
 1 

Dealing with Spatial Heterogeneity in Pointwise to Gridded 1 

Data Comparisons 2 
 3 
Amir H. Souri1*, Kelly Chance1, Kang Sun2,3, Xiong Liu1, and Matthew S. Johnson4 4 
 5 
1Atomic and Molecular Physics (AMP) Division, Harvard–Smithsonian Center for Astrophysics, 6 
Cambridge, MA, USA 7 
2Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA 8 
3Research and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY, 9 
USA 10 
4Earth Science Division, NASA Ames Research Center, Moffett Field, CA, USA 11 
 12 
*Corresponding author: ahsouri@cfa.harvard.edu 13 

Abstract 14 
Atmospheric modelers and the trace gas retrieval community typically presuppose that pointwise 15 
measurements, which roughly represent the element of space, should compare well with satellite 16 
(model) pixels (grids). This assumption implies that the field of interest must possess a high degree 17 
of spatial homogeneity within the pixels (grids), which may not hold true for species with short 18 
atmospheric lifetimes or in the proximity of plumes. Results of this assumption often lead to a 19 
perception of a nonphysical discrepancy between data, resulting from different spatial scales, 20 
potentially making the comparisons prone to overinterpretation. Semivariogram is a mathematical 21 
expression of spatial variability in discrete data. Modeling the semivariogram behavior permits 22 
carrying out spatial optimal linear prediction of a random process field using kriging. Kriging can 23 
extract the spatial information (variance) pertaining to a specific scale, which in turn translating 24 
pointwise data to a grid space with quantified uncertainty such that a grid-to-grid comparison can 25 
be made. Here, using both theoretical and real-world experiments, we demonstrate that this 26 
classical geostatistical approach can be well adapted to solving problems in evaluating model-27 
predicted or satellite-derived atmospheric trace gases. This study demonstrates that satellite 28 
validation procedures must take kriging variance and satellite spatial response functions into 29 
account. We present the comparison of Ozone Monitoring Instrument (OMI) tropospheric NO2 30 
columns against 11 Pandora Spectrometer Instrument (PSI) systems during the DISCOVER-AQ 31 
campaign over Houston. The least-squares fit to the paired data shows a low slope 32 
(OMI=0.76×PSI+1.18×1015 molecules cm−2, r2=0.67) which is indicative of varying biases in 33 
OMI. This perceived slope, induced by the problem of spatial scale, disappears in the comparison 34 
of the convolved kriged PSI and OMI (0.96×PSI+0.66×1015 molecules cm−2, r2=0.72) illustrating 35 
that OMI possibly has a constant systematic bias over the area. To avoid gross errors in 36 
comparisons made between gridded data versus pointwise measurements, we argue that the 37 
concept of semivariogram (or spatial auto-correlation) should be taken into consideration, 38 
particularly if the field exhibits a strong degree of spatial heterogeneity at the scale of satellite 39 
and/or model footprints. 40 
  41 
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1. Introduction 42 
Most of the literature on validation of satellite trace gas retrievals or atmospheric chemical 43 

transport models assume that geophysical quantities within a satellite pixel or a model grid are 44 
spatially homogeneous. Nevertheless, it has long been recognized that this assumption can often 45 
be violated; spatially coarse atmospheric models or satellites are often not able to represent 46 
features, nor physical processes, transpiring at fine spatial scales. Janjic et al. [2016] used the term 47 
of representation error to describe this complication. They posit that this problem is a result of 48 
two combined factors: unresolved spatiotemporal scales and physiochemical processes. To 49 
elaborate on this definition, let us assume that an atmospheric model can represent the exact 50 
physiochemical processes but is fed with a constant CO2 emission rate. This model obviously 51 
cannot resolve the spatial distribution of CO2 concentration because we use an unresolved emission 52 
input. As another example, if we know the exact rates of CO2 emissions but use a model unable to 53 
resolve atmospheric dynamics, the spatial distribution of CO2 concentrations will be unrealistic 54 
due to unresolved physical processes. 55 

Numerous scientific studies have reported on this matter. The simulations of short lifetime 56 
atmospheric compounds such as nitrogen dioxide (NO2), isoprene, formaldehyde (HCHO), and 57 
the hydroxyl radical (OH) have been found to be strongly sensitive to the model spatial resolution 58 
[Vinken et al., 2011; Valin et al., 2011; Yu et al., 2016; Pan et al., 2017]. Likewise, the performance 59 
of weather forecast models in resolving non-hydrostatic components heavily relies on both model 60 
resolution and parametrizations used. For example, when Kendon et al. [2014], Souri et al. 61 
[2020a], and Wang et al. [2017] defined a higher spatial resolution grid in conjunction with more 62 
elaborate model physics, they were able to more realistically simulate extreme or local weather 63 
phenomena such as convection and sea-land breeze circulation.  64 

The spatial representation issue is not only limited to models. Satellite trace gas retrievals 65 
optimize the concentration of trace gases and/or atmospheric states to best match the observed 66 
radiance using an optimizer along with an atmospheric radiative transfer model. This procedure 67 
requires various inputs such as surface albedo, cloud and aerosol optical properties, and trace gas 68 
profiles, all of which come with different scales and representation errors. Moreover, the radiative 69 
transfer model by itself has different layers of complexity with regards to physics. A myriad of 70 
studies have reported that satellite-derived retrievals underrepresent spatial variability whenever 71 
the prognostic inputs used in the retrieval are spatially unresolved [e.g., Russell et al., 2011; 72 
Laughner et al., 2018; Souri et al., 2016; Goldberg et al., 2019; Zhao et al., 2020]. Additionally, 73 
the large footprint of some sensors relative to the scale of spatial variability of species inevitably 74 
leads to some degree of the representativity issues [e.g., Souri et al., 2020b, Tang et al., 2021; Judd 75 
et al., 2020].  76 

The validation of satellites or atmospheric models is widely done against pointwise 77 
measurements. Mathematically, a point is an element of space. Hence, it is not meaningful to 78 
associate a point with a spatial scale. If one compares a grid to a point sample, they are assuming 79 
that the point is the representative of the grid. At this point, the fundamental question is: is such a 80 
comparison ever logical, in the sense that the average of the spatial distribution of the underlying 81 
compound is represented by a single value measured at a subgrid location? This question was 82 
answered in Matheron [1963]. He advocated the notion of the semivariogram, a mathematical 83 
description of the spatial variability, which finally led to the invention of kriging, the best unbiased 84 
linear estimator of a random field. A kriging model can estimate a geophysical quantity in a 85 
common grid. This is not exclusively special; a simple interpolation method such as the nearest 86 
neighbor has the same purpose. The power of kriging lies in the fact that it takes the data-driven 87 
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spatial variability information into account and informs an error associated with the interpolated 88 
map. This strength not only makes kriging a relatively superior model over simplified interpolation 89 
methods, but also reflects the level of confidence pertaining to spatial heterogeneity dictated by 90 
both data and the semivariogram model used through its variance [Chilès and Delfiner, 2009]. 91 

