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Abstract. Satellite-based aerosol retrievals provide global spatially distributed estimates of atmospheric aerosol

parameters that are commonly needed in applications such as estimation of atmospherically corrected satellite data

products, climate modeling and air quality monitoring. However, a common feature of the conventional satellite

aerosol retrievals is that they have reasonably low spatial resolution and poor accuracy caused by uncertainty in

auxiliary model parameters, such as fixed aerosol model parameters, and the approximate forward radiative transfer5

models utilized to keep the computational complexity feasible. As a result, the improvement and re-processing of the

operational satellite data retrieval algorithms would become a tedious and computationally excessive problem. To

overcome these problems, we have developed a machine learning-based post-process correction approach to correct

the existing operational satellite aerosol data products. Our approach combines the existing satellite retrieval data

and a post-processing step where a machine learning algorithm is utilized to predict the approximation error in the10

conventional retrieval. With approximation error we refer to the discrepancy between the true aerosol parameters and

the ones retrieved using the satellite data. Our hypothesis is that the prediction of the approximation error with a

finite training data set is a less complex and easier task than the direct fully learned machine learning based prediction

in which the aerosol parameters are directly predicted given the satellite observations and measurement geometry.

Our approach does not require re-processing of the satellite retrieval products, it requires only a computationally15

fast machine learning based post-processing step of the exisiting retrieval product. Our approach is based on neural

networks trained based on collocated satellite data and accurate ground based AERONET aerosol data. Based

on our post-processing approach, we propose a post-process corrected high resolution Sentinel-3 Synergy aerosol

product, which gives a spectral estimate of the aerosol optical depth at five different wavelengths with a high spatial

resolution equivalent to the native resolution of the Sentinel-3 level-1 data (300 meters at nadir). With aerosol20

data from Sentinel-3A and 3B satellites, we demonstrate that our approach produces high-resolution aerosol data

with clearly better accuracy than the operational Sentinel-3 level-2 Synergy aerosol product and it also results in

slightly better accuracy than the conventional fully learned machine learning approach. We also demonstrate better

generalization capabilities of the post-process correction approach over the fully learned approach.
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1 Introduction25

Climate change is one of the biggest challenges our society is facing today (IPCC, 2021). Despite the rapidly

progressing climate research, projections of the future climate still contain large uncertainties with anthropogenic

aerosol forcing being among the largest sources of these uncertainties (Pachauri et al., 2014). If more accurate global

information about the atmospheric aerosol parameters such as the aerosol optical depth (AOD) and Angstrom

exponent (AE), and consequently of their product aerosol index (AI), were available, it would enable more accurate30

modelling of anthropogenic aerosol forcing and could lead to a significant reduction of the uncertainties in future

climate projections. Another major challenge for our societies is air quality. In 2017, 2–25% of all deaths worldwide

were attributable to ambient particulate matter pollution (GBD 2017 Risk Factor Collaborators, 2018). To monitor

more accurately air quality and pollution sources near real time spatially high resolution estimates of aerosols are

needed (van Donkelaar et al., 2015).35

Ground based aerosol observations can be obtained from the Aerosol Robotic Network (AERONET) which utilizes

ground based direct sun photometers (Giles et al., 2019; Holben et al., 1998). AERONET stations produce accurate

information on aerosols because they directly observe the attenuation of solar radiation without interference from land

surface reflections. However, AERONET has the limitation that the network consist of a few hundreds of irregularly

spaced measurement stations, leading to a very limited and sparse spatial coverage of aerosol information. The only40

way to get wide spatial coverage information on aerosols is to use satellite retrievals.

Aerosol satellite retrieval algorithms produce estimates of the aerosol optical properties such as AOD given the

satellite observation data such as the top-of-athmosphere reflectances or radiances and the information on the

observation geometry. Satellite retrieval algorithms have been developed for multiple satellite instruments and the

available satellite aerosol data records span already time series that are over 40 years long (Sogacheva et al., 2020).45

Examples of satellite aerosol data products include the Moderate Imaging Spectroradiometer (MODIS) aerosol

products (Salomonson et al., 1989; Levy et al., 2013), and Sentinel-3 Synergy aerosol products.

A satellite aerosol retrieval requires solution of a non-linear inverse problem, where the task is to find aerosol

parameters that minimize a misfit (such as the least squares residual) between the satellite observation data and a

forward model, which models the causal relationship from the unknown aerosol parameters to the satellite observation50

data. Atmospheric monitoring satellites cover the globe almost daily with spatial high resolution observation data,

resulting in huge amount of daily data to be processed by the retrieval algorithms. Due to the excessive amount of

data, the operational aerosol retrieval algorithms employ physically and computationally reduced approximations of

radiative transfer models as the forward models (e.g. lookup-tables) and relatively simple inverse problem approaches,

which often ignore some of the observation data to reach fast computation times (Dubovik et al., 2011). Further, the55

retrieval algorithms typically produce spatially averaged aerosol products that have lower spatial resolution compared

to the native satellite level-1 observation data. Because of these approximations and reductions, the aerosol retrievals

have limited accuracy and sub optimal spatial resolution.
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Machine learning based solutions have been recently proposed for satellite aerosol retrievals in many studies.

