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Abstract. This study presents a method to identify and distinguish insects, clouds, and precipitation in 35 GHz (Ka-band) vertically 

pointing polarimetric radar Doppler velocity power spectra and then produce masks indicating the occurrence of hydrometeors 

(i.e., clouds or precipitation) and insects at each range gate. The polarimetric radar used in this study transmits a linear polarized 

wave and receives signals in collinear (CoPol) and cross-linear (XPol) polarized channels. The measured CoPol and XPol Doppler 15 

velocity spectra are used to calculate linear depolarization ratio (LDR) spectra. The insect-hydrometeor discrimination method 

uses CoPol and XPol spectral information in two separate algorithms with their spectral results merged and then filtered into single 

value products at each range gate. The first algorithm discriminates between insects and clouds in the CoPol Doppler velocity 

power spectra based on the spectra texture, or spectra roughness, which varies due to the scattering characteristics of insects versus 

cloud particles. The second algorithm distinguishes insects from raindrops and ice particles by exploiting the larger Doppler 20 

velocity spectra linear depolarization ratio (LDR) produced by asymmetric insects. Since XPol power return is always less than 

CoPol power return for the same target (i.e., insect or hydrometeor), fewer insects and hydrometeors are detected in the LDR 

algorithm than the CoPol algorithm, which drives theis need for a CoPol based algorithm. After performing both CoPol and LDR 

detection algorithms, regions of insect and hydrometeor scattering from both algorithms are combined in the Doppler velocity 

spectra domain and then filtered to produce a binary hydrometeor mask indicating the occurrence of cloud, raindrops, or ice 25 

particles at each range gate. Comparison with a collocated ceilometer indicates that hydrometeor mask column bottoms are within 

+/-100 meters of simultaneous ceilometer cloud base heights. Forty-seven (47) summer-time days were processed with the insect-

hydrometeor discrimination method using U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) 

program Ka-band zenith pointing radar observations in northern Oklahoma (USA). Comparison with a collocated ceilometer For 

these 47 days, over 70% of indicates theat hydrometeor mask column bottoms weare within +/-100 meters of simultaneous 30 

ceilometer cloud base heights. All datasets and images are available onto the public on the DOE ARM repositoryies. 
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1. Introduction 

The vertical structure of non-precipitating clouds plays an important role in the Earth’s radiation balance. These clouds absorb 

longwave radiation emitted from the surface and reflect shortwave solar radiation back into space (Cess et al., 1990). The 

proportion of these two processes determines whether these clouds act as a net radiation sink or source in the Earth’s radiation 

budget (Ramanathan et al., 1989). Vertically pointing cloud radars have been used for decades to quantify the extent to which non-5 

precipitating clouds can be used as inputs to Earth radiation budget studies to understand cloud dynamics and cloud life cycles 

(Moran et al., 1998; Ackerman and Stokes, 2003).  

In addition to measuring cloud properties, cloud radars are sensitive enough to detect individual insects within the radar 

volume (for overviews, see Riley, 1989, Westbrook et al., 2014; Nansen and Elliot, 2016). The field of radar entomology exploits 

this sensitivity by pointing polarimetric radar beams a few degrees off vertical and rotating the beam 360 degrees in azimuth to 10 

estimate insect population and migration direction (Drake et al., 2020). The field of radar meteorology has used polarimetric 

scanning radar observations to track insect flying direction and altitude outside of clouds (Mueller and Larkin, 1985) and to estimate 

gust-front motions ahead of convective cells because insects and small pieces of vegetation act as radar reflectors trapped within 

the strong boundary layer outflow (Klingle el al., 1987). Insects are considered clutter and unwanted signals in vertically pointing 

cloud radar observations. Two approaches have been used to identify insects in cloud radar observations: polarimeteric signatures 15 

and Doppler velocity power spectra signatures. Compared to more spherical hydrometeors (i.e., cloud droplets, raindrops, and ice 

particles), insects have asymmetrical shapes that produce large cross-polarization power return signals that enable insects to be 

identified with polarimeteric radar estimates including differential reflectivity and linear depolarization ratio. and the polarimetric 

signal from asymmetric insects is a good indicator of insect scattering (Lohmeier et al., 1997; Khandwalla et al., 2001 and 2002; 

Martner and Moran, 2001). Also, large insects will have different radar cross-sections at different radar operating wavelengths due 20 

to the resonance or Mie scattering effects enabling insects to be detected in dual-wavelength radar observations (Khandwall et al., 

2001 and 2002; Kollias et al., 2002).  

Insects produce unique signatures in the Doppler velocity power spectra. An individual insect scatters as a single point 

target with a returned power confined to a narrow Doppler velocity range and to a single range gate (Bauer-Pfundstein and 

Görsdorf, 2007). In contrast, clouds and precipitation are composed of hydrometeor distributions containing different size particles 25 

with different velocities that are spread over several range gates leading to broader measured Doppler velocity power spectra 

extending over several range gates (Luke et al., 2008). The difference between insect and hydrometeor Doppler velocity power 

spectra signatures has been used to distinguish insect and hydrometeor peaks in Doppler velocity spectra (Bauer-Pfundstein and 

Görsdorf, 2007; Luke et al., 2008). In these studies, multiple peaks are first found in the spectra and then intelligent algorithms 

(Bauer- Pfundstein and Görsdorf, 2007) or neural network algorithms (Luke et al., 2008) were developed to classify peaks as the 30 

result of either insect or hydrometeor scattering. The method presented herein reverses the processing steps by first identifying and 

then removing insect signatures in the Doppler velocity spectra before estimating spectrum peaks.Due to their large power 

fluctuations in the velocity spectra, insects have also been detected in cloud radar Doppler velocity power spectra (Luke et al., 

2008). 

Identifying and removing radar scattering from insects and other sources of “atmospheric plankton” (Lhermitte, 1966) 35 

has been a known problem in developing operational cloud products (Kollias et al., 2016). The U. S. Department of Energy (DOE) 

Atmospheric Radiation Measurement (ARM) program merges observations from multiple sensors (including radars, lidars, and 

ceilometers) to produce an estimate of hydrometeors (i.e., cloud particles, raindrops, ice particles) in the vertical column, called 

the Active Remote Sensing of CLouds (ARSCL) product (Clothiaux et al., 2000). ARSCL is a high temporal (~4 s) and vertical 

(~30 m) resolution operational product that primarily uses ceilometer cloud base and radar moments to classify all returns into one 40 
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of three scattering regimes: hydrometeor-only scattering, clutter-only scattering (due to insects or another non-atmospheric 

artifact), and scattering due to a mixture of hydrometeors and clutter within the radar pulse volume. An approximate estimate of 

maximum clutter height is provided to an automated heuristic algorithm developed over two decades of experience producing the 

ARSCL product at multiple radar sites. The results of the classification are reviewed. On rare occasions, the maximum clutter 

height is revised and the classification procedure is repeated. is being used to validate cloud resolving model and climate model 5 

simulations including shallow cloud simulations produced from the Large Eddy Simulation (LES) ARM Symbiotic Simulation 

and Observation (LASSO) workflow (Gustafson et al., 2017). 

One of the most difficult aspects of the operational ARSCL processing is identifying and removing insect clutter from the 

Ka-band ARM Zenith pointing Radar (KAZR) observations. Figure 1 shows one hour of ARSCL processed reflectivity from the 

DOE ARM Southern Great Plains (SGP) central facility on 31-July-2018 (ARM user facility, 2014). ARSCL classifies each radar 10 

volume as either hydrometeor-only, clutter-only, or some combination of hydrometeor-plus-clutter. Figure 1a (top panel) shows 

ARSCL reflectivity for radar volumes classified as either hydrometeor-only or hydrometeor-plus-clutter with Fig. 1b (middle 

panel) showing ARSCL hydrometeor-only reflectivities.Thus, these radar volumes contain hydrometeors with some radar volumes 

also containing clutter. To explore which radar volumes are clutter-free and can be used to validate cloud model simulations, Fig. 

