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Continuous mapping of fine particulate matter (PM:s) air quality in
East Asia at daily 6x6 km? resolution by application of a random forest
algorithm to 2011-2019 GOCI geostationary satellite data

Drew C. Pendergrass', Daniel J. Jacob!, Shixian Zhai', Jhoon Kim?3, Ja-Ho Koo?, Seoyoung Lee?, Minah
Bae*, Soontae Kim*, and Hong Liao®

(Deleted: and

'School of Engineering and Applied Sciences, Harvard University, Cambridge, Mass., USA

2Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

3Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea
“Department of Environmental and Safety Engineering, Ajou University, Suwon., South Korea

SJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation
Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing
University of Information Science and Technology, Nanjing, Jiangsu, China

Correspondence to: Drew Pendergrass (pendergrass@g.harvard.edu)

Abstract. We use 2011-2019 aerosol optical depth (AOD) observations from the Geostationary Ocean
Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter
(PM2.5) concentrations at continuous 6x6 km? resolution over eastern China, South Korea, and Japan.
This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data,
including information encoded in GOCI AOD retrieval failure, and trained with PM> s observations
from the three national networks. The predicted 24-h GOCI PMa 5 concentrations for sites entirely
withheld from training in a ten-fold crossvalidation procedure correlate highly with network
observations (R? = 0.89) with single-value precision of 26-32% depending on country. Prediction of
annual mean values has R? = 0.96 and single-value precision of 12%. GOCI PM, s is only moderately
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successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS)

because these exceedances are typically within the single-value precisions of the RF, and also because
of RF smoothing of extreme PMa.s concentrations. The area-weighted and population-weighted trends
of GOCI PM> 5 concentrations for eastern China, South Korea, and Japan show steady 2015-2019
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declines consistent with surface networks, but the surface networks in eastern China and South Korea
underestimate population exposure. Further examination of GOCI PM, s fields for South Korea
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identifies hotspots where surface network sites were initially lacking and shows 2015-2019 PM; 5
decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of
monthly PM> 5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully
captures observed seasonal variations of PMa.s even though AOD and PM. s often have opposite
seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing
demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as
spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula
demonstrates the value of the continuous GOCI PM3 s fields for testing air quality models, including
over North Korea where they offer a unique resource.
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1. Introduction

Exposure to outdoor fine particulate matter (PMa.s., less than 2.5 pm in diameter) is a global public
health issue, accounting for 8.9 million deaths in 2015 [Burnett et. al., 2018]. Beyond mortality, short-
term exposure to elevated PMa s levels is associated with numerous adverse health outcomes including
increased hospital admissions for respiratory and cardiovascular issues [Dominici et. al., 2006; Wei et.
al., 2019]. Long-term exposure is associated with neurodegenerative diseases such as dementia,
Alzheimer’s disease, and Parkinson’s disease [Kioumourtzoglou et. al., 2016]. High spatio-temporal
monitoring of PMa2.s concentrations to inform population exposure is important for both air quality
regulation and epidemiological studies. Ground monitors can provide highly accurate measurements but
have limited spatial coverage. Here we show how geostationary satellite observations of aerosol optical
depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) can be used with a
random forest (RF) machine learning (ML) algorithm to provide continuous long-term reliable mapping
of 24-h PM s at 6x6 km? spatial resolution.

The potential of satellites for high-resolution monitoring of PM s has long been recognized in
the public health community [Liu et al., 2004; van Donkelaar et. al., 2006]. Satellites retrieve AOD by
backscatter of solar radiation. The MODIS sensors launched in 1999 on the NASA Terra and Aqua
satellites have been the main source of AOD data, with global coverage twice a day at up to 1 km
resolution [Remer et. al., 2005, 2013; Lyapustin et. al., 2018]. Early approaches to relate AOD
observations to surface PMz s used chemical transport models (CTMs) to estimate local PM2.s/AOD
ratios [Liu et al., 2004; van Donkelaar et. al., 2006], with more recent studies adding ancillary satellite
data on the vertical distribution of aerosol extinction [Geng et. al., 2015; van Donkelaar et. al., 2016;
van Donkelaar et. al., 2019]. Other approaches have used PM2 5 network data to infer PM2.5/AOD ratios
[Wang and Christopher, 2003], with statistical models based on meteorological and land-use predictor
variables to enable spatial extrapolation [Gupta and Christopher, 2009; Liu et. al., 2009; Kloog et. al.,
2012;2014].,
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RFs, including approaches that fuse both [Di et. gl, 2019]. RF has been applied to MODIS AOD to
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produce high-resolution daily PM> s products for the US [Hu et. g, 2017] and China [Guo et. al.
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2021]. Others have used RF and satellite AODs to produce monthly PM, 5 data over the North China
Plain [Huang et. al., 2018], as well as daily PM> s data in California [Geng et. gl., 2020] and Cincinnati
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Geostationary satellites are now dramatically increasing the capability for mapping of PM> s
from space. The GOCI instrument launched in 2010 by the Korea Aerospace Research Institute (KARI)
observes AOD eight times daily at 0.5x0.5 km? pixel resolution over eastern China, the Korean
peninsula, and Japan [Choi et. al., 2018]. The fine-pixel hourly information is intrinsically valuable and
also facilitates cloud clearing [Remer et al., 2012]. GOCI AOD data aggregated to 6x6 km? resolution
have been used to estimate PM2 5 in regional studies for the Yangtze River Delta [She et al., 2020] and
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eastern China [Xu et al., 2015]. Park et al. [2019] find that PM> s can be inferred over the Korean
peninsula with greater accuracy using GOCI AOD than sparser MODIS data. AOD products from the
Advanced Himawari Imager (AHI) onboard the Himawari-8 and -9 geostationary meteorological
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satellites over East Asia have also been used to infer surface PMa s [Wang et. al., 2017; Chen et. al.
2019].
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AOD cannot be observed under cloudy conditions, and AOD retrievals from satellites can also