Compared to conventional inverse problems approaches, machine learning based solutions lead to much faster com-60

putation time (once the model has been trained) and they also offer a flexible framework for utilization of learning

data based prior information in the retrieval. Most of the machine learning approaches to aerosol retrieval employ a

fully learned approach where the machine learning model is trained to emulate the retrieval directly, that is, to pre-

dict the values of the unknown aerosol parameters given the satellite observation data (top-of-atmosphere radiances

or reflectances) and observation geometry as the inputs. In Randles et al. (2017) neural network based fully learned65

aerosol retrievals are assimilated into NASA’s MERRA-2 re-analysis model. In Di Noia et al. (2017), a fully learned

neural network model is used to retrieve the initial AOD for an iterative retrieval algorithm. In Lary et al. (2009), a

fully learned approach with MODIS retrieved AOD and the surface type as additional inputs was used for the AOD

retrieval from MODIS data. The results of Lary et al. (2009) were validated using the AERONET data (Holben

et al., 1998; Giles et al., 2019). The authors were able to reduce the bias of the MODIS AOD data from 0.03 to70

0.01 with neural networks, while with support vector machines even better improvement was reported - AOD bias

was less than 0.001 and the correlation coefficient with AERONET was larger than 0.99. However, they performed

validation using all the available AERONET network stations both for training and validation. The split between

the training and validation datasets was carried out using random sets of the MODIS pixel values. With the random

split of all pixels, the data samples from the same AERONET station were present both in training and evaluation75

datasets, leading potentially to overfitting as the model learns, for example, the surface properties at the locations

of the AERONET stations and can thus predict the aerosol properties very accurately at these locations but may

not generalize well to data from other regions. In Albayrak et al. (2013), a neural network based fully learned model

was trained and evaluated for MODIS AOD retrieval. In their model, MODIS reflectances, measurement geometry

information, MODIS AOD and its quality flag were used as the input to predict the AOD. They found their model80

to produce more accurate AOD retrievals than the operational MODIS Dark Target algorithm. In Lanzaco et al.

(2017), a slightly different type of machine learning based approach was used to improve satellite AOD retrievals.

The authors used MODIS AOD retrievals and local meteorology information as inputs to predict the AOD in South

America. This approach that combines the conventional AOD retrievals and local meteorology information was found

to improve the AOD accuracy over the operational MODIS AOD. A problem in fully learned approaches is that they85

rely only on the training data and do not employ physics-based models in the retrievals. This may cause problems

for the model to generalize to cases in which the inputs are outside the input space spanned by the training dataset.

In Lipponen et al. (2021) we proposed a model enforced machine learning model for post-process correction of

satellite aerosol retrievals. The key idea in the model enforced approach is to exploit also the model and information

of the conventional retrieval algorithm and train a machine learning algorithm for correction of the approximation90

error in the result of the conventional satellite retrieval algorithm. Previously, the post-process correction approach

has been found to produce more stable and accurate results than a fully learned approach in generation of surrogate

simulation models (Lipponen et al., 2013, 2018) and in medical imaging, see for example Hamilton et al. (2019).
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The advantages of the model enforced post-process correction approach are improved accuracy over the existing

data products, and the possibility to correct the existing products by a simple post-processing step without need95

for any reprocessing of the existing retrieval algorithms, which are usually managed and operated by the algorithm

development teams. In Lipponen et al. (2021), the model enforced approach was combined with a Random Forest

regression algorithm for post-process correction of MODIS AOD and AE products using collocated MODIS and

AERONET aerosol data for training the correction model for the approximation error in AOD and AE in the

MODIS DT over land product. The post-process correction was found to yield significantly improved accuracy over100

the MODIS AOD and AE retrievals, and the correction approach resulted in better accuracy retrievals than the fully

learned machine learning approach.

In this paper, we propose a post-process corrected high resolution Sentinel-3 Synergy aerosol product. The product

is based on the high resolution Sentinel-3 level-2 Synergy land product aerosol parameters with 300 meter spatial

resolution and the model enforced machine learning approach, where a feed forward neural network is trained for105

post-process correction of the approximation error in the Sentinel-3 level-2 Synergy aerosol product. The training

of the neural network is based on collocated Sentinel-3 Synergy and AERONET data from five selected regions of

interest. Given the Sentinel-3 observation data and high resolution aerosol products as input, our model produces

an estimate of the AOD at five wavelengths utilizing the native 300m resolution of the Sentinel-3 observation data.

The rest of this paper is organized as follows. In Section 2, we describe the approximation error model for110

post-process correction of the satellite aerosol retrieval. Section 3 explains the preprocessing of the Sentinel-3 and

AERONET data for machine learning and the neural network model used for the regression task. Section 4 gives

the results and Section 5 gives the conclusions.

2 Post-process correction model of satellite aerosol retrievals

Let y ∈ Rm denote an accurate satellite aerosol retrieval115

y = f(x), (1)

where vector y contains the output of the satellite retrieval algorithm, f : Rn 7→ Rm is an accurate retrieval algorithm

and x ∈ Rn contains all the algorithm inputs including the observation geometry and level-1 satellite observation

data such as the top-of-atmosphere reflectances. Typically, the retrieval is carried out one image pixel at a time and

the aerosol retrieval y can consist, for example, AOD and AE for a single image pixel, or as in the present study,120

AOD in a single image pixel at five wavelengths.