1b (bottom panel) shows the hydrometeor-only radar volumes. The black symbols represent ceilometer-derived cloud base, which 15 

is also an input to used in the ARSCL operational algorithm. Figure 1c (bottom panel) shows the hydrometeor mask produced 

using the algorithms discussed herein. The apparent fall streaks in the ARSCL hydrometeor-only product below 1.5 km are 

misclassifications of insect clutter.One interpretation of Fig. 1b, is that drizzle is falling below cloud base at about 1.5 km. As will 

be shown in Section 3, these fall streaks below cloud base are actually insect clutter. The misclassification of insect clutter as 

hydrometeors and the inefficient ARSCL processing steps were some of the reasons why DOE ARM sponsored this work to 20 

identify insect clutter with the aim of improving future ARSCL products.Due to ARSCL misclassifying insect clutter as 

hydrometeor scattering as exemplified in Fig. 1, this study was initiated to develop a KAZR hydrometeor mask identifying 

locations of clouds and precipitation in the vertical column to help validate shallow cloud simulations produced by the ARM 

LASSO workflow (Gustafson et al., 2017) and to provide another input to the ARSCL operational processing chain to help identify 

and remove insect clutter from future ARSCL products.  25 
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Figure 1: Active Remote Sensing of CLouds product (ARSCL) for hour 19 UTC (hour 14 local) from the DOE ARM Southern Great 
Plains (SGP) central facility on 31-July-2018. (a) ARSCL reflectivity for radar volumes ARSCL classified as either hydrometeor-only or 
hydrometeor-plus-clutter. (b) ARSCL reflectivity for radar volumes ARSCL classified as hydrometeor-only. (c) Hydrometeor mask 
produced using the method described herein. Black symbols in allboth panels are ceilometer derived cloud base stored in ARSCL 5 
product. Note the hydrometeor misclassification below ceilometer cloud base in (b) motivates the need for improved insect clutter 
detection.   

The method to identify insects and hydrometeors presented herein builds on prior work using polarimetric diversity and 

Doppler velocity power spectra variability (e.g., Martner and Moran, 2001; Bauer-Pfundstein and Görsdorf, 2007; Luke et al., 

2008; Görsdorf et a., 2015). One unique feature of the proposed algorithms is that insect and hydrometeor scattering are identified 10 

before identifying significant peaks in the Doppler velocity spectra. This approach complements the methods that first identify 

multiple peaks and then classify each peak (Bauer-Pfundstein and Görsdorf, 2007; Luke et al., 2008) The observations used in this 

study and the signatures of insect and hydrometeor scattering are discussed in Sections 2 and 3. Section 4 presents the main concept 

behind the algorithms developed in this study., specifically, that by examining small regions of Doppler velocity power spectra 

over a limited height range (typically a few velocity bins in width and three range gates in height), it is possible to assess whether 15 

the power in that small spectra-height region resulted from insect or hydrometeor scattering. Once all small spectra-height regions 
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have been classified by texture and polarimetric algorithms, low-pass filters are used to identify larger spectra-height regions of 

hydrometeor scattering. If the hydrometeor regions are large enough to be detected as a primary hydrometeor peak in operational 

Doppler velocity spectra processing routines, then the hydrometeor mask is set to affirmative for that range gate. As a bonus output 

product, insect activity is estimated by counting the number of Doppler velocity bins with insect scattering at each range gate. 

Three hydrometeor mask products are produced with different time-height filtering to allow the end-user the ability to select outputs 5 

for their particular application. Section 5 compares tThe KAZR hydrometeor masks are compared with the Clouds Optically 

Gridded by Stereo (COGS) product (Romps and Öktem, 2018) derived from stereo cameras. Section 5 also compares the 

hydrometeor mask cloud bottom with ceilometer derived cloud base. lidar and camera observations in Section 5 with cConclusions 

and next steps are discussed in Section 6. The online Supplemental Material Section contains images of insect and hydrometeor 

classifications for forty-seven (47) summer-time days in northern Oklahoma, U.S.A., identified as LASSO cloud simulation events 10 

(LASSO, 2020).  

2. Observations 

The observations used in this study were collected by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement 

(ARM) program at their Southern Great Plains (SGP) central facility located in northern Oklahoma. Vertically pointing Ka-band 

radar co-polarized (CoPol) and cross-polarized (XPol) Doppler velocity power spectra are processed to identify insects, clouds, 15 

and precipitation in the vertical column. Verification of those classifications are based on observations from co-located lidar, 

ceilometer, Total Sky Imager (TSI), and cloud boundaries contained in the Clouds Optically Gridded by Stereo (COGS) product 

(Romps and Öktem, 2018). 

 

2.1 Ka-band ARM Zenith Pointing Radar (KAZR) 20 

The DOE ARM program deploys atmospheric observing systems to characterize the radiative properties of clouds in the 

atmosphere (Mather and Voyles, 2013). One of ARM’s hallmark instruments is the Ka-band (35 GHz) ARM zenith pointing cloud 

radar (KAZR), which transmits linear polarized waves that are detected simultaneously with collinear polarized (CoPol) and cross-

linear polarized (XPol) receivers. The received signals are processed to yield co-polarized 𝑆 𝑣 ,ℎ  [Watts] and cross-

polarized 𝑆 𝑣 ,ℎ  [Watts] Doppler velocity power spectra at each velocity bin 𝑣  and range gate ℎ . The linear depolarization 25 

ratio spectra profile 𝑆 𝑣 ,ℎ  [dB] is the ratio of polarized signal magnitudes defined as  

  𝑆 𝑣 ,ℎ 10𝑙𝑜𝑔
,

,
 , or as        (1a) 

 𝑆 𝑣 ,ℎ 𝑆 , 𝑣 ,ℎ 𝑆 , 𝑣 ,ℎ        (1b) 
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ratio 𝐿𝐷𝑅 [dB] is the integration of Xpol and CoPol signals over the spectrum and is defined as  30 
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where 𝑣  to 𝑣  define the velocity range of valid 𝑆 𝑣 ,ℎ  and 𝑆 𝑣 ,ℎ  observations.   

At SGP, KAZR operates in the general ‘GE’ and medium ‘MD’ sensitivity modes to sense clouds at different altitudes 

with operating parameters during 2018 and 2019 shown in Table 1 (ARM user facility, 2011a, 2011b, 2011c, 2011d; Widener et 
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al. 2012). Even though Iinsects are detected in bothall KAZR operating modes,. to simplicity the fFigures and algorithm 

descriptions, the results from just use the MD mode are presented herein. with retrievals for the GE mode available in the ARM 

data archive. Since the MD mode transmits uses a long frequency-modulatedcoded transmitted pulse, the first resolved range gate 

is 570 m above the radar. The KAZR 3.05 m diameter Cassegrain parabolic reflector manufactured by Millitech produces a 0.2° 

antenna beamwidth with 57.5 dBi gain, has -27 dB cross polarization isolation, and a membrane radome slopes across the antenna 5 

with a dry 2-way loss less than 2 dB (Widener et al., 2012). The MD mode uses a non-linear frequency modulated chirp over a 

3967 ns pulse length to produce a 45 m range resolution sampled at 30 m range spacing. At 1 km range, the radar pulse volume 

isproduces a 3.6 m diameter horizontal disk over a 45 m range to yield a pulse volume of field-of-view at 1 km range. With a 30 

m range resolution, the radar volume at 1 km is approximately 30450 m3. To save computer hard disk space, the KAZR CoPol and 

XPol Doppler velocity power spectra are retainedsaved only at range gates with significant power above a noise threshold.  10 

2.2 Validation Observations 

TwoFour different observational datasets are used to validate the derived KAZR insect and hydrometeor classifications:. 

Specifically, qualitative observations included the backscattered attenuated power from vertically pointing Doppler lidar (ARM 

user facility, 2010a) and photos from the TSI (ARM user facility, 2000). These observations provide context for cloud bottom and 

cloud type (neither instrument observe cloud top). Quantitative comparisons come from ceilometer cloud base estimates from a 15 

Vaisala model CL3125K ceilometer (ARM user facility, 2010b; Morris, 2016) and from cloud bottom and top estimates from the 

COGS product (ARM user facility, 2017). The Vaisala ceilometer uses ais pulsed InGaAs diode laser at 910 nm wavelength and 

the vendor supplied algorithm an automated system estimatesing cloud base atwith 10-m vertical and 16-s temporal resolution 

when the vertical visibility is less than 100 m (Morris, 2016). The COGS cloud boundaries are derived from three pairs of stereo 

cameras positioned around the SGP Central Facility and represent cloud boundaries over a cubic domain 6 km to a side (Romps 20 

and Öktem, 2018). Due to camera visual occlusion during precipitation, COGS cloud boundaries are only estimated for cases of 

shallow cumulus clouds, which allow the three cameras to view the vertical extent of each cloud. Likewise, estimates from COGS 

are only available during daylight hours. 

