

Continuous mapping of fine particulate matter (PM_{2.5}) air quality in East Asia at daily 6x6 km² resolution by application of a random forest algorithm to 2011-2019 GOCI geostationary satellite data

Drew C. Pendergrass¹, Daniel J. Jacob¹, Shixian Zhai¹, Jhoon Kim^{2,3}, Ja-Ho Koo², Seoyoung Lee², Minah Bae⁴, Soontae Kim⁴, and Hong Liao⁵

Deleted: and

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, Mass., USA

²Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

³Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea

⁴Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea

¹⁰⁵Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Correspondence to: Drew Pendergrass (pendergrass@g.harvard.edu)

Abstract. We use 2011-2019 aerosol optical depth (AOD) observations from the Geostationary Ocean

15 Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter (PM_{2.5}) concentrations at continuous 6x6 km² resolution over eastern China, South Korea, and Japan.

This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data, including information encoded in GOCI AOD retrieval failure, and trained with PM_{2.5} observations from the three national networks. The predicted 24-h GOCI PM_{2.5} concentrations for sites entirely

20 withheld from training in a ten-fold crossvalidation procedure correlate highly with network

observations ($R^2 = 0.89$) with single-value precision of 26-32% depending on country. Prediction of annual mean values has $R^2 = 0.96$ and single-value precision of 12%. GOCI PM_{2.5} is only moderately

25 successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF, and also because

30 of RF smoothing of extreme PM_{2.5} concentrations. The area-weighted and population-weighted trends of GOCI PM_{2.5} concentrations for eastern China, South Korea, and Japan show steady 2015-2019

declines consistent with surface networks, but the surface networks in eastern China and South Korea

35 underestimate population exposure. Further examination of GOCI PM_{2.5} fields for South Korea

identifies hotspots where surface network sites were initially lacking and shows 2015-2019 PM_{2.5}

decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of monthly PM_{2.5} time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations of PM_{2.5} even though AOD and PM_{2.5} often have opposite seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing

35 demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula

36 demonstrates the value of the continuous GOCI PM_{2.5} fields for testing air quality models, including

over North Korea where they offer a unique resource.

Deleted: The RF algorithm

Deleted: RF

Deleted: RF

Deleted: RF

1. Introduction

Exposure to outdoor fine particulate matter (PM_{2.5}, less than 2.5 μm in diameter) is a global public health issue, accounting for 8.9 million deaths in 2015 [Burnett *et. al.*, 2018]. Beyond mortality, short-term exposure to elevated PM_{2.5} levels is associated with numerous adverse health outcomes including increased hospital admissions for respiratory and cardiovascular issues [Dominici *et. al.*, 2006; Wei *et. al.*, 2019]. Long-term exposure is associated with neurodegenerative diseases such as dementia, Alzheimer's disease, and Parkinson's disease [Kioumourtzoglou *et. al.*, 2016]. High spatio-temporal monitoring of PM_{2.5} concentrations to inform population exposure is important for both air quality regulation and epidemiological studies. Ground monitors can provide highly accurate measurements but have limited spatial coverage. Here we show how geostationary satellite observations of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) can be used with a random forest (RF) machine learning (ML) algorithm to provide continuous long-term reliable mapping of 24-h PM_{2.5} at 6x6 km² spatial resolution.

The potential of satellites for high-resolution monitoring of PM_{2.5} has long been recognized in the public health community [Liu *et. al.*, 2004; van Donkelaar *et. al.*, 2006]. Satellites retrieve AOD by backscatter of solar radiation. The MODIS sensors launched in 1999 on the NASA Terra and Aqua satellites have been the main source of AOD data, with global coverage twice a day at up to 1 km resolution [Remer *et. al.*, 2005, 2013; Lyapustin *et. al.*, 2018]. Early approaches to relate AOD observations to surface PM_{2.5} used chemical transport models (CTMs) to estimate local PM_{2.5}/AOD ratios [Liu *et. al.*, 2004; van Donkelaar *et. al.*, 2006], with more recent studies adding ancillary satellite data on the vertical distribution of aerosol extinction [Geng *et. al.*, 2015; van Donkelaar *et. al.*, 2016; van Donkelaar *et. al.*, 2019]. Other approaches have used PM_{2.5} network data to infer PM_{2.5}/AOD ratios [Wang and Christopher, 2003], with statistical models based on meteorological and land-use predictor variables to enable spatial extrapolation [Gupta and Christopher, 2009; Liu *et. al.*, 2009; Kloog *et. al.*, 2012; 2014].

More recently, non-parametric machine learning models have been developed to predict PM_{2.5} from satellite AOD observations including neural networks [Li *et. al.*, 2017; Zang *et. al.*, 2019] and RFs, including approaches that fuse both [Di *et. al.*, 2019]. RF has been applied to MODIS AOD to produce high-resolution daily PM_{2.5} products for the US [Hu *et. al.*, 2017] and China [Guo *et. al.*, 2021]. Others have used RF and satellite AODs to produce monthly PM_{2.5} data over the North China Plain [Huang *et. al.*, 2018], as well as daily PM_{2.5} data in California [Geng *et. al.*, 2020] and Cincinnati, Ohio [Brokamp *et. al.*, 2018].

Geostationary satellites are now dramatically increasing the capability for mapping of PM_{2.5} from space. The GOCI instrument launched in 2010 by the Korea Aerospace Research Institute (KARI) observes AOD eight times daily at 0.5x0.5 km² pixel resolution over eastern China, the Korean peninsula, and Japan [Choi *et. al.*, 2018]. The fine-pixel hourly information is intrinsically valuable and also facilitates cloud clearing [Remer *et. al.*, 2012]. GOCI AOD data aggregated to 6x6 km² resolution have been used to estimate PM_{2.5} in regional studies for the Yangtze River Delta [She *et. al.*, 2020] and eastern China [Xu *et. al.*, 2015]. Park *et al.* [2019] find that PM_{2.5} can be inferred over the Korean peninsula with greater accuracy using GOCI AOD than sparser MODIS data. AOD products from the Advanced Himawari Imager (AHI) onboard the Himawari-8 and -9 geostationary meteorological

Moved down [1]: More recently, non-parametric machine learning models have been developed to predict PM_{2.5} from satellite AOD observations including neural networks [Li *et. al.*, 2017; Zang *et. al.*, 2019]

Moved down [2]: *et. al.*, 2019] and RFs

Moved down [3]: *et. al.*,

Deleted: *et. al.*

Deleted: 2018].

Formatted: Font: Italic

Formatted: Font: Italic

Deleted: 2017; Brokamp *et. al.*

Moved down [4]: *et. al.*,

Moved (insertion) [1]

Moved (insertion) [2]

Moved (insertion) [3]

Formatted: Font: Italic

Moved (insertion) [4]

Formatted: Font: Italic

Moved (insertion) [5]

Formatted: Font: Not Italic

Moved (insertion) [6]

Formatted: Font: Not Italic

Deleted: eastern China and South Korea [Xu *et. al.*, 2015; Park *et. al.*, 2019; She *et. al.*, 2020]

satellites over East Asia have also been used to infer surface PM_{2.5} [Wang *et. al.*, 2017; Chen *et. al.*, 2019].

AOD cannot be observed under cloudy conditions, and AOD retrievals from satellites can also fail for other reasons including snow surfaces. Different methods have been used to fill the data gaps and produce continuous data sets. Some studies use CTM AODs when satellite data are missing [Hu *et. al.*, 2017; Stafoggia *et. al.*, 2019]. Kianian *et. al.* [2021] used a statistical interpolation algorithm combining RF with the lattice kriging method to infer missing AOD over the US, while Di *et al.*, [2019] used a RF trained on gap-free covariates to fill in the gaps for MODIS AOD. Yet others first estimate PM_{2.5} using available AOD observations, then infer missing PM_{2.5} estimates using a separate gap-filling model [Kloog *et. al.*, 2014; She *et. al.*, 2020]. Brokamp *et al.* [2018] show that AOD missingness is itself predictive of PM_{2.5}, an insight we leverage in this work.

Here we apply a RF algorithm to 2011–2019 GOCI AOD data to construct a continuous dataset of 24-h PM_{2.5} concentrations at 6x6 km² resolution for eastern China, South Korea, and Japan trained with surface network data. This is a larger spatial domain than has been attempted in previous studies. We ensure continuity by using gap-filled AOD, calculated by blending a CTM simulation with statistical interpolation, along with a parameter characterizing the length scale of the interpolation as inputs to the RF algorithm. This strategy maximizes training set size and allows the RF to determine a strategy to handle information encoded by retrieval failure. The resulting gap-filled product predicts PM_{2.5} with comparable skill when AOD observations are absent as when they are available. We characterize the error in the RF-produced GOCI PM_{2.5} dataset for both 24-h and annual concentrations and demonstrate the ability of the dataset to capture spatial and day-to-day variability on urban scales. We exploit the continuity of the dataset to determine trends of PM_{2.5} air quality in East Asia over the past half decade.

2 Data and methods

120 2.1 Datasets

GOCI AODs. GOCI is onboard the Korean Communication, Ocean, and Meteorological Satellite (COMS) that was launched by KARI in June 2010 [Choi *et. al.*, 2012; Choi *et. al.*, 2016]. The first ocean color imager placed in geostationary orbit, GOCI covers a 2,500x2,500 km² domain centered on the Korean peninsula at 36°N and 130°E with 0.5x0.5 km² pixels observed every hour from 00:30 to 07:30 UTC. AOD at 550 nm over land is retrieved using the GOCI Yonsei aerosol retrieval (YAER) V2 algorithm at an aggregated 6x6 km² spatial resolution and 1 h temporal resolution [Choi *et. al.*, 2018]. Aggregation filters out pixels affected by sunglint or clouds, as well as the darkest 20% and brightest 40% pixels within the 6x6 km² scene [Choi *et. al.*, 2018]. We further aggregate the hourly AOD measurements of AOD into a daily mean for use in the RF.

130 Validation of the GOCI YAER V2 AOD with surface measurements from the AERONET surface network shows high correlation ($R = 0.91$), a root mean squared error (RMSE) of 0.16, and a mean bias (MB) of 0.01 with no significant spatial variation across East Asia [Choi *et. al.*, 2018]. GOCI YAER V2 also reports a Fine Mode Fraction (FMF) and a Multiple Prognostic Expected Error (MPEE) for the AOD but we find that they are not useful in our RF, as discussed later. For comparison, we also

Moved up [5]: *et. al.*, 2020

Formatted: Font: Not Italic

Deleted: AODs

Moved (insertion) [7]

Deleted: Others use

Deleted: such as

Moved up [7]: Kianian *et. al.*

Deleted: [2021], who combined a

Deleted: .