In practice, due to uncertainties in the auxiliary parameters, such as land surface reflectance, of the underlying

forward model utilized in the retrieval, extensive computational dimension of the problem and processing time

limitations, it is not possible to construct an accurate retrieval algorithm f but an approximate retrieval algorithm

ỹ≈ f̃(x) (2)125
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has to be employed instead. The approximate retrieval f̃ is typically based on physically simplified and computation-

ally reduced approximate forward models that are used due to huge amount of data and the need for computational

efficiency. The utilization of the approximate retrieval algorithm leads to an approximation error

e(x) = f(x)− f̃(x) (3)

in the retrieval parameters.130

The core idea in the model enforced post-process correction model is to improve the accuracy of the approximate

retrieval (2) by machine learning techniques Lipponen et al. (2021). By Equations (1)-(3), the accurate retrieval can

be written as

y = f(x)

= f̃(x) +
[
f(x)− f̃(x)

]
135

= f̃(x) + e(x). (4)

To obtain the corrected retrieval, Equation (4) is used to combine the conventional (physics based) retrieval algorithm

f̃(x) and a machine learning based model ê(x) to predict the realization of the approximation error e(x) to obtain

a corrected retrieval

y≈ f̃(x) + ê(x). (5)140

Note that this approach is different from a conventional fully learned machine learning model in which the aim is to

emulate the accurate retrieval algorithm f(x) with a machine learning model

y≈ f̂(x) (6)

that is trained to predict the retrieval y directly from the satellite observation and geometry data x, see Figure 1

for a flowchart of fully learned and model enforced regression models.145

The reason why the model enforced approach (5) can be expected to perform better than the fully learned model

(6) is that the approximation error e(x) is a simpler function for machine learning regression than the full physics-

based retrieval f(x) thus resulting in more accurate results than with a fully learned approach Lipponen et al.

(2013, 2018). Also, while the fully learned approach utilizes an ensemble of satellite observation data as learning

data, the model enforced approach utilizes also the additional information in the approximate retrievals. Also, as150

the training of the post-process correction is based on existing satellite data and retrievals, the implementation can

be done in a straightforward manner, for example, using black-box machine learning code packages and used for

correction of past satellite retrievals without recomputing the approximate retrieval products f̃(x). In addition, the

post-process correction model is also flexible with respect the choice of the statistical regression model, and the

choice of the regression model can be tailored to different retrieval problems separately.155
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Figure 1. Top: Conventional satellite retrieval. Middle: Fully learned machine learning based satellite retrieval approach.

Bottom: Model enforced post-process correction of satellite retrieval approach.

3 Methods

This section describes the construction of the learning and test data for the machine learning retrieval of Sentinel-3

aerosol product with the post-process correction model (5) and the fully learned model (6). The selection of the

neural network models and training of the networks is also described. For training and validation of the post-process

correction, we use the high resolution Sentinel-3 level-2 Synergy and AERONET aerosol data.160

3.1 Sentinel-3 satellite datasets

Sentinel-3 is a European ocean and land mission. Currently two satellites related to this mission (Sentinel-3A

and 3B) are flying and collecting data. In this study, we use the Sentinel-3 Ocean and Land Color Instrument

(OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR) data. OLCI is a medium-resolution imaging

spectroradiometer (spatial resolution about 300 m at nadir) with 21 spectral bands from 400 to 1020nm. SLSTR is165

an imaging radiometer with dual-view capabilities. The pixel size of SLSTR is from 500 meters to 1 km and spectral

coverage is from visible to thermal infrared in 9 standard bands (S1-S9). The swaths of these two instruments overlap

allowing combined products that exploit data from both instruments. The high resolution Sentinel-3 level-2 Synergy

land aerosol product (North and Heckel, 2010) is this type of combined product which we will post-process correct

by the model (5).170
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We use both level-1b and level-2 data of the Sentinel-3 satellite mission data products from both Sentinel-3A and

Sentinel-3B satellites. The level-1b data includes the information about the measurement geometry and the satellite

observed reflectances. The level-2 data includes the Synergy retrieval data and the corresponding quality information.

We use the SLSTR level-1b data from the product SL_1_RBT, OLCI level-1b data from the OL_1_ERR data product

and Sentinel-3 level-2 data from the SY_2_SYN data product. We use year 2019 data in our study. For more information175

on the Sentinel-3 mission datasets, see https://sentinel.esa.int/web/sentinel/missions/sentinel-3/data-products. The

Sentinel-3 data used in the models are listed in the appendix.

3.2 AERONET

AERONET is a global network of sun photometers (Holben et al., 1998). AERONET has a Direct Sun data product

that has both the AOD and AE data that we will use for training and testing of the machine learning models.180

AERONET is commonly used as an independent data source and all the data is publicly available at the AERONET

website (http://aeronet.gsfc.nasa.gov/). An extensive description of the AERONET sites, procedures and data pro-

vided is available from this website. Ground-based sun photometers provide accurate measurements of AOD, because

they directly observe the attenuation of solar radiation without interference from land surface reflections. The AOD

estimated uncertainty varies spectrally from ±0.01 to ±0.02 with the highest error in the ultraviolet wavelengths185

(Giles et al., 2019; Eck et al., 1999). In this study, we use AERONET, Version 3, level-2, Direct Sun algorithm data.

The AERONET variables used in our studies are listed in the appendix.

3.3 Regions of interest

The training and testing of the post-process correction model is based on Sentinel-3 and AERONET data for year

2019 from five regions of interest shown in Figure 2. The regions of interest were selected so that different types of190

aerosol regions based on aerosol source and type, AOD values and different types of surface reflectances are included

and also that the areas have good enough coverage of AERONET stations.

The data for the machine learning procedures consist of collocations of Sentinel-3 pixels with aerosol information

and AERONET data. We use the same ±30 minutes temporal thresholds for the collocation procedure as in Petrenko

et al. (2012) and spatial collocation radius of 5 km. We also require that the aerosol data in the pixels we use is195

not flagged as filled, climatology data, too low values, high error, partly cloudy or ambiguous clouds. Furthermore,

we require that the pixels we use do not contain any cosmetic level-1 data. Our selections lead to a total number of

5526 collocated Sentinel-3 - AERONET overpasses for the machine learning procedures.