fail for other reasons including snow surfaces. Different methods have been used to fill the data gaps
and produce continuous data sets. Some studies use CTM AODs when satellite data are missing [Hu et.
al., 2017; Stafoggia et. al., 2019]. Kianian et. al. [2021] used a statistical interpolation algorithm
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used a RF trained on gap-free covariates to fill in the gaps for MODIS AOD. Yet others first estimate
PMa 5 using available AOD observations, then infer missing PMa 5 estimates using a separate gap-filling

model [Kloog et,al., 2014; She et,al., 2020]. Brokamp et al. [2018] show that AOD missingness is itself
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predictive of PM> s, an insight we leverage in this work. (Deleted: ]
Here we apply a RF algorithm to 2011-2019 GOCI AOD data to construct a continuous dataset (Deleted:
of 24-h PM 5 concentrations at 6x6 km? resolution for eastern China, South Korea, and Japan trained
with surface network data. This is a larger spatial domain than has been attempted in previous studies. (Deleted= the
We ensure continuity by using gap-filled AOD, calculated by blending a CTM simulation with (Deleted: Our AOD
statistical interpolation, along with a parameter characterizing the length scale of the interpolation as (I‘ leted: filling strategy blends
inputs to the RF algorithm. This strategy maximizes training set size and allows the RF to determine a - (pemed: information and
strategy to handle information encoded by retrieval failure. The resulting gap-filled product predicts : (Deleted: with a strategy determined by
PM> s with comparable skill when AOD observations are absent as when they are available. We
characterize the error in the RF-produced GOCI PM> 5 dataset for both 24-h and annual concentrations (Deleted:
and demonstrate the ability of the dataset to capture spatial and day-to-day variability on urban scales. (Deleted: PM:
We exploit the continuity of the dataset to determine trends of PM2 s air quality in East Asia over the
past half decade.
2 Data and methods
GOCI AODs. GOCI is onboard the Korean Communication, Ocean, and Meteorological Satellite
(COMS) that was launched by KARI in June 2010 [Choi et. al., 2012; Choi et. al., 2016]. The first
ocean color imager placed in geostationary orbit, GOCI covers a 2,500x2,500 km? domain centered on
the Korean peninsula at 36°N and 130°E with 0.5x0.5 km? pixels observed every hour from 00:30 to
07:30 UTC. AOD at 550 nm over land is retrieved using the GOCI Yonsei aerosol retrieval (YAER) V2
algorithm at an aggregated 6x6 km? spatial resolution and 1 h temporal resolution [Choi et. al., 2018].
Aggregation filters out pixels affected by sunglint or clouds, as well as the darkest 20% and brightest
40% pixels within the 6x6 km? scene [Choi et. al., 2018]. We further aggregate the hourly AOD (Deletech 8x daily
measurements of AOD into a daily, mean for use in the RF. (Deleted: (8-
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Validation of the GOCI YAER V2 AOD with surface measurements from the AERONET
surface network shows high correlation (R = 0.91), a root mean squared error (RMSE) of 0.16, and a
mean bias (MB) of 0.01 with no significant spatial variation across East Asia [Choi et. al., 2018]. GOCI
YAER V2 also reports a Fine Mode Fraction (FMF) and a Multiple Prognostic Expected Error (MPEE)
for the AOD but we find that they are not useful in our RF, as discussed later. For comparison, we also

3




155

160

165

170

|175

calculate a RF trained on the GOCI-AHI fusion AOD product of Lim et. al. [2021]. The Advanced
Himawari Imager (AHI) instruments onboard the Himawari-8 and -9 geostationary meteorological
satellites were launched in October 2014 and November 2016, respectively. AHI has a larger field of

view than GOCI but a shorter record.

PM: 5 network data. We use hourly PMa s data from operational air quality networks in eastern
China, South Korea, and Japan, and average them over 24 hours and over the 6x6 km> GOCI AOD grid
to define targets for the RF algorithm. Data for eastern China are from the National Environmental
Monitoring Center (https:/quotsoft.net/air/) including 443 sites within the GOCI observing domain

starting in May 2014 and increasing to 596 sites by 2019. Following Zhai et. al. [2019] we remove
values with more than 24 consecutive repeats in the hourly timeseries as likely in error. Data for South
Korea are from the AirKorea surface network of 123 sites (https://www.airkorea.or.kr/) starting in
January 2015 and increasing to 298 sites by 2019. Data for Japan are from 1054 sites reported by the
Japanese National Institute for Environmental Studies (NIES) for 2011-2017

(https://www.nies.go.jp/igreen/tj _down.html) and by the real-time Atmospheric Environmental

Regional Observation System (AEROS) portal for 2018-2019 (Soramame;

http://soramame.taiki.go.jp/DownLoad.php).
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Figure 1: Mean aerosol optical depth (AOD) and surface network PM; 5 concentrations over the Geostationary Ocean Color Imager
(GOCI) viewing domain, 2011-2019. Panel (a) shows mean GOCI AOD data on the 6x6 km? grid. Panel (b) shows the mean surface

network PM 5 data for eastern China (starting in May 2014), South Korea (starting in January 2015), and Japan, using large data symbols
for visibility. Zoomed inset for South Korea shows the surface network observations with symbols corresponding to the 6x6 km? grid of

the GOCI data. Log scale is used for colorbar.
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Meteorological and geographical predictor variables. We use hourly meteorological data from the
ERAS5 global reanalysis, with resolution of 30x30 km? [Hersbach et. al., 2020], as input predictor
variables for the RF algorithm. For this purpose we aggregate the data to 24-h averages and allocate
them to 6x6 km? GOCI grid cells by bilinear interpolation. We consider boundary layer height, 2-m air
temperature and relative humidity (RH), 10-m meridional and zonal winds, and sea level pressure as
potential meteorological predictor variables. We also include Jatitude, year, day of year (1-366), and
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nation category (eastern China, South Korea, or Japan) as geographical predictor variables. We

considered 2015 population density [CIESIN, 2018] as a potential predictor variable but found that it
was not useful as discussed in section 3.2.

