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Abstract 16 
Sulfuric acid (H2SO4, SA) is the key compound in atmospheric new particle formation. Therefore, it is crucial to 17 
observe its concentration with sensitive instrumentation, such as chemical ionisation (CI) inlets coupled to 18 
Atmospheric Pressure interface Time-of-Flight mass spectrometers (APi-TOF). However, there are environmental 19 
conditions and physical reasons when chemical ionisation cannot be used, for example in certain remote places 20 
or flight measurements with limitations regarding chemicals. Here, we propose a theoretical method to estimate 21 
the SA concentration based on ambient ion composition and concentration measurements that are achieved by 22 
APi-TOF alone. We derive a theoretical expression to estimate SA concentration and validate it with accurate CI-23 
APi-TOF observations. Our validation shows that the developed estimate works well during daytime in the boreal 24 
forest (R2 = 0.85), however it underestimates the SA concentration in e.g. Antarctic atmosphere during new 25 
particle formation events where the dominating pathway for nucleation involves sulfuric acid and a base (R2 = 26 
0.48). 27 
 28 
 29 
1 Introduction 30 
Sulfuric acid (H2SO4, SA) is the key compound in atmospheric new particle formation (e.g. Weber et al., 1995, 31 
1996; Birmili et al., 2003; Kulmala et al., 2004; Kuang et al., 2008; Kerminen et al., 2010; Wang et al., 2011; 32 
Kulmala et al., 2014; Yao et al., 2018; Cai et al., 2021), therefore it is crucial to have accurate observations of its 33 
concentration. However, ambient concentrations of H2SO4 are low, commonly less than a part per trillion by 34 
volume (~2⋅107 molecules cm–3), making it challenging to measure it. During the recent years there have been 35 
instrumental developments towards a reliable detection of H2SO4 in the atmosphere, particularly via the 36 
development of a Chemical Ionisation Atmospheric Pressure interface Time-of-Flight mass spectrometer (CI-37 
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APi-TOF, Jokinen et al., 2012), using nitric acid as a reagent ion. Still, the measurement technique with CI-APi-50 
TOF is relatively challenging, as a thorough calibration i.e. with sulfuric acid as proposed by Kürten et al. (2012), 51 
is needed in order to get reliable numbers. Furthermore, the loss of sulfuric acid to surfaces, such as an inlet, and 52 
the correct flow rates must be known and characterised. 53 
 54 
During the past decade, Atmospheric Pressure interface Time-of-Flight mass spectrometers (APi-TOF, Junninen 55 
et al., 2010) have been deployed in several measurement campaigns where the use of a CI inlet was either not 56 
possible or desired. In these instances, the APi-TOF only observed the composition and concentration of ambient 57 
ions. The APi-TOF is capable of directly sampling and detecting naturally charged gas-phase ions, including 58 
molecular clusters, and is often being used to detect clustering processes as a first step of new particle formation 59 
on a molecular basis (e.g. Schobesberger et al., 2013; Jokinen et al., 2018; Beck et al., 2021). While a CI-APi-60 
TOF at best has a limit of detection around ~104 molecules cm-3 (~ ppq level), the APi-TOF can detect 61 
approximately 1% of the ambient ion concentration (Fig. 1, Junninen et al., 2010). With an average ion 62 
concentration of ~1000 cm-3 per polarity (Hirsikko et al., 2011), the APi-TOF is measuring 10 ions cm-3s-1 with a 63 
limit of detection of ~0.01 counts per second, hence 0.1 ions cm-3. This corresponds to approximately pps level 64 
(100⋅10-21), showing that the limit of detection of APi-TOF in comparison to CI-APi-TOF is lower by five orders 65 
of magnitudes. 66 
 67 
A detailed description of the APi-TOF can be found in Junninen et al., (2010). Since concentrations of neutral 68 
clusters are below the detection limit of CI-APi-TOF in many atmospheric conditions and environments, using 69 
the APi-TOF is currently the only way to directly detect atmospheric clustering. Therefore, if we can estimate 70 
