
We would like to thank the reviewers for their comments. Below, we address the comments by the 
reviewers. The reviewers’ comments are typed in bold font and our replies to them in regular font. To 
help the reviewers, we also list some parts of the revised manuscript in our replies and these parts are 
typed in italic font or with quotation marks for small comments. Below our replies, we also show a 
revised version of the manuscript showing all the changes made in the revision. 
 
In addition to corrections according to referee comments, we have also made some minor (e.g. typos, 
grammar) related changes to the manuscript. These changes can be seen in the manuscript below 
indicating all the changes made since the submitted version. 

 

Referee 1 
 
This paper provides a bias-correction to the Sentinel 3 synergy aerosol data. The method is based 
on a previously (and recently) published approach by the authors, Lipponen et al (2021), though I 
feel there is enough difference here to warrant a new publication. The previous application was to 
MODIS aerosol retrievals; the current work is to a higher resolution product (300 m) for which (I 
believe) the primary purpose is atmospheric correction for land cover retrievals. Atmospheric 
correction-based aerosol products are traditionally worse than aerosol-focused aerosol products as 
in surface-focused cases the atmospheric parameters are often used as an error sink. So doing a 
bias-correction of them is useful in that it provides a finer resolution aerosol data set than typically 
available from atmosphere-focused products (which are typically more spatially aggregated in the 
level 1 to level 2 stage). The bias correction is done using machine learning; a comparison is also 
made to a fully learned (i.e. level 1 to level 2) machine learning approach. Correcting for the 
“approximation error” (retrieval error) is expected to be better than a fully-learned approach as the 
former gains some benefit from retrieval skill (there is less to learn) and that is reasonably borne 
out by the results presented here. Having a finer spatial resolution is beneficial for eventual air 
quality applications. 
 
The paper is well-written and in scope for the journal. I believe this, combined with Lipponen et al 
(2021), provide enough evidence that the technique is in principle generalizable. This is important 
as it implies a fast bias correction could be done for many data sets, which is better for most 
downstream applications. The authors mention air quality though this is also important for data 
assimilation which ideally needs unbiased inputs with understood uncertainty characteristics. I 
don’t have any major concerns with what is presented here, and so recommend publication 
following minor revisions. I would be happy to review the revision if the Editor wishes. I applaud 
the authors for noting that the code will be available, as this can help speed uptake and 
transparency is in general a good thing. Hopefully it will be available by the time the final version of 
this paper is published such that it can be linked directly. I also downloaded the animation linked in 
the paper and confirm that works and is useful. I will note I am not a machine learning expert so 
have not commented on the details of that; I recommend at least one reviewer should have machine 
learning expertise in order to judge that aspect. 
 
We thank the referee for the encouraging and positive feedback. We have prepared and published in 
GitHub a code package to post-process correct Sentinel-3 data. The link to this code repository is in 
the “code and data availability” section of the manuscript. We also added link to the post-process 
corrected Sentinel-3 aerosol data for year 2019 and all regions of interest. 
 
My specific comments are as follows: 
 



1. Throughout, the authors cite Lipponen et al (2020) for their prior work; this appears to be 
the preprint of the final Lipponen et al (2021) paper describing this technique applied to 
MODIS. I assume this is an oversight but it should be corrected. 

 
Thank you for noting. Reference to Lipponen et al (2021) was updated. 

 
2. Section 3.1: The authors link to the ESA website to describe the Sentinel 3 source retrievals. 

Are there no publications or tech documents that can be cited here? The linked page is not 
informative (it’s basically to a catalogue of products, no ATBD or validation report etc). I 
would like to know a bit about the general Sentinel 3 synergy algorithm approach, e.g. how 
the SLSTR and OLCI measurements (with different pixel sizes) are used and combined, what 
the main assumptions are (it looks from Figure 5 like a fixed value of AE is used, for 
example). The Conclusions notes that the standard synergy aerosol product is at 4.5 km but 
it is not clear to the reader why, especially if this is primarily an atmospheric correction 
algorithm which is normally done at fine resolution, and the SLSTR data are 1 km or finer – 
do they do the atmospheric correction at coarser scale than the surface retrieval? Or are the 
“land” and “aerosol” synergy products entirely separate? I know this is not the authors’ 
algorithm but presumably the synergy product is not a mystery black box (someone 
somewhere knows what the algorithm is) and as an ESA product this information should be 
available to the public somewhere such that a summary can be given here. If not then please 
point this comment to the responsible ESA official because there really needs to be some 
documentation for a data product if it is put out to the public. It is all frustratingly opaque 
and, after clicking around the ESA site for some time, I was unable to satisfy my curiosity. 

 
According to referee’s suggestion the Synergy algorithm ATBD was cited. The publicly available ATBD, 
however, is quite old and corresponds to the older version of the algorithm than the operational 
algorithm. New version of the ATBD does not seem to be publicly available. We have given feedback 
to ESA for easier access of the information about the Synergy algorithm technical details. 
 
The spatial resolution difference in land and aerosol AOD is due to entirely separate land and aerosol 
Synergy data products. In our manuscript, we only consider the higher resolution “land” AOD. 
 

3. Section 3.2: I believe the preferred citation for AERONET version 3 direct Sun is Giles et al 
(2019): https://amt.copernicus.org/articles/12/169/2019/ This should be given in addition 
to or instead of Holben et al (1998). 
 

Yes, we have now also cited the Giles et al. (2019) for a reference to the latest AERONET version 3 
Direct Sun. 

 
4. Section 3.3: elsewhere in the paper the authors (rightly) note that some previous machine 

learning studies give an artificially high impression of performance by not having 
independent training and validation data sets. In this section the authors note that they split 
training/validation data by station, which is better than splitting individual observations 
within individual stations. I agree with this. However, it does seem a bit of a missed 
opportunity not to test the approach on something fully outside of the selected regions of 
interest, and more fully independent from the training set. Figure 2, for example, reveals 
many sites (individual or clustered) outside of these regions. I suggest the authors extend 
their validation to a few of these “untrained” sites or regions to see what the benefit of the 
networks is there – this will provide more evidence for how applicable the model is on a 
global scale with limited regional training. I know data volume is limited considering only 1 
year of data but hopefully we can say something at least. I would suggest looking at sites in 



Amazonia (contrast between clear seasons and heavy biomass burning, in a somewhat 
cloudy environment), Korea/Japan (mixed aerosol types, good AERONET site density), 
and/or Australia (traditionally a difficult area for aerosol retrievals). The paper is not too 
long and I think adding this would add substantial further interest to the reader without 
making the length excessive. The Korea example dovetails well with my final point below. 
 

Thank you for the very good comment regarding the results completely outside the training data set. 
We agree that ideally, we could consider looking at the regions listed by the referee. However, we do 
not have the data available and the official Copernicus Open Access hub sharing Sentinel-3 data has 
already archived the data for year 2019 so it would be very tedious to get the analysis done. Instead, 
we have carried out an additional analysis in which we evaluate the generalization capabilities of our 
approaches in Central Europe. In this additional analysis, we take the training data from all other 
regions of interest (Eastern USA, Western USA, Southern Africa, India), train the fully learned and post-
process correction models and apply these models to Central Europe data. Please find the results in 
the figure below. 

 
Figure 1. AOD (550 nm) for Central Europe and year 2019. Machine learning models are trained 
using data outside Central Europe region. Left: Sentinel-3 level-2 Synergy product. Middle: Fully 

learned regressor model. Right: post-process correction. 
 
We have added this figure to the manuscript and added the following paragraph to the Results section 
of the manuscript: 

To study the generalization capabilities of the models, we carried out a test in which we 
evaluated the fully learned and post-process correction models’ accuracy in the Central 
Europe region. The machine learning models were trained using data from regions of interest 
outside Central Europe (Eastern USA, Western USA, Southern Africa, India). The test aimed to 
evaluate how the models generalize to data far from the training data regions, possibly with 
different dominant aerosol types and surface reflectances. Figure 1 [Fig. 1 in this reply to 
referees, Fig. 9 in the manuscript] shows the results for this test for the AOD at 550 nm in the 
Central Europe region. The post-process correction results in clearly more accurate AOD 
estimates than the fully learned model. The result indicates that using the training data from 
nearby regions improves the model performance, and the post-process correction model 
performs better than the fully learned model also  in regions far from the training data 
regions. 

 
We also added the following paragraph in the conclusions: 

 



We also studied the generalization capabilities of the machine learning models. The results show 
that the post-process correction model performs better than the fully learned model also when 
trained using data from distant regions. Ideally, in an operational setting, the machine learning 
models would be trained using global data, but, for example, in AOD retrievals, regardless of the 
high number of AERONET stations, there are always some regions with a relatively poor 
AERONET coverage. Therefore, based on our results, we expect the post-process correction 
method to perform better than the fully learned models in these regions. 