Deleted: .

Deleted: the

Deleted: Our AOD

Deleted: filling strategy blends

Deleted: information and

Deleted: with a strategy determined by

Deleted: .

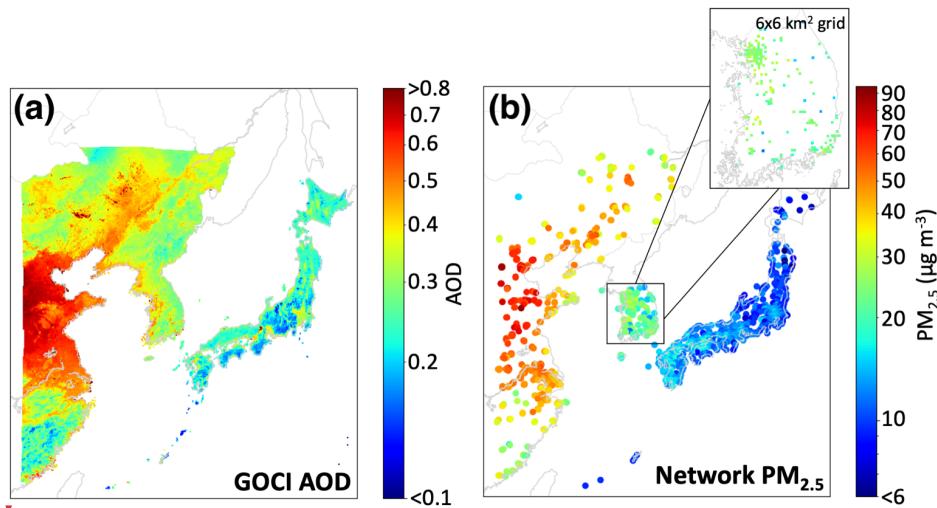
Deleted: PM_{2.5}

Deleted: 8x daily

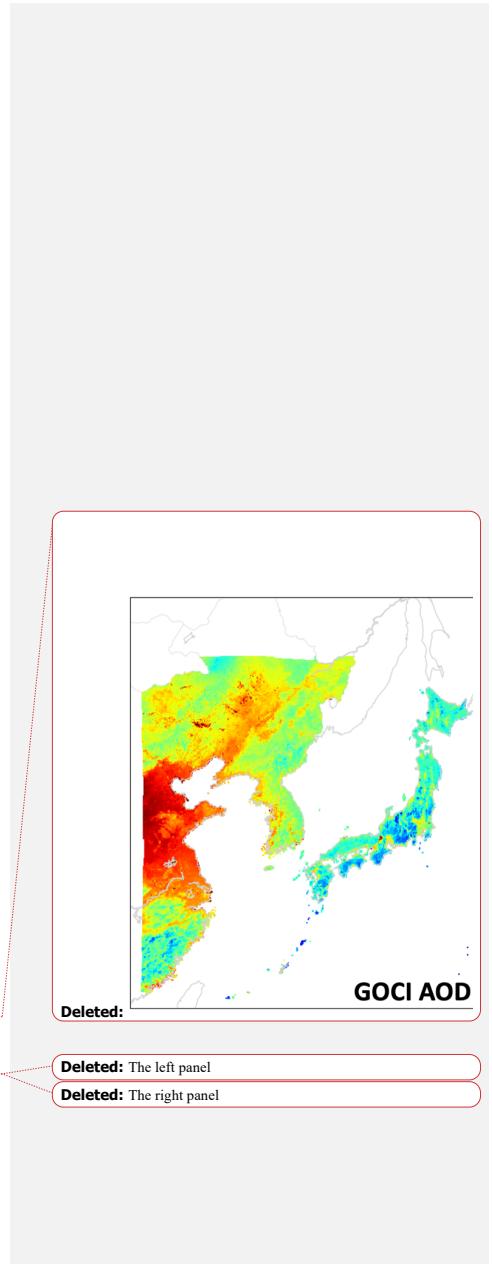
Deleted: (8-hr)

calculate a RF trained on the GOCI-AHI fusion AOD product of *Lim et. al.* [2021]. The Advanced Himawari Imager (AHI) instruments onboard the Himawari-8 and -9 geostationary meteorological satellites were launched in October 2014 and November 2016, respectively. AHI has a larger field of view than GOCI but a shorter record.

155 *PM_{2.5} network data.* We use hourly PM_{2.5} data from operational air quality networks in eastern China, South Korea, and Japan, and average them over 24 hours and over the 6x6 km² GOCI AOD grid to define targets for the RF algorithm. Data for eastern China are from the National Environmental
 160 Monitoring Center (<https://quotsoft.net/air>) including 443 sites within the GOCI observing domain starting in May 2014 and increasing to 596 sites by 2019. Following *Zhai et. al.* [2019] we remove values with more than 24 consecutive repeats in the hourly timeseries as likely in error. Data for South Korea are from the AirKorea surface network of 123 sites (<https://www.airkorea.or.kr/>) starting in January 2015 and increasing to 298 sites by 2019. Data for Japan are from 1054 sites reported by the
 165 Japanese National Institute for Environmental Studies (NIES) for 2011-2017 (https://www.nies.go.jp/igreen/tj_down.html) and by the real-time Atmospheric Environmental Regional Observation System (AEROS) portal for 2018-2019 (Soramame; <http://soramame.taiki.go.jp/DownLoad.php>).



170 Figure 1: Mean aerosol optical depth (AOD) and surface network PM_{2.5} concentrations over the Geostationary Ocean Color Imager (GOCI) viewing domain, 2011-2019. Panel (a) shows mean GOCI AOD data on the 6x6 km² grid. Panel (b) shows the mean surface network PM_{2.5} data for eastern China (starting in May 2014), South Korea (starting in January 2015), and Japan, using large data symbols for visibility. Zoomed inset for South Korea shows the surface network observations with symbols corresponding to the 6x6 km² grid of the GOCI data. Log scale is used for colorbar.



180 *Meteorological and geographical predictor variables.* We use hourly meteorological data from the ERA5 global reanalysis, with resolution of $30 \times 30 \text{ km}^2$ [Hersbach *et. al.*, 2020], as input predictor variables for the RF algorithm. For this purpose we aggregate the data to 24-h averages and allocate them to $6 \times 6 \text{ km}^2$ GOCI grid cells by bilinear interpolation. We consider boundary layer height, 2-m air temperature and relative humidity (RH), 10-m meridional and zonal winds, and sea level pressure as potential meteorological predictor variables. We also include latitude, year, day of year (1-366), and nation category (eastern China, South Korea, or Japan) as geographical predictor variables. We 185 considered 2015 population density [CIESIN, 2018] as a potential predictor variable but found that it was not useful as discussed in section 3.2.

190 **Figure 1** shows the mean distributions of GOCI AOD and surface network $\text{PM}_{2.5}$ for 2011-2019 or for the more limited durations of their records (2014-2019 for eastern China $\text{PM}_{2.5}$, 2015-2019 for South Korea $\text{PM}_{2.5}$). The $\text{PM}_{2.5}$ networks are extensive but coverage is nevertheless sparse and often limited to large urban areas, as illustrated by the zoomed inset for South Korea. We find that only 1.0% of GOCI $6 \times 6 \text{ km}^2$ grid cells have $\text{PM}_{2.5}$ observations in eastern China, 7.4% in South Korea, and 7.9% in Japan. This geographic limitation in the $\text{PM}_{2.5}$ networks emphasizes the value of continuous coverage 195 from the AOD data.

2.2 AOD gap-filling

% of days with GOCI AOD observations, 2011-2019

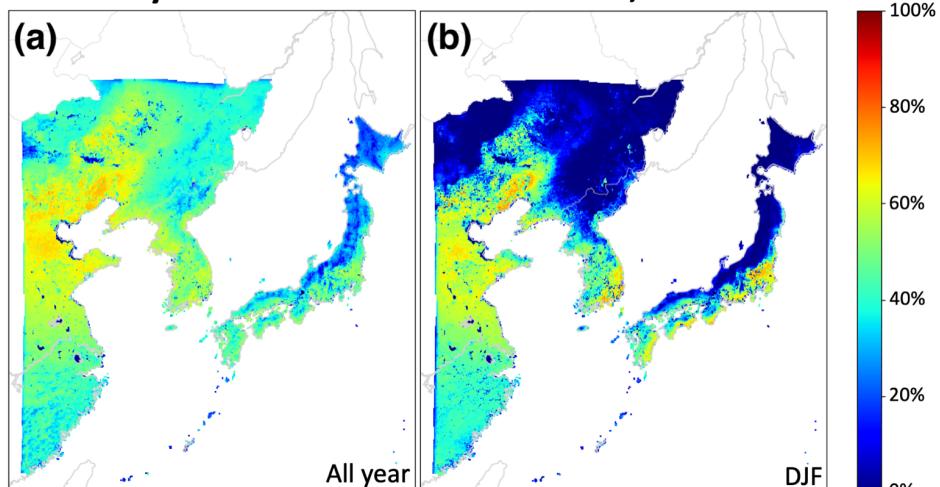


Figure 2: Percentage of days in 2011-2019 with at least one successful hourly retrieval of AOD on the $6 \times 6 \text{ km}^2$ grid. Panel (a) shows year-round statistics while panel (b) shows winter months (DJF) only.

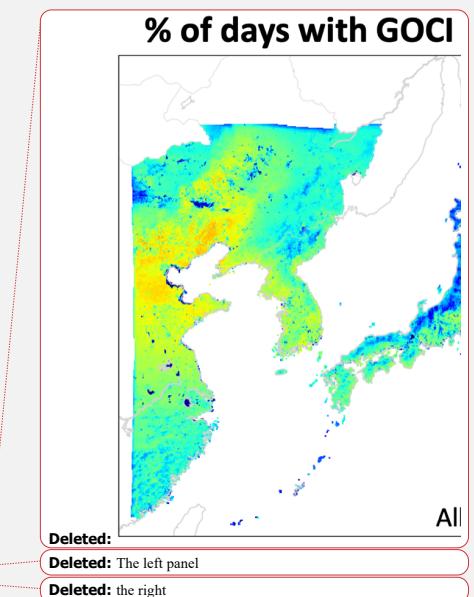
Deleted: as geographical predictor variables

Deleted:). We also

Deleted: find

Deleted: is

% of days with GOCI



Deleted:

Deleted: The left panel

Deleted: the right

Figure 2 shows the percentage of days with at least one successful hourly GOCI AOD retrieval on the 6x6 km² retrieval grid. There are substantial gaps in the record, mostly reflecting clouds and also snow cover in winter [Choi *et. al.*, 2018]. We seek to fill in these gaps to produce a continuous daily data set while accounting for the associated errors and leveraging information implicitly encoded in retrieval failure. We fuse two strategies according to the availability of nearby AOD retrievals: an inverse distance weighted (IDW) interpolation AOD_{IDW} of nearby retrievals [Shepard, 1968] and a bias-corrected monthly AOD_{GC} from the GEOS-Chem CTM:

$$AOD = \alpha AOD_{IDW} + (1 - \alpha) AOD_{GC} \quad (1)$$

where α is a weighting factor that depends on the distance from nearest retrievals. GEOS-Chem is a widely used CTM for inferring PM_{2.5} from satellite AOD data [Liu *et. al.*, 2004; van Donkelaar *et. al.*, 2006; 2016; 2019; Geng *et. al.*, 2015]. Here we use scaled monthly mean GEOS-Chem AODs from a simulation by Zhai *et. al.* [2021] for 2016 in East Asia with 0.5°x 0.625° resolution, bias-corrected to the annual mean GOCI AODs on the 6x6 km² grid. In this way we obtain a spatial distribution of monthly mean AOD_{GC} values for 2011-2019 for use in equation (1).