The AERONET stations were divided to separate training, validation and testing sets for good generalization of

the machine learning procedures. More specifically, the stations were randomly split into two sets for two-fold cross200

validation. To ensure as equal spatial distribution of AERONET stations as possible in both sets, we carried out the

random split separately for each region of interest. To study the effect of randomness on the splits of AERONET
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Figure 2. Regions of interest. Black dots indicate locations of AERONET stations.

stations, we tested our approach with multiple random splits. We did not observe significant differences in the results

between different random splits of the AERONET stations.

3.4 Input and output data for the machine learning models205

The aerosol retrieval y ∈ R5 in both, the post-process correction approach (5) and the fully learned approach (6),

consist of AODs for a single 300× 300m2 (at nadir) image pixel at wavelengths 440nm, 500nm, 550nm, 675nm and

870nm. These wavelengths are native wavelengths in the AERONET and Sentinel-3 level-2 Synergy aerosol products

in the sense that the AERONET produces AOD at 440nm, 500nm, 675nm and 870nm and the Synergy product at

550nm.210

In the fully learned model (6), the regression target y ∈ R5 consist of the AERONET AODs at the selected five

wavelengths. The AERONET AOD at the Synergy 550nm channel was estimated as the mean of AOD 550nm

obtained from Angstrom law based on AERONET AOD at 500nm and AE 440-870nm. The input data for the fully

learned model contains Sentinel-3 satellite geometry and observation variables for a single image pixel. All the input

and output variables were standardized by subtracting the training data set mean and dividing by the standard215

deviation. To retain the spectral dependency of the AOD values at different wavelengths, all the AOD variables were

standardized together using the mean and standard deviation of all AOD wavelengths. In case some of the inputs

contains a missing value, it is filled with the average value of the training dataset. We also add a binary (0/1) inputs

for each input variable to indicate if the data was filled. These selections and processing leads to an input vector

x ∈ R90. On average the input data of the fully learned and post-process correction models contained about 8% and220
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6% of missing values, respectively. See the appendix for the Sentinel-3 data file variable names of the the inputs and

outputs.

In the post-process correction approach, the regression target e ∈ R5 consist of the approximation error between

AERONET and Synergy spectral AOD. The Synergy aerosol product contains AOD and AE at 550nm, which are

transformed by the Angstrom law to obtain the Synergy AOD product at the wavelengths 440nm, 500nm, 675nm225

and 870nm. The input data of the post-correction model contains the same geometry and level-1 data variables that

are used in the fully learned model plus the Sentinel-3 level-2 Synergy aerosol data. Furthermore, the inputs and

outputs are standardized and the missing values filled similarly as for the fully learned model. These selections lead

to an input x ∈ R156.

3.5 Deep learning based regression models230

A fully connected feedforward neural network was selected as the model for the supervised learning tasks of estimating

the regressors f̂(x) in (6) and ê(x) in (5). In the neural network, the rectified linear unit (ReLu) was used as the

activation function for all the hidden layers and no activation function was employed for the output layer. The

weight coefficients of the neural net were estimated by minimization of the MSE loss functional with the ADAM

optimizer. In the network training, batch size was 512, initial learning rate 5 · 10−5 and the termination criteria for235

the learning was set to maximum 10000 epochs or until validation loss started to increase with patience tolerance

set to 10 epochs. For further information on deep learning and neural networks, see e.g. (Goodfellow et al., 2016).

The architechture of the feedforward neural networks were optimized by utilizing the Asynchronous Successive

Halving Algorithm (ASHA) (Li et al., 2020). In the ASHA optimization the maximum number of trial network

architectures was set to 2500 and the algorithm was allowed to use up to 500 epochs in a single trial. The space240

of feasible states for the number of hidden layers in the ASHA optimization was set to (2,3,4) and the number of

nodes in the hidden layers was allowed to be up to the number of elements in the input vector x. The optimization of

the network architechtures by ASHA led to the network structures shown in Figure 3 for the fully learned approach

f̂(x) and the post-process correction approach ê(x). These network acrhitectures were utilized in the final training

of the models.245

3.6 Implementation

The neural network computations were implemented in Python utilizing Pytorch and the ASHA optimization utilizing

the Ray-tune package. The codes for the fully learned model and post-process correction model will be made available.

See the code and data availability for information on how to obtain the code to run the post-process correction and

load a sample dataset.250
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Figure 3. Schematic figure of neural network architectures used. Top: Correction network ê(x). Bottom: Regression network

f̂(x).

4 Results

The accuracy of the post-process correction is tested using AERONET data as the ground truth for the aerosol

retrievals and the results are compared to the high resolution Sentinel-3 level-2 Synergy aerosol product and to the

fully learned retrieval model (6).