 
5. Figure 8: It is ok to have the scale different for each row because each region is quite 

different. But I think the scale for each panel in a given row should be made the same, for 
more direct comparability. I acknowledge that the scale is quite different because the 
uncorrected synergy product is a lot higher than the others, but if a logarithmic scale were 
used (as in figure 7) I feel the plots would be better without loss of contrast within and 
between them. 
 

Figure 8 was improved according to the referee’s suggestion – now each row (city) has the same 
logarithmic color scale. Also, the colormap was changed to the same as used in Figure 7. 

 
6. Conclusions: the authors’ fully-learned and bias-corrected approaches clearly work better 

than the standard synergy aerosol data at the AERONET sites. The regional maps also look 
more reasonable. But there is an uncertain middle ground on the scales of a few to tens of 
km. It’s hard to know whether some of the fine structure in these maps is real variation, 
statistical noise, or surface-related artefacts. For example, returning again to Figure 8, there 
are AOD hotspots corresponding to the built-up locations. With only 1 or 2 AERONET sites 
in each area, how are we to know if this spatial structure is real? This is not a problem the 
authors can fully solve but it is something that should be acknowledged. I know there have 
been some regionally-dense AERONET deployments (dozens of sites in a comparable 
region); Korus-AQ (summer 2016) was early in the Sentinel 3 era with 20 AERONET sites 
(Choi et al 2021: https://doi.org/10.1016/j.atmosenv.2021.118301 ), maybe that could be 
looked at (here or elsewhere). There is also a network of shadowband radiometers 
providing aerosol properties distributed around the Southern Great Plains ARM site region 
in the USA which I believe were operational during 2019 
(https://www.arm.gov/capabilities/instruments/mfrsr ). For me this “variability on tens of 
km” scales is the key next step we need to solve as we move toward better fine-scale aerosol 
retrievals. In addition to expanding the text to draw more attention to this issue (which may 
attract further studies/funding on the problem) I encourage the authors to expand the 
paper by looking at one or both of these areas, if data are available, to take a first step. 

 
We agree with the referee that it is very difficult to evaluate the accuracy of the high-resolution 
features of AOD in the presence of only sparse AERONET measurements. We have acknowledged this 
in the conclusions by adding the following paragraph: 

We acknowledge the difficulty in validating the high spatial resolution satellite aerosol data 
products as accurate high-resolution spatial coverage aerosol validation data does not exist. 
There are, however, some ground-based and aircraft measurement campaigns such as 
Distributed Regional Aerosol Gridded Observations Network (DRAGON) (Garay et al., 2017; 
Virtanen et al., 2018, e.g.), KORea–United States Air Quality (KORUS-AQ) (Choi et al., 2021, 
e.g.), and the Atmospheric Radiation Measurement (ARM) program (Javadnia et al., 2017, 
e.g.) that could provide helpful insight on high-resolution aerosol features. Using the campaign 
data from these campaigns to validate the high-resolution satellite aerosol retrievals is a 
potential topic for future studies. 

 



 
 
Referee 2 
 
This article applied a previous developed concept of using machine learning (ML) to bias-
correct aerosol optical depth (AOD) and other aerosol data from conventional aerosol 
product. Original concept of ML post-processing of satellite data against ground truth is 
introduced in author’s previous journal articles. This time a feed forward neural network is 
used on Sentinel-3 data to produce two aerosol products: machine learning generated 
aerosol data and bias-corrected Level-2 Synergy Product.  The article claims that the post-
process corrected the Sentinel-3 synergy product is a high resolution, better accuracy data 
products than the original aerosol product and the aerosol product generated from pure 
FFNN model.  Within resent decade, machine learning has been rapidly applied to Earth 
Science field. One of doubtfulness of relying on ML is that the approach is not based on 
physics. The idea of machine learning post-process include both the state of art machine 
learning technique and traditional algorithm-based approach, which maintain the physics 
within the retrieval process. It is a conservative way of using ML and if successful, can be 
applied to many fields. However, the statement of the post-process corrected aerosol data 
has higher accuracy than full ML predicted aerosol data is not convincing, especially in terms 
of AOD. Figure 4, 5, and 6 all show comparisons between these two products. There is no 
significant improvement from post-process corrected product to full machine learning 
output.  Although the error statistics against AERONET are slightly better in post-process 
corrected data, when investigate details in Figure 4 we can see that the overestimation of 
AOD especially at AOD < 0.2, is amplified in post-process corrected data than fully learned 
regressor model output. The smaller bias statistics in post-processed product is balanced by 
the overestimation in low AOD regime (AOD < 0.2) and underestimation in high AOD regime 
(AOD > 0.5). If we look at other evaluation plots, such as error histogram or error diagnostic 
plot. We may have much better look at the error distribution of two data sets.  Similarly for 
AE comparisons, it is hard to say that the accuracy of AE prediction is improved between 
the two ML-involved products. 
 
We thank the referee for the careful evaluation of our manuscript and the comments. 
 
We kindly disagree with the referee’s statement “There is no significant improvement from post-
process corrected product to full machine learning output.” At first, the absolute improvements may 
not seem significant. However, the relative improvement, for example, in AOD at 550 nm is significant 
(R2 improves by about 9%, RMSE is about 8% smaller, and BIAS decreases by 20% in post-process 
corrected model when compared to fully learned model). In some applications, such as data 
assimilation, these relative improvements may be significant for the accuracy of the data assimilation 
model. 
 
The referee also claims that “…when investigate details in Figure 4 we can see that the overestimation 
of AOD especially at AOD < 0.2, is amplified in post-process corrected data than fully learned regressor 
model output.”. This claim is not true. The biases for AERONET AOD smaller than 0.2 and larger than 
0.5 are shown in the tables 1 and 2 below. The post-process corrected AOD has the best bias metric 
for all wavelengths (best model shared with the fully learned model in 3 cases) and thus the data does 
not support the referee’s claim. 
 



Table 1. AOD biases corresponding to data points with AERONET AOD smaller than 0.2. The gray 
background indicates the best-performing model. 

Wavelength Synergy AOD bias Fully learned AOD 
bias 

Post-process 
corrected AOD bias 

440 nm 0.380 0.011 0.011 
500 nm 0.333 0.010 0.010 

550 nm 0.303 0.010 0.009 

675 nm 0.249 0.008 0.008 
870 nm 0.188 0.007 0.006 

 
Table 2. AOD biases corresponding to data points with AERONET AOD larger than 0.5. The gray 

background indicates the best-performing model. 
Wavelength Synergy AOD bias Fully learned AOD 

bias 
Post-process 

corrected AOD bias 

440 nm 0.484 -0.294 -0.271 
500 nm 0.417 -0.267 -0.245 

550 nm 0.379 -0.243 -0.222 

675 nm 0.299 -0.194 -0.175 

870 nm 0.247 -0.137 -0.122 
 

We added the following paragraph to the results section: 
To evaluate the models' performance in low and high AOD conditions, we evaluated the 
results corresponding to AERONET AOD at 550 nm smaller than 0.2 and larger than 0.5. The 
results are shown in Table 1 [of the manuscript]. The post-process corrected model results in 
the best bias metric in both low and high AOD conditions. In addition, the post-process 
corrected model results in the best R2 in low AOD and the best RMSE in high AOD conditions. 
The fully learned model results in about 4 % lower RMSE than the post-process corrected 
model in small AOD. The Synergy R2 is the best for the high AOD cases but there are only 163 
samples in the high AOD cases so more data would be needed for more reliable evaluation of 
the models in high AOD conditions. 

 
We also added the following table of the results for low and high AOD in the manuscript: 
 

 
 
 



 
 
Other specific comments are: 
 
Line 27, atmospheric spelled wrong. 
 
Corrected. 

 
Line 67 remove “accurate” 
 
Removed. 

 
Line 107 In section ?  missing a number. 
 
Corrected. “In section 2,…” 

 
Line 190 please specific list the time/spatial criteria for collocation. 
 
The temporal and spatial collocation is now better described. The sentence citing Petrenko et al. 
(2012) was revised to: “We use the same ±30 minutes temporal thresholds for the collocation 
procedure as in Petrenko et al. (2012) and spatial collocation radius of 5 km.” 

 
Line 197-198 Can random split for each region result in data from a few sites dominate the 
results for one region? 
 
We have tested how the random split affects the results by running the analyses with multiple 
different random splits. As there are quite many stations in each region of interest there are no single 
station that would dominate the results and therefore different random splits do not significantly 
change the results. To show this result to the readers we have added the following sentences to the 
manuscript: “To study the effect of randomness on the splits of AERONET stations, we tested our 
approach with multiple random splits. We did not observe significant differences in the results 
between different random splits of the AERONET stations.” 

 
Line 211-212 Regarding normalization method. If we use all data mean/std to do the z-score 
standardization, all the data is converted equally still within the same scale as they are 
originally.  What is the point of normalization? For fill data, what average is used? and how 
much missing data is there? 
 