Different studies leveraged this classical geostatistical method to map the concentrations 92 
of different atmospheric compounds at very high spatial resolutions [Tadíc et al., 2017; Li et al., 93 
2019; Zhan et al., 2018]; To the best of our knowledge, Swall and Foley, [2009] is the only study 94 
that used kriging for a chemical transport model validation with respect to surface ozone. They 95 
suggested that kriging estimation should be executed in grids rather than discrete points. Kriging 96 
uses a semivariogram model in a continuous form. Optimizing the kriging grid size (i.e., domain 97 
discretization) at which the estimation is performed is an essence to fully obtaining the maximum 98 
spatial information from data. Another important caveat with Swall and Foley [2009] is that 99 
averaging discrete estimates (points) to build grids is not applicable for remote sensing data. 100 
Depending on the optics and the geometry, the spatial response function can transform from an 101 
ideal box (simple average) to a sophisticated shape such as a super Gaussian function (weighted 102 
average) [Sun et al., 2018]. Moreover, the footprint of satellites is not spatially constant. We will 103 
address these complications in this study using both theoretical and real-world experiments. 104 

Our paper is organized with the following sections. Sections 2 is a thorough review of the 105 
concept of the semivariogram and kriging. We then provide different theoretical cases, their 106 
uncertainty, sensitivities with respect to difference tessellation, grid size, and the number of 107 
samples. Section 3 proposes a framework for satellite (model) validation using sparse point 108 
measurements and elaborates on the representation error using idealized experiments. Sections 4 109 
introduces several real-world experiments. 110 
2. Semivariogram and Ordinary Kriging Estimator 111 
2.1. Definition 112 

The semivariogram is a mathematical representation of the degree of spatial variability (or 113 
similarity) in a function describing a regionalized geophysical quantity (f), which is defined as 114 
[Matheron, 1963]: 115 

𝛾(ℎ) = 	
1
2𝑉

* [𝑓(𝑥 + 𝒉) − 𝑓(𝑥)]2
3

𝑑𝑉 (1) 

where x is a location in the geometric fields of V, f(x) is the value of a quantity at the location of x, 116 
and h is the vector of distance. If discrete samples are available rather than the continuous field, 117 
the general formula can be simplified to the experimental semivariogram defined as: 118 

𝛾(ℎ) = 	
1

2𝑁(𝒉) 6 [𝑍(𝑥8) − 𝑍(𝑥9)]2

:;<=;>:=|𝒉|@A

 (2) 

where Z is discrete observations (or samples), N(h) is the number of paired observations separated 119 
by the vector of h. |.| operator indicates the length of a vector. The condition of :𝑥8 − 𝑥9: − |𝒉| ≤120 
𝜀 is to allow certain tolerance for differences in the length of the vector. For simplicity, we only 121 
focus on an isotropic case meaning we rule out the directional (or angular) dependency in 𝛾(ℎ). 122 

If a reasonable number of samples is present, one can describe 𝛾(ℎ) through a regression 123 
model (e.g., Gaussian or spherical shapes). The degree of freedom for this regression is: 124 
𝑑𝑜𝑓 = 𝑁 −𝑚 (3) 

where m is the number of parameters defined in the model. For instance, to fit a Gaussian function 125 
to the semivariogram with three parameters (m=3), three paired (N=3) observations are required at 126 
minimum. It is not feasible to describe 𝛾(ℎ) with only one sample. In case of two samples, the 127 
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semivariogram might be explained by a line with no offsets (i.e., 𝛾(ℎ) = 	𝑎Gℎ) or a constant 128 
function (𝛾(ℎ) = 𝑏G). Different regression models can be used to describe 𝛾(ℎ) depending on the 129 
characteristic of the quantity of interest. In this study, we will use a stable Gaussian function: 130 

𝛾(ℎ) = 	𝑎G(1 − 𝑒
=( JKL

)MN): ao, bo, co=1.5 (4) 
A non-linear least-squares algorithm based on Levenberg-Marquardt method will be used to 131 
estimate the regression parameters. 132 

The kriging estimator predicts a value of interest over a defined domain using a 133 
semivariogram model derived from samples [Chilès and Delfiner, 2009]. The kriging model is 134 
defined as [Matheron, 1963]: 135 
𝑍(𝑥) = 𝑌(𝑥) +𝑚(𝑥) (5) 

where 𝑌(𝑥) is a zero-mean random function, and 𝑚(𝑥) is a systematic drift. If we assume 136 
𝑚(𝑥) = 𝑎G, the model is called ordinary kriging. Similar to an interpolation problem, the 137 
estimation point (𝑍P(𝑥Q)), is determined by linearly combining n number of samples, 𝑍(𝑥9), with 138 
their weights (𝜆9): 139 

𝑍P(𝑥Q) =6𝜆9

S

9TU

𝑍(𝑥9) + 𝜆G (6) 

where 𝜆G is a constant weight. The mean squared error of this estimation can be written as 140 

𝐸(𝑍P − 𝑍G)2 = Var	Z𝑍P − 𝑍G[ +	\𝜆G + (6𝜆9

S

9TU

− 1)𝑎G]

2

 (7) 

Where 𝑍P is the estimation, 𝑍G is point observations, and 𝑎G is the mean of Z which is unknown. In 141 
order to estimate the weights, we are required to minimize Eq.7, but this cannot be done without 142 
knowing the exact value of 𝑎G. A solution is to assume 𝜆G = 0 and impose the following condition: 143 

6𝜆9

S

9TU

= 1 (8) 

This condition warrants 𝐸(𝑍P − 𝑍G)  be zero and removes the need for the knowledge of 𝑎G. 144 
Therefore Eq.7 can be written as 145 

𝐸(𝑍P − 𝑍G)2 = Var	Z𝑍P − 𝑍G[ = 6 6 𝜆9U𝜆92𝛾9U92 − 2 6 𝜆9U𝛾9UG + 𝛾GG

S

9UTU

S

92TU

S

9UTU

 (9) 

Using the method of Lagrange multiplier and considering the constraint on the weights, Eq.9 can 146 
be minimized by solving the following problem [Chilès and Delfiner, 2009]: 147 

_

𝜆U
⋮
𝜆S
𝜇
b = c

𝛾(𝑥U − 𝑥U)
⋮

𝛾(𝑥S − 𝑥U)
1

⋯
⋱⋯
⋯

𝛾(𝑥U − 𝑥S)
⋮

𝛾(𝑥S − 𝑥S)
1

1
⋮
1
0

f

=U

c
𝛾(𝑥U − 𝑥G)

⋮
𝛾(𝑥S − 𝑥G)

1

f (10) 

where 𝜇 is the Lagrange parameter. The first term in the right hand side of this equation shows the 148 
spatial variability described by the semivariogram model among samples, whereas the second term 149 
indicates the modeled variability between samples and the estimation point. The unknowns (the 150 
left hand side of the equation) have a unique solution if, and only if, the semivariogram model is 151 
positive definite and the samples are unique [Chilès and Delfiner, 2009]. The estimation error can 152 
be obtained by 153 
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𝜎2 = 𝐸(𝑍P − 𝑍G)2 = 6𝜆9