H2SO4 concentration particularly during initial steps of new particle formation, based on the same dataset, we can 71 
readily get better insight into the process itself.  72 
 73 
Since there are only limited long term observations of H2SO4 concentrations, several proxies on this concentration 74 
have also been developed (e.g. Petäjä et al., 2009; Mikkonen et al., 2011; Lu et al., 2019; Dada et al., 2020). These 75 
proxies attempt to approximate the ambient H2SO4 concentrations using more readily measured quantities, in 76 
particular the sulfur dioxide concentration, (UV) radiation intensity and pre-existing particle number size 77 
distribution that can be used to calculate the condensation sink for gas-phase H2SO4. In circumstances where the 78 
required data for H2SO4 proxies are not available, but measurements with an APi-TOF were conducted, the H2SO4 79 
concentration can be obtained from the ion mass spectra. A first attempt of estimating the sulfuric acid 80 
concentration via the concentration of atmospheric ions was introduced by Arnold and Fabian (1980), followed 81 
by Eisele (1989) under the assumption that most H2SO4 molecules are charged by reacting with NO3-.  82 
 83 
Motivated by the reasonings outlined above, we derive here an expression to estimate H2SO4 concentration based 84 
primarily on APi-TOF observations and validate it. 85 
 86 
 87 
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 95 
Figure 1 Ion transmission of the APi-TOFs used in this study. The transmission efficiency was determined via production of 96 
charged particles with a NiCr wire. The concentration of the size selected ions with a Hermann nano differential mobility 97 
analyser (HDMA, Hermann, 2000) were measured with an electrometer and an APi-TOF in parallel. A more detailed 98 
description can be found in Junninen et al. (2010). Panel (a) shows the transmission efficiency of the APi-TOF used for 99 
measurements at the SMEAR II Station, Hyytiälä, Finland. Panel (b) shows the transmission efficiency used for measurements 100 
at the Neumayer Station III.  101 
  102 
2 Theoretical estimation of sulfuric acid concentration with bisulphate ion and H2SO4 clusters 103 
Ambient ion mass spectra have usually clear evidence of gas-phase H2SO4, predominantly in the form of 104 
bisulphate ion (HSO4-) and its adducts involving H2SO4, forming so-called dimers (H2SO4⋅HSO4-) as well as 105 
larger clusters (Ehn et al., 2010). These are due to the efficient scavenging of negative charge by ambient H2SO4 106 
via proton donation, and due to the high stability of the sulfuric acid-bisulphate ion clusters, in particular for the 107 
dimer (Ortega et al., 2014). In order to estimate the sulfuric acid concentration (H2SO4) using the measured 108 
naturally charged ions (see Fig. 2), we approximate this concentration by following the bisulphate ion HSO4-, 109 
herein denoted SAmonomer, the dimer cluster H2SO4⋅HSO4- (SAdimer) and trimer cluster (H2SO4)2⋅HSO4- (SAtrimer). 110 
Any other H2SO4-containing ion clusters, in particular those larger than the SAtrimer, typically occur at much 111 
smaller concentrations and will be neglected here.  112 
 113 
 114 
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 119 
Figure 2 (a) Mass spectrum from 50 to 600 Th measured with the APi-TOF on 24 May 2017 during the time period 08:00 – 120 
18:00 (local time) at SMEAR II station, Hyytiälä, Finland. (b) Mass spectrum from 14 January 2019 between 08:00 and 18:00 121 
(local time) at Neumayer Station III, Antarctica during a new particle formation event. The bisulphate ion HSO4- and H2SO4 122 
clusters containing it were used for the estimation of H2SO4 concentration, and are coloured in red.  123 
 124 
 125 
If we assume that the concentration of SAmonomer depends generally on its production rate (P1) and that its loss is 126 
by condensation onto aerosol particles (condensation sink, CS), to the SAdimer when clustering with another H2SO4 127 
molecule, and to ion-ion recombination with positive ions (Npos), we get the following equation for the SAmonomer 128 
concentration:  129 
 130 