The normalization is often used in machine learning to ensure we do not run into numerical problems 
due to input values of different orders of magnitudes. Large differences in the values of the data may 
cause numerical problems in the training or evaluation of the neural network. This is the reason we 
carried out the normalization. 

The missing values were filled with the average value of the corresponding variable in the training 
data set (in the manuscript: “In case some of the inputs contains a missing value, it is filled with the 
average value of the training dataset.”) 

Most of the missing values were due to different swath widths of OLCI, SLSTR nadir and oblique 
views. On average, there were about 8 % and 6 % missing values in the fully learned model and post-
process correction model datasets, respectively. We added the following sentence to the 



manuscript: “On average the input data of the fully learned and post-process correction models 
contained about 8 % and 6 % of missing values, respectively.” 

Section 3.5 What is the accuracy for the two-folds testing results for 
training/testing/validation datasets? 
 
As mentioned in the manuscript we have split the data into two sets by random selection of AERONET 
stations. In the evaluation, the models are always trained using the other set and evaluated using the 
other. In the training of the neural network models, we use, according to proper machine learning 
practices, early truncation based on monitoring of the validation loss to avoid overfitting. The accuracy 
metrics for the data computed using the models trained on the same data are significantly better than 
the ones computed for the stations not included in the training data. This is expected and well-known 
behavior in machine learning and should be avoided. We think it is not informative to present the 
overoptimistic results that contain evaluation data corresponding to models trained with same data. 
To get an idea of this type of evaluation results for AOD at 550 nm obtained with models trained on 
the same data see the figure below. 
 
 

 
Figure 2. AOD (550nm). Left: Sentinel-3 level-2 Synergy product. Middle: Fully learned regressor 

model trained. Right: Post-process correction model. Please note the models have been evaluated 
using the training datasets and thus do not represent the true error metric values. 
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Abstract. Satellite-based aerosol retrievals provide global spatially distributed estimates of atmospheric aerosol

parameters that are commonly needed in applications such as estimation of atmospherically corrected satellite data

products, climate modeling and air quality monitoring. However, a common feature of the conventional satellite

aerosol retrievals is that they have reasonably low spatial resolution and poor accuracy caused by uncertainty in

auxiliary model parameters, such as fixed aerosol model parameters, and the approximate forward radiative transfer5

models utilized to keep the computational complexity feasible. As a result, the improvement and re-processing of the

operational satellite data retrieval algorithms would become a tedious and computationally excessive problem. To

overcome these problems, we have developed a machine learning-based post-process correction approach to correct

the existing operational satellite aerosol data products. Our approach combines the existing satellite retrieval data

and a post-processing step where a machine learning algorithm is utilized to predict the approximation error in the10

conventional retrieval. With approximation error we refer to the discrepancy between the true aerosol parameters

and the ones retrieved using the satellite data. Our hypothesis is that the prediction of the approximation error

with a finite training data set is a less complex and easier task than the direct fully learned machine learning based

prediction in which the aerosol parameters are directly predicted given the satellite observations and measurement

geometry. With our approach, there is no need to re-run the existing retrieval algorithms and only a computationally15

feasible post-processing step is needed. Our approach is based on neural networks trained based on collocated satellite

data and accurate ground based AERONET aerosol data. Based on our post-processing approach, we propose a post-

process corrected high resolution Sentinel-3 Synergy aerosol product, which gives a spectral estimate of the aerosol

optical depth at five different wavelengths with a high spatial resolution equivalent to the native resolution of the

Sentinel-3 level-1 data (300 meters at nadir). With aerosol data from Sentinel-3A and 3B satellites, we demonstrate20

that our approach produces high-resolution aerosol data with better accuracy than the operational Sentinel-3 level-2

Synergy aerosol product or a conventional fully learned machine learning approach.
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1 Introduction

Climate change is one of the biggest challenges our society is facing today (IPCC, 2021). Despite the rapidly

progressing climate research, projections of the future climate still contain large uncertainties with anthropogenic25

aerosol forcing being among the largest sources of these uncertainties (Pachauri et al., 2014). If more accurate global

information about the athmospheric
::::::::::
atmospheric

:
aerosol parameters such as the aerosol optical depth (AOD) and

Angstrom exponent (AE), and consequently of their product aerosol index (AI), were available, it would enable more

accurate modelling of anthropogenic aerosol forcing and could lead to a significant reduction of the uncertainties

in future climate projections. Another major challenge for our societies is air quality. In 2017, 2–25% of all deaths30

worldwide were attributable to ambient particulate matter pollution (GBD 2017 Risk Factor Collaborators, 2018).

To monitor more accurately air quality and pollution sources near real time spatially high resolution estimates of

aerosols are needed (van Donkelaar et al., 2015).

Ground based aerosol observations can be obtained from the Aerosol Robotic Network (AERONET) which uti-

lizes ground based direct sun photometers (Holben et al., 1998)
::::::::::::::::::::::::::::::::::
(Giles et al., 2019; Holben et al., 1998). AERONET35

stations produce accurate information on aerosols because they directly observe the attenuation of solar radiation

without interference from land surface reflections. However, AERONET has the limitation that the network consist

of a few hundreds of irregularly spaced measurement stations, leading to a very limited and sparse spatial coverage

of aerosol information. The only way to get wide spatial coverage information on aerosols is to use satellite retrievals.

Aerosol satellite retrieval algorithms produce estimates of the aerosol optical properties such as AOD given the40

satellite observation data such as the top-of-athmosphere reflectances or radiances and the information on the

observation geometry. Satellite retrieval algorithms have been developed for multiple satellite instruments and the

available satellite aerosol data records span already time series that are over 40 years long (Sogacheva et al., 2020).

Examples of satellite aerosol data products include the Moderate Imaging Spectroradiometer (MODIS) aerosol

products (Salomonson et al., 1989; Levy et al., 2013), and Sentinel-3 Synergy aerosol products.45

A satellite aerosol retrieval requires solution of a non-linear inverse problem, where the task is to find aerosol

parameters that minimize a misfit (such as the least squares residual) between the satellite observation data and a

forward model, which models the causal relationship from the unknown aerosol parameters to the satellite observation

data. Atmospheric monitoring satellites cover the globe almost daily with spatial high resolution observation data,

resulting in huge amount of daily data to be processed by the retrieval algorithms. Due to the excessive amount of50

data, the operational aerosol retrieval algorithms employ physically and computationally reduced approximations of

radiative transfer models as the forward models (e.g. lookup-tables) and relatively simple inverse problem approaches,

which often ignore some of the observation data to reach fast computation times (Dubovik et al., 2011). Further, the

retrieval algorithms typically produce spatially averaged aerosol products that have lower spatial resolution compared

to the native satellite level-1 observation data. Because of these approximations and reductions, the aerosol retrievals55

have limited accuracy and sub optimal spatial resolution.
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Machine learning based solutions have been recently proposed for satellite aerosol retrievals in many studies.

Compared to conventional inverse problems approaches, machine learning based solutions lead to much faster com-

putation time (once the model has been trained) and they also offer a flexible framework for utilization of learning

data based prior information in the retrieval. Most of the machine learning approaches to aerosol retrieval employ60

a fully learned approach where the machine learning model is trained to emulate the retrieval directly, that is,

to predict the values of the unknown aerosol parameters given the satellite observation data (top-of-atmosphere

radiances or reflectances) and observation geometry as the inputs. In Randles et al. (2017) neural network based

fully learned aerosol retrievals are assimilated into NASA’s MERRA-2 re-analysis model. In Di Noia et al. (2017), a

fully learned neural network model is used to retrieve the initial AOD for an iterative retrieval algorithm. In Lary65

et al. (2009), a fully learned approach with MODIS retrieved AOD and the surface type as additional inputs was

used for the AOD retrieval from MODIS data. The results of Lary et al. (2009) were validated using the accurate

(AERONET ) data Holben et al. (1998)
::::::::::
AERONET

:::::
data

::::::::::::::::::::::::::::::::::
(Holben et al., 1998; Giles et al., 2019). The authors were

able to reduce the bias of the MODIS AOD data from 0.03 to 0.01 with neural networks, while with support vector

machines even better improvement was reported - AOD bias was less than 0.001 and the correlation coefficient with70

AERONET was larger than 0.99. However, they performed validation using all the available AERONET network

stations both for training and validation. The split between the training and validation datasets was carried out

using random sets of the MODIS pixel values. With the random split of all pixels, the data samples from the same

AERONET station were present both in training and evaluation datasets, leading potentially to overfitting as the

model learns, for example, the surface properties at the locations of the AERONET stations and can thus predict75

the aerosol properties very accurately at these locations but may not generalize well to data from other regions.