We calculate the weighting factors α used in Equation (1) via the Gaspari-Cohn function, a fifth-order piecewise polynomial with a radial argument r [Gaspari and Cohn, 1999]. The Gaspari-Cohn function resembles a Gaussian distribution but with compact support, taking on a maximum value of 1 for $r = 0$ and a minimum value of 0 for $r \geq 2$. We define $r = l/c$ for a given 6x6 km² grid cell and day to be the distance l from the midpoint of the grid cell to that of the nearest observed grid cell, normalized by a spatial correlation length scale c determined from available AOD observations in and around that grid cell. We find that the value of c ranges from 110 km to 170 km over our domain.

2.3 Random forest algorithm

Table 1 lists the predictor variables included in the RF to infer 24-h PM_{2.5} as dependent variable. RF is an ensemble machine learning method where many individual decision trees are fit to the training data and vote on an output value, with the average value taken as best estimate [Breiman, 2001].

Table 1. Random Forest predictor variables for 24-h PM_{2.5}^a

GOCI gap-filled AOD observations^b

8-h average AOD at 550 nm wavelength

α from Equation 1

Meteorology^c

Boundary layer height (m)

10-m meridional wind (m s⁻¹)

10-m zonal wind (m s⁻¹)

2-m temperature (K)

2-m relative humidity^d (%)

Sea-level pressure (Pa)

Metadata

Deleted: ..

Deleted: .. That simulation reported a low mean

Deleted: relative

Deleted: AERONET; we correct this for each year in the study period by using

Country dummy variables^e

Latitude

Day of year

Year

240 ^aThe RF algorithm predicts continuous 24-h PM_{2.5} on a 6x6 km² grid for eastern China, South Korea, and Japan after training with PM_{2.5} surface network data.

^b8-hr average 550 nm AODs on the 6x6 km² grid retrieved with the YAER v2 algorithm [Choi et al., 2018]

^cECMWF ERA5 fields [Hersbach et. al., 2020] at 30x30 km² spatial resolution and hourly temporal resolution, interpolated bilinearly to the GOCI grid and averaged over 24 hours.

^dEstimated from temperature and dewpoint using the August-Roche-Magnus approximation [Alduchov and Eskridge, 1996].

245 ^eThree variables that, for each of eastern China, South Korea, and Japan, has value 1 if a grid cell is within those national borders and 0 otherwise.

Decision trees are fit recursively to the predictor variable. Suppose we have a collection of N data elements $i \in [1, N]$, denoted x_i , each composed of m predictor variables ($x_i \in \mathbb{R}^m$), and a corresponding list of N labels y_i that we would like to learn. In our case y_i denotes the observed PM_{2.5} concentrations from the surface networks averaged on the 6x6 km² grid, and N denotes the number of these observations. The algorithm works by splitting the data into left and right subsets L and R at an optimum split point determined from the predictor variables in x_i [Pedregosa et. al., 2011]. The optimum split point is defined as the one that minimizes the impurity G ,

$$G(L, R) = \beta \cdot \text{MSE}(L) + (1 - \beta) \cdot \text{MSE}(R) \quad (2)$$

255 where β represents the fraction of data in the subset L and MSE represents the mean squared error of each of the subsets,

$$\text{MSE}(X) = \frac{1}{n} \sum_i (y_i - \bar{y})^2 \quad (3)$$

where \bar{y} is the mean of the target labels within a given subset X and n is the number of elements in that subset. From there the same algorithm is recursively applied to the left and right subsets L and R until the tree is grown. We follow the advice of *Hastie et. al.* [2009] and grow trees until the data are fully classified (each leaf contains only one value).

260 Due to the recursive training structure, decision trees are sensitive to the data on which they are trained, because a change in one split point changes the composition of all its child nodes. Individual decision trees thus have high error variance but no inherent bias. It follows that averaging many individual and uncorrelated trees should yield a low variance, low bias prediction. We construct 200 trees in parallel and reduce correlation between them through a bagging procedure: for each of the 200 decision trees in the RF, sample the input data with replacement to form a new dataset of the same dimensions and then grow a decision tree from this bootstrapped data [Breiman, 2001]. Because of the high input sensitivity, a wide variety of decorrelated trees are grown. The predictions of each individual tree are averaged to yield the prediction of the RF. We fit our RF using the RandomForestRegression class in the Python module Scikit-learn [Pedregosa et. al., 2011]. We attempted to further decorrelate trees by following *Breiman* [2001] and calculating split points of each individual tree using only a random subset of the m predictor variables; however, a sensitivity test we performed showed only minor differences with the base case and therefore we follow *Guerts et. al.* [2006] in considering all predictor variables in the training process.

275 We evaluate how the RF generalizes to predictions for the full 6x6 km² domain via a 10-fold crossvalidation. For each fold of the crossvalidation, we leave out a randomly selected 10% of PM_{2.5} network sites (averaged on the 6x6 km² grid if needed) from each country. These 10% represent the test set; because we perform the validation ten times, each grid cell is in the test set exactly once. We compare predicted PM_{2.5} to withheld observed PM_{2.5} using four metrics: root mean square error (RMSE); the RMSE divided by mean observed PM_{2.5} (relative RMSE, or RRMSE); the coefficient of variation (R²); and the mean bias computed by averaging the difference between predicted and observed PM_{2.5} (MB).

280 An outcome of interest is the ability of our predictions to capture exceedances of National Ambient Air Quality Standards (NAAQS). We categorize each prediction within the test sets into one of 285 four classes: true positives (TP) where both predicted and observed PM_{2.5} exceed the NAAQS threshold; true negatives (TN) where neither exceed the threshold; false positives (FP) where an exceedance is predicted but not observed; and false negatives (FN) where an exceedance is observed but not predicted [Brasseur and Jacob, 2017; Cusworth *et. al.*, 2018]. We use these classes to compute three overall prediction grades. The first, percent of detection (POD), gives the fraction of observed 290 exceedances that were successfully predicted:

$$\text{POD} = \frac{\Sigma \text{TP}}{\Sigma \text{TP} + \Sigma \text{FN}} \quad (4)$$

The second, false alarm ratio (FAR), gives the fraction of predicted exceedances that did not occur:

$$\text{FAR} = \frac{\Sigma \text{FP}}{\Sigma \text{TP} + \Sigma \text{FP}} \quad (5)$$

295 The third, equitable threat score (ETS), compares how well the prediction does relative to random chance:

$$\text{ETS} = \frac{\Sigma \text{TP} - \beta}{\Sigma \text{TP} + \Sigma \text{FP} + \Sigma \text{FN} - \beta} \quad (6)$$

300 where β is the number of true positives obtained by random chance,

$$\beta = \frac{(\Sigma \text{TP} + \Sigma \text{FP}) \cdot (\Sigma \text{TP} + \Sigma \text{FN})}{\Sigma \text{TP} + \Sigma \text{TN} + \Sigma \text{FP} + \Sigma \text{FN}} \quad (7)$$

305 ETS is 1 for perfect prediction skill and 0 for no better or worse than chance.

Predictor variable selection is an important task in implementing a RF, as the addition of non-informative variables can decrease performance. Unlike linear regression which can naturally ignore unhelpful predictors, irrelevant data can by chance aid in minimizing impurity G at some stage in the

optimization process making all subsequent splits suboptimal. The six meteorological variables given in **Table 1** are standard in AOD/PM_{2.5} prediction [e.g. Kloog *et. al.*, 2014; Li *et. al.*, 2017], while the four spatio-temporal variables (location dummies, latitude, year, and day of year) and the retrieval gapfilling parameter α proved to be informative in sensitivity tests. In addition to the predictor variables in **Table 1**, we considered as additional variables the population density, the GOCI fine mode fraction (FMF), and the GOCI multiple prognostic expected error (MPEE), but we found that they worsened accuracy of the fit and so we did not retain them. Because population density worsened the fit we did not include other spatially varying but temporally fixed land-use variables such as road data, elevation, or emissions. We also compared RFs trained on GOCI AOD and on GOCI-AHI fused AOD and found no significant difference in the fitting of PM_{2.5}. We therefore use the GOCI AOD product because of its longer record.

320 3 Results and discussion

3.1 Accuracy and precision of RF predictions

Figure 3 shows scatterplots, color-coded by count, comparing surface observations of 24-h and annual mean PM_{2.5} to the predicted GOCI PM_{2.5} values in grid cells whose records are entirely withheld from training in the crossvalidation procedure. GOCI PM_{2.5} values for the annual mean are obtained by averaging the 24-h predictions. **Table 2** gives comprehensive GOCI PM_{2.5} evaluation statistics for East Asia and for each country. The 24-h predictions for East Asia have a negligible mean bias of 0.23 $\mu\text{g m}^{-3}$ (annual, 0.22 $\mu\text{g m}^{-3}$), though the RF underpredicts PM_{2.5} at the high tail of the distribution; we will return to that issue later in the context of NAAQS exceedances. Root mean square error (RMSE) between observed and predicted 24-h PM_{2.5} is 8.8 $\mu\text{g m}^{-3}$ (annual, 3.3 $\mu\text{g m}^{-3}$) corresponding to a relative RMSE (RRMSE) of 37% (annual, 14%), as defined in section 2.3. The prediction captures 89% of the observed 24-h variance ($R^2 = 0.89$) and 96% of annual ($R^2 = 0.96$). These results compare favorably to previous reconstructions of PM_{2.5} from satellite AOD data. For example, a 1-km 2000–2015 continental US product and 3-km 2015–2016 east China product have crossvalidation R^2 of 0.86 and 0.87 respectively for daily PM_{2.5} [Di *et. al.*, 2019; Hu *et. al.*, 2019], while a global 0.01° 1998–2018 product and a 0.1° degree 2000–2016 product for China have crossvalidated R^2 of 0.90–0.92 and 0.77 respectively for annual PM_{2.5} [Hammer *et. al.*, 2020; Xue *et. al.*, 2019]. R^2 for annual mean PM_{2.5} in South Korea is relatively low (0.41), which can be explained by the weak dynamic range of observed annual PM_{2.5} in the country (Figure 1), as will be discussed later in this section.