 

  25 
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Table 1. Operating parameters for KAZR deployed at ARM Southern Great Plains (SGP) during 2018 and 2019. Operating modes 
included General Purpose (GE) and Medium Sensitivity (MD) modes. Tabulated parameters include: pulse repetition frequency (𝑷𝑹𝑭) 
[Hz], inter-pulse period (𝑰𝑷𝑷) [𝝁sec], number of points in FFT (𝑵𝑭𝑭𝑻), number of averaged spectra (also known as number of incoherent 
integrations) (𝑵𝒊𝒏𝒄𝒐𝒉 , Nyquist velocity (𝑽𝑵𝒚𝒒𝒖𝒊𝒔𝒕) [m s-1], velocity resolution (𝚫𝒗) [m s-1], range to first range gate [m], range resolution 
[m], time-on target (which is calculated using 𝑰𝑷𝑷 𝑵𝑭𝑭𝑻 𝑵𝒊𝒏𝒄𝒐𝒉) [s], and time between samples [s].  5 

 

 

Parameter     2018 and 2019 

Sensitivity Mode     general ‘GE’  medium ‘MD’   

Frequency [GHz]     34.83   34.89 10 

Pulse Repetition Frequency (𝑃𝑅𝐹) [Hz]  27717   27717  

Inter-Pulse Period (𝐼𝑃𝑃) [𝜇sec]   360  360  

 

Pulse Duration [ns]    300  3967 

Pulse Modulation     none  Linear Frequency Modulation 15 

Range resolution Δ𝑅 [m]    4530  3045  

Distance between range gates [m]    30   30 

Range to first range gate 𝑅  [m]   100  570  

Number of points in FFT (𝑁 )   256  256  

𝑉  [m s-1]      5.96  5.95 20 

 Δ𝑣 [cm s-1]     4.67   4.67   

Number of incoherent integrations 𝑁   20   20  

Time-on Target 𝑡 𝐼𝑃𝑃 𝑁  𝑁  [s] 1.78  1.8  

Time between samples 𝑡  [s]    3.7  3.7   

 25 

3. Insect, Cloud Droplet, and Precipitation Spectral Characteristics 

This section discusses the scattering characteristics of insects, atmospheric plankton, clouds, and precipitation as observed in 

KAZR CoPol and XPol Doppler velocity power spectra. The first subsection discusses characteristics when it is not raining and 

the radar is observing individual insects or other atmospheric plankton particles scattering as point targets with narrow velocity 

ranges and shallow cumulus clouds scattering as distributed targets with broader velocity ranges. The variability of return power 30 

across the Doppler velocity spectrum, or the spectrum ‘texture’, is used to distinguish point target insects from distributed target 

clouds. The second subsection describes the characteristics when individual insects and raindrop or ice particle distributions occur 

simultaneously in the radar volume. The LDR at each Doppler velocity bin is used to distinguish high LDR insects from low LDR 

raindrops or ice particles.  

3.1 Insects and Shallow Cumulus Clouds 35 

Figure 2 shows an hour of KAZR observations when both insects (or other atmospheric plankton particles) and shallow cumulus 

clouds are observed over the radar during 1900 UTC (1400 Local Time) on 31-July-2018. From top to the bottom, Fig. 2 shows 

KAZR (a) CoPol reflectivity [dBZ], (b) mean Doppler velocity [m s-1], (c) Doppler velocity spectrum width [m s-1], (d) linear 

depolarization ratio (LDR) [dB], and (e) KAZR CoPol reflectivity at time-height locations (also called ‘pixels’ in this study) that 
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do not have a LDR measurement. The black symbols in each panel indicate ceilometer-derived cloud base height, which is near 

1.5 km for this hour. Below cloud base, reflectivity (Fig. 2a) and spectrum width (Fig. 2c) have a coherent pattern, but vertical 

motion (Fig. 2b) appears more variable. If drizzle or rain were below cloud base, then all three quantities would be coherent with 

downward motions increasing as reflectivity and spectrum width increase (Williams and Gage, 2009). Thus, it is not raining below 

cloud base. Above the ceilometer derived cloud base height, there are CoPol reflectivity observations (Fig. 2a), but not as many 5 

LDR estimates (Fig. 2d). For example, near minute 20, there is an enhancement of CoPol reflectivity above the ceilometer cloud 

base and extending above 2 km, yet, there are very few LDR observations in this time-height region. Since LDR requires both 

CoPol and XPol reflectivity observations, the lack of LDR above cloud base indicates that the XPol channel is not detecting cloud 

particles. The abrupt omission of LDR observations above the ceilometer cloud base height appears suspicious as it produces a 

nearly horizontal feature in Fig. 2d. This CoPol vs. XPol sensitivity is illustrated in the bottom panel which shows CoPol reflectivity 10 

for all pixels that do not also have a LDR observation. The continuous time-height CoPol reflectivity observations above 1.5 km 

are cloud features that are easily discernible by eye. Return signals from individual insects appear as speckles up to 4 km in all 

panels.  

The CoPol and XPol Doppler velocity power spectra produced by individual insects and by cloud droplet distributions 

have different characteristics as illustrated in Fig. 3, which shows CoPol (Fig. 3a) and XPol (Fig. 3b) Doppler velocity power 15 

spectral density profiles at 19:19:02 UTC on 31-July-2018. The vertical axis extends from 0 to 3 km in height and the horizontal 

axis extends +/- 6 m s-1 radial velocities. The Nyquist velocity is 5.95 m s-1 and downward motions have positive values consistent 

with positive raindrop diameters having positive fall speeds due to gravity. Due to the long coded transmitted pulse, the first 

observations occur at 0.57 km range. The colors represent the return signal power expressed in dB with warmer colors indicating 

larger return signal power. The mean noise power is approximately -100 dB.  20 

Figure 3c shows CoPol Doppler velocity power spectra at 1 and 2 km heights (black and red lines, respectively). The 

power spectrum at 1 km has more variability between velocity bins compared to the spectrum at 2 km. This variability is because 

the radar is detecting individual insects within the 300 m3 field-of-view with each insect moving at its own radial velocity. If an 

insect is the only insect moving at a particular velocity, the spectrum will have an isolated peak (e.g., near -1.7 m s-1 radial velocity 

in Fig. 3c). If multiple insects are moving at similar speeds, the spectrum will be broader, yet, will still have variability. For 25 

example, between -1 and +3 m s-1 radial velocities, the 1 km height spectrum (black line) is both elevated in magnitude and has 

more bin-to-bin variability than the spectrum from 2 km (red line). Also, the backscattered power from insects is primarily confined 

to one range gate with some power leaking into neighboring range gates due to radar signal processing limitations, which produce 

point enhancements in the spectra profile. Shown in sequential spectra profiles in the Supplemental Material, point enhancements 

often appear in only one spectra profile and not in neighboring profiles separated 4 seconds apart. The surface wind speed was 30 

about 3 m s-1 for this profile and there is not enough information to determine whether the insects are passive tracers advecting 

with the wind or self-propelling themselves throughThis indicates that individual insects appear in the 3.6 m diameter by 4530 m 

field-of-view infor less than 4 seconds.  

In contrast to individual insects, clouds and precipitation are distributed targets filling the radar volume with hundreds or 

thousands of hydrometeors of different sizes with different radial velocities. Since the number of particles in the hydrometeor size 35 

distribution varies gradually over neighboring particle sizes and the hydrometeor spectrum is extended in the velocity dimension 

due to antenna broadening effects, the return power spectrum has a gradual change over neighboring velocity bins. Thus, the power 

spectrum from a distribution of many hydrometeors is smoother than the return from a few individual insects. The smoother power 

spectra at 2 km height shown in Fig. 3c are consistent with a distribution of small cloud droplets moving at different velocities 
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within the radar volume. In addition to smooth power spectra across the velocity dimension, power spectra from cloud droplets are 

also more continuous in range due to the vertical extent of clouds as can be seen with a continuity of clouds with height in Fig. 3a.  
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Figure 2: Moments calculated from raw spectra for hour 19 UTC on 31-July-2018. (a) CoPol reflectivity [dBZ]. (b) Mean radial velocity 
[m s-1], positive values are downward motion. (c) Spectrum width [m s-1]. (d) Linear depolarization ration (LDR) [dB]. (e) CoPol 
reflectivity [dBZ] at pixels that do not have an LDR measurement. Black symbols in allboth panels are ceilometer derived cloud base. 
The vertical dashed line indicates time 19:02, which is the time of the profile shown figs. 3 and 6. 

 5 

 

Figure 3: Spectra from profile at 19:19:02 UTC on 31-July-2018. (a) CoPol Doppler velocity power spectra [dB] as a function of range 
and radial velocity. (b) XPol Doppler velocity power spectra [dB] as a function of range and radial velocity. (c) CoPol Doppler velocity 
power spectra at 1.0 km (black line) and 2.0 km (red line). (d) XPol Doppler velocity power spectra at 1.0 km (black line). 