In Albayrak et al. (2013), a neural network based fully learned model was trained and evaluated for MODIS AOD

retrieval. In their model, MODIS reflectances, measurement geometry information, MODIS AOD and its quality

flag were used as the input to predict the AOD. They found their model to produce more accurate AOD retrievals

than the operational MODIS Dark Target algorithm. In Lanzaco et al. (2017), a slightly different type of machine80

learning based approach was used to improve satellite AOD retrievals. The authors used MODIS AOD retrievals

and local meteorology information as inputs to predict the AOD in South America. This approach that combines

the conventional AOD retrievals and local meteorology information was found to improve the AOD accuracy over

the operational MODIS AOD. A problem in fully learned approaches is that they rely only on the training data and

do not employ physics-based models in the retrievals. This may cause problems for the model to generalize to cases85

in which the inputs are outside the input space spanned by the training dataset.

In Lipponen et al. (2021) we proposed a model enforced machine learning model for post-process correction of

satellite aerosol retrievals. The key idea in the model enforced approach is to exploit also the model and information

of the conventional retrieval algorithm and train a machine learning algorithm for correction of the approximation

error in the result of the conventional satellite retrieval algorithm. Previously, the post-process correction approach90

has been found to produce more stable and accurate results than a fully learned approach in generation of surrogate
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simulation models (Lipponen et al., 2013, 2018) and in medical imaging, see for example Hamilton et al. (2019). The

advantages of the model enforced post-process correction approach are improved accuracy over the existing data

products and fully learned machine learning approach, and the possibility to post-process correct existing (past)

satellite data products with no need for full recalculation of the retrievals. In Lipponen et al. (2021), the model95

enforced approach was combined with a Random Forest regression algorithm for post-process correction of MODIS

AOD and AE products using collocated MODIS and AERONET aerosol data for training the correction model for

the approximation error in AOD and AE in the MODIS DT over land product. The post-process correction was

found to yield significantly improved accuracy over the MODIS AOD and AE retrievals, and the correction approach

resulted in better accuracy retrievals than the fully learned machine learning approach.100

In this paper, we propose a post-process corrected high resolution Sentinel-3 Synergy aerosol product. The product

is based on the high resolution Sentinel-3 level-2 Synergy land product aerosol parameters with 300 meter spatial

resolution and the model enforced machine learning approach, where a feed forward neural network is trained for

post process
::::::::::
post-process

:
correction of the approximation error in the Sentinel-3 level-2 Synergy aerosol product.

The training of the neural network is based on collocated Sentinel-3 Synergy and AERONET data from five selected105

regions of interest. Given the Sentinel-3 observation data and high resolution aerosol products as input, our model

produces an estimate of the AOD at five wavelengths utilizing the native 300m resolution of the Sentinel-3 observation

data.

The rest of this paper is organized as follows. In section
::::::
Section

:::
2, we describe the approximation error model for

post-process correction of the satellite aerosol retrieval. Section 3 explains the preprocessing of the Sentinel-3 and110

AERONET data for machine learning and the neural network model used for the regression task. Section 4 gives

the results and Section 5
:::::
gives the conclusions.

2 Post-process correction model of satellite aerosol retrievals

Let y ∈ Rm denote an accurate satellite aerosol retrieval

y = f(x), (1)115

where vector y contains the output of the satellite retrieval algorithm, f : Rn 7→ Rm is an accurate retrieval algorithm

and x ∈ Rn contains all the algorithm inputs including the observation geometry and level-1 satellite observation

data such as the top-of-atmosphere reflectances. Typically, the retrieval is carried out one image pixel at a time and

the aerosol retrieval y can consist, for example, AOD and AE for a single image pixel, or as in the present study,

AOD in a single image pixel at five wavelengths.120

In practice, due to uncertainties in the auxiliary parameters, such as land surface reflectance, of the underlying

forward model utilized in the retrieval, extensive computational dimension of the problem and processing time
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limitations, it is not possible to construct an accurate retrieval algorithm f but an approximate retrieval algorithm

ỹ≈ f̃(x) (2)

has to be employed instead. The approximate retrieval f̃ is typically based on physically simplified and computation-125

ally reduced approximate forward models that are used due to huge amount of data and the need for computational

efficiency. The utilization of the approximate retrieval algorithm leads to an approximation error

e(x) = f(x)− f̃(x) (3)

in the retrieval parameters.

The core idea in the model enforced post-process correction model is to improve the accuracy of the approximate130

retrieval (2) by machine learning techniques Lipponen et al. (2021). By Equations (1)-(3), the accurate retrieval can

be written as

y = f(x)

= f̃(x) +
[
f(x)− f̃(x)

]
= f̃(x) + e(x). (4)135

To obtain the corrected retrieval, Equation (4) is used to combine the conventional (physics based) retrieval algorithm

f̃(x) and a machine learning based model ê(x) to predict the realization of the approximation error e(x) to obtain

a corrected retrieval

y≈ f̃(x) + ê(x). (5)

Note that this approach is different from a conventional fully learned machine learning model in which the aim is to140

emulate the accurate retrieval algorithm f(x) with a machine learning model

y≈ f̂(x) (6)

that is trained to predict the retrieval y directly from the satellite observation and geometry data x, see Figure 1

for a flowchart of fully learned and model enforced regression models.

The reason why the model enforced approach (5) can be expected to perform better than the fully learned model (6)145

is that the approximation error e(x) is a simpler function for machine learning regression than the full physics-based

retrieval f(x) thus resulting in more accurate results than with a fully learned approach Lipponen et al. (2013, 2018).

Also, while the fully learned approach utilizes an ensemble of satellite observation data as learning data, the model

enforced approach utilizes also the additional information in the approximate retrievals. Also, as the training of

the post process
:::::::::::
post-process

:
correction is based on existing satellite data and retrievals, the implementation can150

be done in a straightforward manner, for example, using black-box machine learning code packages and used for

correction of past satellite retrievals without recomputing the approximate retrieval products f̃(x). In addition, the

post process
:::::::::::
post-process

:
correction model is also flexible with respect the choice of the statistical regression model,

and the choice of the regression model can be tailored to different retrieval problems separately.
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ê(x)

Satellite Data
Product

ymodel enforced

Figure 1. Top: Conventional satellite retrieval. Middle: Fully learned machine learning based satellite retrieval approach.

Bottom: Model enforced post-process correction
::
of satellite retrieval approach.

3 Methods155

This section describes the construction of the learning and test data for the machine learning retrieval of Sentinel-3

aerosol product with the post-process correction model (5) and the fully learned model (6). The selection of the

neural network models and training of the networks is also described. For training and validation of the post-process

correction, we use the high resolution Sentinel-3 level-2 Synergy and AERONET aerosol data.

3.1 Sentinel-3 satellite datasets160

Sentinel-3 is a European ocean and land mission. Currently two satellites related to this mission (Sentinel-3A and 3B)

are flying and collecting data. In this study, we use the Sentinel-3 Ocean and Land Color Instrument (OLCI) and Sea

and Land Surface Temperature Radiometer (SLSTR) data. OLCI is a medium-resolution imaging spectroradiometer

(spatial resolution about 300 m at nadir) with 21 spectral bands from 400 to 1020 nm
:::::::
1020nm. SLSTR is an imaging

radiometer with dual-view capabilities. The pixel size of SLSTR is from 500 meters to 1 km and spectral coverage is165

from visible to thermal infrared in 9 standard bands (S1-S9). The swaths of these two instruments overlap allowing

combined products that exploit data from both instruments. The high resolution Sentinel-3 level-2 Synergy land

aerosol product
:::::::::::::::::::::::
(North and Heckel, 2010) is this type of combined product which we will post-process correct by the

model (5).
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We use both level-1b and level-2 data of the Sentinel-3 satellite mission data products from both Sentinel-3A and170

Sentinel-3B satellites. The level-1b data includes the information about the measurement geometry and the satellite

observed reflectances. The level-2 data includes the Synergy retrieval data and the corresponding quality information.

We use the SLSTR level-1b data from the product SL_1_RBT, OLCI level-1b data from the OL_1_ERR data product

and Sentinel-3 level-2 data from the SY_2_SYN data product. We use year 2019 data in our study. For more information

on the Sentinel-3 mission datasets, see https://sentinel.esa.int/web/sentinel/missions/sentinel-3/data-products. The175

Sentinel-3 data used in the models are listed in the appendix.

3.2 AERONET

AERONET is a global network of sun photometers Holben et al. (1998)
::::::::::::::::::
(Holben et al., 1998). AERONET has a

Direct Sun data product that has both the AOD and AE data that we will use for training and testing of the

machine learning models. AERONET is commonly used as an independent data source and all the data is publicly180

available at the AERONET website (http://aeronet.gsfc.nasa.gov/). An extensive description of the AERONET

sites, procedures and data provided is available from this website. Ground-based sun photometers provide accurate

measurements of AOD, because they directly observe the attenuation of solar radiation without interference from land

surface reflections. The AOD estimated uncertainty varies spectrally from ±0.01 to ±0.02 with the highest error in

the ultraviolet wavelengths Eck et al. (1999)
:::::::::::::::::::::::::::::::
(Giles et al., 2019; Eck et al., 1999). In this study, we use AERONET,185

Version 3, level-2, Direct Sun algorithm data. The AERONET variables used in our studies are listed in the appendix.