Figure 1 shows the mean distributions of GOCI AOD and surface network PM> s for 2011-2019
or for the more limited durations of their records (2014-2019 for eastern China PMa.s, 2015-2019 for
South Korea PM;5). The PM2 5 networks are extensive but coverage is nevertheless sparse and often
limited to large urban areas, as illustrated by the zoomed inset for South Korea. We find that only 1.0%
of GOCI 6x6 km? grid cells have PM, s observations in eastern China, 7.4% in South Korea, and 7.9%
in Japan. This geographic limitation in the PMa s networks emphasizes the value of continuous coverage
from the AOD data.

2.2 AOD gap-filling

% of days with GOCI AOD observations, 2011-2019
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Figure 2: Percentage of days in 2011-2019 with at least one successful hourly retrieval of AOD on the 6x6 km? grid. Panel (a) shows year-
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Figure 2 shows the percentage of days with at least one successful hourly GOCI AOD retrieval
on the 6x6 km? retrieval grid. There are substantial gaps in the record, mostly reflecting clouds and also
snow cover in winter [Choi et. al., 2018]. We seek to fill in these gaps to produce a continuous daily
data set while accounting for the associated errors,and leveraging information implicitly encoded in

(Deleted: .

retrieval failure. We fuse two strategies according to the availability of nearby AOD retrievals: an
inverse distance weighted (IDW) interpolation AODipw of nearby retrievals [Shepard, 1968] and a bias-
corrected monthly AODgc from the GEOS-Chem CTM:

AOD = & AOD;py + (1 — @)AODgc m

where a is a weighting factor that depends on the distance from nearest retrievals. GEOS-Chem is a
widely used CTM for inferring PM; 5 from satellite AOD data [Liu et al., 2004; van Donkelaar et. al.,
2006; 2016; 2019; Geng et. al., 2015]. Here we use scaled monthly mean GEOS-Chem AODs from a
simulation by Zhai et al. [2021] for 2016 in East Asia with 0.5°x 0.625° resolution, bias;corrected to the
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annual mean GOCI AODs on the 6x6 km? grid. In this way we obtain a spatial distribution of monthly
mean AODgc values for 2011-2019 for use in equation (1).

We calculate the weighting factors a used in Equation (1) via the Gaspari-Cohn function, a fifth-
order piecewise polynomial with a radial argument r [Gaspari and Cohn, 1999]. The Gaspari-Cohn
function resembles a Gaussian distribution but with compact support, taking on a maximum value of 1
for r = 0 and a minimum value of 0 for r > 2. We define r = //c for a given 6x6 km? grid cell and day
to be the distance / from the midpoint of the grid cell to that of the nearest observed grid cell,
normalized by a spatial correlation length scale ¢ determined from available AOD observations in and
around that grid cell. We find that the value of ¢ ranges from 110 km to 170 km over our domain.

2.3 Random forest algorithm

Table 1 lists the predictor variables included in the RF to infer 24-h PM2 s as dependent variable. RF is
an ensemble machine learning method where many individual decision trees are fit to the training data
and vote on an output value, with the average value taken as best estimate [Breiman, 2001].

Table 1. Random Forest predictor variables for 24-h PM, s*
GOCI gap-filled AOD observations®
8-h average AOD at 550 nm wavelength
a from Equation 1
Meteorology*®
Boundary layer height (m)
10-m meridional wind (m s)
10-m zonal wind (m s™)
2-m temperature (K)
2-m relative humidity? (%)
Sea-level pressure (Pa)
Metadata
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Country dummy variables®

Latitude

Day of year

Year
“The RF algorithm predicts continuous 24-h PM3 5 on a 6x6 km? grid for eastern China, South Korea, and Japan after training with PM 5
surface network data.
b8-hr average 550 nm AODs on the 6x6 km? grid retrieved with the YAER v2 algorithm [Choi et al., 2018]
¢ECMWF ERAS fields [Hersbach et. al., 2020] at 30x30 km? spatial resolution and hourly temporal resolution, interpolated bilinearly to
the GOCI grid and averaged over 24 hours.
dEstimated from temperature and dewpoint using the August-Roche-Magnus approximation [A/duchov and Eskridge, 1996].
°Three variables that, for each of eastern China, South Korea, and Japan, has value 1 if a grid cell is within those national borders and 0
otherwise.

Decision trees are fit recursively to the predictor variable. Suppose we have a collection of N data
elements i € [1, V], denoted x;, each composed of m predictor variables (x; € R™), and a corresponding
list of NV labels y; that we would like to learn. In our case y; denotes the observed PM..s concentrations
from the surface networks averaged on the 6x6 km? grid, and N denotes the number of these
observations. The algorithm works by splitting the data into left and right subsets L and R at an
optimum split point determined from the predictor variables in x; [Pedregosa et. al., 2011]. The
optimum split point is defined as the one that minimizes the impurity G,

G(L Ry =B -MSE(Ly+ (1—p) - MSE(R) @

where £ represents the fraction of data in the subset L and MSE represents the mean squared error of
each of the subsets,

SE(X) = ! —y)? @

MSE(X) = nyi(yi ¥

where ¥ is the mean of the target labels within a given subset X and # is the number of elements in that
subset. From there the same algorithm is recursively applied to the left and right subsets L and R until
the tree is grown. We follow the advice of Hastie et. al. [2009] and grow trees until the data are fully
classified (each leaf contains only one value).