 𝑑[𝑆𝐴!"#"!$%]
𝑑𝑡 = 	𝑃& − 	𝐶𝑆 ∙ [𝑆𝐴!"#"!$%] − 𝑃' − 	𝛼	 ∙ [𝑆𝐴!"#"!$%] 	 ∙ 	𝑁("),	

(1) 

 131 
where P2 = k1 × [SA!"#"!$%] × [H2SO4] is the dimer production rate due to SAmonomer-H2SO4 collisions, ɑ (≈ 1.6 132 
× 10-6 cm3 s-1) is the ion-ion recombination coefficient (Kontkanen et al., 2013), and the collision rate k1 is assumed 133 
to be constant. 134 
 135 
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For the dimer concentration we consider the production P2, the loss due to CS, the clustering of the SAdimer with 142 
H2SO4 with a rate constant k2, and the ion-ion recombination: 143 
 144 

 *[,-!"#$%]
*/

=	𝑃' − 	𝐶𝑆 ∙ [𝑆𝐴*0!$%] −	𝑘' ∙ [𝑆𝐴*0!$%] ∙ [𝐻'𝑆𝑂1] − 	𝛼	 ∙ [𝑆𝐴*0!$%] 	 ∙ 	𝑁("), 

 

(2) 

 145 
And with substituting P2, eq. 2 for SAdimer changes to:  146 
 147 

 *[,-!"#$%]
*/

=	𝑘& ∙ [𝑆𝐴!"#"!$%] ∙ [𝐻'𝑆𝑂1] − 	𝐶𝑆 ∙ [𝑆𝐴*0!$%] 	−	𝑘' ∙ [𝑆𝐴*0!$%] ∙ [𝐻'𝑆𝑂1] 	−

	𝛼	 ∙ [𝑆𝐴*0!$%] 	 ∙ 	𝑁("). 

(3) 

 148 
Finally, to produce SAtrimer we consider the collision of the SAdimer with H2SO4 and the loss to the CS and ion-ion 149 
recombination. For the sake of completeness, we would additionally have to consider the loss of SAtrimers to form 150 
the tetramer (H2SO4)3⋅HSO4, however this additional term is rather small and will therefore be neglected in this 151 
derivation. Therefore, we get the simplified equation for SAtrimer: 152 
 153 

 *[,-&%"#$%]
*/

=	𝑘' ∙ [𝑆𝐴*0!$%] ∙ [𝐻'𝑆𝑂1] − 𝐶𝑆 ∙ [𝑆𝐴/%0!$%] 	− 	𝛼	 ∙ [𝑆𝐴/%0!$%] 	 ∙ 𝑁("). (4) 

 154 
For simplification, we consider a pseudo-steady state condition for both dimers and trimers by setting the left-155 
hand side of eqs. (3) and (4) to be zero, which is justified when the dimer and trimer concentrations change at 156 
rates smaller than their overall production and loss rates. Thereby, from eq. (3) we obtain: 157 
 158 

 𝑘& ∙ [𝑆𝐴!"#"!$%] ∙ [𝐻'𝑆𝑂1]

= 	𝐶𝑆 ∙ [𝑆𝐴*0!$%] 	+	𝑘' 	 ∙ [𝑆𝐴*0!$%] ∙ [𝐻'𝑆𝑂1] + 		𝛼	 ∙ [𝑆𝐴*0!$%] 	 ∙ 	𝑁(") 

(5) 

 159 
and from eq. (4) we obtain: 160 
 161 

 𝑘' ∙ [𝑆𝐴*0!$%] ∙ [𝐻'𝑆𝑂1] = 	𝐶𝑆 ∙ [𝑆𝐴/%0!$%] + 	𝛼	 ∙ [𝑆𝐴/%0!$%] 	 ∙ 𝑁("). (6) 

 162 
If we now deploy equation (6) in equation (5) and solve for H2SO4, the result is:  163 
 164 

 𝑘& ∙ [𝑆𝐴!"#"!$%] ∙ [𝐻'𝑆𝑂1] = 	𝐶𝑆 ∙ [𝑆𝐴*0!$%] 	+ 	𝐶𝑆 ∙ [𝑆𝐴/%0!$%] + 		𝛼	 ∙ [𝑆𝐴*0!$%] 	 ∙

	𝑁(") + 	𝛼	 ∙ [𝑆𝐴/%0!$%] 	 ∙ 𝑁(")	, 

 

(7) 

 [𝐻'𝑆𝑂1] = 	
(3,	5	6	∙	8'())		∙	([,-!"#$%]5[,-&%"#$%])