S

9TU

𝛾9G − 𝜇 (11) 

This equation is an important component in the kriging estimator. Not only can we estimate 𝑍(𝑥G) 154 
given a selection of data points, but also an uncertainty associated with such estimation can be 155 
provided.  156 
2.2. Theoretical Cases 157 
2.2.1. Sensitivity to spatial variability of the field 158 

The present section illustrates the application of ordinary kriging for several numerical 159 
cases. Five idealized cases are simulated in a grid of 100×100 pixels, namely, a constant field (C1), 160 
a ramp starting from zero in the lower left to higher values in the upper right (C2), an intersection 161 
with concentrated values in four corridors (C3), a Gaussian plume placed in the center (C4), and 162 
multiple Gaussian plumes spread over the entire domain (C5). We randomly sample 200 data 163 
points from each field as is, and successively create the semivariograms in 100 binned distances. 164 
Except C1, which lacks a spatial variability thus 𝛾(ℎ) = 𝑏G = 0, other semivariograms are fit with 165 
the stable Gaussian function. Using the semivariogram model, we optimize Eq.10 to estimate 𝑍P(𝑥) 166 
for each pixel (i.e., 100×100) with the estimation errors based on Eq.11. Figure 1 depicts the truth 167 
field (𝑍(𝑥)), semivariograms made from the samples, estimated values (𝑍P(𝑥)), difference of 𝑍(𝑥) 168 
and 𝑍P(𝑥), and error associated with the estimation. 169 

As for C1, the uniformity results in a constant semivariogram leading the estimation to be 170 
identical to the truth. This estimation signifies the unbiased characteristic of ordinary kriging. C1 171 
is never met in reality, however, it is possible to assume some degree of uniformity among data 172 
restrained to background values; a typical example of this can be seen in the spatial distribution of 173 
a number of trace gases in pristine environments such as NO2 [e.g., Wang et al., 2020] and HCHO 174 
[Wolfe et al., 2019]. Under this condition, any data point within the field (i.e., the satellite 175 
footprint) can be assumed to be representative of the spatial variability in truth.  176 

Concerning C2, the semivariogram shows a linear shape meaning data points at larger 177 
distances exhibit larger differences. Generally geophysical samples are uncorrelated at large 178 
distances, thereby one expects the semivarioram to increase more slowly as the distance gets 179 
further. The steady increase in 𝛾(ℎ) is indicative of a systematic drift in the data invalidating the 180 
assumption of 𝑚(𝑥) = 𝑎G. In many applications, a simple polynomial can explain 𝑚(𝑥) and 181 
subsequently be subtracted from the data points. An example of this problem is tackled by Onn 182 
and Zebker [2006]; it concerns the spatial variability of water vapor columns measured by GPS 183 
signals. Onn and Zebker [2006] observed a strong relationship between the water vapor columns 184 
and GPS altitudes resulting from the vertical distribution of water vapor in the atmosphere. 185 
Because of this complication, a physical drift model describing the vertical dependency was fit 186 
and removed from the measurements so that they could focus on the horizontal fluctuations. In 187 
terms of C2, one can effortlessly reproduce 𝑍(𝑥) by fitting a three-dimensional plane to barely 188 
three samples, indicating that the semivariogram is of little use.  189 

C3 is an example of an extremely inhomogeneous field manifested in the stabilized 190 
semivariogram at a value of 𝛾 (~500), called the sill, indicating insignificant information (variance) 191 
from the samples beyond this distance (~20), called the range. Range is defined as the separation 192 
distance at which the total variance in data is extracted. The smaller the range is, the more 193 
heterogeneous the samples will be. While the estimated field roughly captures the shape of the 194 
intersections, it is spatially distorted at places with relatively sparse data points. The kriging model 195 
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error is essentially a measure of the density of information. It converges to zero in the sample’s 196 
location and diverges to large values in gaps. 197 

C4 is a close example of a point source emitter with faint winds and turbulence. The 198 
semivariogram exhibits a bell shape. As samples get further from the source, the variance diverges, 199 
stabilizes, and then sharply decreases. This is essentially because many data points with low 200 
values, apart from each other, have negligible differences. This tendency is recognized as the hole 201 
effect which is characterized for high values to be systemically surrounded by low values (and 202 
vice versa). It is possible to mask this effect by fitting a semivariogram model stabilizing at certain 203 
sill (like the one in Figure 1). Nonetheless, if the semivariogram shows periodic holes, the fitted 204 
model should be modified to a periodic cosine model [Pyrcz and Deutsch, 2003]. 205 

The last case, C5, shows a less severe case of the hole effect previously observed in C4. 206 
This is due to the presence of more structured patterns in different parts of the domain. The range 207 
is roughly twice as large as the previous case (C4) denoting that there is more information 208 
(variance) among the samples at larger distances. A number of experiments using this particular 209 
case will be discussed in the following subsections. 210 
2.2.2. Sensitivity to the number of samples 211 

It is often essential to optimize the number of samples used for kriging. The kriging 212 
estimator somewhat recognizes its own capability at capturing the spatial variability through 213 
Eq.11. Thus, if the target phenomenon is spatially too complex and/or the samples are too limited, 214 
the estimator essentially informs that 𝑍P(𝑥Q) is unreliable through large variance. However, there 215 
is a caveat; 𝑌(𝑥) must be a Gaussian random model with a zero mean so that kriging can capture 216 
the statistical distribution of 𝑍P given the data points. Except this case, the kriging variance can 217 
either be underestimated or overestimated depending on the level of skewness of the statistical 218 
distribution of 𝑌(𝑥) [Armstrong, 1994]. Figure 2 shows the kriging estimation for C5 using 5, 25, 219 
50, 100, and 500 random samples in the entire field. Immediately apparent is a better description 220 
of the semivariogram when larger number of samples are used, which in turn, results in a better 221 
estimation of 𝑍(𝑥). The optimum number of samples to reproduce 𝑍(𝑥) depends on the 222 
requirement for the relative error (𝜎/𝑍(𝑥)) being met at a given location. 223 
2.2.3. Sensitivity to the tessellation of samples 224 

A common application of kriging is to optimize the tessellation of data points for a fixed 225 
number of samples to achieve a desired precision. In real-world practices, the objective of such 226 
optimization is very purpose-specific, for example, one might prefer a spatial model representing 227 
a certain plume in the entire domain. Different ways for data selection exist [e.g., Rennen, 2008], 228 
but for simplicity, we focus on four categories: purely random, stratified random, a uniform grid, 229 
and an optimized tessellation. Figure 3 demonstrates the estimation of C5 using 25 samples chosen 230 
based on those four procedures. 231 

Concerning the random selection, the lack of samples over two minor plumes cause the 232 
estimation to deviate largely from the truth. While a random selection may seem to be practical 233 
because it is independent of the underlying spatial variability, it can suffer from under sampling 234 
issues, thus being inefficient. As a remedy, it might be advantageous to group the domain into 235 
similar zones. We classify the domain into four zones using the k-mean algorithm (not shown) and 236 
randomly sample six to seven points from each one (total 25). We achieve a better agreement 237 
between the estimated field and the truth because we exploited some prior knowledge (here the 238 
contrast between low and high values).  239 