Our gap-filling strategy does not introduce bias for days without GOCI observations (and with AOD inferred instead from equation (1)). Figure S1 shows that surface network PM_{2.5} has distinct distributions on days where AOD retrieval fails as compared to when AOD retrieval succeeds, a pattern successfully reproduced by GOCI PM_{2.5}. Table 2 shows that the mean bias statistic on days where AOD retrieval fails is similar to the whole population. This suggests that the RF algorithm is able to successfully exploit the information encoded in AOD missingness in making a PM_{2.5} prediction, a phenomenon also noted by Brokamp *et. al.* [2018].

Deleted: ..

Deleted: Predicted

Deleted: s

Deleted: previously reported inferences of 24-h and annual PM_{2.5} at 1–10 km resolution from satellite data over China [Hu *et. al.*, 2019].

Moved up [6]: *et. al.*,

Formatted: Font: Not Italic

Deleted: 2019

Formatted: Font: Not Bold

Deleted:

Formatted: Indent: First line: 0.5"

Deleted:), as the evaluation statistics for those days are similar to the whole population.

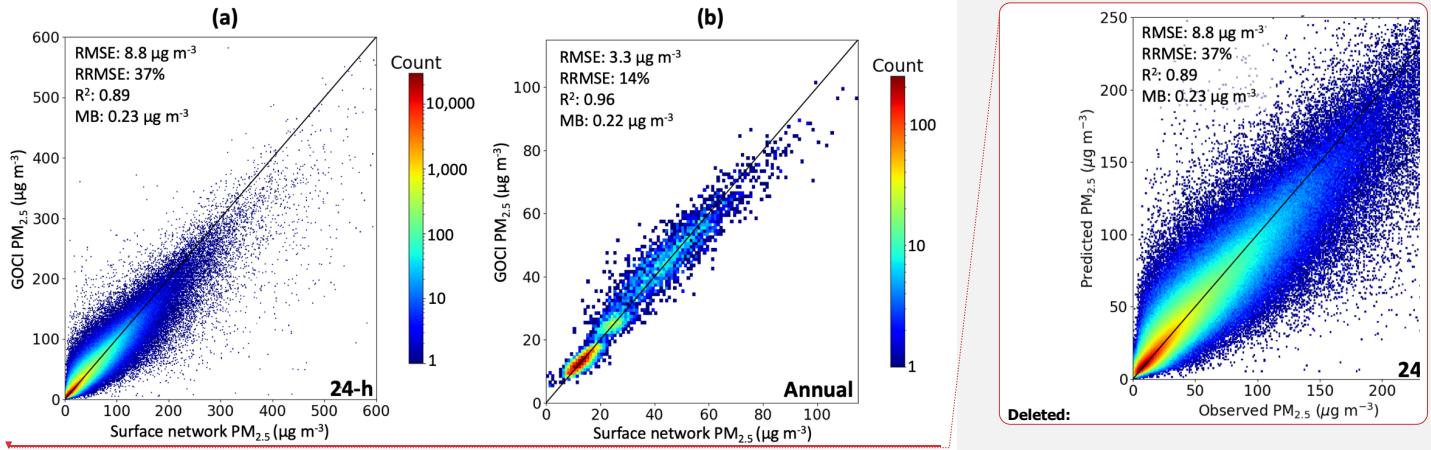


Figure 3: Ability of the random forest algorithm to predict 24-h (panel a) and annual mean PM_{2.5} (panel b) in East Asia. Scatterplots depict the relationship between GOCI and surface network PM_{2.5} at grid cells withheld from training in the crossvalidation. The plots are two-dimensional histograms where pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin on a logged scale. The identity line is plotted in black. For annual mean PM_{2.5}, grid cells with fewer than 80% of PM_{2.5} observation days in a given year are removed to avoid biasing the average. For panel (a), 0.002% of the data are not shown as they exceed the plot range; all data are shown in panel (b).

Table 2. Error statistics for fitting of PM_{2.5} data by the RF algorithm^a

	RMSE ($\mu\text{g m}^{-3}$)	RRMSE	R^2	MB ($\mu\text{g m}^{-3}$)	MBnr ($\mu\text{g m}^{-3}$)
24-h PM_{2.5}					
Overall	8.8	37%	0.89	0.23	<u>0.23</u>
Eastern China	15	32%	0.85	0.49	<u>0.53</u>
South Korea	6.4	26%	0.82	0.16	<u>0.10</u>
Japan	3.6	27%	0.79	0.12	<u>0.13</u>
Annual PM_{2.5}					
Overall	3.3	14%	0.96	0.22	
Eastern China	5.6	12%	0.86	0.53	
South Korea	2.9	12%	0.41	0.24	
Japan	1.6	12%	0.70	0.094	

^aComparison statistics between GOCI and surface network PM_{2.5} are for the grid cells in each of eastern China, South Korea, and Japan completely withheld from the RF training process in the crossvalidation procedure. Statistics shown are for root-mean-square error (RMSE), relative RMSE (RRMSE), coefficient of variation (R^2), and mean bias (MB), and mean bias on days where AOD retrieval fails (MBnr).

One potential application of PM_{2.5} monitoring from space would be to diagnose exceedances of national ambient air quality standards (NAAQS) at locations without network sites. **Table 3** shows the

380 NAAQS for 24-h and annual PM_{2.5} for the three countries and the ability of GOCI PM_{2.5} to diagnose NAAQS exceedances in grid cells excluded from the training process in the crossvalidation procedure. 380 24-h exceedances correspond to the high tails of the distributions but annual exceedances are much more widespread. The POD column shows percent of true positives successfully detected, while the FAR shows the rate of false positives (defined in section 2.3). POD for 24-h exceedances ranges from 47%-78% by country (FAR: 16%-21%). PODs are higher for annual exceedances but that reflects the higher observed frequency of these exceedances. The ETS values ranging from 0.43-0.63 indicate that the model captures exceedances with much better skill than random guessing.

385

Table 3. Ability of the RF algorithm to diagnose exceedances of air quality standards^a

	NAAQS ($\mu\text{g m}^{-3}$) ^b	Exceedance frequency ^c Observed	Exceedance frequency ^c RF	POD ^d	FAR ^e	ETS ^f
24-h PM_{2.5}						
Eastern China	75	16%	15%	78%	16%	0.63
South Korea (old NAAQS)	50	5.9%	4.2%	57%	21%	0.47
South Korea (new NAAQS)	35	19%	17%	73%	20%	0.55
Japan	35	1.6%	0.91%	47%	17%	0.43
Annual PM_{2.5}						
Eastern China	35	77%	83%	97%	9.2%	0.54
South Korea (old NAAQS)	25	40%	44%	67%	39%	0.23
South Korea (new NAAQS)	15	100%	100%	100%	0%	NA
Japan	15	24%	20%	68%	20%	0.49

^aCalculated using sites withheld from training in the crossvalidation procedure.

^bNational Ambient Air Quality Standards, specific to each country. We show results for the class 2 NAAQS in eastern China and for both pre-2018 ('old') and post-2018 ('new') NAAQS for South Korea because all observed grid cells exceed the new annual NAAQS of 15 $\mu\text{g m}^{-3}$.

390 ^cPercentage of site-days (24-h standard) or site years (annual standard) exceeding the NAAQS.

^dPercent of detection (POD) defined as the percentage of exceedances successfully detected.

^eFalse alarm ratio (FAR) defined as the percentage of predicted exceedances that did not occur.

^fEquitable threat score (ETS) defined as the ability of the RF to predict exceedances beyond random chance.

Deleted: the RF algorithm

395 The main difficulty for GOCI PM_{2.5} to predict NAAQS exceedances is that many of those exceedances fall within the precision of individual predictions. This is illustrated in **Figure 4** with the cumulative probability density function (pdf) of the 24-h and annual mean PM_{2.5} concentrations in eastern China, South Korea, and Japan, representing the same withheld data from the crossvalidation as in **Tables 2** and **3**. The 24-h RRMSE of 26-32% depending on country (**Table 2**) is shown as the grey envelope and is relatively flat across the distribution. Prediction of NAAQS exceedances within that uncertainty envelope is limited by the precision of the algorithm. All of the 24-h exceedances in Japan are within that envelope, as are most of the exceedances in eastern China and Korea. China has the largest fraction of exceedances beyond the RRMSE of the GOCI PM_{2.5} and therefore the best prediction success. An additional though smaller cause of bias is that GOCI PM_{2.5} underestimates the high tail of the pdf, as is apparent in **Figure 4**, which explains in particular why we achieve a better FAR than POD for 24-h PM_{2.5} in South Korea and Japan. Our worst NAAQS prediction performance is for annual PM_{2.5} in South Korea for the old 25 $\mu\text{g m}^{-3}$ standard, because most of the distribution is within the

Deleted: the RF algorithm

Deleted: RF algorithm

Deleted: the RF algorithm

RRMSE envelope. Additionally, the already small dynamic range of surface network annual PM_{2.5} (black dots) is underestimated by the GOCI PM_{2.5} (blue dots). These culminate in a GOCI PM_{2.5} estimate with good RMSE but low R².