Figure 4 shows scatter plots of the AOD retrievals with the Sentinel-3 level-2 Synergy product (left column), fully255

learned machine learning (middle column) and post-process correction model (right column) against the AERONET

data at all the test data stations at the four visible to near infrared wavelengths 440nm, 500nm, 675nm and 870nm

measured by the AERONET. Each figure shows the coefficient of determination based correlation coefficient R2,
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root mean squared error (RMSE), and median bias as the metrics to compare the retrievals. The figures show also

the ratio of samples that are inside the Dark Target over land expected error (EE) envelope of ±(0.05+15%). As can260

be seen, the machine learning approaches improve clearly the accuracy of the AODs compared to the high resolution

Sentinel-3 level-2 Synergy product. Between the two machine learning approaches, the post-process correction model

has otherwise better R2, RMSE and median bias error metrics than the fully learned model with the exceptions of

the bias being the same as with the fully learned model at 500nm and 675nm. The ratio of samples inside the Dark

Target EE envelope are very similar with the post-process correction and fully learned models. A notable feature in265

the figures is that there are significantly less samples and relatively more ”outliers” for large AOD values than for

small AOD values. The accuracy of the machine learning estimates also improves for the higher wavelengths, which

do contain fewer high AOD values. These findings can be attributed to the fact that the learning data contains

relatively few samples for large AOD (the number of samples with AOD>0.5 is less than 5%). This indicates that

more high AOD value learning data would be needed to improve the prediction of the high AOD values.270

Figure 5 shows comparison of AOD at the native Sentinel-3 level-2 Synergy wavelength 550nm, AE and AI. Given

the estimated AODs at the five wavelengths, the AE was estimated as a separate post-processing step by utilizing

the standard approach (e.g. in AERONET) where AE is estimated by a least squares fit to the linearization of

the Angstrom law. In AERONET, the AE estimation is carried out using ordinary least squares type of method

that rejects clear outliers from the data to improve the outlier tolerance of the AE estimation. The difference to275

AERONET AE obtained using ordinary least squares fitting with no outlier treatment, however, is small. The

aerosol index (AI) is computed then as product of the AOD and AE. AI has been considered as a better proxy

for cloud condensation nuclei (CCN) than AOD (Gryspeerdt et al., 2017), since AI is more sensitive than AOD to

the accumulation mode aerosol concentration. Figure 5 shows that the machine learning approaches lead to clearly

improved estimates of AOD 550nm, AE and AI compared to the Sentinel-3 level-2 Synergy product. The post-process280

correction approach produces the best RMSE, R2 and EE metrics for the AOD estimates. From the AE estimates,

we observe that the high resolution Sentinel-3 level-2 Synergy AE product is uninformative as it produces the same

constant value (approximately 1.1) for all of the test data points with a wide range of AERONET AEs. For the AE,

the post-process correction approach has smaller bias and visibly better correlation (with nearly two times larger

R2 metric) but worse RMSE than the fully learned model. For the AI the post-process correction has better RMSE,285

bias and R2 metrics compared to the fully learned model.

Figure 6 shows AERONET and Sentinel-3-based time series of AOD at 550nm over three AERONET stations,

Madrid, Paris, and Rome Tor Vergata for year 2019. In all stations, the overestimation of AOD by the Sentinel-3

level-2 Synergy product is evident. The Sentinel-3 level-2 Synergy AOD has also a clear seasonal cycle with higher

AODs occuring on summer and lower AOD on winter. Both the fully learned model and post-process corrected290

Sentinel-3 Synergy AOD are in very good agreement with the AERONET AOD. Furthermore, the regressor and

post-process correction model AOD capture very well the events of elevated AOD with duration of some days.
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In Figure 7, monthly averages of AOD at 550nm in western Europe for January, April, July and October 2019

are shown for the Sentinel-3 level-2 Synergy, fully learned model and post-process correction model based data.

Again, the significantly higher AOD of Sentinel-3 level-2 Synergy compared to the other two models is evident. The295

figure also clearly shows that the amount of data varies quite significantly throughout the year mainly due to clouds

and snow and more data is available for April and July than January and October. All datasets show some spatial

variations of AOD over Europe and some cities and regions, such as Paris, France and Po Valley, Italy, clearly show

up in AOD maps.

Figure 8 shows monthly averages of AOD at 550nm for Madrid, Paris and Rome in July 2019. The filled circles in300

the images indicate the monthly averages of the AERONET stations present in the regions. The Sentinel-3 level-2

Synergy data product clearly produces a much higher AOD values then the fully learned and post-process correction

models, and the overestimation with respect to AERONET is also evident. The Sentinel-3 level-2 Synergy AOD is

also, due to spatial median filtering of the data, much smoother than the two other models. For the fully learned

and post-process correction models, the AOD values are very close to the AERONET AODs at the AERONET sites305

and some high-resolution features are also clearly visible in the data. For all three cities, both the fully learned and

post-process correction model show some neighbourhoods with elevated AOD. The correction model AOD shows

even more details and less artefacts than the fully learned model AOD. For example in Rome, the road from the city

center to the airport is clearly visible from the AOD data while the regression model does not show this road. The

fully learned model also has some more box-shaped spatial anomalies than the other models.310

To study the generalization capabilities of the models, we carried out a test in which we evaluated the fully

learned and post-process correction models’ accuracy in the Central Europe region. The machine learning models

were trained using data from regions of interest outside Central Europe (Eastern USA, Western USA, Southern

Africa, India). The test aimed to evaluate how the models generalize to data far from the training data regions,

possibly with different dominant aerosol types and surface reflectances. Figure 9 shows the results for this test for315

the AOD at 550nm in the Central Europe region. The post-process correction results in clearly more accurate AOD

estimates than the fully learned model. The result indicates that using the training data from nearby regions improves

the model performance, and the post-process correction model performs better than the fully learned model also in

regions far from the training data regions.