As for the uniform grid, we notice that there are fewer data points in the semivariogram 240 
stemming from redundant distances which is indicative of correlated information. Nonetheless, if 241 
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the desired tessellation is neutral with regard to location meaning that all parts of the domain is 242 
equal of scientific interest, the uniform grid is the most optimal design for the prediction of 𝑍(𝑥) 243 
under an ideally isotropic case. A mathematical proof for this claim can be found in Chilès and 244 
Delfiner [2009]. 245 

To execute the last experiment, we select 25 random samples for 1000 times and find the 246 
optimal estimation by finding the minimum sum of |𝑍P(𝑥Q) − 𝑍(𝑥)|. It is worth mentioning that 247 
the optimized tessellation is essentially a local minimum based on 1000 realizations. The 248 
optimized location of samples seems to more clustered over areas with large spatial gradients. Not 249 
too surprisingly, we observe the smallest discrepancy between the estimation and the truth.  250 

A lingering concern over the application of these numerical experiments is that the truth is 251 
assumed to be known. The truth is never known, by this means we may never exactly know how 252 
well or poorly the kriging estimator is performing. However, it is highly unlikely for some prior 253 
understandings or expectations of the truth to be absent. If this is the case, which is rare, a uniform 254 
grid should be intuitively preferred to deliver the local estimations of average values in uniform 255 
blocks. In contrast, if the prior knowledge is articulated by previous site visits, model predictions, 256 
theoretical experiments, pseudo-observations, or other relevant data, the tessellation needs to be 257 
optimized.  258 

It is important to recognize that the uncertainties associated with the prior knowledge 259 
directly affects the level of confidence in the final answer. Accordingly, the prior knowledge error 260 
should ultimately be propagated to the kriging variance. The determination of the prior error is 261 
often done pragmatically. For example, if the goal is to design the location of thermometer sites to 262 
capture surface temperature during heat waves using a yearly averaged map of surface 263 
temperature, it would be wise to specify a large error with this specific prior information to play 264 
down the proposed design. This is primarily because the averaged map underrepresents such an 265 
atypical case. A possible extension of this example would be to use a weather forecast model with 266 
quantified errors capable of capturing retrospective heat waves. Although a reasonable forecast in 267 
the past does not necessarily guarantee a reasonable one in the future, it is rational to assume for 268 
the uncertainty with a new tessellation design using the weather model forecast to be lower than 269 
that of using the averaged map.  270 

A general roadmap for the data tessellation design is shown in Figure 4. As proven in Chilès 271 
and Delfiner [2009], if the field is purely isotropic, the uniform grid is the most intuitive sensible 272 
choice when the prior information on the spatial variability is lacking. When the prior knowledge 273 
with quantified errors is available, an optimum tessellation can be achieved by running a large 274 
number of kriging models with suitable 𝛾(ℎ) and picking the one yielding the minimum distance 275 
between the prior knowledge and the estimation. The choice of the cost function (here L1 norm) 276 
is purpose-specific. For example, if the reconstruction of a major plume was the goal, using a 277 
weighted cost function, geared towards capturing the shape of plume, would be more appropriate. 278 
2.2.4. Sensitivity to the grid size 279 

A kriging model can estimate a geophysical quantity at a desired location considering the 280 
data-driven spatial variability information. Since the kriging model is practically in a continuous 281 
form, the desired locations can be anywhere within the field of V. A question is whether or not it 282 
is necessary to map the data onto a very fine grid. There is a trade-off between the computational 283 
cost and the accuracy of the interpolated map. The range of the underlying semivariogram helps 284 
in finding the optimal solution. The greater the range (i.e., a more homogeneous field), the less 285 
important to map the data in a finer grid.  286 
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Figure 5a depicts an experiment comparing the estimates of C2 at different grid sizes with 287 
the truth. The departure of the estimate from the truth is rather negligible for several coarse grids 288 
(e.g., 10×10). The homogeneous field, manifested by the large range (Figure 1), allows for a 289 
reasonable estimation of 𝑍(𝑥) at coarse resolutions with inexpensive computational costs. Figure 290 
5b shows the same experiment but on C5 with the optimized tessellation. As opposed to the 291 
previous experiment, the estimate substantially diverges from the truth when increasing the grid 292 
size, suggesting that a finer resolution should be used for fields with smaller ranges (i.e., 293 
heterogeneous fields).  294 

The complexity of directly using the range for choosing the optimal grid cell size arises 295 
from the fact that the level of spatial homogeneity can vary within the domain. In fact, the range 296 
is derived from a semivariogram model representing a crude estimate of varying ranges occurring 297 
at various scales. It is intuitively clear that depending on the degree of heterogeneity, which is 298 
spatiotemporally variable, the grid size needs to be adaptively adjusted [Bryan, 1999]. For the sake 299 
of simplicity, but at a higher computational cost, we adopt a numerical solution which is to first 300 
simulate on a coarse grid, then on a finer one until the difference with respect to the previous grid 301 
size across all pixels reaches to an acceptable value (<1%). We name this output (1×1) with the 302 
optimized tessellation for C5 as C5opt. 303 
3. Comparison of points to satellite pixels 304 
3.1. Synching the scales between the gridded field and satellite pixels 305 

To minimize the complications of different spatial scales between two gridded data, we 306 
first need to upscale the finer resolution data to match the coarse ones. In case of numerical 307 
chemical transport or weather forecast models, the size of the grid is definitive. Likewise, a satellite 308 
footprint, mainly dictated by the sensor design, the geometry, and signal-to-noise requirements 309 
[Platt et al., 2021], is known. However, the grid size of the kriging estimation is a variable subject 310 
to optimization which has been discussed previously.  311 

When we compare the grid size of the kriging estimate to that of a satellite (or a model), 312 
three situations arise: First, the kriging spatial resolution is coarser than the satellite, a condition 313 
occurring when either the field is homogeneous or the field is under sampled. In situations where 314 
the field is homogeneous (𝛾(ℎ) ≅ 0), it is safe to directly compare the data points to the satellite 315 
measurements without having to use kriging. If the under sampling is the case (see Figure 2 with 316 
5 samples), it is sensible to first investigate if the field is homogeneous within the satellite footprint 317 
using different data (if any). If the homogeneity is met, we either can compare two datasets without 318 
kriging or to match the size of kriging grid cell with the satellite footprint and statistically involve 319 
the kriging variance in the comparison (discussed later); nonetheless, the kriging estimate beyond 320 
the location of samples must be used with extra caution because their variance very quickly 321 
departures from zero to extremely large numbers (see Figure 1). Thus, there is a compromise 322 
between increasing the number of paired samples between two datasets and enhancing the level of 323 
confidence in statistics. If independent observations suggest that there might be large heterogeneity 324 
within a satellite footprint, it is strongly advised against quantitatively comparing the points to the 325 
satellite observations. Second, the number of samples is fewer than three observations in the field 326 
so it is in principal impossible to build a semivariogram. Validating a satellite under this condition 327 
is prone to misinterpretation because the spatial heterogeneity cannot be modeled. Nonetheless, if 328 
one presumes a good degree of homogeneity within the sensor footprint (such as very high-329 
resolution remote sensing airborne data), the direct comparison of point measurements might be 330 
possible. Third, the satellite footprint is coarser than the kriging estimate. Under this condition, we 331 
upscale the kriging map to match the spatial resolution of the satellite using 332 
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𝑍Pj = 𝑍Pk ∗ 𝑆 = n𝑍Pk(𝑥)𝑆(𝑥 − 𝑦)𝑑𝑦 (12) 

where 𝑆 is the spatial response function, 𝑍Pj is the coarse kriging field, <*> is the convolution 333 
operator, y is shift, and 𝑍Pk is the fine field. In discrete form we can rewrite Eq.12 in 334 