3.3 Regions of interest

The training and testing of the post process
:::::::::::
post-process correction model is based on Sentinel-3 and AERONET

data for year 2019 from five regions of interest shown in Figure 2. The regions of interest were selected so that different

types of aerosol regions based on aerosol source and type, AOD values and different types of surface reflectances are190

included and also that the areas have good enough coverage of AERONET stations.

The data for the machine learning procedures consist of collocations of Sentinel-3 pixels with aerosol information

and AERONET data. We use similar
:::
the

:::::
same

::::
±30

:::::::
minutes

:::::::::
temporal

:::::::::
thresholds

:::
for

::::
the collocation procedure as in

Petrenko et al. (2012) but with reduced
:::
and

::::::
spatial

::::::::::
collocation

:
radius of 5 km. We also require that the aerosol data

in the pixels we use is not flagged as filled, climatology data, too low values, high error, partly cloudy or ambiguous195

clouds. Furthermore, we require that the pixels we use do not contain any cosmetic level-1 data. Our selections lead

to a total number of 5526 collocated Sentinel-3 - AERONET overpasses for the machine learning procedures.

The AERONET stations were divided to separate training, validation and testing sets for good generalization of

the machine learning procedures. More specifically, the stations were randomly split into two sets for two-fold cross

validation. To ensure as equal spatial distribution of AERONET stations as possible in both sets, we carried out the200

random split separately for each region of interest.
::
To

:::::
study

::::
the

:::::
effect

:::
of

:::::::::::
randomness

:::
on

:::
the

:::::
splits

:::
of

:::::::::::
AERONET

7
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Figure 2. Regions of interest. Black dots indicate locations of AERONET stations.

:::::::
stations,

:::
we

::::::
tested

:::
our

:::::::::
approach

::::
with

::::::::
multiple

:::::::
random

::::::
splits.

:::
We

::::
did

:::
not

:::::::
observe

:::::::::
significant

::::::::::
differences

::
in

:::
the

:::::::
results

:::::::
between

::::::::
different

:::::::
random

::::::
splits

::
of

:::
the

:::::::::::
AERONET

::::::::
stations.

:

3.4 Input and output data for the machine learning models

The aerosol retrieval y ∈ R5 in both, the post-process correction approach (5) and the fully learned approach (6),205

consist of AODs for a single 300× 300m2 (at nadir) image pixel at wavelengths 440nm, 500nm, 550nm, 675nm and

870 nm
::::::
870nm. These wavelengths are native wavelengths in the AERONET and Sentinel-3 level-2 Synergy aerosol

products in the sense that the AERONET produces AOD at 440nm, 500nm, 675nm and 870nm and the Synergy

product at 550nm.

In the fully learned model (6), the regression target y ∈ R5 consist of the AERONET AODs at the selected five210

wavelengths. The AERONET AOD at the Synergy 550nm channel was estimated as the mean of AOD 550nm

obtained from Angstrom law based on AERONET AOD at 500nm and AE 440-870nm. The input data for the fully

learned model contains Sentinel-3 satellite geometry and observation variables for a single image pixel. All the input

and output variables were standardized by subtracting the training data set mean and dividing by the standard

deviation. To retain the spectral dependency of the AOD values at different wavelengths, all the AOD variables were215

standardized together using the mean and standard deviation of all AOD wavelengths. In case some of the inputs

contains a missing value, it is filled with the average value of the training dataset. We also add a binary (0/1) inputs

for each input variable to indicate if the data was filled. These selections and processing leads to an input vector

x ∈ R90.
::
On

::::::::
average

:::
the

:::::
input

:::::
data

::
of

:::
the

:::::
fully

:::::::
learned

::::
and

:::::::::::
post-process

:::::::::
correction

:::::::
models

:::::::::
contained

::::::
about

:::
8%

::::
and
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:::
6%

::
of

:::::::
missing

::::::
values,

::::::::::::
respectively. See the appendix for the Sentinel-3 data file variable names of the the inputs and220

outputs.

In the post-process correction approach, the regression target e ∈ R5 consist of the approximation error between

AERONET and Synergy spectral AOD. The Synergy aerosol product contains AOD and AE at 550 nm
::::::
550nm, which

are transformed by the Angstrom law to obtain the Synergy AOD product at the wavelengths 440nm, 500nm, 675nm

and 870nm. The input data of the post-correction model contains the same geometry and level-1 data variables that225

are used in the fully learned model plus the Sentinel-3 level-2 Synergy aerosol data. Furthermore, the inputs and

outputs are standardized and the missing values filled similarly as for the fully learned model. These selections lead

to an input x ∈ R156.

3.5 Deep learning based regression models

A fully connected feedforward neural network was selected as the model for the supervised learning tasks of estimating230

the regressors f̂(x) in (6) and ê(x) in (5). In the neural network, the rectified linear unit (ReLu) was used as the

activation function for all the hidden layers and no activation function was employed for the output layer. The

weight coefficients of the neural net were estimated by minimization of the MSE loss functional with the ADAM

optimizer. In the network training, batch size was 512, initial learning rate 5 · 10−5 and the termination criteria for

the learning was set to maximum 10000 epochs or until validation loss started to increase with patience tolerance235

set to 10 epochs. For further information on deep learning and neural networks, see e.g. (Goodfellow et al., 2016).

The architechture of the feedforward neural networks were optimized by utilizing the Asynchronous Successive

Halving Algorithm (ASHA) (Li et al., 2020). In the ASHA optimization the maximum number of trial network

architectures was set to 2500 and the algorithm was allowed to use up to 500 epochs in a single trial. The space

of feasible states for the number of hidden layers in the ASHA optimization was set to (2,3,4) and the number of240

nodes in the hidden layers was allowed to be up to the number of elements in the input vector x. The optimization of

the network architechtures by ASHA led to the network structures shown in Figure 3 for the fully learned approach

f̂(x) and the post-process correction approach ê(x). These network acrhitectures were utilized in the final training

of the models.

3.6 Implementation245

The neural network computations were implemented in Python utilizing Pytorch and the ASHA optimization utilizing

the Ray-tune package. The codes for the fully learned model and post-process correction model will be made available.

See the code and data availability for information on how to obtain the code to run the post-process correction and

load a sample dataset.
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Figure 3. Schematic figure of neural network architectures used. Top: Correction network ê(x). Bottom: Regression network

f̂(x).

4 Results250

The accuracy of the post-process correction is tested using AERONET data as the ground truth for the aerosol

retrievals and the results are compared to the high resolution Sentinel-3 level-2 Synergy aerosol product and to the

fully learned retrieval model (6).

Figure 4 shows scatter plots of the AOD retrievals with the Sentinel-3 level-2 Synergy product (left column), fully

learned machine learning (middle column) and post-process correction model (right column) against the AERONET255

data at all the test data stations at the four visible to near infrared wavelengths 440nm, 500nm, 675nm and 870nm

measured by the AERONET. Each figure shows the coefficient of determination based correlation coefficient R2,
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root mean squared error (RMSE), and median bias as the metrics to compare the retrievals. The figures show also

the ratio of samples that are inside the Dark Target over land expected error (EE) envelope of ±(0.05+15%). As can

be seen, the machine learning approaches improve clearly the accuracy of the AODs compared to the high resolution260

Sentinel-3 level-2 Synergy product. Between the two machine learning approaches, the post-process correction model

has otherwise better R2, RMSE and median bias error metrics than the fully learned model with the exceptions of

the bias being the same as with the fully learned model at 500nm and 675nm. The ratio of samples inside the Dark

Target EE envelope are very similar with the post-process correction and fully learned models. A notable feature in

the figures is that there are significantly less samples and relatively more ”outliers” for large AOD values than for265

small AOD values. The accuracy of the machine learning estimates also improves for the higher wavelengths, which

do contain fewer high AOD values. These findings can be attributed to the fact that the learning data contains

relatively few samples for large AOD (the number of samples with AOD>0.5 is less than 5%). This indicates that

more high AOD value learning data would be needed to improve the prediction of the high AOD values.