To evaluate the models’ performance in low and high AOD conditions, we evaluated the results corresponding to320

AERONET AOD at 550nm smaller than 0.2 and larger than 0.5. The results are shown in Table 1. The post-process

corrected model results in the best bias metric in both low and high AOD conditions. In addition, the post-process

corrected model results in the best R2 in low AOD and the best RMSE in high AOD conditions. The fully learned

model results in about 4% lower RMSE than the post-process corrected model in small AOD. The Synergy R2 is the

best for the high AOD cases but there are only 163 samples in the high AOD cases so more data would be needed325

for more reliable evaluation of the models in high AOD conditions.
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Table 1. Error metrics for the satellite data product AOD at 550nm corresponding to small (<0.2) and large (>0.5) AERONET

AOD. The bold font indicates the best performing model.

AOD 550nm < 0.2 (N=4708)

Metric Synergy Fully learned Post-process corrected

R2 0.113 0.270 0.310

RMSE 0.412 0.050 0.052

Bias 0.303 0.010 0.009

AOD 550nm > 0.5 (N=163)

Metric Synergy Fully learned Post-process corrected

R2 0.497 0.273 0.377

RMSE 0.433 0.313 0.279

Bias 0.379 -0.243 -0.222

5 Conclusions

We have developed a deep learning based post-process correction of the aerosol parameters in the high resolution

Sentinel-3 level-2 Synergy land product. Sentinel-3 Synergy has also an aerosol data product specifically designed

to retrieve the aerosol parameters. The aerosol data product, however, has spatial resolution of 4.5km whereas330

the land product provides data with the Sentinel-3 instrument’s full spatial imaging resolution of 300 meters. The

drawback in the Synergy land product aerosol parameters is their relatively poor accuracy. The aim of the post-

process correction is to significantly improve the accuracy of the Sentinel-3 level-2 Synergy land product aerosol

parameters. The correction is carried out as a computationally light-weight post-processing step and therefore there

is no need for re-running the actual Synergy retrieval algorithm to obtain the corrected aerosol data. This is a major335

benefit of the post-process correction approach as re-running of the original retrieval algorithm is a time-consuming

process and often cannot even be carried out by the individual researchers. As a reference for the machine learning

based post-process correction of the Sentinel-3 level-2 Synergy data product we also trained a fully learned machine

learning based regression model that carries out the full aerosol retrieval using Sentinel-3 level-1 data.

The results show that the fully learned and post-process correction machine learning approaches produces a340

clear improvement in the aerosol parameter accuracy over the official Synergy data product. The post-process

correction approach leads generally to a more accurate aerosol parameters than the fully learned approach. While

the improvement of the post-process correction over the fully learned approach is not very large in the absolute scale,

relatively the post process corrected product provides the best statistical comparison. For example, in AOD at 550nm

R2 improves by about 9%, RMSE is 8% smaller and bias decreases by 20% in the post-process corrected model when345
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compared to the fully learned model. In some applications, such as data assimilation, these relative improvements

may be relevant for the accuracy of the data assimilation model. The post-process correction approach combines

information both from the physics-based conventional retrieval algorithm and machine learning correction whereas

the fully learned model does not include any physics-based model information. The inclusion of the physics-based

model information may make the post-process correction approach more tolerant against samples outside the range350

of the training data set when compared to the fully learned approach. The results show that the fully learned model

results more often in high errors than the post-process correction.

We also studied the generalization capabilities of the machine learning models. The results show that the post-

process correction model performs better than the fully learned model also when trained using data from distant

regions. Ideally, in an operational setting, the machine learning models would be trained using global data, but, for355

example, in AOD retrievals, regardless of the high number of AERONET stations, there are always some regions

with a relatively poor AERONET coverage. Therefore, based on our results, we expect the post-process correction

method to perform better than the fully learned models in these regions.

The high spatial resolution, about 300 meters at nadir, and the high accuracy of the post-process corrected Sentinel-

3 Synergy aerosol parameters over the official Sentinel-3 level-2 Synergy data product may possibly enable usage of360

the data for new applications. For example, for air quality applications, the high resolution accurate aerosol data

could be a step towards street level monitoring instead of the typical city or neighbourhood levels in conventional

aerosol data products. Improved accuracy high spatial resolution aerosol parameter information may significantly

also benefit atmospheric correction in many land surface satellite applications. The most impacted land surface

applications are especially those that retrieve information from very low signal to noise ratio data such as the365

retrieval of vegetation solar-induced fluorescence.

We acknowledge the difficulty in validating the high spatial resolution satellite aerosol data products as accurate

high-resolution spatial coverage aerosol validation data does not exist. There are, however, some ground-based and

aircraft measurement campaigns such as Distributed Regional Aerosol Gridded Observations Network (DRAGON)

(e.g. Garay et al., 2017; Virtanen et al., 2018), KORea–United States Air Quality (KORUS-AQ) (e.g. Choi et al.,370

2021), the Atmospheric Radiation Measurement (ARM) program (e.g. Javadnia et al., 2017), and ObseRvations of

Aerosols above CLouds and their intEractionS (ORACLES) (e.g. Redemann et al., 2021) that could provide helpful

insight on high-resolution aerosol features. Using the campaign data from these campaigns to validate the high-

resolution satellite aerosol retrievals is a potential topic for future studies. Also, evaluation of the relative differences

between the post-process corrected Synergy data and 1km MODIS Multi-Angle Implementation of Atmospheric375

Correction (MAIAC) (Lyapustin et al., 2018) data could reveal useful insight of the spatially varying AOD features.
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Code and data availability. Python code and trained models to run the post-process correction are available at https://github.

com/TUT-ISI/S3POPCORN. Post-process corrected Sentinel-3 data of the regions of interest for year 2019 is available for

download at https://a3s.fi/swift/v1/AUTH ca5072b7b22e463b85a2739fd6cd5732/POPCORNdata/readme.html.