𝑍Pj[𝑖, 𝑗] =66𝑍Pk[𝑖 − 𝑚, 𝑗 − 𝑛]
St

𝑆[𝑚, 𝑛] (13) 

where m and n are the dimension of the response function. The mathematical formulation of 335 
𝑆[𝑚, 𝑛] for a number of satellites can be represented by two-dimensional super Gaussian functions 336 
as discussed in Sun et al. [2018]. Atmospheric models have a uniform response to the simulated 337 
values within a grid, therefore 𝑆[𝑚, 𝑛] = U

t×S
𝐽t,S, where J is the matrix of ones. In the same way, 338 

the kriging variance should be convolved through 339 

𝜎j2[𝑖, 𝑗] = 66𝜎k2[𝑖 − 𝑚, 𝑗 − 𝑛]
St

𝑆2[𝑚, 𝑛] (14) 

where 𝜎j2 and 𝜎k2 are the kriging variance in the coarse and the fine grids, respectively. 340 
To demonstrate the upscaling procedure, we use C5opt (1×1) and upscale it at six grids 341 

(m,m) of 5×5, 10×10, 15×15, 20×20, 25×25, and 30×30 considering 𝑆 = U
tw 𝐽t,t. Figure 6 shows 342 

the resultant map overplotted with the samples along with the error estimation. Two tendencies 343 
from this experiment can be identified: First, the discrepancy of the point data and 𝑍P is becoming 344 
more noticeable as the grid size grows; this directly speaks to the notion of the spatial 345 
representativeness; large grid cells are less representative of sub-grid values. Second, the gradients 346 
of the field along with the estimation error become smoother primarily due to convolving the field 347 
with the spatial response function, which acts as a low pass filter. 348 

We further directly compare 𝑍P to the samples (i.e., observations) shown in Figure 7. We 349 
see an excellent comparison between 𝑍P at 1×1 resolution with the observations underscoring the 350 
unbiasedness characteristic of the kriging estimator. Conversely, the upscaled field gradually 351 
diverges from the observations. This divergence is the problem of scale. 352 
3.2. Point to pixel vs pixel to pixel 353 

To elaborate on the problem of scale, we design an idealized experiment theoretically 354 
validating pseudo satellite observations against some pseudo point measurements. The pseudo 355 
satellite observations are created by upscaling the C5 truth (Z) to 30×30 grid footprint considering 356 
𝑆 = U

tw 𝐽t,t, meaning that the satellite is observing the truth but in a different scale (not shown). 357 
The pseudo point measurements are the ones used for C5opt. Figure 8a shows the direct 358 
comparison of the satellite pixel with the point observations. By ignoring the fundamental fact that 359 
these two datasets are inherently different in nature, displaying the same geophysical quantity by 360 
at different scales, we observe a perceived discrepancy (r2=0.64). The comparison suggests a 361 
wrong conclusion that the satellite observations are biased-low. This discrepancy is unrelated to 362 
any observational or physical errors, rendering any physical interpretation of the comparison 363 
biased due to spatial-scale differences in the data sets. Figure 8b depicts the comparison of each 364 
grid of the upscaled kriging estimate (30×30) with that of the satellite. This direct comparison 365 
shows a strong degree of agreement (r2=0.98), shaking off the erroneous idea of directly comparing 366 
point to gridded data when the field exhibits substantial spatial heterogeneity.  367 
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Yet, the comparison misses an important point: the kriging estimate is considered error-368 
free. We attempt to incorporate the kriging variance through a Monte Carlo linear regression 369 
method. Here, the goal is to find an optimal linear fit (𝑦 = 𝑎𝑥 + 𝑏 + 𝜀) such that 𝜒2 =370 
∑ [z=k(;<,{,|)]w

}~w�{w}�w
 is minimized. 𝜎z2 and 𝜎;2 are the variances of y (here the satellite) and x (the kriging 371 

variance), respectively. We set the errors of y to zero, and randomly perturb the errors of x based 372 
on a normal distribution with zero mean and a standard deviation equal to that of kriging estimate 373 
15,000 times. The average of optimized a and b coefficients derived from each fit are then 374 
estimated and their deviation at 95% confidence interval assuming a Gaussian distribution is 375 
determined. Figure 8b,c show the linear fit with and without considering the kriging error estimate. 376 
The linear fit without involving the kriging error gives a strong impression that it is nearly perfect, 377 
following closely to the paired observations. This is essentially explainable by the primary goal of 378 
𝜒2 which is to minimize the L2 norm of residuals (𝑦 − 𝑓(𝑥8, 𝑎, 𝑏)), portraying a very optimistic 379 
picture of the satellite validation. The linear fit considering the kriging errors is different. The 380 
uncertainties associated with a and b are larger since x is variable (shown in horizontal error bars). 381 
The optimal fit gravitates towards the points with smaller standard deviations as they possess a 382 
larger weight. The confidence in the linear fit at higher values is lower due to their errors being 383 
large. This fit is a more realistic portrayal of the satellite validation. 384 

Figure 9 summarizes the general roadmap for satellite validations against point 385 
measurements. To fit the semivariogram with at least two parameters, we are required to have 386 
three samples at minimum. Therefore, it is implausible to derive the spatial information from the 387 
point data where sampling is extremely sparse (<3 samples within the field). The only case of 388 
directly comparing point and satellite pixels is when the field within satellite footprint or the field 389 
in general is rather homogeneous confirmed by independent data/models. Having more samples 390 
allows to acquire some information on the spatial heterogeneity. The information carried by the 391 
data is considered more and more robust with increasing the number of samples. Subsequently, 392 
the kriging map along with its variance derived from a reasonable semivariogram at an optimized 393 
grid resolution should be convolved with the satellite response function so that we can conduct an 394 
apples-to-apples comparison. A real-world example on the satellite validation will be shown later. 395 
4. Real-world experiments 396 
4.1. Spatial distribution of NO2 397 

