustrating the problem of spatial scale: comparisons of the kriging estimates at seven 843 
different spatial scales with the samples used for the C5opt estimation. The perceived 844 
discrepancies are purely due to the spatial representativeness. 845 
  846 
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 847 
 848 
 849 

 850 
 851 
Figure 8. (a) the direct comparison of pseudo observations of a satellite observing the C5 case at 852 
30×30 resolution versus the 25 samples used for C5opt. (b) same for y-axis, but the point samples 853 
are transformed to grid boxes using kriging convolved with the satellite spatial response function 854 
(ideal box with 30×30 kernel size). The differences in statistics between these two experiments 855 
speak to the problem of scale. (b) ignores the kriging errors but (c) incorporates them using a 856 
Monte Carlo method. Note that the best linear fit has changed indicating that the consideration of 857 
the kriging variance is critical. MB = mean bias (point minus satellite), MAB = mean absolute 858 
bias, RMSE = root mean square error, R2 = coefficient of determination. 859 
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 861 
Figure 9. The proposed roadmap for transforming pointwise measurements to gridded data in 862 
satellite (model) validation.  863 

  864 
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 865 
Figure 10. (first column) The spatial distribution of TROPOMI tropospheric NO2 columns 866 
oversampled in four different seasons at 3×3 km2 spatial resolution. (second column) The 867 
corresponding semivariogram from samples selected from uniform 30×30 km2 blocks (shown 868 
with black dots in the first column) along the fitted stable Gaussian model (red line). (third 869 
column) the kriging estimates, and (fourth column) their differences with respect to the 870 
observations. 871 
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 874 

 875 
Figure 11. Finding an optimum sample tessellation for wintertime over Houston given different 876 
number of spectrometers (5, 10, 15, and 20). 877 
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 879 
 880 

Figure 12. The spatial distribution of OMI tropospheric NO2 columns oversampled at the resolution 881 
at 0.2×0.2o over Houston in September 2013. The plot is overlaid by surface Pandora spectrometer 882 
instrument averaged over the same month. The surface measurements originally measured the total 883 
columns, therefore we subtract the stratospheric columns provided by the OMI data (2.8±0.16 ×1015 884 
molecules cm−2) from the total columns to focus on the tropospheric part. 885 
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 889 

 890 
Figure 13. The Pandora tropospheric NO2 measurements (made from subtracting the total columns 891 
from the OMI stratospheric NO2 columns) during September 2013, the corresponding 892 
semivariogram, the kriging estimates, and the kriging standard errors. Note that the semivariogram 893 
suggests a large degree of spatial heterogeneity occurring at different spatial scales. 894 
  895 
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 896 
Figure 14. Convolving both kriging estimates and errors with the OMI spatial response function 897 
formulated in Sun et al. [2018]. The differences against the pre-convolved fields are also depicted. 898 
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 900 
 901 

Figure 15. (left): the direct comparison of OMI tropospheric NO2 columns with 11 pointwise 902 
Pandora measurements in September 2013 over Houston. (right) same for y-axis, but the PSI 903 
measurements are translated to grid boxes using kriging convolved with the OMI spatial response 904 
function. PSI tropospheric NO2 columns are estimated based on subtracting the OMI stratospheric 905 
NO2 columns (2.8±0.16 ×1015 molecules cm−2) from the total columns. We only consider kriging 906 
estimates whose errors are below 1.2×1015 molecules cm−2. The kriging variance is also considered 907 
using the Monte Carlo method applied on 𝜒2. The slope has improved after considering the 908 
modeled spatial representativeness. MB = mean bias (OMI vs Pandora), MAB = mean absolute 909 
bias, RMSE = root mean square error. 910 
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