Video supplement. Video corresponding to Figure 7 can be found online at https://doi.org/10.5281/zenodo.5287243380

Appendix A: Sentinel-3 data used

This section describes the Sentinel-3 data used in the study. We use both level-1b and level-2 data of the Sentinel-3

satellite mission data products and we use data from both Sentinel-3A and Sentinel-3B satellites. For more informa-

tion on the Sentinel-3 mission datasets please see https://sentinel.esa.int/web/sentinel/missions/sentinel-3.

Level-1b385

SLSTR

We use SLSTR level-1b data from the SL_1_RBT data product. The variable names and the corresponding filenames

in the data products are listed in Table A1.

OLCI

We use OLCI level-1b data from the OL_1_ERR data product. The variable names and the corresponding filenames390

in the data products are listed in Table A2.

Level-2

Synergy

We use Sentinel-3 level-2 data from the SY_2_SYN data product. The variable names and the corresponding filenames

in the data products are listed in Table A3.395

Appendix B: Input and output variables of the models

We divide the input and output variables into following five groups.

Geometry variables

– SYN altitude
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Table A1. Sentinel-3 SL 1 RBT files and variables used. Here [X] denotes the SLSTR band number 1 − 6.

Variable name Variable

File: geodetic an.nc

latitude an Latitude of detector FOV centre on the Earth’s surface, nadir view

longitude an Longitude of detector FOV centre on the Earth’s surface, nadir view

File: geodetic ao.nc

latitude ao Latitude of detector FOV centre on the Earth’s surface, oblique view

longitude ao Longitude of detector FOV centre on the Earth’s surface, oblique view

File: geodetic tx.nc

latitude tx Latitude of detector FOV centre on the Earth’s surface

longitude tx Longitude of detector FOV centre on the Earth’s surface

File: geometry tn.nc

solar zenith tn Solar zenith angle, nadir view

File: geometry to.nc

solar zenith to Solar zenith angle, oblique view

File: SXX radiance an.nc

S[X] radiance an TOA radiance for channel S[X] (A stripe grid, nadir view)

File: S[X] quality an.nc

S[X] solar irradiance an Solar irradiance at top of atmosphere, channel S[X], nadir view

File: S[X] radiance ao.nc

S[X] radiance ao TOA radiance for channel S[X] (A stripe grid, oblique view)

File: S[X] quality ao.nc

S[X] solar irradiance ao Solar irradiance at top of atmosphere, channel S[X], oblique view

– SYN O VAA400

– SYN O VZA

– SYN O SAA

– SYN O SZA

– SYN SN VAA
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Table A2. Sentinel-3 OL 1 ERR files and variables used. Here [YY] denotes the OLCI band number 1 − 21.

Variable name Variable

File: geo coordinates.nc

latitude DEM corrected latitude

longitude DEM corrected longitude

File: qualityFlags.nc

quality flags Classification and quality flags

File: instrument data.nc

detector index Detector index

solar flux In-band solar irradiance, seasonally corrected

File: tie geometries.nc

SZA Solar zenith angle

File: Oa[YY] radiance.nc

Oa[YY] radiance TOA radiance for OLCI acquisition band Oa[YY]

– SYN SN VZA405

– SYN SO VAA

– SYN SO VZA

– SYN O scattering angle

– SYN SO scattering angle

– SYN SN scattering angle410

Here all variables are based on the Sentinel-3 Synergy data product. SYN O, SYN SN and SYN SO correspond

to OLCI, SLSTR nadir view and SLSTR oblique view, respectively.

Satellite observation variables

– SL1 S1 reflectance nadir

– SL1 S1 reflectance oblique415

– SL1 S2 reflectance nadir

– SL1 S2 reflectance oblique

– SL1 S3 reflectance nadir

17



Table A3. Sentinel-3 SY 2 SYN files and variables used.

Variable name Variable

File: time.nc

start time Time of start measurement

stop time Time of stop measurement

File: geolocation.nc

altitude DEM corrected altitude

lat DEM corrected latitude

lon DEM corrected longitude

File: Syn AMIN.nc

AMIN Aerosol Model Index Number

File: Syn Angstrom exp550.nc

A550 Aerosol Angstrom exponent at 550nm

File: Syn AOT550.nc

T550 Aerosol optical thickness

T550 err Aerosol optical thickness standard error

File: flags.nc

SYN flags Synergy classification and aerosol retrieval flags

CLOUD flags Synergy cloud flags

OLC flags Selected quality and classification flags for OLCI SYN channels

SLN flags Exception summary and confidence flags for SLSTR nadir-view SYN channels

SLO flags Exception summary and confidence flags for SLSTR oblique-view SYN channels

File: Syn Oa[XX] reflectance.nc

SDR Oa[YY] Surface directional reflectance associated with OLCI channel [XX]

SDR Oa[YY] ERR Surface directional reflectance error estimate associated with OLCI channel [XX]

File: Syn S[YY]N reflectance.nc

SDR S[YY]N Surface directional reflectance associated with SLSTR channel [YY] acquired

in nadir view

SDR S[YY]N ERR Surface directional reflectance error estimate associated with SLSTR

channel [YY] acquired in nadir view

File: Syn S[YY]O reflectance.nc

SDR S[YY]O Surface directional reflectance associated with SLSTR channel [YY] acquired

in oblique view

SDR S[YY]O ERR Surface directional reflectance error estimate associated with SLSTR

channel [YY] acquired in oblique view

File: tiepoints olci.nc

OLC TP lat Latitude (WGS-84)