We begin with focusing on tropospheric NO2 columns observed by TROPOMI sensor 398 
[Copernicus Sentinel data processed by ESA and Koninklijk Nederlands Meteorologisch Instituut 399 
(KNMI), 2019; Boersma et al., 2018] at ~13:30 LST. We choose NO2 primarily due to its spatial 400 
heterogeneity [e.g., Souri et al., 2018; Nowlan et al., 2016, 2018; Valin et al., 2011; Judd et al., 401 
2020]. We oversample good quality pixels (qa_flag>0.75) through a physical-based gridding 402 
approach [Sun et al., 2018] over Texas at 3×3 km2 resolution in four seasons in 2019. We extract 403 
samples by uniformly selecting the NO2 columns in the center of each 30×30 km2 block. The 404 
semivariogram along with its model are calculated, and then we krige the samples. Figure 10 shows 405 
the NO2 columns map for four different seasons, the semivariogram, the kriging estimates, and the 406 
differences between the estimate and the field. High levels of NO2 are confined to cities indicating 407 
the sources being predominantly anthropogenic. Wintertime NO2 columns are larger than 408 
summertime mainly due to meteorological conditions and the OH cycle, the major sink of NO2. 409 
All semivariograms exhibit the hole effect. This is because of high values of NO2 being 410 
systematically surrounded by low values. Regardless of the season, we fit the stable Gaussian to 411 
variances at distances smaller than 2.5o (~275 km2). The b0 parameter explaining the range (or the 412 
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length scale) is found to be 0.94, 0.88, 0.71, and 0.83 degree for DJF, MAM, JJA, and SON, 413 
respectively. These numbers strongly coincide with the length scale of NO2; wintertime NO2 414 
columns are spatially more uniform around the sources thus in relative sense, they are more 415 
homogeneous (spatially correlated) than those in warmer seasons. On the other hand, the shorter 416 
NOx lifetime in summer results in a steeper gradient of NO2 concentrations. This tendency should 417 
not be generalized because transport and various NOx sources including biomass burning, soil 418 
emissions, and lightning and can have large spatiotemporal variability resulting in different length 419 
scales in different times of a year. The differences between the kriging estimate and the field show 420 
some spatial structures indicating that NO2 is greatly heterogenous. 421 
4.2. Optimized tessellation over Houston 422 

The preceding TROPOMI data enabled us to optimize a tessellation of ground-based point 423 
spectrometers over Houston. Our goal here is to propose an optimized network for winter 2021 424 
given our knowledge on the spatial distribution of NO2 columns in winter 2019 measured by 425 
TROPOMI. The assumption of using a retrospective NO2 field for informing a hypothetical future 426 
campaign is not entirely unrealistic. If we have a consistent number of pixels from TROPOMI 427 
between two years, it is unlikely for the spatial variance of NO2 to be substantially different for 428 
the same season. We follow the framework proposed in Sect. 2.2.3 involving randomly selecting 429 
samples from the field (for 50000 iteration), and calculating kriging estimates for a given number 430 
of spectrometers. We then chose the optimum tessellation based on the minimum sum of |𝑍P(𝑥Q) −431 
𝑍(𝑥)|.  432 

Figure 11 shows the optimized tessellation given 5, 10, 15, and 20 spectrometers over 433 
Houston. The Houston plume is better represented with more samples being used. All cases share 434 
the same feature; the optimized samples are clustered in the proximity or within the plume. This 435 
tendency is clearly intuitive. We are required to place the spectrometers in locations where a 436 
substantial gradient (variance) in the field is expected. The kriging estimate using 20 samples does 437 
not substantially differ in comparison to the one using 15 samples. A preferable strategy is to keep 438 
the number of spectrometers as low as possible while achieving a reasonable precision. Based on 439 
the presented results, the optimized tessellation using 15 samples is preferred among others. 440 
4.3. Validating OMI tropospheric NO2 columns during DISCOVER-AQ 2013 campaign using 441 
Pandora 442 

In order to understand ozone pollution [e.g., Mazzuca et al., 2016; Pan et al., 2017; Pan et 443 
al., 2015], characterize anthropogenic emissions [Souri et al., 2016, 2018], and validate satellite 444 
data [Choi et al., 2020], an intensive air quality campaign was made in September 2013 over 445 
Houston (DISCOVER-AQ). The campaign encompassed a large suite of Pandora spectrometer 446 
instrument (PSI) (11 stations) measuring total NO2 columns with a high precision (2.7×1014 447 
molecules cm−2) and a moderate nominal accuracy (2.7×1015 molecules cm−2) under the clear-sky 448 
condition [Herman et al., 2007]. We remove the observations with an error of >0.05 DU, 449 
contaminated by clouds, and averaged them over the month of September at 13:30 LST (± 30 450 
mins). We attempt to validate OMI tropospheric NO2 columns version 3.0 [Bucsela et al., 2013] 451 
refined in Souri et al. [2016] with the 4-km model profiles. The OMI sensor resolution varies from 452 
13×34 km2 at nadir to ~40×160 km2 at the edge of the scan line. Biased pixels were removed based 453 
on cloud fraction > 0.2, terrain reflectivity > 0.3, and main (xtrack) quality flags =0. Following 454 
Sun et al. [2018], we oversample high quality pixels in the month of September 2013 over Houston 455 
at 0.2o resolution. To remove the stratospheric contributions from PSI measurements, we subtract 456 
their columns from those of OMI stratospheric NO2 over the area (2.8±0.16 ×1015 molecules cm−2). 457 
Figure 12 shows the monthly-averaged tropospheric NO2 columns measured by OMI overplotted 458 
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by 11 PSIs. The elevated NO2 levels (up to ~6×1015 molecules cm−2) are seen over the center of 459 
Houston.  460 

We then follow the validation framework shown in Figure 9 in which the number of point 461 
measurements and the level of heterogeneity are the main factors in deciding if we should directly 462 
compare them to the satellite pixels. Figure 13 shows the monthly-averaged PSI measurements 463 
along with the semivariogram and resulting kriging estimate at an optimized resolution (~2 km2 = 464 
13800 data over the entire region) and errors. The distribution of semivariogram suggests that there 465 
is a strong degree of spatial heterogeneity, necessitating the use of kriging. We fit a stable Gaussian 466 

to the semivariogram resulting in 2.23 × (1 − 𝑒=(
J
L.��)

�.�
). The spatial information (variance) levels 467 

off at 0.19o (~21 km) with a maximum variance equal to 2.23 molecules2 cm−4. The measurements 468 
beyond this range (21 km) have a minimal weight due to this length scale. It is because of this 469 
reason that we see the kriging estimate converges to a fixed value at the grids being further than 470 
this range. The kriging errors of those grid cells are constantly large (40% relative error). The 471 
optimum grid size for kriging is found to be 2 km2 (<1% difference across all grids). Subsequently, 472 
we use the super Gaussian spatial response function described in Sun et al. [2018] to convolve 473 
both the kriging estimate and error within. Figure 14 shows the differences between the kriging 474 
estimate and error before and after convolution. The response function (OMI pixel) tends to be on 475 
average coarser than 2 km2 resulting in smoothing of both the kriging estimate and error. 476 