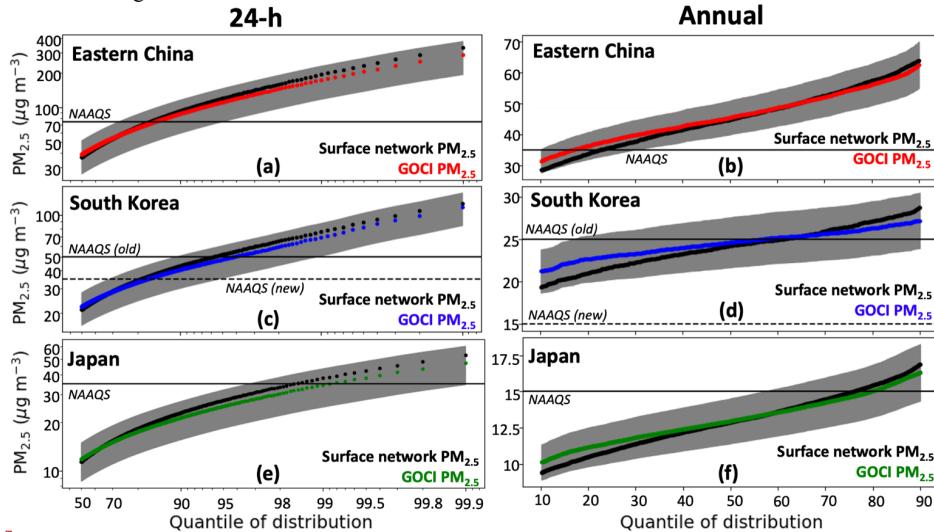


Figure 4: Cumulative probability density functions (pdfs) of 24-h and annual mean PM_{2.5} concentrations in Eastern China, South Korea, and Japan. Surface network PM_{2.5} (black) is compared to GOCI PM_{2.5} (colored) taken from the crossvalidation. The grey envelope represents the relative root mean square error (RRMSE) of the RF algorithm as given in Table 2, measuring the predictive capability of the algorithm for individual events. The NAAQS for each country is shown as the horizontal line, with both the pre-2018 and post-2018 NAAQS shown for South Korea. Left panel scales are log-log while right-panel scales are linear. y-axis scales vary for the different countries.

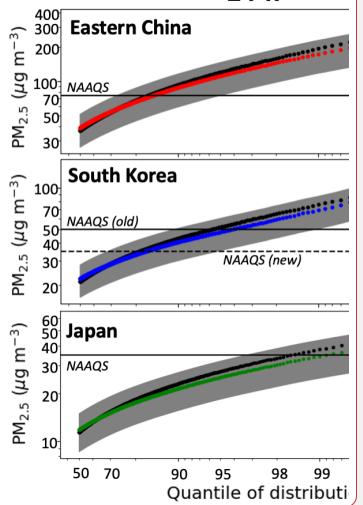
We experimented with several modifications to the RF algorithm to improve prediction of NAAQS exceedances but with no success. These tests included training separate RFs for each of the three countries; training annual PM_{2.5} predictions on annual (rather than 24-h) PM_{2.5} data; directly predicting NAAQS exceedances by setting the learned label to be true if a day (year) is above the 24-h (annual) NAAQS for a given country; and applying different weights to the data so that the high tail is oversampled in the training process. None of these tests yielded significant improvements. Smoothing of the tails in RFs is a well-recognized problem [Zhang and Lu, 2012]. Following Zhang and Lu [2012] we attempted to train RFs to predict and correct the residuals but found this to be ineffective. Part of this tail smoothing could also result from the underlying GOCI AOD land product, which has a negative bias (-0.02) for high AODs and a positive bias (+0.02) for low AODs [Choi et. al., 2018].

Deleted: observed

Deleted: RF

Deleted: an RF

24-h



Deleted:

Deleted: Observations

Deleted: are

Deleted: RF predictions

3.2 PM_{2.5} temporal trends and spatial distributions

Figure 5 shows long-term trends of annual PM_{2.5} for each country, as measured by the PM_{2.5} surface network and as inferred in the GOCI PM_{2.5} for both areal and population-weighted means. We do not include GOCI PM_{2.5} for years before the networks became available (and hence when the RF could be trained) because of concern over extrapolation bias. The PM_{2.5} networks show decreasing trends in all three countries and these trends are consistent with the GOCI PM_{2.5} for both areal and population-weighted means, demonstrating that the trends reported by the PM_{2.5} networks are representative of the countries. However, the PM_{2.5} networks in eastern China and South Korea underestimate the population-weighted means. Trends in South Korea and eastern China become flat between 2018 and 2019 (with a slight population-weighted increase in South Korea). This could possibly reflect interannual meteorological variability [Zhai et al., 2019; Koo et al., 2020], but also an increase in oxidants producing secondary aerosol [Huang et al., 2021]. Figure S2 shows maps of annual GOCI PM_{2.5} across the entire study domain.

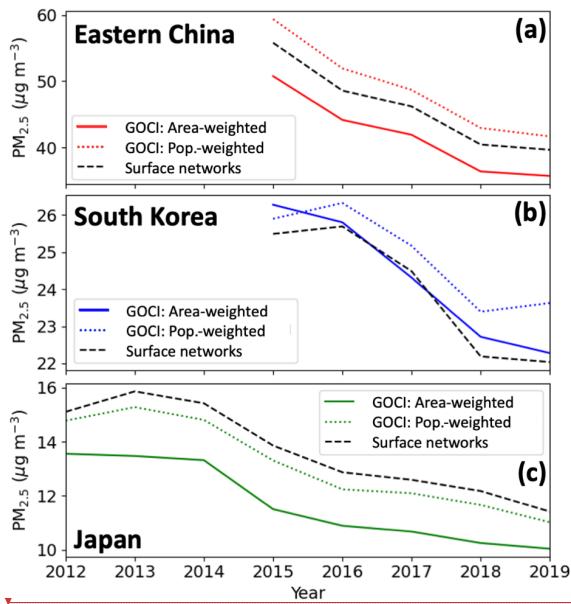
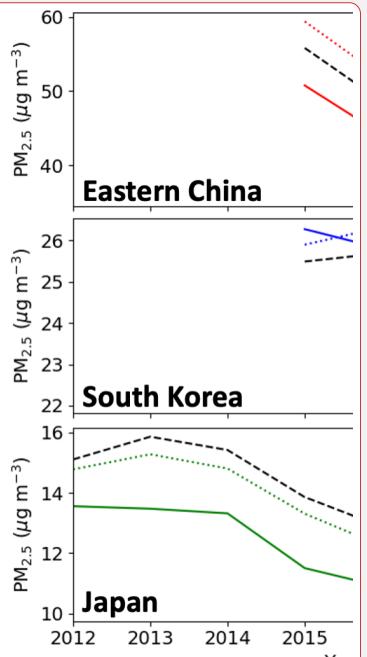


Figure 5: Trends in annual mean PM_{2.5} concentrations for eastern China, South Korea, and Japan. Trends determined from the national surface PM_{2.5} networks (dashed black line) averaged over 6x6 km² grid cells, requiring at least 80% of data for all years plotted, are compared to GOCI PM_{2.5} trends inferred by the random forest (RF) algorithm with continuous temporal and spatial coverage on the 6x6 km² grid and weighted either by area (solid colored line) or by population (dashed colored line). Here we use an RF trained on all the data. Gridded

Deleted: from our RF algorithm

Deleted: RF

Deleted: RF



Deleted:

Deleted: .

population data are from CIESIN [2018]. The national PM_{2.5} networks include 413 continuously observed grid cells in eastern China, 74 in South Korea, and 307 in Japan. Trends are initialized at the onset of the surface network for complete years of data; due to the unavailability of the early months of the year, 2011 is discarded for Japan and 2014 for eastern China.

465

Figure 6 shows the changes in annual mean PM_{2.5} concentrations over South Korea between 2015 and 2019 as observed from the national network and as inferred from GOCI. We focus on South Korea [here](#) because it [demonstrates how GOCI PM_{2.5} adds considerable information to a region that already has relatively good network coverage](#), including detection of PM_{2.5} hotspots missing from the network such as the Iksan region on the west coast in 2015 that was subsequently added to the network by 2019. [Figures S3 and S4 show analogous maps for China and Japan, respectively.](#)

470

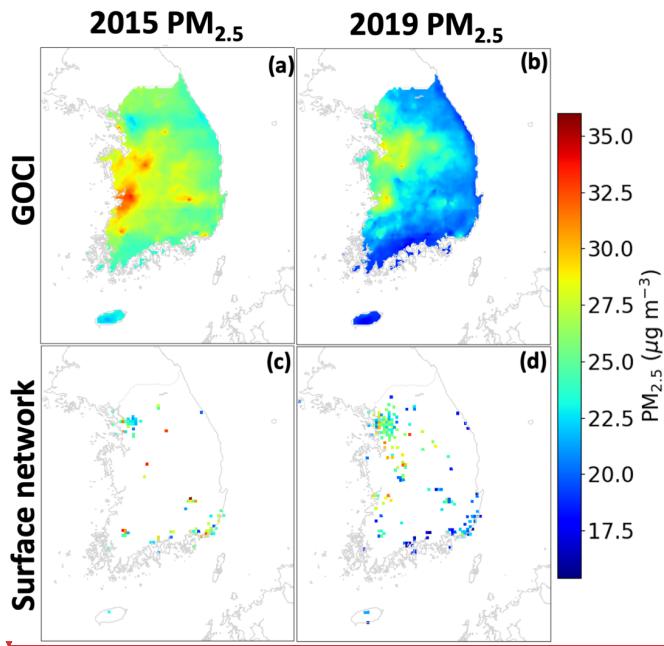


Figure 6: Annual mean PM_{2.5} concentrations in South Korea in 2015 and 2019. GOCI PM_{2.5} (top) inferred from an RF trained on all available data are compared to AirKorea network observations (bottom). Network observations are shown only if at least 80% of the year was observed.

475

Figure 7 depicts the relative 2015-2019 trends of PM_{2.5} concentrations in South Korea derived from a linear regression applied to the annual GOCI PM_{2.5} in each 6x6 km² grid cell. Such a spatially resolved trend analysis is uniquely enabled by the GOCI coverage. We find decreases across the

Deleted: ,

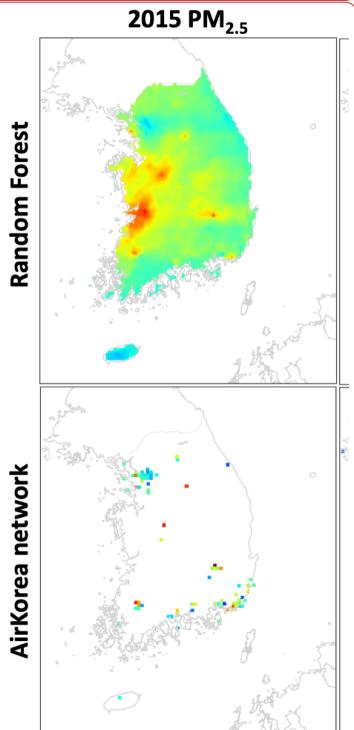
Deleted: predicted by the RF.

Deleted: for discussion

Deleted: shows the advantages of satellite-based

Deleted: s in

Deleted: . Continuous mapping from the RF algorithm enabled by the GOCI AODs adds enormous coverage to the sparse surface observations...