Due to the recursive training structure, decision trees are sensitive to the data on which they are
trained, because a change in one split point changes the composition of all its child nodes. Individual
decision trees thus have high error variance but no inherent bias. It follows that averaging many
individual and uncorrelated trees should yield a low variance, low bias prediction. We construct 200
trees in parallel and reduce correlation between them through a bagging procedure: for each of the 200
decision trees in the RF, sample the input data with replacement to form a new dataset of the same
dimensions and then grow a decision tree from this bootstrapped data [Breiman, 2001]. Because of the
high input sensitivity, a wide variety of decorrelated trees are grown. The predictions of each individual
tree are averaged to yield the prediction of the RF. We fit our RF using the RandomForestRegression
class in the Python module Scikit-learn [Pedregosa et. al., 2011]. We attempted to further decorrelate
trees by following Breiman [2001] and calculating split points of each individual tree using only a
random subset of the m predictor variables; however, a sensitivity test we performed showed only minor
differences with the base case and therefore we follow Guerts et. al. [2006] in considering all predictor
variables in the training process.
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We evaluate how the RF generalizes to predictions for the full 6x6 km? domain via a 10-fold
crossvalidation. For each fold of the crossvalidation, we leave out a randomly selected 10% of PMa s
network sites (averaged on the 6x6 km? grid if needed) from each country. These 10% represent the test
set; because we perform the validation ten times, each grid cell is in the test set exactly once. We
compare predicted PMa.s to withheld observed PM. s using four metrics: root mean square error
(RMSE); the RMSE divided by mean observed PMa s (relative RMSE, or RRMSE); the coefficient of
variation (R?); and the mean bias computed by averaging the difference between predicted and observed
PM; 5 (MB).

An outcome of interest is the ability of our predictions to capture exceedances of National
Ambient Air Quality Standards (NAAQS). We categorize each prediction within the test sets into one of
four classes: true positives (TP) where both predicted and observed PM. 5 exceed the NAAQS
threshold; true negatives (TN) where neither exceed the threshold; false positives (FP) where an
exceedance is predicted but not observed; and false negatives (FN) where an exceedance is observed but
not predicted [Brasseur and Jacob, 2017; Cusworth et. al., 2018]. We use these classes to compute
three overall prediction grades. The first, percent of detection (POD), gives the fraction of observed
exceedances that were successfully predicted:

TP “)

POD = S Py 3PN

The second, false alarm ratio (FAR), gives the fraction of predicted exceedances that did not occur:

X FP ®)

AR = TP rzrp
The third, equitable threat score (ETS), compares how well the prediction does relative to random
chance:

ITP-B ©6)

S = S TPy rrN=p

where 3 is the number of true positives obtained by random chance,

_ (TP +ZFPy- (ETP + X FN) ™
T XTP+XTN+XFP+3IFN

ETS is 1 for perfect prediction skill and 0 for no better or worse than chance.

Predictor variable selection is an important task in implementing a RF, as the addition of non-
informative variables can decrease performance. Unlike linear regression which can naturally ignore
unhelpful predictors, irrelevant data can by chance aid in minimizing impurity G at some stage in the
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optimization process making all subsequent splits suboptimal. The six meteorological variables given in
Table 1 are standard in AOD/PM s prediction [e.g. Kloog et. al., 2014; Li et. al., 2017], while the four
spatio-temporal variables (location dummies, latitude, year, and day of year) and the retrieval gapfilling
parameter a proved to be informative in sensitivity tests. In addition to the predictor variables in Table
1, we considered as additional variables the population density, the GOCI fine mode fraction (FMF),

and the GOCI multiple prognostic expected error (MPEE), but we found that they worsened accuracy of

the fit and so we did not retain them. Because population density worsened the fit we did not include
other spatially varying but temporally fixed land-use variables such as road data, elevation, or
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emissions. We also compared RFs trained on GOCI AOD and on GOCI-AHI fused AOD and found no
significant difference in the fitting of PM2.s. We therefore use the GOCI AOD product because of its
longer record.

3 Results and discussion

3.1 Accuracy and precision of RF predictions

Figure 3 shows scatterplots, color-coded by count, comparing surface observations of 24-h and annual
mean PM s to the predicted GOCI PM, s values in grid cells whose records are entirely withheld from
training in the crossvalidation procedure. GOCI PM, s values for the annual mean are obtained by
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averaging the 24-h predictions. Table 2 gives comprehensive GOCI PM> 5 evaluation statistics for East
Asia and for each country. The 24-h predictions for East Asia have a negligible mean bias of 0.23 pg m
3 (annual, 0.22 pg m™), though the RF underpredicts PM s at the high tail of the distribution; we will
return to that issue later in the context of NAAQS exceedances. Root mean square error (RMSE)
between observed and predicted 24-h PM s is 8.8 pg m™ (annual, 3.3 pg m™) corresponding to a
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relative RMSE (RRMSE) of 37% (annual, 14%), as defined in section 2.3. The prediction captures 89%
of the observed 24-h variance (R? = 0.89) and 96% of annual (R? = 0.96). These results compare
favorably to previous reconstructions of PM, s from satellite AOD data. For example, a 1-km 2000-

2015 continental US product and 3-km 2015-2016 east China product have crossvalidation R? of 0.86
and 0.87 respectively for daily PMy s [Di et. al., 2019; Hu et. al., 2019], while a global 0.01° 1998-2018
product and a 0.1° degree 2000-2016 product for China have crossvalidated R? of 0.90-0.92 and 0.77
respectively for annual PMo s [Hammer et. al., 2020, Xue et. al., 2019], R? for annual mean PM> s in

Deleted: previously reported inferences of 24-h and annual PM2.s
at 1-10 km resolution from satellite data over China [Hu et.