Figure 5 shows comparison of AOD at the native Sentinel-3 level-2 Synergy wavelength 550nm, AE and AI. Given270

the estimated AODs at the five wavelengths, the AE was estimated as a separate post processing
::::::::::::::
post-processing

step by utilizing the standard approach (e.g. in AERONET) where AE is estimated by a least squares fit to the

linearization of the Angstrom law. In AERONET, the AE estimation is carried out using ordinary least squares

type of method that rejects clear outliers from the data to improve the outlier tolerance of the AE estimation. The

difference to AERONET AE obtained using ordinary least squares fitting with no outlier treatment, however, is275

small. The aerosol index (AI) is computed then as product of the AOD and AE. AI has been considered as a better

proxy for cloud condensation nuclei (CCN) than AOD (Gryspeerdt et al., 2017), since AI is more sensitive than

AOD to the accumulation mode aerosol concentration. Figure 5 shows that the machine learning approaches lead to

clearly improved estimates of AOD 550nm, AE and AI compared to the Sentinel-3 level-2 Synergy product. The post

process
:::::::::::
post-process correction approach produces the best RMSE, R2 and EE metrics for the AOD estimates. From280

the AE estimates, we observe that the high resolution Sentinel-3 level-2 Synergy AE product is uninformative as it

produces the same constant value (approximately 1.1) for all of the test data points with a wide range of AERONET

AEs. For the AE, the post-process correction approach has smaller bias and visibly better correlation (with nearly

two times larger R2 metric) but worse RMSE than the fully learned model. For the AI the post-process correction

has better RMSE, bias and R2 metrics compared to the fully learned model.285

Figure 6 shows AERONET and Sentinel-3-based time series of AOD at 550 nm
::::::
550nm

:
over three AERONET

stations, Madrid, Paris, and Rome Tor Vergata for year 2019. In all stations, the overestimation of AOD by the

Sentinel-3 level-2 Synergy product is evident. The Sentinel-3 level-2 Synergy AOD has also a clear seasonal cycle

with higher AODs occuring on summer and lower AOD on winter. Both the fully learned model and post process

:::::::::::
post-process corrected Sentinel-3 Synergy AOD are in very good agreement with the AERONET AOD. Furthermore,290

the regressor and post process
::::::::::
post-process

:
correction model AOD capture very well the events of elevated AOD

with duration of some days.
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In Figure 7, monthly averages of AOD at 550 nm
:::::
550nm

:
in western Europe for January, April, July and October

2019 are shown for the Sentinel-3 level-2 Synergy, fully learned model and post-process correction model based data.

Again, the significantly higher AOD of Sentinel-3 level-2 Synergy compared to the other two models is evident. The295

figure also clearly shows that the amount of data varies quite significantly throughout the year mainly due to clouds

and snow and more data is available for April and July than January and October. All datasets show some spatial

variations of AOD over Europe and some cities and regions, such as Paris, France and Po Valley, Italy, clearly show

up in AOD maps.

Figure 8 shows monthly averages of AOD at 550 nm
::::::
550nm

:
for Madrid, Paris and Rome in July 2019. The300

filled circles in the images indicate the monthly averages of the AERONET stations present in the regions. The

Sentinel-3 level-2 Synergy data product clearly produces a much higher AOD values then the fully learned and

post-process correction models, and the overestimation with respect to AERONET is also evident. The Sentinel-3

level-2 Synergy AOD is also, due to spatial median filtering of the data, much smoother than the two other models.

For the fully learned and post-process correction models, the AOD values are very close to the AERONET AODs at305

the AERONET sites and some high-resolution features are also clearly visible in the data. For all three cities, both

the fully learned and post-process correction model show some neighbourhoods with elevated AOD. The correction

model AOD shows even more details and less artefacts than the fully learned model AOD. For example in Rome,

the road from the city center to the airport is clearly visible from the AOD data while the regression model does not

show this road. The fully learned model also has some more box-shaped spatial anomalies than the other models.310

::
To

::::::
study

::::
the

:::::::::::::
generalization

::::::::::
capabilities

:::
of

::::
the

:::::::
models,

:::
we

:::::::
carried

::::
out

::
a
::::
test

:::
in

::::::
which

:::
we

:::::::::
evaluated

::::
the

:::::
fully

::::::
learned

::::
and

::::::::::::
post-process

:::::::::
correction

::::::::
models’

::::::::
accuracy

::
in

::::
the

:::::::
Central

:::::::
Europe

:::::::
region.

::::
The

::::::::
machine

::::::::
learning

:::::::
models

::::
were

:::::::
trained

:::::
using

:::::
data

:::::
from

:::::::
regions

:::
of

:::::::
interest

:::::::
outside

:::::::
Central

::::::::
Europe

::::::::
(Eastern

:::::
USA,

::::::::
Western

::::::
USA,

:::::::::
Southern

::::::
Africa,

:::::::
India).

::::
The

::::
test

::::::
aimed

:::
to

::::::::
evaluate

::::
how

:::
the

:::::::
models

::::::::::
generalize

::
to

:::::
data

:::
far

:::::
from

::::
the

:::::::
training

:::::
data

::::::::
regions,

:::::::
possibly

:::::
with

::::::::
different

:::::::::
dominant

::::::
aerosol

::::::
types

::::
and

::::::
surface

::::::::::::
reflectances.

::::::
Figure

::
9
::::::
shows

:::
the

:::::::
results

:::
for

::::
this

::::
test

:::
for315

:::
the

:::::
AOD

::
at

:::::::
550nm

::
in

:::
the

::::::::
Central

::::::
Europe

:::::::
region.

::::
The

:::::::::::
post-process

::::::::::
correction

::::::
results

::
in

:::::::
clearly

:::::
more

::::::::
accurate

:::::
AOD

::::::::
estimates

:::::
than

:::
the

::::
fully

:::::::
learned

::::::
model.

::::
The

::::::
result

::::::::
indicates

::::
that

:::::
using

:::
the

::::::::
training

::::
data

:::::
from

::::::
nearby

:::::::
regions

::::::::
improves

:::
the

::::::
model

::::::::::::
performance,

::::
and

:::
the

:::::::::::
post-process

::::::::::
correction

::::::
model

::::::::
performs

::::::
better

:::::
than

:::
the

::::
fully

:::::::
learned

::::::
model

::::
also

:::
in

::::::
regions

:::
far

:::::
from

:::
the

::::::::
training

::::
data

::::::::
regions.

::
To

::::::::
evaluate

::::
the

:::::::
models’

:::::::::::
performance

:::
in

:::
low

::::
and

::::
high

::::::
AOD

::::::::::
conditions,

:::
we

:::::::::
evaluated

:::
the

::::::
results

:::::::::::::
corresponding

:::
to320

::::::::::
AERONET

:::::
AOD

:::
at

::::::
550nm

:::::::
smaller

::::
than

:::
0.2

::::
and

::::::
larger

::::
than

::::
0.5.

::::
The

::::::
results

::::
are

::::::
shown

::
in

:::::
Table

::
1.
::::
The

::::::::::::
post-process

::::::::
corrected

::::::
model

::::::
results

:::
in

:::
the

::::
best

::::
bias

:::::::
metric

::
in

:::::
both

:::
low

::::
and

:::::
high

:::::
AOD

::::::::::
conditions.

::
In

:::::::::
addition,

:::
the

::::::::::::
post-process

::::::::
corrected

::::::
model

::::::
results

:::
in

:::
the

::::
best

::::
R2

::
in

::::
low

:::::
AOD

::::
and

:::
the

::::
best

:::::::
RMSE

::
in

:::::
high

:::::
AOD

::::::::::
conditions.

::::
The

:::::
fully

:::::::
learned

:::::
model

:::::::
results

::
in

:::::
about

::::
4%

:::::
lower

::::::
RMSE

:::::
than

:::
the

:::::::::::
post-process

:::::::::
corrected

::::::
model

::
in

:::::
small

::::::
AOD.

::::
The

:::::::
Synergy

:::
R2

::
is
::::
the

::::
best

:::
for

:::
the

:::::
high

:::::
AOD

:::::
cases

::::
but

:::::
there

:::
are

:::::
only

:::
163

::::::::
samples

::
in

::::
the

::::
high

:::::
AOD

:::::
cases

:::
so

:::::
more

::::
data

::::::
would

:::
be

:::::::
needed325

::
for

:::::
more

:::::::
reliable

::::::::::
evaluation

::
of

::::
the

::::::
models

:::
in

::::
high

:::::
AOD

:::::::::::
conditions.
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Table 1.
::::
Error

::::::
metrics

:::
for

:::
the

:::::::
satellite

::::
data

:::::::
product

::::
AOD

::
at

::::::
550nm

::::::::::::
corresponding

::
to

:::::
small

:::::
(<0.2)

::::
and

::::
large

::::::
(>0.5)

::::::::::
AERONET

:::::
AOD.

:::
The

:::::
bold

:::
font

::::::::
indicates

:::
the

::::
best

::::::::::
performing

::::::
model.