:*	∙	[,-#(+(#$%]
. (8) 
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Besides the steady-state assumption, it should be noted that in deriving eq. 8 monomers, dimers and trimers were 175 
assumed to have the same loss rate (CS) onto pre-existing aerosol particles. This causes an additional, yet minor, 176 
uncertainty in estimated H2SO4 concentrations, as such loss rates are dependent on the size/mass of the clusters 177 
(e.g. Lehtinen et al., 2007; Tuovinen et al., 2021). According to Tuovinen et al. (2021), the CS of H2SO4 clusters 178 
decreases with increasing number of H2SO4 molecules. The study shows that the CS of the SAdimer clustered with 179 
ammonia decreases to 68% (compared to one H2SO4 molecule) and for SApentamer with four ammonia molecules 180 
to 42%. However, the order of magnitude of the CS remains the same, and the effect on the estimation of the 181 
H2SO4 concentration is assumed to be negligible. Additionally, the CS for ions is higher than for neutral 182 
compounds. The enhancement of CS has shown to reach a maximum value of 2 when the pre-existing particles 183 
are < 10 nm and decreases to 1 when the pre-existing particles are > 100 nm, as shown by Mahfouz and Donahue 184 
(2021).  185 
 186 
Furthermore, the derivation neglects the losses of SAtrimer to the SAtetramer and larger clusters, as well as the 187 
clustering of sulfuric acid ion clusters with water and base molecules, such as NH3. Those simplifications can 188 
cause an underestimation of the H2SO4 concentration with the presented method. If necessary, the method can 189 
easily be adapted, and bigger clusters can be included in the equation.   190 
 191 
From equation 8 we also see that the concentration of H2SO4 is proportional to relative concentrations of sulfuric 192 
acid monomers, dimers and trimers clustered with the bisulphate ion: 193 
 194 

 
[𝐻'𝑆𝑂1]	~	

[𝑆𝐴*0!$%] + [𝑆𝐴/%0!$%]
[𝑆𝐴!"#"!$%]

 
(9) 

 195 
To estimate the H2SO4 concentration with the ion mode APi-TOF, we can therefore use this theoretical approach, 196 
in particular Eq. 8. For the collision rate of H2SO4 with HSO4- we use  k1 = 2⋅10-9 cm3 molecule-1 s-1 as in Lovejoy 197 
et al., (2004). The value of CS is calculated based on Kulmala et al., (2012). Even if the CS was unknown due, 198 
for example, to the lack of particle measurements, the daytime variability of the H2SO4 concentration could still 199 
be estimated only by using the relation of the H2SO4-containing cluster with HSO4-, as it is proportional to the 200 
H2SO4 concentration (see eq. 9). If the concentration of positive small ions is not available, it can be assumed to 201 
be in the range of 500 – 1000 cm-3 which is a reasonable approximation for the average concentration (Hirsikko 202 
et al., 2011). 203 
 204 
As the transmission of clusters within an APi-TOF depends on the tuning of the instrument and on the pressures 205 
within its chambers, the transmission efficiency needs to be considered, in order to get reliable concentrations of 206 
the SAmonomer, SAdimer, and SAtrimer. Fig. 1 shows the transmission efficiency curve of the APi-TOF used at the 207 
SMEAR II station and Neumayer Station III. The effect of applying the transmission correction to the different 208 
SA clusters is depicted in Fig. 3 for the time series at the SMEAR II station. All ion signals were normalised to a 209 
transmission of 1%. As can be determined from Fig. 1a, the SAmonomer’s transmission at SMEAR II was ~1%, 210 
while the dimer and trimer were corrected by a factor of 1/1.8 and 1/1.65, respectively. The correction was also 211 
applied on the ions measured at the Neumayer Station III according to the APi-TOF’s transmission (Fig. 1b). 212 
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 214 
Figure 3 Time series of the bisulphate ion (HSO4