)
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South Korea is relatively low (0.41), which can be explained by the weak dynamic range of observed
annual PMz s in the country (Figure 1), as will be discussed later in this section,,

Our gap-filling strategy does not introduce bias for days without GOCI observations (and with
AOD inferred instead from equation (1)). Figure S1 shows that surface network PM, s has distinct

"
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distributions on days where AOD retrieval fails as compared to when AOD retrieval succeeds, a pattern
successfully reproduced by GOCI PM, 5. Table 2 shows that the mean bias statistic on days where AOD
retrieval fails is similar to the whole population. This suggests that the RF algorithm is able to
successfully exploit the information encoded in AOD missingness in making a PM, s prediction, a
phenomenon also noted by Brokamp et. al. [2018].
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Figure 3: Ability of the random forest algorithm to predict 24-h (panel a) and annual mean PM, s (panel b) in East Asia. Scatterplots depict
the relationship between (GOCI and surface network PMy s at grid cells withheld from training in the crossvalidation. The plots are two-
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dimensional histograms where pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin
on a logged scale. The identity line is plotted in black. For annual mean PM s, grid cells with fewer than 80% of PM, 5 observation days in
a given year are removed to avoid biasing the average. For panel (a), 0.002% of the data are not shown as they exceed the plot range; all

data are shown in panel (b).

Table 2. Error statistics for fitting of PM2 s data by the RF algorithm?®

RMSE (ugm®) RRMSE R? MB (ugm3) MBnr(ugm?

24-h PM3 5

Overall 8.8 37% 0.89 0.23 0.23

Eastern China 15 32% 0.85 0.49 0.53

South Korea 6.4 26% 0.82 0.16 0.10

Japan 3.6 27% 0.79 0.12 0.13
Annual PM3 5

Overall 33 14% 0.96 0.22

Eastern China 5.6 12% 0.86 0.53

South Korea 2.9 12% 041 0.24

Japan 1.6 12% 0.70 0.094

*Comparison statistics between GOCI and gurface network PM, s are for the grid cells in each of eastern China, South Korea, and Japan
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completely withheld from the RF training process in the crossvalidation procedure. Statistics shown are for root-mean-square error (RMSE),
relative RMSE (RRMSE), coefficient of variation (R?), and mean bias (MB), and mean bias on days where AOD retrieval fails (MBnr).

One potential application of PM>.s monitoring from space would be to diagnose exceedances of
national ambient air quality standards (NAAQS) at locations without network sites. Table 3 shows the
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NAAQS for 24-h and annual PM; s for the three countries and the ability of GOCI PM, s to diagnose
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NAAQS exceedances in grid cells excluded from the training process in the crossvalidation procedure.
24-h exceedances correspond to the high tails of the distributions but annual exceedances are much
more widespread. The POD column shows percent of true positives successfully detected, while the
FAR shows the rate of false positives (defined in section 2.3). POD for 24-h exceedances ranges from
47%-78% by country (FAR: 16%-21%). PODs are higher for annual exceedances but that reflects the
higher observed frequency of these exceedances. The ETS values ranging from 0.43-0.63 indicate that
the model captures exceedances with much better skill than random guessing.

Table 3. Ability of the RF algorithm to diagnose exceedances of air quality standards®
NAAQS  Exceedance frequency® POD!Y FAR®¢ ETSf

(ugm3)®  Observed RF
24-h PMy 5
Eastern China 75 16% 15% 78% 16%  0.63
South Korea (old NAAQS) 50 5.9% 4.2% 57% 21% 047
South Korea (new NAAQS) 35 19% 17% 73%  20%  0.55
Japan 35 1.6% 0.91% 47%  17% 043
Annual PMa s
Eastern China 35 77% 83% 97% 9.2% 0.54
South Korea (old NAAQS) 25 40% 44% 67% 39% 0.23
South Korea (new NAAQS) 15 100% 100% 100% 0% NA
Japan 15 24% 20% 68% 20%  0.49

#Calculated using sites withheld from training in the crossvalidation procedure.

b National Ambient Air Quality Standards, specific to each country. We show results for the class 2 NAAQS in eastern China and for both
pre-2018 (‘old’) and post-2018 (‘new’) NAAQS for South Korea because all observed grid cells exceed the new annual NAAQS of 15 pug
mrfs

¢ Percentage of site-days (24-h standard) or site years (annual standard) exceeding the NAAQS.

4 Percent of detection (POD) defined as the percentage of exceedances successfully detected.

¢ False alarm ratio (FAR) defined as the percentage of predicted exceedances that did not occur.

f Equitable threat score (ETS) defined as the ability of the RF to predict exceedances beyond random chance.

The main difficulty for GOCI PM> s to predict NAAQS exceedances is that many of those

(Deleted: the RF algorithm

exceedances fall within the precision of individual predictions. This is illustrated in Figure 4 with the
cumulative probability density function (pdf) of the 24-h and annual mean PM» 5 concentrations in
eastern China, South Korea, and Japan, representing the same withheld data from the crossvalidation as
in Tables 2 and 3. The 24-h RRMSE of 26-32% depending on country (Table 2) is shown as the grey
envelope and is relatively flat across the distribution. Prediction of NAAQS exceedances within that
uncertainty envelope is limited by the precision of the algorithm. All of the 24-h exceedances in Japan
are within that envelope, as are most of the exceedances in eastern China and Korea. China has the
largest fraction of exceedances beyond the RRMSE of the GOCI PMa 5 and therefore the best prediction

(Deleted: RF algorithm

(Deleted: the RF algorithm

NN

success. An additional though smaller cause of bias is that GOCI PM, s underestimates the high tail of
the pdf, as is apparent in Figure 4, which explains in particular why we achieve a better FAR than POD
for 24-h PM> 5 in South Korea and Japan. Our worst NAAQS prediction performance is for annual
PM: 5 in South Korea for the old 25 pg m™ standard, because most of the distribution is within the
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RRMSE envelope. Additionally, the already small dynamic range of surface network annual PMa s
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(black dots) is underestimated by the GOCI PM, s (blue dots). These culminate in 2 GOCI PM> 5

estimate with good RMSE but low R,
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Figure 4: Cumulative probability density functions (pdfs) of 24-h and annual mean PM 5 concentrations in Eastern China, South Korea, and
Japan. Surface network PM, s (black) s compared to GOCI PM, 5 (colored) taken from the crossvalidation. The grey envelope represents
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the relative root mean square error (RRMSE) of the RF algorithm as given in Table 2, measuring the predictive capability of the algorithm
for individual events. The NAAQS for each country is shown as the horizontal line, with both the pre-2018 and post-2018 NAAQS shown
for South Korea. Left panel scales are log-log while right-panel scales are linear. y-axis scales vary for the different countries.