3.2 Insects and Precipitation  10 

Figure 4 shows time-height cross-sections of KAZR CoPol reflectivity (Fig. 4a) and LDR observations (Fig. 4b) when insects, 

clouds, and precipitation are observed in the same hour. Observations were collected during 0400 UTC (2300 Local) on 04-April-

2019. From minutes 0-to-20, the approximate 1.5 km ceilometer cloud base height (black symbols) is above the insect layer that 

has LDR values between approximately -5 and -10 dB (see Fig. 4b), while the CoPol reflectivity is continuous in time and height 

above the ceilometer cloud base height (see Fig. 4a and 4c). At the beginning of the hour, the CoPol reflectivity (Fig. 4a) time-15 

height structure indicates a precipitating cloud system between 3 and 5 km that evolves in time with precipitation reaching the 



11 
 

lowest resolved height of 0.57 km after minute 20. The LDR shows a similar time-height structure (with reduced vertical depth) 

with LDR values ranging between -25 to -20 dB. The LDR enhancement near 2.4 km and after minute 20 is due to a mixture of 

liquid and frozen particles near the melting layer (Baldini and Gorgucci, 2006). Below the melting layer, the LDR has values near 

-25 dB that is due to scattering from rain drops. Above the melting layer, scattering from asymmetrical ice particles leads to LDR 

values near -20 dB (Baldini and Gorgucci, 2006). In contrast to the shallow cumulus cloud droplet observations in Figs. 2 and 3, 5 

KAZR has enough sensitivity to detect XPol signal returns from large spherical raindrops and ice particles.  
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Figure 4: Moments calculated from raw spectra and retrieved hydrometeor QC1 mask for hour 4 UTC on 4-April-2019. (a) CoPol 
reflectivity [dBZ]. (b) Linear depolarization ration (LDR) [dB]. (c) CoPol reflectivity [dBZ] at pixels that do not have an LDR 
measurement. (d) Retrieved hydrometeor QC1 mask. Black symbols in both panels are ceilometer derived cloud base. 

 5 

Figure 4c shows the CoPol reflectivity at time-height pixels that do not have a LDR measurement. As with the shallow 

cloud observations (see Fig. 2e), there are more CoPol observations than LDR observations. By eye, regions of insects, clouds, 

and precipitation can be identified in CoPol reflectivities in Fig. 4c. The bottom panel (Fig. 34d) shows the QC1 hydrometeor mask 
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produced by the insect-hydrometeor detection algorithm described later in this manuscriptSection 4. The mask identifies the 

shallow clouds near 1.5 km from 0-to-10 minutes and the precipitating anvil at the beginning of the hour between 3-to-4 km that 

descends to the lowest range gate just after minute 20. Surprisingly, the hydrometeor mask is affirmative below 1.5 km starting at 

about minute 21 and continues until the end of the hour except for a shallow gap between minutes 50-to-55. Spectra will be 

investigated in Section 4 and will confirm that hydrometeors are present in this time-height interval and the affirmative mask is 5 

correct. The events shown in Figs. 2-4 highlight three important attributes of CoPol and LDR measurements:  

 LDR measurements detect some, but not all, insect, cloud, and precipitation observations. 

 KAZR LDR measurements do not have the sensitivity to detect shallow non-precipitating liquid clouds.  

 Doppler velocity power spectral contain signatures unique to features need to be examined to discriminate between 

insect scattering, and hydrometeor scatteringclouds, and precipitation. 10 

The limitation ofse LDR measurements not detecting all insects detected byattributes indicate that CoPol measurements and the 

benefit of Doppler velocity power spectra having signatures of insects and hydrometeor scattering suggests that Doppler velocity 

power spectra can be analyzed along with must be used in addition to LDR measurements to discriminate between insects and, 

hydrometeor scatteringclouds, and precipitation.  

4. Anatomy of Insect-Hydrometeor Detection Algorithms  15 

As described previously, the radar returned signal results from scattering from insects (including “atmospheric plankton”) and/or 

hydrometeors (aka, cloud droplets or precipitation sized particles). The insect-hydrometeor detection algorithms described in this 

section aim to classify each region of the CoPol and LDR Doppler velocity spectra as either insect or hydrometeor scattering. Next, 

the two CoPol and LDRXPol regional spectral classifications are combined and then filtered to produce masks indicating the 

occurrence of insect or hydrometeor scattering at every range gate.  20 

The detection algorithms start with the observed CoPol and XPol spectra profiles 𝑆 / 𝑣 ,ℎ  [Watts]. These are a 

combination of signal power 𝑆 / 𝑣 ,ℎ  [Watts] and random noise power 𝑛 𝑣 ,ℎ  [Watts] 

 𝑆 𝑣 ,ℎ 𝑆 𝑣 ,ℎ 𝑛 𝑣 ,ℎ          (3a) 

and 

 𝑆 𝑣 ,ℎ 𝑆 𝑣 ,ℎ 𝑛 𝑣 ,ℎ  .        (3b) 25 

The signal powers are a combination of insect signal power 𝑆 / 𝑣 ,ℎ  [Watts] and hydrometeor signal power 

𝑆 / 𝑣 ,ℎ  [Watts] for both polarizations. This can be expressed as 

  𝑆 𝑣 ,ℎ 𝑆 𝑣 ,ℎ 𝑆 𝑣 ,ℎ   and       (4a) 

 𝑆 𝑣 ,ℎ 𝑆 𝑣 ,ℎ 𝑆 𝑣 ,ℎ  .       (4b) 

The goal of the CoPol and LDR insect-hydrometeor detection algorithms is to classifyidentify the insect and hydrometeor scattering 30 

contributions at each  𝑣 ,ℎ  location. Insects and hydrometeors do occur in the same range gate and sometimes at the same 

velocity (as will be seen in Figs. 6, 8, 9, and 11). These simultaneous insect and hydrometeor classifications will be mitigated by 

temporal quality control filtering.that produce the observed signal power spectra profile. In the discussed algorithms, it is assumed 

that the power in any 𝑣 ,ℎ  location is due to either insect or hydrometeor scattering, and not both.  

The observed KAZR CoPol and XPol spectra profiles (Fig. 3) are the inputs to the insect-hydrometeor algorithms, with 35 

the processing steps for both algorithms outlined in Fig. 5. The methodology consists of two parallel algorithms. The CoPol Texture 

Algorithm classifies insects and hydrometeors based on the CoPol spectra texture, with the understanding that scattering from 
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insects produces more spectrum variability than cloud droplet or raindrop distributions. The LDR algorithm classifies insects and 

hydrometeors based on the understanding that asymmetric insects produce larger LDR magnitudes than spherical raindrops (when 

viewed from the bottom), and that the KAZR XPol channel is not sensitive enough to detect non-precipitating liquid cloud droplets 

should not produce any signal in the KAZR XPol channel for single scattering processes. Both algorithms produce insect-

hydrometeor membership classes for every region of the spectra profile. The membership classes are combined and then reduced 5 

to binary insect and hydrometeor masks that have affirmative values for insect or hydrometeor scattering at each range gate. After 

processing individual spectra profiles, two time-height continuity quality control (QC) filters are applied to the binary hydrometeor 

masks to remove outliers. This is based on the understanding that clouds and precipitation are persistent over 10’s of seconds and 

10’s of meters. Details of each algorithm module are described in the following sections.  

 10 

 

Figure 5: Retrieval logical flow diagram 

4.1 CoPol Texture Algorithm Branch 

This section describes the CoPol Texture Algorithm by applying the processing steps (Boxes 1-4 of Fig. 5) to the observed spectra 

profile shown in Fig. 3a. An objective noise threshold 𝑛 ℎ  is estimated from the CoPol spectra at each height (Hildebrand and 15 

Sekhon 1974; Carter et al. 1995). The CoPol spectra with magnitudes greater than 𝑛 ℎ  are defined as signal power (see 



15 
 

equation 3). The CoPol signal power for the boundary layer spectra in Fig. 3a is shown in Fig. 6a. As discussed before, insect 

scattering produces delta functions in the power spectra that are broadened in the velocity domain because of hardware limitations 

(e.g., antenna beamwidth) and signal processing techniques (e.g., FFT processing). A texture parameter 𝑇 𝑣 ,ℎ  [dB] (Box 2 

of Fig. 5) captures delta function variability in the CoPol power spectra, and is defined as 

  𝑇 𝑣 ,ℎ 𝑚𝑎𝑥
𝑆 , 𝑣 𝑆 , 𝑣

𝑆 , 𝑣 𝑆 , 𝑣
 .      (5)5 

 𝑇 𝑣 ,ℎ 𝑚𝑎𝑥 𝑆 , 𝑣 𝑆 , 𝑣  , 𝑆 , 𝑣 𝑆 , 𝑣    (5) 

 

where 𝑚𝑎𝑥 𝑎 , 𝑏  selects the larger magnitude value between estimates 𝑎 or 𝑏. To capture both positive and negative changes 

equally, 𝑇 𝑣 ,ℎ  uses the absolute magnitude, then selects the largest difference between the neighbors (i.e., 𝑣  or 𝑣 ). 