-, SAmonomer), H2SO4 clustered with bisulphate (H2SO4⋅HSO4-, SAdimer), two 215 
H2SO4 molecules clustered with the bisulphate ion ((H2SO4)2⋅HSO4-, SAtrimer) and three H2SO4 molecules clustered with the 216 
bisulphate ion ((H2SO4)3⋅HSO4-, SAtetramer) between 19 and 27 May 2017 at SMEAR II station, Hyytiälä, Finland. The 217 
concentration is given in ions s-1 as measured by the APi-TOF. The upper panel shows the concentration of the clusters 218 
considering the transmission efficiency of the instrument (see Fig. 1). The lower panel shows the concentration of the clusters 219 
without that correction and assuming a constant transmission efficiency of 1% for all ions.  220 
 221 
3 Validation 222 
We tested the expression derived above using a dataset collected during inter-comparison measurements at the 223 
SMEAR II station in Hyytiälä, Finland (Hari and Kulmala, 2005). In Fig. 4 we show the time series of the observed 224 
H2SO4 concentrations, measured with a CI-APi-TOF. The CI-APi-TOF was calibrated for sulfuric acid, based on 225 
the method by Kürten et al., (2012) and resulted in a calibration factor of 2.5 × 109. Additionally, we show the 226 
estimated sulfuric acid concentration based on APi-TOF measurements together with Eq. 8 and the sulfuric acid 227 
proxy concentration (Dada et al., 2020). The concentration of positive ions for the estimated sulfuric acid 228 
concentration was obtained from a Neutral cluster and Air Ion Spectrometer (NAIS, Airel Ltd., Mirme and Mirme, 229 
2013). 230 
 231 
The estimated H2SO4 concentration agrees with the measured one during most of the daytime. Between 06:00 and 232 
18:00 local time, the correlation (R2) between the estimated and measured H2SO4 concentration is equal to 0.85 233 
with a root mean square error (RMSE) of 4.12 × 105 cm-3. During night-time, the corresponding values are 0.85 234 
and 3.23 × 105 cm-3 (Table 1).   235 
 236 
The scatter plot in Fig. 5 shows that the estimated H2SO4 concentrations agree well with the observed one when 237 
H2SO4 concentrations are larger than 2 × 106 cm-3, demonstrating that our method works particularly well at the 238 
SMEAR II station during conditions that favour the formation of H2SO4-containing clusters. 239 
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 252 
 253 
Table 1: Root mean square error (RMSE) and R2 of the estimated H2SO4 concentration at the SMEAR II station and Neumayer 254 
Station III. The day- and night-time are split in 06:00 – 18:00 local time (LT) and 18:00 – 06:00 LT, respectively. For the 255 
SMEAR II station, we also show the RMSE and R2 of the H2SO4 proxy calculated with the introduced method by (Dada et al., 256 
2020).  257 

 Root mean square error (RMSE) 

SMEAR II Neumayer Station III 

Estimated H2SO4 
eq. (8) 

H2SO4 proxy  Estimated H2SO4 
eq. (8) 

Daytime  4.12 × 105 cm-3 5.54 × 105 cm-3 1.43 × 106 cm-3 

Night-time  3.23 × 105 cm-3 4.25 × 105 cm-3 1.63 × 106 cm-3 

 R2 

Daytime  0.85 0.78 0.48 

Night-time  0.85 0.84 0.37 
 258 

 259 
Figure 4 (a) Time series of measured H2SO4 concentration from the CI-APi-TOF (black) and estimated H2SO4 concentration 260 
from the APi-TOF (blue) and H2SO4 proxy from Dada et al. (2020) (orange) between 19 and 27 May 2017. The concentration 261 
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is given in molecules cm-3. (b) Measured H2SO4 concentration as in panel (a) in black and determined concentration from eq. 268 
2 (blue) and eq. 4 (orange). (c) Temperature and relative humidity. 269 
 270 