We experimented with several modifications to the RF algorithm to improve prediction of
NAAQS exceedances but with no success. These tests included training separate RFs for each of the
three countries; training annual PM. s predictions on annual (rather than 24-h) PM» 5 data; directly
predicting NAAQS exceedances by setting the learned label to be true if a day (year) is above the 24-h
(annual) NAAQS for a given country; and applying different weights to the data so that the high tail is
oversampled in the training process. None of these tests yielded significant improvements. Smoothing
of the tails in RFs is a well-recognized problem [Zhang and Lu, 2012]. Following Zhang and Lu [2012]
we attempted to train RFs to predict and correct the residuals but found this to be ineffective. Part of
this tail smoothing could also result from the underlying GOCI AOD land product, which has a negative
bias (-0.02) for high AODs and a positive bias (+0.02) for low AODs [Choi et. al., 2018].
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3.2 PM: ;s temporal trends and spatial distributions

Figure 5 shows long-term trends of annual PM. s for each country, as measured by the PMa.s surface

N/

40 network and as inferred jn the GOCI PM, s for both areal and population-weighted means. We do not (Deleted: from our RF algorithm
include GOCI PM> 5 for years before the networks became available (and hence when the RF could be . Deleted: RF
trained) because of concern over extrapolation bias. The PM2 s networks show decreasing trends in all
| three countries and these trends are consistent with the GOCI PMa s for both areal and population- (Deleted: RF )

weighted means, demonstrating that the trends reported by the PM> s networks are representative of the
445  countries. However, the PM; s networks in eastern China and South Korea underestimate the
population-weighted means. Trends in South Korea and eastern China become flat between 2018 and
2019 (with a slight population-weighted increase in South Korea). This could possibly reflect
interannual meteorological variability [Zhai et al., 2019; Koo et. al., 2020], but also an increase in

oxidants producing secondary aerosol [Huang et. al., 2021]. Figure S2 shows maps of annual GOCI
#50 PMoy.s across the entire study domain.
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Figure 5: Trends in annual mean PM; s concentrations for eastern China, South Korea, and Japan. Trends determined from the national 2012 2013 2014 2015
U55  surface PM, snetworks (dashed black line) averaged over 6x6 km? grid cells, requiring at least 80% of data for all years plotted, are compared Beleted Yez
to GOCI PM, 5 trends inferred by the random forest (RF) algorithm with continuous temporal and spatial coverage on the 6x6 km? grid and
weighted either by area (solid colored line) or by population, (dashed colored line). Here we use an RF trained on all the data. Gridded (r leted: . )
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population data are from CIESIN [2018]. The national PM, 5 networks include 413 continuously observed grid cells in eastern China, 74 in
South Korea, and 307 in Japan. Trends are initialized at the onset of the surface network for complete years of data; due to the unavailability
of the early months of the year, 2011 is discarded for Japan and 2014 for eastern China.

Figure 6 shows the changes in annual mean PM» s concentrations over South Korea between
2015 and 2019, as observed from the national network and as jnferred from GOCI. We focus on South
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Korea here because it demonstrates how GOCI PMa s adds considerable information to a region that

(Deleted: predicted by the RF.

already has relatively good network coverage, including detection of PM> s hotspots missing from the

network such as the Iksan region on the west coast in 2015 that was subsequently added to the network
by 2019. Figures S3 and S4 show analogous maps for China and Japan, respectively.
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Figure 6: Annual mean PM; s concentrations in South Korea in 2015 and 2019. GOCI PM, 5 (top) inferred from an RF trained on all %
available data are compared to AirKorea network observations (bottom). Network observations are shown only if at least 80% of the year '&
was observed.
Figure 7 depicts the relative 2015-2019 trends of PMa.s concentrations in South Korea derived
from a linear regression applied to the annual GOCI PM, s in each 6x6 km? grid cell. Such a spatially Deleted
resolved trend analysis is uniquely enabled by the GOCI coverage. We find decreases across the ~. (Deleted: RF predictions
‘ (Deleted: RF
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country except in the Seoul Metropolitan area which mostly shows no significant trend except for a few
pixels in Incheon. These results are consistent with the spatial patterns calculated from AirKorea data
by Yeo and Kim [2019], who found 2015-2018 decreases in Incheon but not Seoul or the surrounding
Gyeonggi province. Despite the insignificant changes in Seoul, substantial PM s decreases are found
over other large urban areas including Busan, Ulsan, Daegu, and Gwangju. The three rapidly decreasing
spots on the southern coast are Gwangyang, Sacheon, and Changwon, which house industrial
complexes related to the South Korean shipbuilding industry that has recently declined [Jung-a 2016].
Figure S5 shows absolute 2015-2019 trends of GOCI PM, 5 concentrations across the entire study
domain, and demonstrates that the North China Plain has the largest overall PM2.5 reductions.
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Figure 7: 2015-2019 trends per year in PM; s concentrations across South Korea. The trends are obtained by ordinary linear regression of
the annual mean GOCI PM, 5 in each 6x6 km? grid cell with significant regression slopes (p < 0.05), where the RF is trained on all the

(ot

available data. Grid cells with insignificant trends are plotted in gray.