Figure 6b shows the texture 𝑇 𝑣 ,ℎ  for the CoPol power spectra shown in Fig. 6a. Note that the small magnitude texture values 10 

in the upper heights are due to cloud droplet scattering and larger magnitude texture values in the lower heights are caused by 

insect scattering. Several features make texture 𝑇 𝑣 ,ℎ  well suited for identifying insect produced delta function variability. 

First, the texture 𝑇 𝑣 ,ℎ  is calculated using signal powers is expressed in decibel units. Thus, the power difference between 

neighbors in decibel units is the same as a power ratio, or a percent change, when the power is expressed in linear units (e.g., 

10𝑙𝑜𝑔 10𝑙𝑜𝑔 𝐴 10𝑙𝑜𝑔 𝐵 ). This implies that fluctuations expressed in decibel units are independent of magnitude, which 15 

allows for comparisons of low magnitude cloud observations with larger magnitude insect observations as shown in Fig. 3. to 

remove signal magnitude dependencies that occur between cloud droplet (order of 10 dB) and raindrop (order of 50 dB) 

observations. Second, a narrow KAZR antenna beamwidth allows the difference between nearest neighbors (i.e., 𝑣  and 𝑣 ) to 

quantify delta functions. (Note that depending on for radar hardware and operating parameters with broader beamwidths, the insect 

peak may bewould broadern than these observations, and power differences using further neighbors may be necessary in order to 20 

identify delta functions (, e.g., between 𝑣  and 𝑣 .).  

 

Figure 6: Spectra profile measurements and calculations from profile at 19:19:02 UTC on 31-July-2018. (a) CoPol spectra. (b) CoPol 
Texture. (c) Max(Texture). (d) STD(Texture). (e) XPol spectra. (f) LDR spectra. (g) Mmean(LDR). (h) STD(LDR). All measurements 
and calculations are in units of dB. 25 
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With a goal of identifying regions of insect and hydrometeor scattering, a small velocity-height window is moved 

throughout the 𝑇 𝑣 ,ℎ  domain and texture statistics are calculated for each small region. For this KAZR dataset, a velocity-

height window of five (5) velocity bins (total width of 0.186 m s-1) and three (3) range gates (total depth of 90 m) was large enough 

to capture regional texture variability. For each small region, maximum texture 𝑇 max 𝑇 𝑣 ,ℎ  and standard 

deviation 𝑇 𝑆𝑇𝐷 𝑇 𝑣 ,ℎ  are estimated and assigned to the location 𝑣 ,ℎ . Figures 6c and 6d show the regional 5 

maximum and standard deviation for the texture shown in Fig. 6ba. Note that both quantities are larger at lower altitudes where 

insect scattering dominates compared to higher altitudes that are dominated by cloud droplet scattering. Interestingly, 

enhancements in both max texture and STD texture are visible near 1.8 and 2 km indicating that insect scattering is occurring with 

close proximity toin cloud scattering regions.  

With an objective of separating insect and cloud scattering regions based on CoPol texture statistics, Fig. 7a, 7b, and 7c 10 

shows 1-dimensional (1D) and 2-dimensional (2D) probability distribution functions (PDFs) of 𝑇 𝑆𝑇𝐷 𝑇  and 𝑇

max 𝑇  for all profiles in hour 19 of 31-July-2018 and all spectral regions that do not have a LDR measurement. The spectral 

regions with a LDR measurement are shown in Fig. 7d, 7e, and 7f.  To increase the number of samples in the PDFs, Fig. 7 uses 

spectra texture statistics for all profiles in hour 19 of 31-July-2018. The color coding in the 2D plot represents the percent 

occurrence relative to the cell with maximum number of observations. The 1D PDFs produced from the observations are shown 15 

with black curves in Figs. 7a and 7c using 953,136 samples, each representing a small spectral region, distributed into two 

populations. The peak with smaller 𝑆𝑇𝐷 𝑇  and smaller max 𝑇  is due to cloud particle scattering. The peak with larger 

texture attributes is caused by insect scattering. The contour lines in Fig. 7b represent 90%, 75%, 63% and 50% occurrence of 2D 

Gaussian functions estimated for both populations. The red lines in Figs. 7a and 7c are 1D Gaussian function fits to the 

observations. Better fits were obtained using Generalized Gaussian functions that accounted for skewness in the observed 20 

distributions. However, these better fits did not yield better classifications, as better classifications depend on the samples between 

the two peaks and not on the outer tails of the distributions that determined the distribution skewness.  

 

 

Figure 7: 1D and 2D distributions of texture statistics from hour 19 UTC on 31-July-2018. There are 953,136 spectra regions used in 25 
these distributions. (a) 1D PDF of STD(Texture). Black line is observations and red dashed line is fit to two Gaussian distributions. (b) 
Colors are observed 2D distribution of STD(Texture) vs. Max(Texture). Colors represent drop from pixel with most occurrences. Blue 
and red contours are 2D Gaussian fits to hydrometeors (blue) and insects (red). Contours represent 90%, 75%, 63%, and 50% 
occurrence. Gaussian fit parameters are displayed in panel. Threshold between hydrometeor and insect indicated by dashed black line 
at max(texture) = 4.5. (c) 1D PDF of Max(Texture). Black line is observations and red line is fit to two Gaussian distributions. 30 
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 The observations with LDR in Fig. 7d, e, and f show only one distribution corresponding to insect scattering. The 

functional fits are Generalized Gaussian distributions and capture skewness in the distributions. Note the similarities between the 

fitted parameters for the insect populations with and without LDR measurements. Both distributions have similar means and 

standard deviations (i.e., near 10 dB mean and 2.7 dB standard deviations). Also note that the insect distribution in Fig. 7e extends 

toward the origin and overlaps with the cloud population shown in Fig. 7b. This overlap causes difficulty in using a simple threshold 5 

to classify hydrometeor from insect observations. This difficulty was noticed in Luke et al. (2008). One way to improve the 

classification is to use a threshold that is orthogonal to the observed distributions. The insect and hydrometeor 2D Gaussian 

functional fits shown in Fig. 7b and 7e  have correlation coefficients greater than 0.9 and indicate the distributions are close to a 

1-to-1 slope. After creating a line between the hydrometeor and insect distributions, an orthogonal threshold can be constructed. 

Figure 7b and 7e show the orthogonal threshold developed by analyzing many hydrometeor and insect observations from 2018 10 

and 2019 (see Appendix A for details). The analysis presented in Appendix A suggests that the orthogonal threshold has a true 

positive rate of about 90% for both hydrometeor and insect scattering observations. Due to the distribution overlap, a single 

threshold methodology will not reach 100% true positive rate and additional classification or filtering will be necessary. One way 

to improve the classifications due to distribution overlap or inaccurate thresholds is to apply continuity filters to remove random 

or ephemeral samples due to misclassifications as discussed in Section 4.4. suggest that simple thresholds in 1D space may be used 15 

to define binary insect and hydrometeor texture membership classes. Using the max 𝑇  PDFs shown in Fig. 7c, a threshold of 

max 𝑇 4.5 is defined to separate the two texture membership classes with measured max 𝑇  values greater than 

max 𝑇  classified as due to insect scattering. Applying the orthogonal CoPol texture thresholds to the example profile 

from 19:19:02 UTC, Fig. 8a shows the insect (blue shading) and hydrometeor (red shading) texture membership classes. Also in 

Fig. 8 are the LDR insect-hydrometeor classes; the combined classes; and the profile mask; all of which are discussed in the next 20 

section.  
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Figure 8: Spectral memberships and binary mask for profile at 19:19:02 UTC on 31-July-2018. Red color indicates hydrometeor 
membership and blue color represents insect membership (a) Texture algorithm spectral membership. (b) LDR algorithm spectral 
membership. (c) Filtered spectral membership. (d) Binary hydrometeor and insect mask. 