 271 
Figure 5 Measured H2SO4 concentration using a CI-APi-TOF (horizontal-axis) versus estimated H2SO4 concentration based 272 
on APi-TOF results (vertical-axis) at SMEAR II station. For the estimation of H2SO4, the transmission efficiency was taken 273 
into account. The colour is indicating the hour of the day and the black line is the 1:1 ratio. Between 08:00 and 16:00 local 274 
time, the concentrations are agreeing well. The shown data contains the time period from 19 to 27 May 2017. The overall 275 
correlation coefficient (Pearson) is 0.94.  276 
 277 
For the sake of completeness, the estimation of the H2SO4 concentration determined from Eqs. 2 and 4, assuming 278 
pseudo-steady state, are depicted in Fig. 4b. The estimated H2SO4 concentration from Eq. 2 is highly 279 
overestimating, since the losses of the SAdimer to the SAtrimer are neglected. When solving Eq. 4 for H2SO4, only 280 
the needed H2SO4 for the formation of the trimer is considered and the monomer and dimer production are 281 
neglected. Consequently, the resulting estimated H2SO4 concentration is vastly underestimating the real 282 
concentration.  283 
 284 
The presented method was also applied to measurements taken at the Neumayer Station III, Antarctica, in order 285 
to test it in a different environment. Here, we used the condensation sink reported by Weller et al. (2015) at 286 
Neumayer Station of 1 × 10-3 s-1. Figure 6 shows a three-week period between 24 December 2018 and 14 January 287 
2019. The calibration factor of the CI-APi-TOF used for measuring the sulfuric acid concentration is 4.9 × 109. 288 
Here, the estimated sulfuric acid concentration underestimates the measured concentration when the SAtetramer and 289 
NH3(H2SO4)3HSO4- cluster show high concentrations (Fig. 6c). A possible explanation for the underestimation 290 
might be the neglection of the growth of sulfuric acid to oligomers larger than the tetramer, as well as its clustering 291 
with bases and water (Fig. 6b and c). In coastal Antarctica, the main nucleating mechanism was observed to be 292 
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negative ion-induced sulfuric acid-ammonia nucleation, acting as a major sink for sulfuric acid molecules due to 302 
its clustering with bases (Jokinen et al., 2018). Including the SAtetramer and SAtetramer clustered with NH3 in the 303 
estimation equation improved the correlation (R2) from 0.48 to 0.54. Nevertheless, the diurnal variation of the SA 304 
concentration is represented well by this method. During times with lower sulfuric acid concentrations, our 305 
method gives higher values than the measured concentrations (Fig. 6). 306 

 307 
Figure 6 (a) Time series of measured H2SO4 concentration from the CI-APi-TOF (black) and estimated H2SO4 concentration 308 
from the APi-TOF (blue) between 24 December 2018 and 14 January 2019 at Neumayer Station III, Antarctica. The 309 
concentration is given in molecules cm-3. (b) Time series of the bisulphate ion (HSO4

-, SAmonomer), H2SO4 clustered with 310 
bisulphate (H2SO4⋅HSO4-, SAdimer), two H2SO4 molecules clustered with the bisulphate ion ((H2SO4)2⋅HSO4-, SAtrimer) and (c) 311 
three H2SO4 molecules clustered with the bisulphate ion ((H2SO4)3⋅HSO4-, SAtetramer) as well as the SAtetramer clustered with 312 
NH3.  (d) Temperature and relative humidity measured at Neumayer Station III. 313 
 314 
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 315 
Figure 7 Measured H2SO4 concentration using a CI-APi-TOF (horizontal axis) versus estimated H2SO4 concentration based 316 
on APi-TOF results (vertical axis) at the Neumayer Station III. For the estimation of H2SO4, the transmission efficiency was 317 
taken into account. The colour is indicating the hour of the day and the black line is the 1:1 ratio. The shown data contains the 318 
time period from 24 December 2016 to 14 January 2019. The overall correlation coefficient (Pearson) is 0.77. 319 
 320 
 321 
4 Conclusions 322 
Here we derived a theoretical expression to estimate H2SO4 concentrations based on APi-TOF measurements of 323 
ambient ions. The estimation agrees well with the measured concentration during daytime in the boreal forest (R2 324 
= 0.85), indicating that the estimation is able to represent the diurnal variation and trend of H2SO4 concentrations 325 
during most of the time when active clustering of sulfuric acid is inducing the initial step(s) of atmospheric new 326 
particle formation. However, in an atmosphere, where sulfuric acid is the dominating pathway for initiating new 327 
particle formation, the method might underestimate the H2SO4 concentrations, as this method does not include the 328 
rapid clustering to bigger of sulfuric acid clusters and clustering with bases directly, e.g. in the Antarctic 329 
atmosphere (R2 = 0.48; during daytime).  330 
 331 
The APi-TOF’s “ion mode”, i.e. direct ion sampling without chemical ionisation, remains a crucial tool in many 332 
field deployments and laboratory studies, since it is extremely sensitive and allows for observing atmospheric 333 
clustering molecule by molecule, which in most cases is impossible when relying on chemical ionization. 334 
Therefore, having available a reliable estimate of H2SO4 concentration allows us to utilise the APi-TOF ion mode 335 
even more effectively. 336 
 337 
 338 
Data availability 339 
The data can be accessed via Zenodo (10.5281/zenodo.5266313). 340 
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