OLC TP lon Longitude (WGS-84)

OLC VAA OLCI view azimuth angle

OLC VZA OLCI view zenith angle

SAA Sun Azimuth Angle

SZA Sun Zenith Angle

File: tiepoints slstr n.nc

SLN TP lat Latitude (WGS-84)

SLN TP lon Longitude (WGS-84)

SLN VAA SLSTR nadir view azimuth angle

SLN VZA SLSTR nadir view zenith angle

File: tiepoints slstr o.nc

SLO TP lat Latitude (WGS-84)

SLO TP lon Longitude (WGS-84)

SLO VAA SLSTR oblique view zenith angle

SLO VZA SLSTR oblique view zenith angle

File: tiepoints meteo.nc

air pressure Mean air pressure at sea-level

ozone Total columnar ozone

water vapour Total column water vapour
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– SL1 S3 reflectance oblique

– SL1 S4 reflectance nadir420

– SL1 S4 reflectance oblique

– SL1 S5 reflectance nadir

– SL1 S5 reflectance oblique

– SL1 S6 reflectance nadir

– SL1 S6 reflectance oblique425

– OL1 Oa01 reflectance

– OL1 Oa02 reflectance

– OL1 Oa03 reflectance

– OL1 Oa04 reflectance

– OL1 Oa05 reflectance430

– OL1 Oa06 reflectance

– OL1 Oa07 reflectance

– OL1 Oa08 reflectance

– OL1 Oa09 reflectance

– OL1 Oa10 reflectance435

– OL1 Oa11 reflectance

– OL1 Oa12 reflectance

– OL1 Oa13 reflectance

– OL1 Oa14 reflectance

– OL1 Oa15 reflectance440

– OL1 Oa16 reflectance

– OL1 Oa17 reflectance
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– OL1 Oa18 reflectance

– OL1 Oa19 reflectance

– OL1 Oa20 reflectance445

– OL1 Oa21 reflectance

SYN L2 variables

– SYN AOD550

– SYN AOD550err

– SYN AE550450

– SYN AMIN

– SYN SYN no slo

– SYN SYN no sln

– SYN SYN no olc

– SYN SDR Oa01455

– SYN SDR Oa02

– SYN SDR Oa03

– SYN SDR Oa04

– SYN SDR Oa05

– SYN SDR Oa06460

– SYN SDR Oa07

– SYN SDR Oa08

– SYN SDR Oa09

– SYN SDR Oa10

– SYN SDR Oa11465

– SYN SDR Oa12
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– SYN SDR Oa16

– SYN SDR Oa17

– SYN SDR Oa18

– SYN SDR Oa21470

– SYN SDR S1N

– SYN SDR S1O

– SYN SDR S2N

– SYN SDR S2O

– SYN SDR S3N475

– SYN SDR S3O

– SYN SDR S5N

– SYN SDR S5O

– SYN SDR S6N

– SYN SDR S6O480

Regression output variables

– AERONET AOD 550nm mean

– AERONET AOD 440nm mean

– AERONET AOD 500nm mean

– AERONET AOD 675nm mean485

– AERONET AOD 870nm mean

Correction output variables

– AOD550 approximationerror

– AOD440 approximationerror

– AOD500 approximationerror490
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– AOD675 approximationerror

– AOD870 approximationerror

Approximation error variables (ε) are computed using the Equation 3.

Inputs and outputs

As the inputs for the regression model we use the variables from the following variable sets:495

– Geometry variables

– Satellite observation variables

As the outputs for the regression model we use the variables from the following variable sets:

– Regression output variables

As the inputs for the correction model we use the variables from the following variable sets:500

– Geometry variables

– Satellite observation variables

– SYN L2 variables

As the outputs for the correction model we use the variables from the following variable sets:

– Correction output variables505

Appendix C: AERONET data used

The following variables of the AERONET data were used

– AOD 440nm

– AOD 500nm

– AOD 675nm510

– AOD 870nm

– 440-870 Angstrom Exponent
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Figure 4. Estimated AODs at the wavelengths employed in the AERONET. Top to bottom: 440nm, 500nm, 675nm and 870nm.

Left: Sentinel-3 level-2 Synergy AOD product. Middle: Fully learned regressor model. Right: Post-process correction.
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Figure 5. Rows from top to bottom: AOD (550nm), AE, AI. Left: Sentinel-3 level-2 Synergy product. Middle: Fully learned

regressor model. Right: Post-process correction model.
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Figure 6. AOD at 550nm time series for three AERONET stations. The black lines and dots indicate AERONET measurements,

red diamonds indicate Sentinel-3 level-2 Synergy, green circles regression model, and blue crosses corrected Sentinel-3 Synergy

retrievals.
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Figure 7. Monthly averages of AOD at 550nm for January (1st row), April (2nd row), July (3rd row), and October (4th row)

2019. Left column: Sentinel-3 level-2 Synergy. Middle column: Regressor model. Right column: Corrected Sentinel-3 Synergy.
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Figure 8. July 2019 monthly averages of AOD at 550nm for Madrid (1st row), Paris (2nd row) and Rome (3rd row). Left

column: Sentinel-3 level-2 Synergy. Middle column: Regressor model. Right column: Corrected Sentinel-3 Synergy. Circles

represent the monthly averages of AERONET stations.
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Figure 9. AOD (550nm) for Central Europe and year 2019. Machine learning models are trained using data outside Central

Europe region. Left: Sentinel-3 level-2 Synergy product. Middle: Fully learned regressor model. Right: post-process correction.
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