4.2 LDR Algorithm Branch 5 

This section describes the processing steps of the LDR Algorithm (Boxes 5-8 of Fig. 5). In Box 5, an objective noise threshold 

𝑛 ℎ  is estimated from the XPol spectra at each height (Hildebrand and Sekhon 1974; Carter et al. 1995). The XPol spectra 

with magnitudes greater than 𝑛 ℎ  are defined as signal power (see equation 3). Box 6 calculates the linear depolarization ratio 

spectra using equation (1). using tThe CoPol and XPol spectra profiles at 04:48:17 UTC from the precipitation event on 4-April-

2019 shown in Fig. 4 are shown in Fig. 9. The top row of Fig. 9 (Fig. 9a-d) shows CoPol observations and CoPol texture statistics 10 

used in the CoPol texture algorithm. Figures 9e and 9f show XPol and LDR spectra profiles. To estimate regional scattering 

properties, the same 5x3 velocity-height window used in the texture algorithm is used to calculate regional LDR statistics 

throughout the 𝑆 𝑣 ,ℎ  spectra profile (Box 7 of Fig. 5). Figures 9g and 9h show the 𝑚𝑒𝑎𝑛 𝑆 𝑣 ,ℎ  and 

𝑆𝑇𝐷 𝑆 𝑣 ,ℎ  estimates and suggest that insects are present below 1 km with near zero vertical velocity and falling 
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hydrometeors are present above 3 km. The insects are deduced by 𝑚𝑒𝑎𝑛 𝑆 𝑣 ,ℎ  between -10 and -5 dB and the falling 

hydrometeors by 𝑚𝑒𝑎𝑛 𝑆 𝑣 ,ℎ  less than -20 dB. These inferences are supported by the CoPol texture statistics (Figs. 9c and 

9d) with insects having large max 𝑇 𝑣 ,ℎ  near zero vertical velocities below 1 km and smaller values elsewhere. As with 

the warm shallow cumulus cloud event shown in Fig. 6, there are more CoPol observations (Fig. 6a-d) than LDR measurements 

(Fig. 6e-h) below 1.5 km.  5 

 

Figure 9: Same as Fig. 6 except for profile at 04:48:17 UTC on 4-April-2019. 

 With an objective of separating insect and hydrometeor scattering regions based on LDR statistics, Fig. 10 shows 2D and 

1D PDFs of the LDR statistics estimated for all observations below 1.5 km (to avoid too many hydrometeor observations that 

would prevent any insects from appearing in Fig. 10ice particle scattering) for hour 04 on 04-April-2019. Figure 10 contains over 10 

1 million LDR statistic samples each calculated over a separate 5x3 spectral region. The distribution near 𝑚𝑒𝑎𝑛 𝑆 𝑣 ,ℎ

 8 dB is due to insect scattering and the distribution near 𝑚𝑒𝑎𝑛 𝑆 𝑣 ,ℎ 20 dB is due to hydrometeor scattering. A 

threshold of 𝑚𝑒𝑎𝑛 𝑆  15 dB clearly separates the two distributions and is indicated with a dashed line in Fig. 

10b, which is consistent with estimates from Matrosov (1991) and Reinking et al. (1997). 

 15 
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Figure 10: Similar to Fig. 7 except for hour 4 UTC on 4-April-2019 and for STD(LDR) and mean(LDR) statistics. There are 1,085,217 
samples collected below 1.5 km height. 

Figures 11a and 11b show the CoPol texture and LDR membership classes for this spectra profile. Blue shading indicates 

insect scattering and red shading indicates hydrometeor scattering. Note that the texture algorithm identifies both insect and 5 

hydrometeor scattering below 1.5 km while the LDR algorithm only detects a few insects at these lower range gates. Both 

algorithms identify hydrometeor scattering above about 3 km. 
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Figure 11: Same as Fig. 8 except for profile at 04:48:17 UTC on 4-April-2019. 

4.3 Combining Co-Pol Texture and LDR Algorithm Classifications 

After performing the CoPol texture and LDR algorithms, the binary insect and hydrometeor spectral classifications from both 

algorithms are combined and then filtered (e.g., see Figs. 8a and 8b, and Figs. 11a and 11b). Initially, the combined spectral 5 

classification is the texture classification because the LDR classification will always have fewer valid observations than the CoPol 

observations. To incorporate the LDR classification, the combined classification is changed only if the LDR algorithm produced a 

hydrometeor class when the texture classification was set to insect class. This logic places more emphasis on identifying 

hydrometeors than insects.  

One of the physical attributes of hydrometeor scattering is that the Doppler velocity spectra span multiple continuous 10 

velocity bins and over several range gates. Accordingly, isolated hydrometeor pixels in the combined spectral classification are 

removed by requiring at least 7 continuous hydrometeor pixels in the velocity dimension. All hydrometeor pixels not satisfying 

this constraint are set to the insect scattering class. The filtered memberships for the two example profiles are shown in Figs. 8c 
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for the warm liquid cloud event on 31-July-2018 and Fig. 11c for the precipitation event on 4-April-2019. The red and blue shading 

corresponds to hydrometeor and insect scattering classes, respectively.  

The final processing step is to reduce the filtered membership classes into binary masks indicating the presence of insect 

or hydrometeor scattering at each range gate (Box 10 of Fig. 5). The insect and hydrometeor masks are set to unity if that filtered 

membership class exists for that range gate ℎ . In the case when both insect and hydrometeor scattering are detected at the same 5 

range gate, the hydrometeor mask is set to unity and the insect mask is set to zero. This logic places more emphasis on identifying 

robust hydrometeor masks and defining masks resulting from either insect or hydrometeor scattering at each range gate. Figures 

8d and 11d show the binary insect and hydrometeor masks for the two example profiles. Both masks are saved in output data files 

and have the variable names insect_mask_raw and hydro_mask_raw (Boxes 11 and 12 of Fig. 5). The suffix raw designates that 

these masks were estimated from individual profiles and without any temporal information from neighboring profiles, which is 10 

discussed in Section 4.4. 

 In addition to the binary insect mask, an insect activity index is generated by counting the number of insect scattering 

velocity bins at each height. This insect index 𝐼 ℎ  is defined as 

  𝐼 ℎ ∑ 𝐶 𝑣 ,ℎ         (6) 

where 𝐶 𝑣 ,ℎ  is the insect spectral classification and has a value of either 0 or 1. This insect index is not an estimate of 15 

the insect number concentration because the magnitude of the insect scattering is not being taken into account. The authors 

hypothesize that the insect index should be related to insect number density, as the breadth of insect velocities should increase as 

the number of insects increases. The insect index is available in the output data files with the variable name insect_index_raw.   

4.4 Quality Control (QC) filtering of the Cloud Profile Mask 

Figure 12 shows the time-height cross-section of observed CoPol KAZR reflectivity (Fig. 12a), the raw hydrometeor mask (Fig. 20 

12b), a time-height filtered hydrometeor mask (Fig. 12c), and the insect index (Fig. 12d) for hour 19 on 31-July-2018. This is the 

same event shown in Figs. 1 and 2, except with the vertical axis limited to 3 km height. The ceilometer cloud base height is shown 

in each panel with black dots. The blue and red plus symbols are cloud top and base determined from the COGS stereo camera 

system, which is discussed in more detail in Section 5. The hydrometeor mask in Fig. 12b is the raw mask produced from each 

spectra profile. These raw hydrometeor masks contain random misclassified pixels of hydrometeors below the ceilometer cloud 25 

base height. Most of these false positive hydrometeor mask pixels are removed by sequentially applying two time-height quality 

control filters.  
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Figure 12: Measurements and retrievals for hour 19 UTC on 31-July-2018. (a) CoPol reflectivity [dB]. (b) Retrieved hydrometeor raw 
mask (red shading). COGS-derived 6-km x 6-km domain average cloud base (red symbols) and cloud top (blue symbols). (c) Same as 
panel (b) expect for retrieved hydrometeor QC1 mask. (d) Retrieved insect activity index. Black symbols are ceilometer-derived cloud 
base.  5 

The first quality control filter, named QC1 (shown in Fig. 12c), removes temporal outliers by applying a 3-member 

temporal continuity filter, which retains all three values if three consecutive values are present. The QC1 filter also inserts up to 

three consecutive hydrometeor mask pixels in vertical profiles to fill small gaps in the raw hydrometeor mask. The second quality 

control filter, named QC2 (not shown, but available in the online Supplemental Material), applies a low-pass filter to the QC1 
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filtered mask by moving a 3x3 time-height (approximately 12 s by 90 m) continuity constraint throughout the domain to robustly 

identify hydrometeors that are persistent in time and height. Both the QC1 and QC2 filtered hydrometeor masks are available in 

the output data files with variable names hydro_mask_qc1 and hydro_mask_qc2. Figure 12d shows the insect index and estimates 

the number of velocity bins in the spectra that contained insect scattering. The color scale is logarithmic with maximum value 256 

representing the number of velocity bins in the spectra. The QC1 hydrometeor mask is plotted for the 4-April-2019 precipitation 5 

event in Fig. 4d. The mask identifies the shallow clouds near 1.5 km from about 20-to-130 minutes and the precipitating anvil at 

the beginning of the hour between 3-to-4 km that descends to the lowest range gate just after minute 20. Surprisingly, tThe 

hydrometeor mask is affirmative below 1.5 km starting at about minute 21 and continues until the end of the hour except for a 

shallow gap between minutes 50-to-55 is due to precipitation at these lower heights as indicated in Fig. 11c. There is strong 

agreement between the ceilometer cloud base height estimates and the hydrometeor mask before minute 20. After this time, the 10 

hydrometeor mask identifies raindrops, while the ceilometer is identifying cloud base. COGS measurements are unavailable for 

comparison purposes during this event because COGS is an optical system requiring daylight. 