Deleted:

Deleted: RF predictions

Deleted: RF

country except in the Seoul Metropolitan area which mostly shows no significant trend except for a few pixels in Incheon. These results are consistent with the spatial patterns calculated from AirKorea data by *Yeo and Kim* [2019], who found 2015-2018 decreases in Incheon but not Seoul or the surrounding Gyeonggi province. Despite the insignificant changes in Seoul, substantial PM_{2.5} decreases are found over other large urban areas including Busan, Ulsan, Daegu, and Gwangju. The three rapidly decreasing spots on the southern coast are Gwangyang, Sacheon, and Changwon, which house industrial complexes related to the South Korean shipbuilding industry that has recently declined [*Jung-a* 2016].

[Figure S5 shows absolute 2015-2019 trends of GOCI PM_{2.5} concentrations across the entire study domain, and demonstrates that the North China Plain has the largest overall PM_{2.5} reductions.](#)

495

500

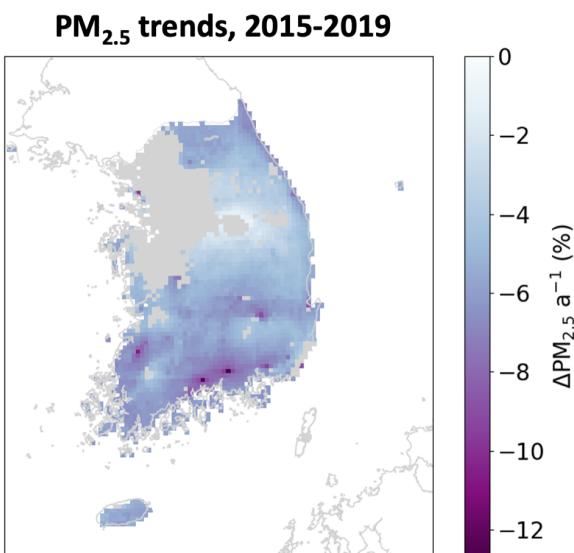


Figure 7: 2015-2019 trends per year in PM_{2.5} concentrations across South Korea. The trends are obtained by ordinary linear regression of the annual mean [GOCI](#) PM_{2.5} in each 6x6 km² grid cell with significant regression slopes ($p < 0.05$), where the RF is trained on all the available data. Grid cells with insignificant trends are plotted in gray.

505 AOD and PM_{2.5} in East Asia tend to have opposite seasonalities driven by boundary layer depth and RH [*Zhai et al.*, 2021]. [Figure 8](#) compares [GOCI](#) and [surface network](#) monthly mean PM_{2.5} in the Beijing, Seoul, and Tokyo metropolitan areas, with predictions coming from withheld data in the 10-fold crossvalidation. Correspondence between [GOCI](#) and [network](#) PM_{2.5} may be tighter than the nationwide annual means plotted in [Figure 5](#) because these urban areas are well-observed. We see that 510 the RF algorithm fully captures the observed seasonality in PM_{2.5}, although some observed monthly spikes are underestimated. The Figure illustrates the lack of trend in the Seoul Metropolitan Area over

Deleted: RF

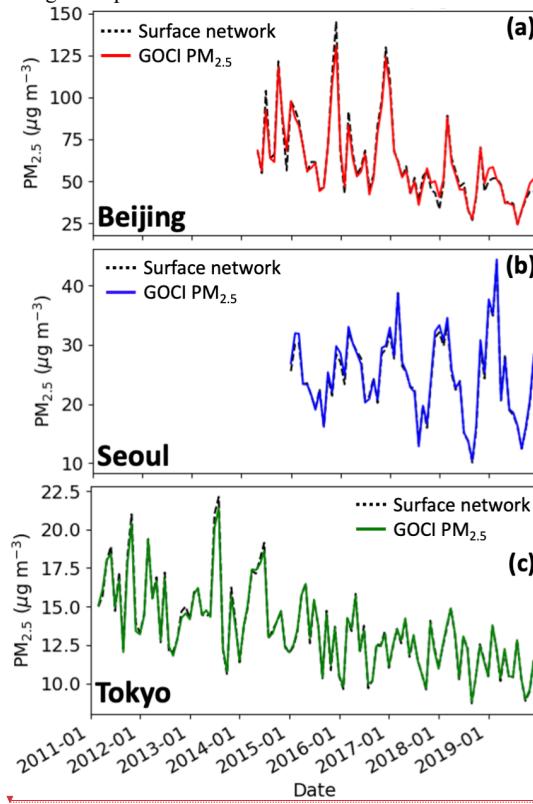
Deleted: predicted

Deleted: observed

Deleted: modelled

Deleted: observed

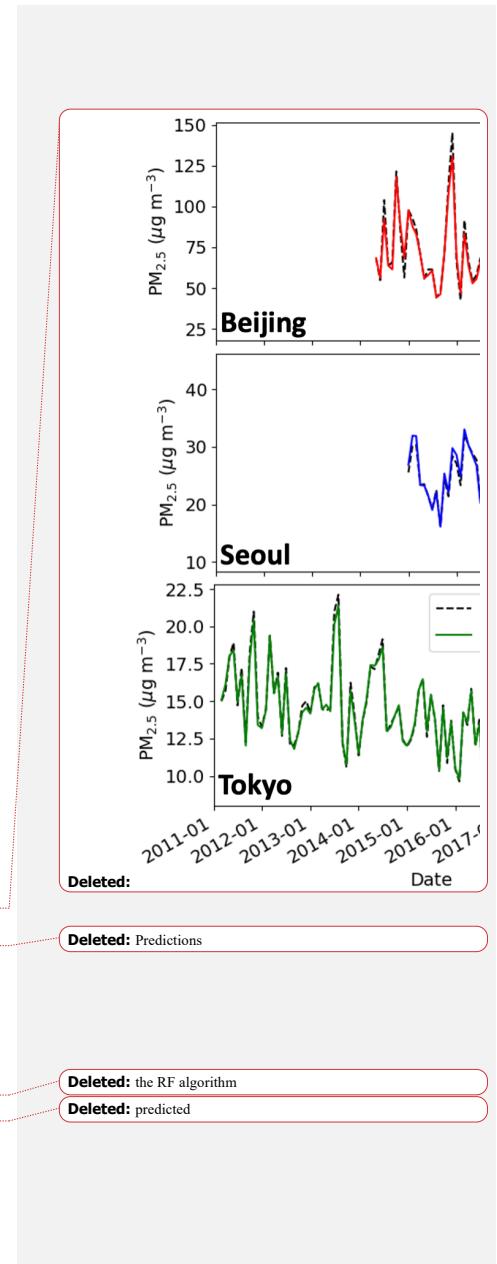
2015-2019 but also shows that winter and summer PM_{2.5} in the region have opposite and roughly equal trends, with winter growing more polluted while summers become cleaner.



520 Figure 8: Monthly PM_{2.5} concentrations in the Beijing Seoul and Tokyo metropolitan areas. [GOCI PM_{2.5} inferred](#) from the RF algorithm for totally withheld sites in the crossvalidation are compared to network observations. Beijing is defined by the namesake province boundary, Seoul by the Seoul and Incheon boundaries, and Tokyo as Ibaraki, Saitama, Chiba, Tokyo, Kanagawa, and Yamanashi prefectures.

3.3 Urban-scale pollution events

525 We examine here the ability of [GOCI PM_{2.5}](#) to capture the spatial and temporal variability of PM_{2.5} pollution events on urban scales. [Figure 9](#) shows a map of [GOCI PM_{2.5}](#) — produced by a RF



trained on all the data, with surface network $\text{PM}_{2.5}$ overlaid — across the Seoul metropolitan area on May 24-29, 2016 corresponding to a severe pollution event sampled during the KORUS-AQ field campaign [Crawford *et. al.*, 2021]. The dense $\text{PM}_{2.5}$ network for Seoul shows large variability at the sub $6 \times 6 \text{ km}^2$ scale that GOCI does not resolve. However, GOCI $\text{PM}_{2.5}$ captures most of the variability in the network data aggregated on the $6 \times 6 \text{ km}^2$ grid ($R^2 = 0.74$). It also captures successfully the day-to-day variability during the event.

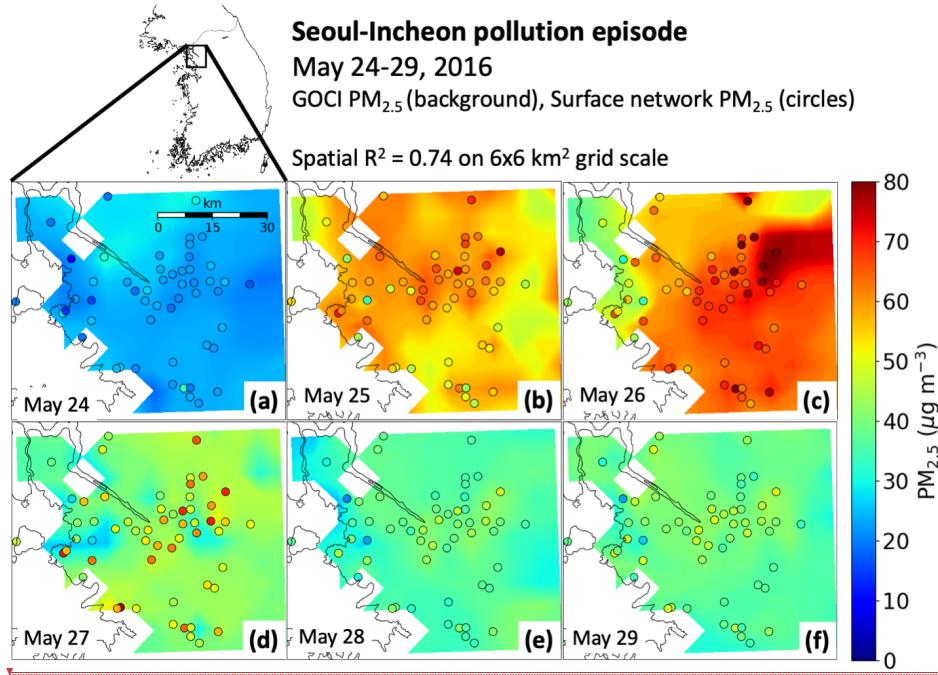


Figure 9: 24-h $\text{PM}_{2.5}$ concentrations during a pollution event in Seoul-Incheon (May 24-29, 2016). GOCI $\text{PM}_{2.5}$ inferred from the RF algorithm (background, on $6 \times 6 \text{ km}^2$ grid scale) trained on all available data is compared to observations from the AirKorea surface network (circles).