We ultimately conduct two different sets of comparison: directly comparing PSI to OMI 477 
pixels, and comparing convolved kriged PSI to OMI. It is worth noting that PSI measurements are 478 
monthly-averaged; similarly OMI data are oversampled in a monthly basis. In terms of the PSI, 479 
we only account for grid cells whose kriging error is below 1.2×1015 molecules cm−2 (1193 480 
samples, 8% of total kriging grids). As for the grid to grid comparison, the kriging variance is 481 
considered in the linear polynomial fitted to the data through the Monte Carlo of chi-square 482 
minimization with 5,000 iterations. The variability with the OMI stratospheric NO2 columns (0.16 483 
×1015 molecules cm−2) is added to the PSI error for both analyses. The left and right panels of 484 
Figure 15 show the comparisons. As for the direct comparison of actual points (PSI) to pixels 485 
(OMI), the PSI measurements indicate a deviation of the slope (r2=0.66) from the unity line. This 486 
suggests that there is an unresolved magnitude-dependent systematic error. The grid-to-grid 487 
comparison not only offers a clearer picture of the distribution of data points, but also it hints at 488 
the offset being rather constant (0.66±0.18×1015 molecules cm−2; r2=0.72). We also observe that 489 
the statistics between the satellite and the benchmark are moderately improved. This comparison 490 
in general provides an important implication: the varying offsets in a plume shape environment 491 
(high to low values) are not necessarily due to variable offsets in the satellite retrieval, as the 492 
kriging estimate suggests that those varying offsets in point-to-point comparison, manifested in 493 
slope = 0.76, are a result of varying spatial scales. 494 
Summary 495 

There needs to be increased attention to the spatial representativity in the validation of 496 
satellite (model) against pointwise measurements. A point is the element of space, whereas satellite 497 
(model) pixels (grids) are (at best) the product of the integration of infinitesimal points and a 498 
normalized spatial response function. If the spatial response function is assumed to be an ideal 499 
box, the resulting grid will represent the average. Essentially, no justifiable theory exists to accept 500 
that the averaged value of a population should absolutely match with a sample, unless all samples 501 
are identical (i.e., a spatially homogeneous field). This glaring fact is often overlooked in the 502 
atmospheric science community. At a conceptual level, we are required to translate pointwise data 503 
to grid format (i.e., rasterization). This can be done by modeling the spatial autocorrelation (or 504 
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semivariogram) extracted from the spatial variance (information) among measured sample points. 505 
Assuming that the underlying field is a random function with an unknown mean, the best linear 506 
unbiased predictions of the field can be achieved by kriging using the modeled semivariograms. 507 

In this study, we discussed methods for the kriging estimation of several idealized cases. 508 
Several key tendencies were observed through this experiment: first, the range corresponded to the 509 
degree of spatial heterogeneity; a larger range indicated the less presence of heterogeneity. Second, 510 
the kriging variance explaining the density of information quickly diverged from zero to large 511 
values when the field exhibited large spatial heterogeneity. This tendency mandates increasing the 512 
number of samples (observations) for those cases. Third, while the semivariogram models were 513 
constructed from discrete pair of samples, they are mathematically in a continuous form. It is 514 
because of this reason that we determined the optimal spatial resolution of the kriging estimate by 515 
incrementally making the grids finer and finer until a desired precision was met. 516 

The present study applied kriging to achieve an optimum tessellation given a certain 517 
number of samples such that the difference between our prior knowledge of the field, articulated 518 
by previous observations, models or theory, and the estimation is minimal. Usually there is 519 
uncertainty about the prior knowledge that should be propagated to the final estimates. The 520 
optimum tessellation for a range of idealized and real-world data consistently voted for placing 521 
more samples in areas where the gradients in the measurements were significant such as those 522 
close to point emitters. 523 

This study also revisited the spatial representativity issue; it limits the realistic 524 
determination of biases associated with satellites (models). In one experiment, we convolved the 525 
kriging estimate for a multi-plume field with a box filter but various sizes. The perfect agreement 526 
(r=1.0) between the samples (point) and kriging output (pixel) seen at a high spatial resolution 527 
gradually vanished with coarsening of the grids (r=0.8). We also directly compared samples (point) 528 
with pseudo satellite observations (showing the truth) with a coarse spatial resolution which led to 529 
a flawed conclusion about the satellite being biased-low. We modeled the semivariogram of those 530 
samples, estimated the field using kriging, and convolved with the pseudo-satellite spatial response 531 
function. The direct comparison of this output with that of the satellite showed a completely 532 
different story suggesting that the data were rather free of any bias. A serious caveat with using a 533 
spatial model (here kriging) is that it consists of errors: the estimations being further from samples 534 
are less certain. It is widely known that discounting the measurement/model errors in true straight-535 
line relationship between data can introduce artifacts. To consider the kriging variance in the 536 
comparisons we employed a Monte Carlo method on chi-square optimization which ultimately 537 
allowed us to not only provide a set of solutions within the range of the uncertainty of the kriging 538 
model, but also to assign smaller weights on gross estimates. 539 

We further validated monthly-averaged Ozone Monitoring Instrument (OMI) tropospheric 540 
NO2 columns using 11 Pandora Spectrometer Instrument (PSI) observations over Houston during 541 
NASA’s DISCOVER-AQ campaign. A pixel-to-point comparison between two dataset suggested 542 
varying biases in OMI manifested in a slope far from the identity line. By contrast, the kriging 543 
estimate from the PSI measurements, convolved with the OMI spatial response function, resulted 544 
in an inter-comparison slope close to the unity line. This suggested that there was only a constant 545 
systematic bias (0.66±0.18×1015 molecules cm−2) associated with the OMI observations which 546 
does not vary with increasing tropospheric NO2 column magnitudes. 547 

The central tenants of satellite and model validation are pointwise measurements. Our 548 
experiments paved the way for a clear roadmap explaining how to transform these pointwise 549 
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datasets to a comparable spatial scale relative to satellite observations. It is no longer necessary to 550 
ignore the problem of scale. The comparisons can be carefully conducted in the following steps: 551 

 552 
i. Construct the experimental semivariogram if the number of point measurements 553 

allows (usually >= 3 within the field; the field can vary depending on the length 554 
scale of the compound). 555 

ii. Drop the quantitative assessment if the number of point measurements are 556 
insufficient to gain spatial variance and the prior knowledge suggests a high 557 
likelihood of spatial heterogeneity within the field. 558 

iii. Choose an appropriate function to model the semivariogram. 559 
iv. Estimate the field with kriging (or any other spatial estimator capable of digesting 560 

the semivariogram) and calculate the variance. 561 
v. Estimate the optimum grid resolution of the estimate. 562 
vi. Convolve the kriging estimate and its variance with the satellite (model) spatial 563 

response function (which is sensor specific). 564 
vii. Conduct the direct comparison of the convolved kriged output and the satellite 565 

(model) considering their errors through a Monte Carlo (or at minimum a weighted 566 
least-squared method). 567 