5. Comparing Cloud Mask with Independent Measurements 

Figures 4 and 12 show significant agreement between ceilometer cloud base estimates and retrieved QC1 hydrometeor masks. 

Figure 12 also shows agreement between COGS cloud base and top estimates with the QC1 hydrometeor mask. In comparing the 15 

three products, the KAZR hydrometeor masks and ceilometer cloud base estimates appear as discrete cloud events. Conversely, 

the COGS estimates appear continuous in time, as if COGS is detecting a persistent cloud layer. This difference is because KAZR 

and ceilometer are ‘soda-straw’ observations and COGS is a 6-km x 6-km domain-averaged product produced from three pairs of 

stereo cameras positioned around the radar and ceilometer (Romps and Öktem, 2018). Figure 12c shows that when the radar and 

ceilometer both detect clouds, COGS also had a similar cloud base height estimate. The ceilometer and radar cloud bases also 20 

showed consistency even at the cloud edges (see near minute 35). Regarding cloud top estimates, COGS estimates are higher than 

the radar because COGS is a domain average. The online Supplemental Material section contains images of QC1 hydrometeor 

mask, ceilometer, and COGS retrievals for forty-seven (47) days corresponding to 2018 and 2019 LASSO shallow cloud events 

(LASSO, 2020). The COGS product is available only for shallow cumuliform clouds and only during daylight hours. 

 Figure 13 compares hydrometeor mask QC1 column bottoms with ceilometer cloud bases for the 47 LASSO days. The 25 

hydrometeor mask QC1 columns were at least 90 m thick (i.e., 3 consecutive range gates). Using the same format as Figs. 7 and 

10, Fig. 13b shows the 2D distribution of height differences with the line graphs showing 1D PDFs. Over 70% of the 12,141 

simultaneous profiles had height differences within +/-100 m, which represents +/-3 thirty-meter radar range gates. There is a small 

skewness to the height difference PDF (Fig. 13a) that is consistent with the ceilometer detecting clouds before the radar detects 

hydrometeors. Also, during the few precipitation events, the hydrometeor mask bottom was significantly lower than the ceilometer 30 

cloud base as the hydrometeor mask detects falling raindrops far below the ceilometer detected cloud base.  
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Figure 13: Difference in hydrometeor mask QC1 column bottom and ceilometer cloud base height using 47 days at SGP during 2018 and 
2019. There were 12,141 profiles with simultaneous hydrometeor mask QC1 and ceilometer cloud bases. (a) 1D PDF of height difference 
defined as (Hydrometeor mask column bottom) – (Ceilometer cloud base) [m] with 30-m resolution corresponding to radar range 
resolution. (b) Colors are 2D distributions of height difference vs. ceilometer cloud base. Colors represent drop from pixel with most 5 
occurrences. Artifact at negative height differences and low ceilometer cloud base is due to radar first range gate at 570 m. (c) 1D PDF 
of ceilometer cloud base [m] with 30-m resolution. 

 The TSI and Doppler lidar, positioned near KAZR, provide qualitative cloud observations. Figure 14a shows the full 

spectra profile on 31-July-2018 at 19:19:02 UTC (same as Fig. 3a). The TSI produces a photograph every 30 seconds. Figure 14b 

shows intermittent clouds passing over KAZR that confirms the broken hydrometeor mask and ceilometer cloud base height 10 

estimates shown in Fig. 12. The spectra in Fig. 14c have been screened by the filtered spectra hydrometeor classification to show 

spectral pixels classified as hydrometeors. While Figs. 14a-c show single profiles, Fig. 14d shows observations for +/- 60 seconds 

centered on the KAZR profile time. The black horizontal lines are QC2 hydrometeor masks at discrete range gates. The color 

shading in Fig. 14d is the Doppler lidar attenuated backscattered power [dB]. The decrease in lidar backscattered power with 

increasing height below 0.5 km is due to decreasing aerosol concentrations and the enhancement near 1.5 km is due to scattering 15 

from cloud particles. Thus, the Doppler lidar is detecting cloud base within 30 to 90 meters below the lowest KAZR hydrometeor 

mask height. The differences between these two sensors can be attributed to their different sensitivities to small cloud particles. 
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Figure 14: Measurement and retrievals near profile 19:19:02 UTC on 31-July-2018. (a) Doppler velocity power spectra. (b) Total Sky 
Imager (TSI) photo. (c) Doppler velocity power spectra screened by spectral hydrometeor mask. (d) Doppler lidar attenuated 
backscattered power for +/- 60 s of profile 19:19:02 UTC. Black lines indicate hydrometeor QC2 mask for +/- 60 s of profile 19:19:02 
UTC. 5 

6. Conclusions 

In addition to detecting cloud particles, vertically pointing cloud radars are sensitive enough to detect individual insects. If insect 

contamination is not identified and removed, then radar derived cloud properties will be incorrect and will not help with validating 

cloud resolving models and / or climate simulations. This study used polarimetric radar observations to develop two insect-

hydrometeor detection algorithms. The two algorithms use different radar scattering principles to identify small velocity-height 10 

regions in the Doppler velocity power spectra profile as resulting from either insect or hydrometeor scattering. The results of both 

algorithms are combined and then filtered to produce single value insect and hydrometeor masks at each range gate. The 

backscattered power from hydrometeors and insects is larger in the CoPol channel than the XPol channel leading to negative LDR 

values. This difference in sensitivity leads to this study finding One interesting and cautionary note for future studies is that KAZR 

XPol spectra observations observed fewer insects than KAZR CoPol observations. This implies that using just a polarimetric signal 15 
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processing method to identify insects will not identify all insect clutter affecting CoPol observations and that insect clutter 

mitigation methods must use CoPol observations to identify all insect clutter in the CoPol channel.  

One algorithm uses the texture of CoPol Doppler velocity power spectra to identify small velocity-height regions of 

spectra attributed to insect or hydrometeor scattering. Since insects are individual point targets, their radar power return is confined 

to narrow intervals of Doppler velocity and range gates, on the order of 1-to-3 velocity bins (0.04 to 0.12 m s-1) and 1-to-3 range 5 

gates (30 to 90 m). In contrast, cloud particles and raindrops occur in distributions that extend over many velocity bins and several 

range gates, on the order of 5-to-150 velocity bins (0.2 to 7 m s-1) and 3-to-150 range gates (90 to 4500 m). The CoPol and XPol 

Doppler velocity power spectra from insect scattering have large variability, or texture, while scattering from cloud particles and 

raindrops produce smoother, less variable, spectra. The CoPol texture algorithm uses the texture information to identify small 

regions of insect and hydrometeor scattering. The CoPol texture algorithm can be applied to any cloud radar system collecting 10 

Doppler velocity power spectra and does not require a cross-polarization channel. 

The other algorithm uses the linear depolarization ratio (LDR) at each point in the Doppler velocity power spectra to 

identify regions of scattering due to spherical raindrops, asymmetric ice particles, or asymmetric insects. Unlike previous studies, 

this work uses the LDR at each spectra bin. After identifying small velocity-height regions of insect and hydrometeor scattering in 

both algorithms, the spectra classifications are combined and then filtered to account for continuity in the Doppler velocity and 15 

vertical range dimensions. The filtered spectra classifications are reduced to binary affirmative insect and hydrometeor masks with 

a single value at each range gate. An insect activity index is estimated at each range gate by counting the number Doppler velocity 

spectra bins with insect scattering. There appears to be relationships between the insect activity index, radar reflectivity and cloud 

formation. Future studies will use explore insect activity andthese relationships, as well as vertical air motion estimates to explore 

whether insects are passive tracers or actively propelling themselves through the atmosphere. Often, insects occur at the same 20 

height as clouds and during the onset of precipitation. While these are interesting phenomena, the focus of this work is producing 

robust hydrometeor masks to help identify cloud boundaries, which can be used, for example, to study the evolution of shallow 

cumulus clouds in the planetary boundary layer (Gustafson et al., 2017). Using over 12,000 simultaneous ceilometer and radar 

profiles, it was found that over 70% of the hydrometeor mask column bottoms were within +/-100 m of the ceilometer cloud base 

(i.e., +/-3 thirty-meter radar range gates). The hydrometeor mask column bottom was slightly higher than the ceilometer cloud 25 

base. This is to be expected, as the ceilometer detects cloud particles at lower heights than the radar detecting hydrometeors within 

the cloud.  