Figure 10 shows an additional test of the RF algorithm with one of the most severe pollution events in the record, the December 16-21, 2016 Beijing winter haze episode. 24-h $\text{PM}_{2.5}$ concentrations exceeded $400 \mu\text{g m}^{-3}$ at some of the network sites. While there is a tight correspondence between the GOCI and surface network 24-h $\text{PM}_{2.5}$ for Beijing grid cells (R^2 range: 0.74-0.99), the network observations are on average $20 \mu\text{g m}^{-3}$ higher than the GOCI $\text{PM}_{2.5}$. The difference is most pronounced at the December 21 concentration peak which has mean observed value $396 \mu\text{g m}^{-3}$ to the predicted $348 \mu\text{g m}^{-3}$. This reflects the RF smoothing and AOD underestimate for the high tail of the distribution as

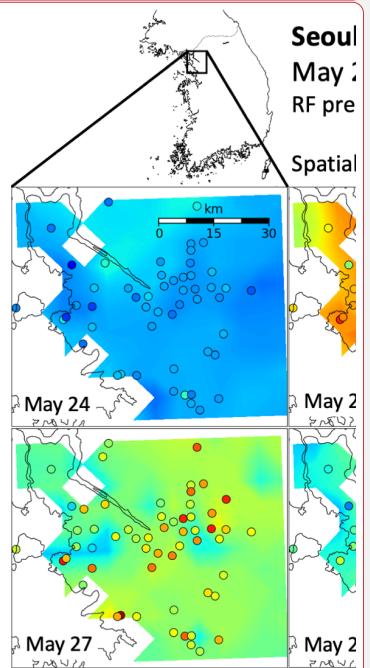
Deleted: observed

Deleted: the AOD data and thus this RF $\text{PM}_{2.5}$ product cannot

Deleted: the RF algorithm capture

Deleted: observed 24-h $\text{PM}_{2.5}$ concentrations

Deleted: The RF



Deleted:

Deleted: Predictions

Deleted: are

Deleted: RF

Deleted: observed

Deleted: RF

Deleted: of

560 previously illustrated in Figure 4. It nevertheless illustrates the ability of GOCI combined with our gap-filling method to capture severe winter haze episodes that are particularly challenging to observe from space.

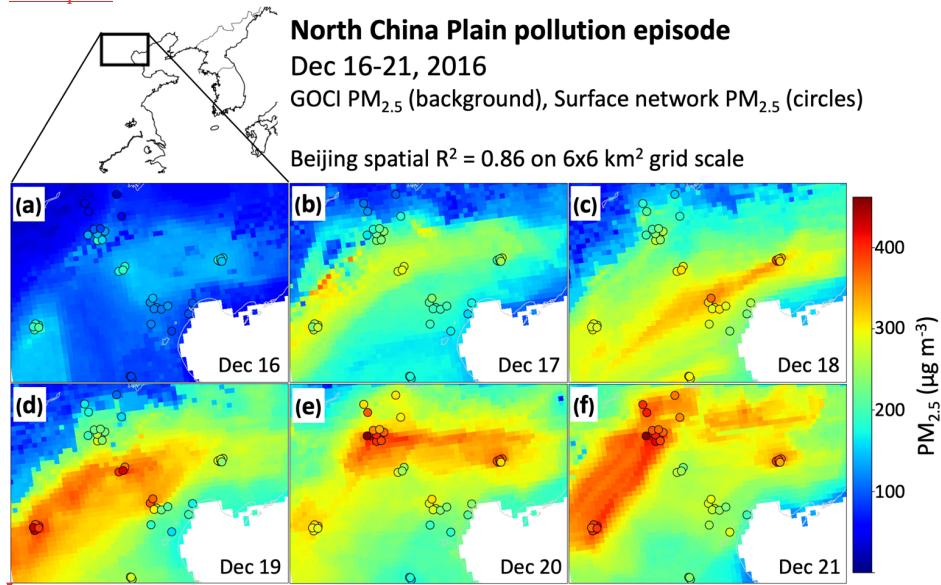
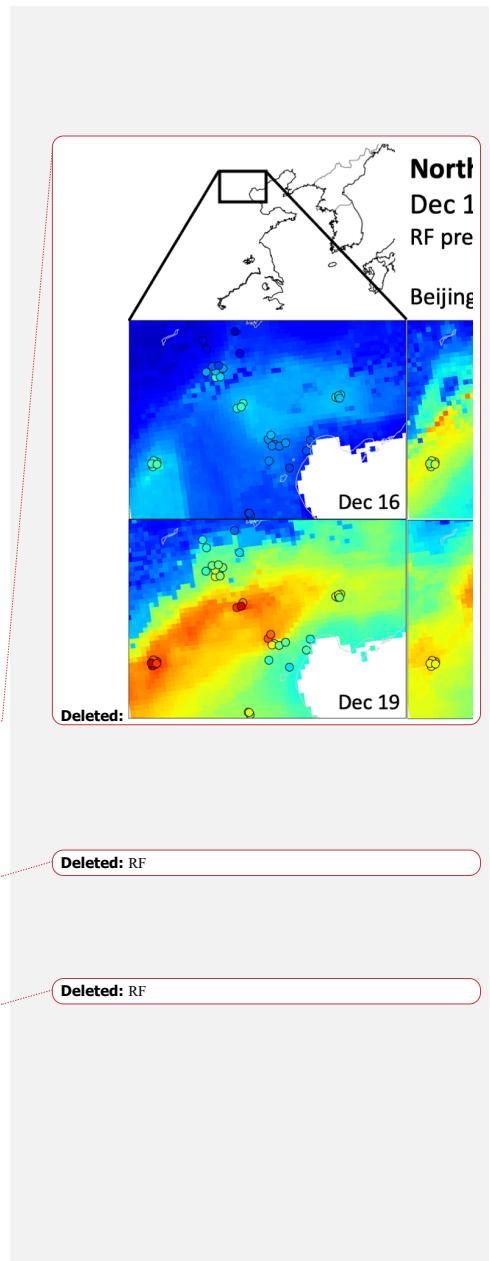


Figure 10: Same as Figure 9 but for a pollution event in Beijing on December 16-21, 2016.

565 3.4 Regional air quality model evaluation

Regional air quality model predictions of PM_{2.5} are typically evaluated with observations from surface network sites, but the spatially continuous GOCI PM_{2.5} fields offer more extensive coverage and hence broader opportunity for model evaluation. We demonstrate this capability here with Community Multiscale Air Quality Modeling System (CMAQ version 4.7.1) simulations for the Korean peninsula 570 including both South and North Korea at 9-km resolution [Bae *et al.*, 2018; Bae *et al.*, 2021]. There are no surface PM_{2.5} data in North Korea to train the RF so we use the South Korea categorical variable to generate the GOCI PM_{2.5} fields there.

The simulation for South Korea was conducted for 2015-2019 using emissions from the Clean Air Policy Support System (CAPSS) 2016 [Choi *et al.*, 2020] for South Korea and KORUSv5 [Woo *et al.*, n.d] for outside South Korea. The simulation for North Korea was conducted for 2016 using 575 emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport Experiment (CREATE) 2015 [Woo *et al.*, 2020] and CAPSS 2013. Natural aerosols including sea salt



and mineral dust are included. To prepare the boundary conditions, a coarse domain at 27-km horizontal grid resolution covering Northeast Asia was used.

Figure 11 illustrates the increased capability for model evaluation in South Korea enabled by the ~~GOCI~~ PM_{2.5} fields. The bottom row shows the mean 2015-2019 PM_{2.5} concentrations in CMAQ compared to the AirKorea network and to ~~GOCI PM_{2.5}~~, and the top row shows comparison scatterplots. The top left panel compares the CMAQ simulation to 2015-2019 mean PM_{2.5} observations from the 398 AirKorea network sites. The top middle panel compares the ~~GOCI~~ PM_{2.5} to the same AirKorea network data, showing excellent agreement. The ~~GOCI PM_{2.5}~~ fields provide 1353 points for South Korea on the 9x9 km² CMAQ grid, and the top right panel shows the resulting increase in capability for evaluation of the CMAQ simulation. It shows in particular that CMAQ underestimates PM_{2.5} in coastal environments, possibly because of unaccounted ship emissions.

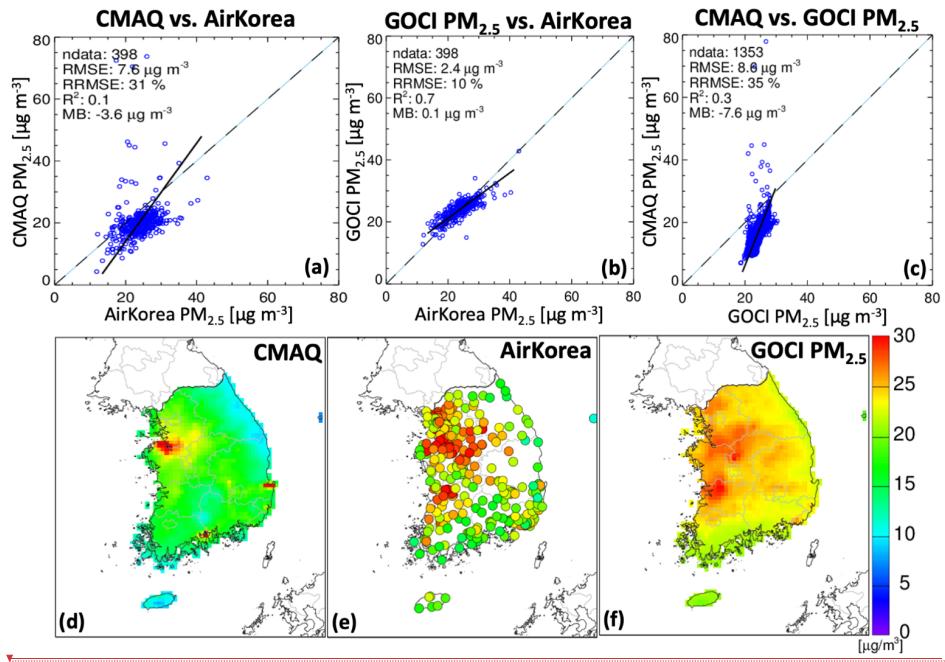


Figure 11: Mean PM_{2.5} concentrations in South Korea in 2015-2019 as simulated by CMAQ, measured at the AirKorea sites, and ~~inferred from GOCI~~. The top panels show scatterplots comparing the CMAQ and ~~GOCI PM_{2.5}~~ fields to the AirKorea measurements (398 sites), and CMAQ to ~~GOCI PM_{2.5}~~ on the 9x9 km² CMAQ grid (1353 grid cells to compare). The bottom panels show maps of the mean 2015-2019 concentrations.