AOD 550nm < 0.2 (N=4708)

::::::
Metric

:::::::
Synergy

::::
Fully

:::::::
learned

::::::::::
Post-process

::::::::
corrected

:

:::
R2

:::::
0.113

:::::
0.270

:::::
0.310

::::::
RMSE

:::::
0.412

::::
0.050

:::::
0.052

::::
Bias

:::::
0.303

:::::
0.010

:::::
0.009

AOD 550nm > 0.5 (N=163)

::::::
Metric

:::::::
Synergy

::::
Fully

:::::::
learned

::::::::::
Post-process

::::::::
corrected

:

:::
R2

::::
0.497

:::::
0.273

::::
0.377

:

::::::
RMSE

:::::
0.433

:::::
0.313

:::::
0.279

::::
Bias

:::::
0.379

:::::
-0.243

: :::::
-0.222

5 Conclusions

We have developed a deep learning based post-process correction of the aerosol parameters in the high resolution

Sentinel-3 level-2 Synergy land product. Sentinel-3 Synergy has also an aerosol data product specifically designed

to retrieve the aerosol parameters. The aerosol data product, however, has spatial resolution of 4.5km whereas330

the land product provides data with the Sentinel-3 instrument’s full spatial imaging resolution of 300 meters. The

drawback in the Synergy land product aerosol parameters is their relatively poor accuracy. The aim of the post-

process correction is to significantly improve the accuracy of the Sentinel-3 level-2 Synergy land product aerosol

parameters. The correction is carried out as a computationally light-weight post-processing step and therefore there

is no need for re-running the actual Synergy retrieval algorithm to obtain the corrected aerosol data. As a reference335

for the machine learning based post-process correction of the Sentinel-3 level-2 Synergy data product we also trained

a fully learned machine learning based regression model that carries out the full aerosol retrieval using Sentinel-3

level-1 data.

The results show that the fully learned and post-process correction machine learning approaches produces a clear

improvement in the aerosol parameter accuracy over the official Synergy data product. The post-process correction340

approach leads generally to a more accurate aerosol parameters than the fully learned approach. The post-process

correction approach combines information both from the physics-based conventional retrieval algorithm and machine

learning correction whereas the fully learned model does not include any physics-based model information. The

inclusion of the physics-based model information may make the post-process correction approach more tolerant
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against samples outside the range of the training data set when compared to the fully learned approach. The results345

show that the fully learned model results more often in high errors than the post-process correction.

The high
:::
We

::::
also

:::::::
studied

:::
the

:::::::::::::
generalization

:::::::::::
capabilities

::
of

::::
the

:::::::
machine

::::::::
learning

::::::::
models.

::::
The

::::::
results

:::::
show

:::::
that

:::
the

:::::::::::
post-process

::::::::::
correction

::::::
model

::::::::
performs

::::::
better

:::::
than

:::
the

:::::
fully

:::::::
learned

::::::
model

::::
also

:::::
when

:::::::
trained

:::::
using

:::::
data

:::::
from

::::::
distant

:::::::
regions.

:::::::
Ideally,

:::
in

:::
an

::::::::::
operational

:::::::
setting,

::::
the

:::::::
machine

::::::::
learning

:::::::
models

::::::
would

:::
be

::::::
trained

::::::
using

::::::
global

:::::
data,

::::
but,

:::
for

::::::::
example,

:::
in

:::::
AOD

:::::::::
retrievals,

:::::::::
regardless

:::
of

:::
the

:::::
high

:::::::
number

:::
of

::::::::::
AERONET

:::::::::
stations,

:::::
there

:::
are

:::::::
always

:::::
some350

::::::
regions

:::::
with

::
a

:::::::::
relatively

:::::
poor

:::::::::::
AERONET

::::::::
coverage.

::::::::::
Therefore,

::::::
based

:::
on

::::
our

:::::::
results,

:::
we

:::::::
expect

:::
the

::::::::::::
post-process

:::::::::
correction

:::::::
method

::
to

::::::::
perform

::::::
better

:::::
than

:::
the

:::::
fully

:::::::
learned

::::::
models

:::
in

:::::
these

:::::::
regions.

:

:::
The

:::::
high spatial resolution, about 300 meters at nadir, and the high accuracy of the post-process corrected Sentinel-

3 Synergy aerosol parameters over the official Sentinel-3 level-2 Synergy data product may possibly enable usage of

the data for new applications. For example, for air quality applications, the high resolution accurate aerosol data355

could be a step towards street level monitoring instead of the typical city or neighbourhood levels in conventional

aerosol data products. Improved accuracy high spatial resolution aerosol parameter information may significantly

also benefit atmospheric correction in many land surface satellite applications. The most impacted land surface

applications are especially those that retrieve information from very low signal to noise ratio data such as the

retrieval of vegetation solar-induced fluorescence.360

:::
We

:::::::::::
acknowledge

::::
the

::::::::
difficulty

::
in

::::::::::
validating

:::
the

:::::
high

::::::
spatial

:::::::::
resolution

::::::::
satellite

::::::
aerosol

:::::
data

::::::::
products

:::
as

::::::::
accurate

:::::::::::::
high-resolution

::::::
spatial

:::::::::
coverage

::::::
aerosol

::::::::::
validation

::::
data

:::::
does

:::
not

:::::
exist.

::::::
There

::::
are,

::::::::
however,

:::::
some

:::::::::::::
ground-based

::::
and

::::::
aircraft

:::::::::::::
measurement

:::::::::
campaigns

:::::
such

::
as

:::::::::::
Distributed

::::::::
Regional

::::::::
Aerosol

:::::::
Gridded

::::::::::::
Observations

::::::::
Network

::::::::::::
(DRAGON)

::::::::::::::::::::::::::::::::::::::::
(e.g. Garay et al., 2017; Virtanen et al., 2018)

:
,
::::::::::::::
KORea–United

:::::
States

::::
Air

:::::::
Quality

::::::::::::
(KORUS-AQ)

::::::::::::::::::::
(e.g. Choi et al., 2021)

:
,
::::
and

::::
the

::::::::::::
Atmospheric

:::::::::
Radiation

:::::::::::::
Measurement

:::::::
(ARM)

:::::::::
program

:::::::::::::::::::::::::
(e.g. Javadnia et al., 2017)

::::
that

:::::
could

::::::::
provide365

::::::
helpful

:::::::
insight

::
on

::::::::::::::
high-resolution

:::::::
aerosol

::::::::
features.

::::::
Using

:::
the

:::::::::
campaign

:::::
data

:::::
from

:::::
these

::::::::::
campaigns

:::
to

:::::::
validate

::::
the

:::::::::::::
high-resolution

:::::::
satellite

:::::::
aerosol

:::::::::
retrievals

::
is

:
a
:::::::::
potential

:::::
topic

:::
for

::::::
future

:::::::
studies.

:

Code and data availability. Python code and trained models to run the post-process correction are available at https://github.

com/TUT-ISI/S3POPCORN. Post-process corrected Sentinel-3 data of the regions of interest for year 2019 is available for

download at https://a3s.fi/swift/v1/AUTH ca5072b7b22e463b85a2739fd6cd5732/POPCORNdata/readme.html.370

Video supplement. Video corresponding to Figure 7 can be found online at https://doi.org/10.5281/zenodo.5287243
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Appendix A: Sentinel-3 data used

This section describes the Sentinel-3 data used in the study. We use both level-1b and level-2 data of the Sentinel-3

satellite mission data products and we use data from both Sentinel-3A and Sentinel-3B satellites. For more informa-

tion on the Sentinel-3 mission datasets please see https://sentinel.esa.int/web/sentinel/missions/sentinel-3.375

Level-1b

SLSTR

We use SLSTR level-1b data from the SL_1_RBT data product. The variable names and the corresponding filenames

in the data products are listed in Table A1.

OLCI380

We use OLCI level-1b data from the OL_1_ERR data product. The variable names and the corresponding filenames

in the data products are listed in Table A2.

Level-2

Synergy

We use Sentinel-3 level-2 data from the SY_2_SYN data product. The variable names and the corresponding filenames385

in the data products are listed in Table A3.

Appendix B: Input and output variables of the models

We divide the input and output variables into following five groups.

Geometry variables

– SYN altitude390

– SYN O VAA

– SYN O VZA

– SYN O SAA

– SYN O SZA

– SYN SN VAA395
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Table A1. Sentinel-3 SL 1 RBT files and variables used. Here [X] denotes the SLSTR band number 1 − 6.

Variable name Variable

File: geodetic an.nc

latitude an Latitude of detector FOV centre on the Earth’s surface, nadir view

longitude an Longitude of detector FOV centre on the Earth’s surface, nadir view

File: geodetic ao.nc

latitude ao Latitude of detector FOV centre on the Earth’s surface, oblique view

longitude ao Longitude of detector FOV centre on the Earth’s surface, oblique view

File: geodetic tx.nc

latitude tx Latitude of detector FOV centre on the Earth’s surface

longitude tx Longitude of detector FOV centre on the Earth’s surface

File: geometry tn.nc

solar zenith tn Solar zenith angle, nadir view

File: geometry to.nc

solar zenith to Solar zenith angle, oblique view

File: SXX radiance an.nc

S[X] radiance an TOA radiance for channel S[X] (A stripe grid, nadir view)

File: S[X] quality an.nc

S[X] solar irradiance an Solar irradiance at top of atmosphere, channel S[X], nadir view

File: S[X] radiance ao.nc

S[X] radiance ao TOA radiance for channel S[X] (A stripe grid, oblique view)

File: S[X] quality ao.nc

S[X] solar irradiance ao Solar irradiance at top of atmosphere, channel S[X], oblique view

– SYN SN VZA

– SYN SO VAA

– SYN SO VZA

– SYN O scattering angle

– SYN SO scattering angle400
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Table A2. Sentinel-3 OL 1 ERR files and variables used. Here [YY] denotes the OLCI band number 1 − 21.