The online Supplemental Material includes sample images of observed KAZR reflectivity, retrieved hydrometeor masks, 

and verification observations from ceilometer and, COGS, TSI, and Doppler lidar. The processing described herein was applied to 

KAZR observations for April-October thirty (30) days in 2018 and seventeen (17) days 2019 summer seasons deployed at the 30 

Southern Great Plains (SGP) facility corresponding to LASSO event days (LASSO, 2020). The insect and hydrometeor masks  for 

these monthsdays are available online on the DOE ARM Archive in netCDF format. 
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Appendix A 

This appendix uses a large, hand edited, dataset to first explore the representativeness of spectral region texture distributions and 

then to develop an orthogonal threshold to classify hydrometeors from insects in the 2D texture distributions. Over 75 hours of 

KAZR observations from 2018 and 2019 at SGP were manually inspected to contain only hydrometeors or insect scattering 

observations. Figure A1 illustrates examples of manual classified hydrometeor and insect boundaries shown as gray shaded areas 5 

superimposed onto KAZR CoPol Reflectivity. The top panel (Fig. A1a) shows hydrometeor boundaries from 4 to 15 km for hour 

12 UTC on 3-August-2019. There are no insects detected above 4 km and all observations are due to hydrometeor scattering. 

Figure A1b shows insect boundaries from the lowest resolved range gate to 3 km for hour 09 UTC on 06-June-2019. The ceilometer 

derived cloud base indicates clouds are detected above 3.5 km between minutes 14 and 37. In this ‘truth’ dataset, there were over 

15 hours of hydrometeor profiles and over 60 hours of insect profiles. The manually classified dataset contained over 47 million 10 

CoPol and over 20 million LDR spectral regions with 5 velocity bins and 3 range gates (i.e., 0.186 m s-1 by 90 m).  

 

Figure A1. Examples of manual hydrometeor and insect classification superimposed on KAZR CoPol Reflectivity at SGP. (a) Gray 
bounding box between 4 and 15 km contains manually identified hydrometeor scattering observations for hour 12 UTC on 3-August-
2019. (b) Gray bounding box from lowest range gate to 3 km contains manually identified insect scattering observations for hour 09 UTC 15 
on 6-June-2019.  

 

The texture, 𝑇 , spectral region statistics were calculated for the hydrometeor and insect scattering truth datasets. The 

texture statistics of 𝑆𝑇𝐷 𝑇  and max 𝑇  are shown in Fig. A2 as 1D and 2D distributions following the format shown in Fig. 

7. The hydrometeor scattering observations are shown in the left panels (Figs. A2a, A2b, and A2c) and the insect scattering 20 

observations are shown in the right panels (Figs. A2d, A2e, and A2f). The colors indicate the observed distributions and the contour 

lines represent 90%, 75%, 63% and 50% occurrence levels of a fitted 2D General Gaussian function. The fitted parameters shown 

in Fig. A2b and A2e are the mean (𝜇  and  𝜇 , standard deviation (𝜎  and 𝜎 ), and skewness (𝛾  and 𝛾 ) of a 2D General Gaussian 

function. The subscripts 𝑥 and 𝑦 correspond to the horizontal (max 𝑇 ) and vertical (𝑆𝑇𝐷 𝑇 ) axis parameters, respectively. 
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Note that the correlations of the General Gaussian functional fits are estimated separately for both datasets and both estimates are 

greater than 0.9 indicating that the individual distributions have nearly 1-to-1 slopes.  

To construct an orthogonal classification threshold to divide observations into either hydrometeor or insect scattering 

classes, a line is first constructed between the two distributions and then an orthogonal slope is estimated from that original line. 

The slope between the two distributions is estimated from the Gaussian distribution mean values using 5 

 𝑚           (A1) 

where the numerator is the change in 𝑆𝑇𝐷 𝑇  and the denominator is the change in max 𝑇 . The equation of the line between 

the two distributions is written in Fig. A2b and A2e and is shown with the solid black line. The asterisks indicate the distribution 

mean locations, specifically, 𝜇 ,𝜇  and 𝜇 ,𝜇 .  

 10 

Figure A2. Observed spectral region texture distributions using the manual classified (a-c) hydrometeor scattering observations and (d-
f) insect scattering observations. The 1D and 2D distribution formats are similar to Fig. 7. The colors in (b) and (e) represent observed 
distributions normalized to the pixel with the most observations. The contours are the 90%, 75%, 63%, and 50% occurrences of a fitted 
2D General Gaussian function. The mean, standard deviation, and skewness parameters are listed in (b) for the hydrometeor scattering 
distribution and in (e) for the insect scattering distribution. The solid line and equation represent a line between the hydrometeor and 15 
insect scattering distribution centers with the asterisks placed at the distribution mean values. The dashed line is the orthogonal threshold 
line that is the intersection of the hydrometeor and insect true positive rates (TPRs). The solid and dashed lines are orthogonal but 
appear non-orthogonal because of axis scaling.  

 

Orthogonal thresholds will have a slope given by  20 

 𝛾 .        (A2) 

Using the threshold slope in (A2), many orthogonal threshold lines were constructed and the two truth datasets were classified 

using each threshold. The goodness of classification was determined using a receiver operating characteristic (ROC) curve with 

true positive rates (TPRs) estimated as the ratio of number of true positive (TP) classifications to total number of observations (𝑁) 

using 25 

  𝑇𝑃𝑅            (A3a) 

  𝑇𝑃𝑅            (A3b) 

Figure A3 shows the TPRs for both datasets as the parallel thresholds moved graphically from left-to-right in Fig. A2b and A2e 

with increasing max 𝑇 . Note that 𝑇𝑃𝑅  starts at a low value and increases as the threshold moves to larger max 𝑇 . The 
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𝑇𝑃𝑅  has an opposite behavior. The intersection of 𝑇𝑃𝑅 𝑇𝑃𝑅  indicates the same true positive rate for both 

datasets. The intersection has a true positive rate over 0.9 and occurs when max 𝑇  is equal to 4.8. 

 

 

Figure A3. True Positive Rate (TPR) for truth hydrometeor and insect scattering observations for different orthogonal thresholds. As 5 
𝐦𝐚𝐱 𝑻𝒅𝑩  increases, the threshold moves from left-to-right up the curve 𝒚 𝟎.𝟐𝟕𝟗𝒙 𝟎.𝟎𝟗𝟓 shown in Figs. A2b and A2e. The solid 
line is 𝑻𝑷𝑹𝒉𝒚𝒅𝒓𝒐 and the dashed line is 𝑻𝑷𝑹𝒊𝒏𝒔𝒆𝒄𝒕. The intersection occurs when 𝐦𝐚𝐱 𝑻𝒅𝑩 𝟒.𝟖.  

 

The LDR spectral region statistics were calculated for both truth datasets. The LDR statistics of 𝑆𝑇𝐷 𝐿𝐷𝑅  and 

mean 𝐿𝐷𝑅  are shown in Fig. A4 as 1D and 2D distributions following the format shown in Fig. 10. Similar to Fig. A2, the 10 

hydrometeor scattering observations are shown in the left panels (Figs. A4a, A4b, and A4c) and the insect scattering observations 

are shown in the right panels (Figs. A4d, A4e, and A4f). 

 

 

Figure A4. Observed spectral region linear depolarization ratio (LDR) distributions using the manual classified (a-c) hydrometeor 15 
scattering observations and (d-f) insect scattering observations. The 1D and 2D distribution formats are similar to Fig. 10 and to Fig. A2.  
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Data availability. Original raw KAZR spectra are available on the DOE ARM archive. After release of the manuscript, fourteen 

months (April-October 2018 and 2019) forty-seven (47) days of insect and hydrometeor mask data files at Southern Great Plains 

(SGP) Central Facility will be available at the DOE ARM archive as a Principle Investigator (PI) Product (Williams, 2021).  

 

Source code availability. The code used to generate the insect, cloud, precipitation, and hydrometeor masks stored on the DOE 5 

ARM archive is available upon request from the lead author. With this source code, users can repeat the analysis presented in 

this study and develop improved insect-cloud and insect-precipitation detection algorithms for their vertically pointing radar 

observations. 

 

Supplemental Material. Selected iImages of observed KAZR reflectivity, retrieved hydrometeor masks, and verification 10 

observations from ceilometer and , COGS, TSI, and Doppler lidar are available in the online Supplemental Material.  
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