 568 
Recent advances in satellite trace gas retrievals and atmospheric models have helped 569 

extend our understanding of atmospheric chemistry but an important task before us in improving 570 
our knowledge on atmospheric composition is to embrace the semivariogram (or spatial auto-571 
correlation) notion when it comes to the point-pixel comparisons, so that we can have more robust 572 
quantitative applications of the data and models. 573 
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Figures: 753 

 754 
Figure 1. (first column) Five theoretical fields randomly sampled with 200 points (dots), namely, 755 
a constant field (C1), a ramp starting from zero in the lower left to higher values in the upper right 756 
(C2), an intersection with concentrated values in four corridors (C3), a Gaussian plume placed in 757 
the center (C4), and multiple Gaussian plumes spread over the entire domain (C5). (second column) 758 
the corresponding isotropic semivariograms computed based on Eq.2; the red line shows the stable 759 
Gaussian fitted to the semivariogram based on Levenberg-Marquardt method. (third column) The 760 
kriging estimate at the same resolution of the truth (i.e., 1×1) based on Eq.6. (fourth column) The 761 
difference between the estimate and the truth. (fifth column) the kriging standard error based on 762 
Eq.11.  763 
  764 

https://doi.org/10.5194/amt-2021-253
Preprint. Discussion started: 24 September 2021
c© Author(s) 2021. CC BY 4.0 License.



 20 

 765 

 766 
Figure 2. (first column) The multi-plume case (C5) randomly sampled with different number of 767 
samples (5, 25, 50, 100, and 500), (second column) the corresponding isotropic semivariogram, 768 
(third column) the kriging estimate, (fourth column) the difference between the estimate and the 769 
truth, and (fifth column) the kriging standard error. 770 
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 773 
Figure 3. The multi-plume case (C5) randomly sampled by four different sampling strategies 774 
using a constant number of samples (25). The sampling strategies include purely random (first 775 
row), stratified random (second row), uniform grids (third row), and an optimized tessellation 776 
proposed based on kriging (fourth row). Columns represent the truth, the isotropic semivariogram, 777 
the kriging estimate, the difference between the estimate and the truth, and the kriging standard 778 
error. 779 
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 781 
Figure 4. A schematic illustrating a framework for optimum sampling (tessellation) strategy. The 782 
prior knowledge refers to any data being able of describing our quantity of interest including site-783 
visits, theoretical models, satellite observations, emissions, and etc. 784 
 785 
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 787 

 788 
Figure 5. Finding an optimum grid cell for kriging. (a) The kriging estimates of the ramp (C2) at 789 
different grid resolutions ranging from 25×25 pixel to 0.2×0.2. (b) The kriging estimates of the 790 
multi-plume (C5) with optimized samples shown in Figure 3 for different grid resolutions. C2 is 791 
more homogeneous than C5, as a result, it is less sensitive to the resolution of the kriging 792 
estimate. The optimum grid resolution for C2 is 10×10, whereas it is 1×1 for C5. These numbers 793 
are based on observing negligible difference (<1%) between the kriging estimate at the optimum 794 
resolution and the one computed at a finer resolution step. We call the optimum output for C5 as 795 
C5opt. 796 

 797 
 798 
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 800 
Figure 6. (first row) C5Opt outputs convolved with an ideal box kernel with different sizes (1×1 801 
up to 30×30) overlaid by the C5Opt optimum samples. (second row) the associated kriging errors 802 
convolved with the same kernel. The coarser the resolution is, the larger the discrepancy between 803 
the samples and the estimates is. 804 
 805 
 806 
 807 
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 809 
Figure 7. Illustrating the problem of spatial scale: comparisons of the kriging estimates at seven 810 
different spatial scales with the samples used for the C5opt estimation. The perceived 811 
discrepancies are purely due to the spatial representativeness. 812 
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 814 
 815 
 816 

 817 
 818 
Figure 8. (a) the direct comparison of pseudo observations of a satellite observing the C5 case at 819 
30×30 resolution versus the 25 samples used for C5opt. (b) same for y-axis, but the point samples 820 
are transformed to grids using kriging convolved with the satellite spatial response function (ideal 821 
box with 30×30 kernel size). The differences in statistics between these two experiments speak to 822 
the problem of scale. (b) ignores the kriging errors but (c) incorporates them using a Monte Carlo 823 
method. Note that the best linear fit has changed indicating that the consideration of the kriging 824 
variance is critical. MB = mean bias (point minus satellite), MAB = mean absolute bias, RMSE = 825 
root mean square error, R2 = coefficient of determination. 826 
  827 
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 828 
Figure 9. The proposed roadmap for transforming pointwise measurements to gridded data in 829 
satellite (model) validation.  830 
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 832 
Figure 10. (first column) The spatial distribution of TROPOMI tropospheric NO2 columns 833 
oversampled in four different seasons at 3×3 km2 spatial resolution. (second column) The 834 
corresponding semivariogram from samples selected from uniform 30×30 km2 blocks (shown 835 
with black dots in the first column) along the fitted stable Gaussian model (red line). (third 836 
column) the kriging estimates, and (fourth column) their differences with respect to the 837 
observations. 838 
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 841 

 842 
Figure 11. Finding an optimum sample tessellation for wintertime over Houston given different 843 
number of spectrometers (5, 10, 15, and 20). 844 
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 846 
 847 

Figure 12. The spatial distribution of OMI tropospheric NO2 columns oversampled at the resolution 848 
at 20×20 km2 over Houston in September 2013. The plot is overlaid by surface Pandora 849 
spectrometer instrument averaged over the same month. The surface measurements originally 850 
measured the total columns, therefore we subtract their values from the stratospheric columns 851 
provided by the OMI data (2.8±0.16 ×1015 molecules cm−2) to focus on the tropospheric part. 852 
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 855 
 856 

 857 
Figure 13. The Pandora tropospheric NO2 measurements (made from subtracting the total columns 858 
from the OMI stratospheric NO2 columns) during September 2013, the corresponding 859 
semivariogram, the kriging estimates, and the kriging standard errors. Note that the semivariogram 860 
suggests a large degree of spatial heterogeneity occurring at different spatial scales. 861 
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 863 
Figure 14. Convolving both kriging estimates and errors with the OMI spatial response function 864 
formulated in Sun et al. [2018]. The differences against the pre-convolved fields are also depicted. 865 
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 867 
 868 

Figure 15. (left): the direct comparison of OMI tropospheric NO2 columns with 11 pointwise 869 
Pandora measurements in September 2013 over Houston. (right) same for y-axis, but the PSI 870 
measurements are translated to grids using kriging convolved with the OMI spatial response 871 
function. PSI tropospheric NO2 columns are estimated based on subtracting their total columns 872 
from the OMI stratospheric NO2 ones (2.8±0.16 ×1015 molecules cm−2). We only consider kriging 873 
estimates whose errors are below 1.2×1015 molecules cm−2. The kriging variances are also 874 
considered using the Monte Carlo method on 𝜒2. The slope has improved after considering the 875 
modeled spatial representativeness. MB = mean bias (OMI vs Pandora), MAB = mean absolute 876 
bias, RMSE = root mean square error. 877 
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