AOD and PM: s in East Asia tend to have opposite seasonalities driven by boundary layer depth
and RH [Zhai et al., 2021]. Figure 8 compares GOCI and surface network monthly mean PM, s in the

RF
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Beijing, Seoul, and Tokyo metropolitan areas, with predictions coming from withheld data in the 10-
fold crossvalidation. Correspondence between GOCI and petwork PMa s may be tighter than the
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observed

=

nationwide annual means plotted in Figure 5 because these urban areas are well-observed. We see that
the RF algorithm fully captures the observed seasonality in PMa s, although some observed monthly
spikes are underestimated. The Figure illustrates the lack of trend in the Seoul Metropolitan Area over
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2015-2019 but also shows that winter and summer PMz s in the region have opposite and roughly equal
trends, with winter growing more polluted while summers become cleaner.
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for totally withheld sites in the crossvalidation are compared to network observations. Beijing is defined by the namesake province
boundary, Seoul by the Seoul and Incheon boundaries, and Tokyo as Ibaraki, Saitama, Chiba, Tokyo, Kanagawa, and Yamanashi
prefectures.

3.3 Urban-scale pollution events

We examine here the ability of GOCI PM, s to capture the spatial and temporal variability of

Predictions
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PMa s pollution events on urban scales. Figure 9 shows a map of GOCI PM».5s — produced by a RF

(Deleted:

predicted

NN

16



540

s

trained on all the data, with surface network PM s overlaid — across the Seoul metropolitan area on
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May 24-29, 2016 corresponding to a severe pollution event sampled during the KORUS-AQ field
campaign [Crawford et. al., 2021]. The dense PMa.s network for Seoul shows large variability at the sub
6x6 km? scale that GOCI does not resolve. However, GOCI PM, s captures most of the variability inghe
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the AOD data and thus this RF PM2 s product cannot

network data aggregated on the 6x6 km? grid (R?>= 0.74). It also captures successfully the day-to-day

variability during the event.
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Figure 9: 24-h PM, 5 concentrations during a pollution event in Seoul-Incheon (May 24-29, 2016).,GOCI PM, s inferred from the RF
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Figure 10 shows an additional test of the RF algorithm with one of the most severe pollution (Deleted: are

events in the record, the December 16-21, 2016 Beijing winter haze episode. 24-h PM. s concentrations

exceeded 400 pg m™ at some of the network sites. While there is a tight correspondence between the

GOCI and surface network 24-h PMy s for Beijing grid cells (R? range: 0.74-0.99), the network (Deleted: RE

observations are on average 20 pg m™ higher than the GOCI PM, 5. The dlfference is most pronounced (Deleted: observed

at the December 21 concentration peak which has mean observed value 396 ug m™to the predicted 348 (Deleted: RF

pg m>. This reflects the RF smoothing and AOD underestimate for the high tail of the distribution as (Deleted: of

17

N NN




565

570

575

560 previously illustrated in Figure 4. It nevertheless illustrates the ability of GOCI combined with our

gap-filling method to capture severe winter haze episodes that are particularly challenging to observe
from space.
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Dec 16-21, 2016
GOCI PM, 5 (background), Surface network PM, 5 (circles)

Beijing spatial R2 = 0.86 on 6x6 km?2 grid scale

ﬂ
y y £
Q
o)
»

400

300

PM, 5 (g m3)

100

Nortl

Dec1
RF pre

Beijing

Figure 10: Same as Figure 9 but for a pollution event in Beijing on December 16-21, 2016.

3.4 Regional air quality model evaluation

Regional air quality model predictions of PMz s are typically evaluated with observations from

surface network sites, but the spatially continuous GOCI PM 5 fields offer more extensive coverage and (Deleted: RF

hence broader opportunity for model evaluation. We demonstrate this capability here with Community
Multiscale Air Quality Modeling System (CMAQ version 4.7.1) simulations for the Korean peninsula
including both South and North Korea at 9-km resolution [Bae et al., 2018; Bae et al., 2021]. There are
no surface PMz s data in North Korea to train the RF so we use the South Korea categorical variable to

generate the GOCI PM 5 fields there. (Deleted: RF

The simulation for South Korea was conducted for 2015-2019 using emissions from the Clean
Air Policy Support System (CAPSS) 2016 [Choi et al., 2020] for South Korea and KORUSVS [Woo et
al., n.d] for outside South Korea. The simulation for North Korea was conducted for 2016 using
emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport
Experiment (CREATE) 2015 [Woo et al., 2020] and CAPSS 2013. Natural aerosols including sea salt
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and mineral dust are included. To prepare the boundary conditions, a coarse domain at 27-km horizontal
grid resolution covering Northeast Asia was used.

Figure 11 illustrates the increased capability for model evaluation in South Korea enabled by
the GOCI PM s fields. The bottom row shows the mean 2015-2019 PM, s concentrations in CMAQ
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compared to the AirKorea network and to GOCI PM, s, and the top row shows comparison scatterplots.
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The top left panel compares the CMAQ simulation to 2015-2019 mean PM> 5 observations from the 398
AirKorea network sites. The top middle panel compares the GOCI PM; 5 to the same AirKorea network
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data, showing excellent agreement. The GOCI PM s fields provide 1353 points for South Korea on the

9x9 km? CMAQ grid, and the top right panel shows the resulting increase in capability for evaluation of

the CMAQ simulation. It shows in particular that CMAQ underestimates PM..s in coastal environments,
possibly because of unaccounted ship emissions.
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Figure 11: Mean PM, 5 concentrations in South Korea in 2015-2019 as simulated by CMAQ, measured at the AirKorea sites, and ynferred C,\ leted: r d by the RF.

from GOCI. The top panels show scatterplots comparing the CMAQ and GOCI PM, s fields to the Air Korea measurements (398 sites), and

CMAQ to GOCI PM> 5 on the 9x9 km> CMAQ grid (1353 grid cells to compare). The bottom panels show maps of the mean 2015-2019
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concentrations.
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Figure 12 evaluates the CMAQ simulation with the GOCI PM s fields over North Korea.
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Unlike in South Korea, there are no observation sites in North Korea and GOCI PM; 5 offers the only
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opportunity for local evaluation. CMAQ and GOCI PM, s show dramatically different patterns. The

- CDeIeted: RF

highest PM2 5 in CMAQ is in the Pyongyang capital region, while GOCI shows highest values in the

north-central region. The lack of reliable emission inventories for North Korea makes it difficult to
arbitrate this difference. The RF is not trained for North Korea, which might lead to positive biases
because the AOD/PM3 s ratio modeled in the Zhai et al. [2021] GEOS-Chem simulation is higher over
North Korea outside the mountainous east (range: 0.010-0.013 m? pg!) than over South Korea (0.008-
0.010 m? ug™"). However, the difference could also be explained by missing emissions in the inventory.
Further evaluation could be done with border sites in South Korea and northeastern China. China MEE
sites along the border are consistent with high PM> 5 in north-central North Korea.
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Figure 12: Mean PM, s concentrations in North Korea in 2016 as simulated by CMAQ and as represented by the GOCI PM, 5 product

assuming South Korea as categorical variable. The middle panel shows surface PM, s concentrations from the AirKorea and China MEE

networks.