Variable name Variable

File: geo coordinates.nc

latitude DEM corrected latitude

longitude DEM corrected longitude

File: qualityFlags.nc

quality flags Classification and quality flags

File: instrument data.nc

detector index Detector index

solar flux In-band solar irradiance, seasonally corrected

File: tie geometries.nc

SZA Solar zenith angle

File: Oa[YY] radiance.nc

Oa[YY] radiance TOA radiance for OLCI acquisition band Oa[YY]

– SYN SN scattering angle

Here all variables are based on the Sentinel-3 Synergy data product. SYN O, SYN SN and SYN SO correspond

to OLCI, SLSTR nadir view and SLSTR oblique view, respectively.

Satellite observation variables

– SL1 S1 reflectance nadir405

– SL1 S1 reflectance oblique

– SL1 S2 reflectance nadir

– SL1 S2 reflectance oblique

– SL1 S3 reflectance nadir

– SL1 S3 reflectance oblique410

– SL1 S4 reflectance nadir

– SL1 S4 reflectance oblique

– SL1 S5 reflectance nadir

– SL1 S5 reflectance oblique
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Table A3. Sentinel-3 SY 2 SYN files and variables used.

Variable name Variable

File: time.nc

start time Time of start measurement

stop time Time of stop measurement

File: geolocation.nc

altitude DEM corrected altitude

lat DEM corrected latitude

lon DEM corrected longitude

File: Syn AMIN.nc

AMIN Aerosol Model Index Number

File: Syn Angstrom exp550.nc

A550 Aerosol Angstrom exponent at 550nm

File: Syn AOT550.nc

T550 Aerosol optical thickness

T550 err Aerosol optical thickness standard error

File: flags.nc

SYN flags Synergy classification and aerosol retrieval flags

CLOUD flags Synergy cloud flags

OLC flags Selected quality and classification flags for OLCI SYN channels

SLN flags Exception summary and confidence flags for SLSTR nadir-view SYN channels

SLO flags Exception summary and confidence flags for SLSTR oblique-view SYN channels

File: Syn Oa[XX] reflectance.nc

SDR Oa[YY] Surface directional reflectance associated with OLCI channel [XX]

SDR Oa[YY] ERR Surface directional reflectance error estimate associated with OLCI channel [XX]

File: Syn S[YY]N reflectance.nc

SDR S[YY]N Surface directional reflectance associated with SLSTR channel [YY] acquired

in nadir view

SDR S[YY]N ERR Surface directional reflectance error estimate associated with SLSTR

channel [YY] acquired in nadir view

File: Syn S[YY]O reflectance.nc

SDR S[YY]O Surface directional reflectance associated with SLSTR channel [YY] acquired

in oblique view

SDR S[YY]O ERR Surface directional reflectance error estimate associated with SLSTR

channel [YY] acquired in oblique view

File: tiepoints olci.nc

OLC TP lat Latitude (WGS-84)

OLC TP lon Longitude (WGS-84)

OLC VAA OLCI view azimuth angle

OLC VZA OLCI view zenith angle

SAA Sun Azimuth Angle

SZA Sun Zenith Angle

File: tiepoints slstr n.nc

SLN TP lat Latitude (WGS-84)

SLN TP lon Longitude (WGS-84)

SLN VAA SLSTR nadir view azimuth angle

SLN VZA SLSTR nadir view zenith angle

File: tiepoints slstr o.nc

SLO TP lat Latitude (WGS-84)

SLO TP lon Longitude (WGS-84)

SLO VAA SLSTR oblique view zenith angle

SLO VZA SLSTR oblique view zenith angle

File: tiepoints meteo.nc

air pressure Mean air pressure at sea-level

ozone Total columnar ozone

water vapour Total column water vapour
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– SL1 S6 reflectance nadir415

– SL1 S6 reflectance oblique

– OL1 Oa01 reflectance

– OL1 Oa02 reflectance

– OL1 Oa03 reflectance

– OL1 Oa04 reflectance420

– OL1 Oa05 reflectance

– OL1 Oa06 reflectance

– OL1 Oa07 reflectance

– OL1 Oa08 reflectance

– OL1 Oa09 reflectance425

– OL1 Oa10 reflectance

– OL1 Oa11 reflectance

– OL1 Oa12 reflectance

– OL1 Oa13 reflectance

– OL1 Oa14 reflectance430

– OL1 Oa15 reflectance

– OL1 Oa16 reflectance

– OL1 Oa17 reflectance

– OL1 Oa18 reflectance

– OL1 Oa19 reflectance435

– OL1 Oa20 reflectance

– OL1 Oa21 reflectance
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SYN L2 variables

– SYN AOD550

– SYN AOD550err440

– SYN AE550

– SYN AMIN

– SYN SYN no slo

– SYN SYN no sln

– SYN SYN no olc445

– SYN SDR Oa01

– SYN SDR Oa02

– SYN SDR Oa03

– SYN SDR Oa04

– SYN SDR Oa05450

– SYN SDR Oa06

– SYN SDR Oa07

– SYN SDR Oa08

– SYN SDR Oa09

– SYN SDR Oa10455

– SYN SDR Oa11

– SYN SDR Oa12

– SYN SDR Oa16

– SYN SDR Oa17

– SYN SDR Oa18460

– SYN SDR Oa21
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– SYN SDR S1N

– SYN SDR S1O

– SYN SDR S2N

– SYN SDR S2O465

– SYN SDR S3N

– SYN SDR S3O

– SYN SDR S5N

– SYN SDR S5O

– SYN SDR S6N470

– SYN SDR S6O

Regression output variables

– AERONET AOD 550nm mean

– AERONET AOD 440nm mean

– AERONET AOD 500nm mean475

– AERONET AOD 675nm mean

– AERONET AOD 870nm mean

Correction output variables

– AOD550 approximationerror

– AOD440 approximationerror480

– AOD500 approximationerror

– AOD675 approximationerror

– AOD870 approximationerror

Approximation error variables (ε) are computed using the Equation 3.
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Inputs and outputs485

As the inputs for the regression model we use the variables from the following variable sets:

– Geometry variables

– Satellite observation variables

As the outputs for the regression model we use the variables from the following variable sets:

– Regression output variables490

As the inputs for the correction model we use the variables from the following variable sets:

– Geometry variables

– Satellite observation variables

– SYN L2 variables

As the outputs for the correction model we use the variables from the following variable sets:495

– Correction output variables

Appendix C: AERONET data used

The following variables of the AERONET data were used

– AOD 440nm

– AOD 500nm500

– AOD 675nm

– AOD 870nm

– 440-870 Angstrom Exponent
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Figure 4. Estimated AODs at the wavelengths employed in the AERONET. Top to bottom: 440nm, 500nm, 675nm and 870nm.

Left: Sentinel-3 level-2 Synergy AOD product. Middle: Fully learned regressor model. Right: Post-process correction.
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Figure 5. Rows from top to bottom: AOD (550nm), AE, AI. Left: Sentinel-3 level-2 Synergy product. Middle: Fully learned

regressor model. Right: Post-process correction model.
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Figure 6. AOD at 550 nm
:::::
550nm

:
time series for three AERONET stations. The black lines and dots indicate AERONET

measurements, red diamonds indicate Sentinel-3 level-2 Synergy, green circles regression model, and blue crosses corrected

Sentinel-3 Synergy retrievals.
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Figure 7. Monthly averages of AOD at 550 nm
:::::
550nm

:
for January (1st row), April (2nd row), July (3rd row), and October

(4th row) 2019. Left column: Sentinel-3 level-2 Synergy. Middle column: Regressor model. Right column: Corrected Sentinel-3

Synergy.
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Figure 8. July 2019 monthly averages of AOD at 550 nm
:::::
550nm

:
for Madrid (1st row), Paris (2nd row) and Rome (3rd row).

Left column: Sentinel-3 level-2 Synergy. Middle column: Regressor model. Right column: Corrected Sentinel-3 Synergy. Circles

represent the monthly averages of AERONET stations.

31



Figure 9.
::::
AOD

:::::::
(550nm)

:::
for

:::::::
Central

:::::::
Europe

:::
and

::::
year

:::::
2019.
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