4 Conclusions

We used 2011-2019 geostationary aerosol optical depth (AOD) observations from the GOCI satellite
instrument, in combination with a random forest (RF) machine learning algorithm trained on air quality
network data, to produce a continuous 24-h PM2 5 data set for eastern China, South Korea, and Japan at
6x6 km? resolution. The resulting gap-free GOCI PM, 5 product complements the air quality networks
that cover only 1% of 6x6 km? grid cells in eastern China, 7% in South Korea, and 8% in Japan. It
provides a general dataset for PM» s mapping to serve regional pollution analysis, air quality
monitoring, and public health applications.

We trained the RF algorithm on gap-filled AODs from the GOCI instrument and a suite of
twelve meteorological, geographical, and temporal predictor variables. Gap filling of AODs was done
by a weighted combination of nearest-neighbor data and chemical transport model fields, with the
weight serving as an additional predictor variable. The RF algorithm is successfully able to exploit
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information encoded in AOD missingness to produce a continuous product. Testing of the RF algorithm
by prediction of withheld network sites shows single-value precisions in each country of 26-32% for 24-
h PMa s and 12% for annual mean PM. s, with negligible mean bias. Accuracy statistics for PMa.s
inferred on grid cells with no AOD retrieval (i.e,. estimated using equation (1)) show similar accuracy
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statistics as the entire population, jndicating that the gap-filling procedure does not bias the results. The
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algorithm has only moderate success at predicting NAAQS exceedance events because most of these
events are within the single-value precision, and also because of some smoothing of the extreme high
tail of the PM> 5 frequency distribution.

We compared the continuous 24-h GOCI PMa s fields to spatial and temporal patterns observed
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at the national network sites. National trends of PM; 5 inferred from GOCI and weighted by area or
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population are consistent with those observed at network sites (2015-2019 in eastern China and South
Korea, 2011-2019 in Japan), confirming that the trends observed at these sites are representative.
However, the network sites in eastern China and South Korea underestimate population exposure. The
GOCI PMys fields over South Korea show PMa s hotspots missing in the early AirKorea network (2015)
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that are confirmed by subsequent addition of sites to the network (2019). The spatial distribution of
GOCI PMy s trends in South Korea shows decreases everywhere except in the Seoul metropolitan area
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where trends are flat. We show with time series in the capital cities (Beijing, Seoul, Tokyo) that the RF
successfully captures the seasonality of PM2 s even though AOD and PMz 5 have different and often
opposite seasonalities.

We examined the ability of the RF algorithm to map air quality on urban scales by analysis of
two multi-day pollution episodes in Seoul and Beijing. The algorithm captures the day-to-day temporal
variability observed by the surface networks as well the spatial variability on the 6x6 km? scale. The
highest PM2 5 concentrations are underpredicted, which reflects the smoothing of the high tail of the
distribution.

The continuous spatial coverage of PM2 s provided by the GOCI fields enables improved
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evaluation of the air quality models used in support of emission control policies. Comparison to a
CMAQ simulation for South Korea in 2015-2019 reveals a large model underestimate in coastal
environments undersampled by the AirKorea network. Comparison to a CMAQ simulation for North
Korea in 2016, where the RF provides the only PM» s data for model evaluation, shows drastically
different patterns with the RF featuring high PM2 s throughout North Korea. The RF results in North
Korea could be affected by errors due to lack of training data but they appear consistent with the PMa s
network observations at Chinese border sites.

More work could be done to improve our GOCI PM; 5 product. We find in our current RF
algorithm, consistent with Hu et. al. [2017], that the addition of certain predictor variables such as
population decreases performance. This motivated our practice of excluding spatially varying but
temporally constant fields such as elevation and emissions. However, these variables have been found
to be useful in other inferences of PM».s from AOD data [Kloog et al., 2012; Di et al., 2019], so further
investigation is needed on how to accommodate them in our modeling framework. A higher resolution
meteorological reanalysis such as ERAS5-Land [Munioz-Sabater et al., 2021] could be used for the
meteorological predictor variables and enable the inclusion of additional variables such as precipitation.
Additional remote sensing products such as NDVI could also be useful. More work needs to be done to
address our underestimate of the high tail of the PM, s distribution, i.e., extreme pollution events. Such
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an underestimate is common in RF applications [Zhang and Lu, 2012] but could be addressed by
leveraging specialized statistical tools like extreme value theory. Additional training methods could be
used to improve the ability of the RF to predict NAAQS exceedances, such as data sampling
adjustments. Moreover, it is possible that skill in modeling NAAQS exceedance could be improved by
leveraging data that better captures diurnal variations of PM, s, as high concentrations tend to occur at
night. The unique geostationary capability of GOCI to generate hourly AOD data could be used to
produce an hourly PM> s product. A new GOCI AOD product with 2x2 km? resolution is expected to
become available in the near future and will provide motivation to explore these improvements in a new
version of our RF algorithm.

Data availability 24-h 6x6 km? resolution daily GOCI PM 5,are made freely available on DataVerse at

(Deleted: derived from the RF

https://doi.org/10.7910/DVN/OL3IP7.
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