Deleted: RF

Deleted: the RF

Deleted: RF

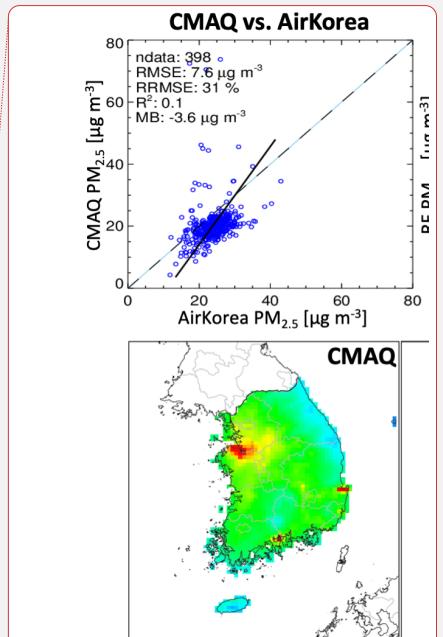
Deleted: RF-generated

Deleted:

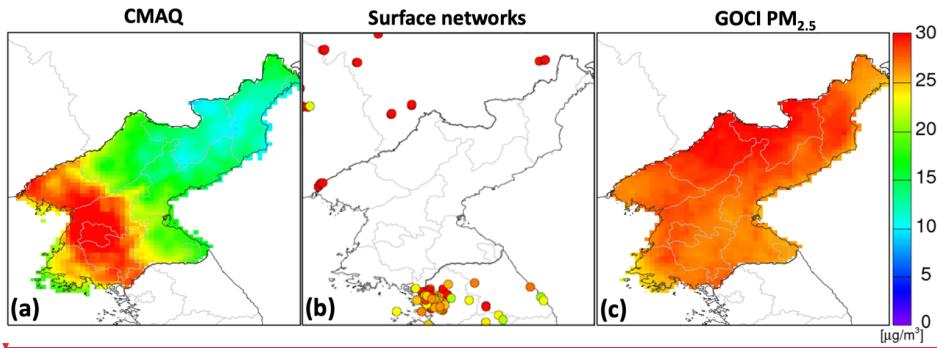
Deleted: represented by the RF.

Deleted: RF

Deleted: the RF fields



610 **Figure 12** evaluates the CMAQ simulation with the [GOCI PM_{2.5}](#) fields over North Korea. Unlike in South Korea, there are no observation sites in North Korea and [GOCI PM_{2.5}](#) offers the only opportunity for local evaluation. CMAQ and [GOCI PM_{2.5}](#) show dramatically different patterns. The highest PM_{2.5} in CMAQ is in the Pyongyang capital region, while [GOCI](#) shows highest values in the 610 north-central region. The lack of reliable emission inventories for North Korea makes it difficult to arbitrate this difference. The RF is not trained for North Korea, which might lead to positive biases because the AOD/PM_{2.5} ratio modeled in the *Zhai et al. [2021]* GEOS-Chem simulation is higher over North Korea outside the mountainous east (range: 0.010–0.013 m³ µg⁻¹) than over South Korea (0.008–0.010 m³ µg⁻¹). However, the difference could also be explained by missing emissions in the inventory. 615 Further evaluation could be done with border sites in South Korea and northeastern China. China MEE sites along the border are consistent with high PM_{2.5} in north-central North Korea.

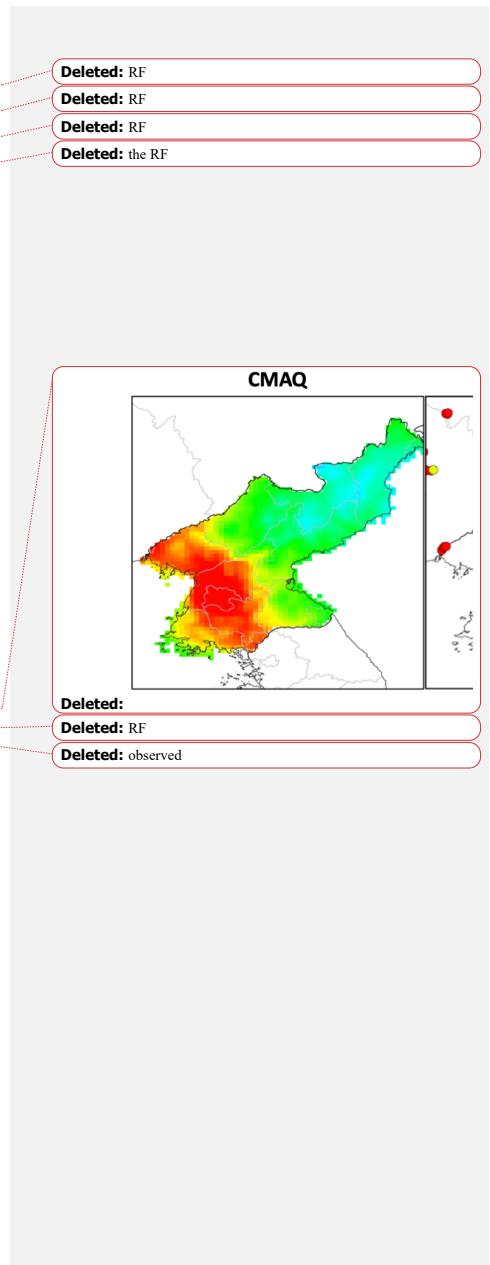


620 Figure 12: Mean PM_{2.5} concentrations in North Korea in 2016 as simulated by CMAQ and as represented by the [GOCI PM_{2.5}](#) product assuming South Korea as categorical variable. The middle panel shows [surface PM_{2.5}](#) concentrations from the AirKorea and China MEE networks.

4 Conclusions

625 We used 2011–2019 geostationary aerosol optical depth (AOD) observations from the GOCI instrument, in combination with a random forest (RF) machine learning algorithm trained on air quality network data, to produce a continuous 24-h PM_{2.5} data set for eastern China, South Korea, and Japan at 6x6 km² resolution. The resulting gap-free [GOCI PM_{2.5}](#) product complements the air quality networks that cover only 1% of 6x6 km² grid cells in eastern China, 7% in South Korea, and 8% in Japan. It provides a general dataset for PM_{2.5} mapping to serve regional pollution analysis, air quality monitoring, and public health applications.

630 We trained the RF algorithm on gap-filled AODs from the GOCI instrument and a suite of twelve meteorological, geographical, and temporal predictor variables. Gap filling of AODs was done by a weighted combination of nearest-neighbor data and chemical transport model fields, with the weight serving as an additional predictor variable. [The RF algorithm is successfully able to exploit](#)



645 information encoded in AOD missingness to produce a continuous product. Testing of the RF algorithm by prediction of withheld network sites shows single-value precisions in each country of 26-32% for 24-h PM_{2.5} and 12% for annual mean PM_{2.5}, with negligible mean bias. Accuracy statistics for PM_{2.5} inferred on grid cells with no AOD retrieval (i.e., estimated using equation (1)) show similar accuracy statistics as the entire population, indicating that the gap-filling procedure does not bias the results. The algorithm has only moderate success at predicting NAAQS exceedance events because most of these events are within the single-value precision, and also because of some smoothing of the extreme high tail of the PM_{2.5} frequency distribution.

650 We compared the continuous 24-h GOCI PM_{2.5} fields to spatial and temporal patterns observed at the national network sites. National trends of PM_{2.5} inferred from GOCI and weighted by area or population are consistent with those observed at network sites (2015-2019 in eastern China and South Korea, 2011-2019 in Japan), confirming that the trends observed at these sites are representative.

655 However, the network sites in eastern China and South Korea underestimate population exposure. The GOCI PM_{2.5} fields over South Korea show PM_{2.5} hotspots missing in the early AirKorea network (2015) that are confirmed by subsequent addition of sites to the network (2019). The spatial distribution of GOCI PM_{2.5} trends in South Korea shows decreases everywhere except in the Seoul metropolitan area where trends are flat. We show with time series in the capital cities (Beijing, Seoul, Tokyo) that the RF successfully captures the seasonality of PM_{2.5} even though AOD and PM_{2.5} have different and often opposite seasonalities.

660 We examined the ability of the RF algorithm to map air quality on urban scales by analysis of two multi-day pollution episodes in Seoul and Beijing. The algorithm captures the day-to-day temporal variability observed by the surface networks as well the spatial variability on the 6x6 km² scale. The highest PM_{2.5} concentrations are underpredicted, which reflects the smoothing of the high tail of the distribution.

665 The continuous spatial coverage of PM_{2.5} provided by the GOCI fields enables improved evaluation of the air quality models used in support of emission control policies. Comparison to a CMAQ simulation for South Korea in 2015-2019 reveals a large model underestimate in coastal environments undersampled by the AirKorea network. Comparison to a CMAQ simulation for North Korea in 2016, where the RF provides the only PM_{2.5} data for model evaluation, shows drastically 670 different patterns with the RF featuring high PM_{2.5} throughout North Korea. The RF results in North Korea could be affected by errors due to lack of training data but they appear consistent with the PM_{2.5} network observations at Chinese border sites.

675 680 More work could be done to improve our GOCI PM_{2.5} product. We find in our current RF algorithm, consistent with Hu *et. al.* [2017], that the addition of certain predictor variables such as population decreases performance. This motivated our practice of excluding spatially varying but temporally constant fields such as elevation and emissions. However, these variables have been found to be useful in other inferences of PM_{2.5} from AOD data [Kloog *et. al.*, 2012; Di *et. al.*, 2019], so further investigation is needed on how to accommodate them in our modeling framework. A higher resolution meteorological reanalysis such as ERA5-Land [Muñoz-Sabater *et. al.*, 2021] could be used for the meteorological predictor variables and enable the inclusion of additional variables such as precipitation. Additional remote sensing products such as NDVI could also be useful. More work needs to be done to address our underestimate of the high tail of the PM_{2.5} distribution, i.e., extreme pollution events. Such

Deleted: .

Deleted: suggesting

Deleted: RF

Deleted: the RF

Deleted: RF

Deleted: RF

Deleted: RF

690 an underestimate is common in RF applications [Zhang and Lu, 2012] but could be addressed by
leveraging specialized statistical tools like extreme value theory. Additional training methods could be
used to improve the ability of the RF to predict NAAQS exceedances, such as data sampling
adjustments. Moreover, it is possible that skill in modeling NAAQS exceedance could be improved by
leveraging data that better captures diurnal variations of PM_{2.5}, as high concentrations tend to occur at
695 night. The unique geostationary capability of GOCI to generate hourly AOD data could be used to
produce an hourly PM_{2.5} product. A new GOCI AOD product with 2x2 km² resolution is expected to
become available in the near future and will provide motivation to explore these improvements in a new
version of our RF algorithm.

700 **Data availability** 24-h 6x6 km² resolution daily GOCI PM_{2.5} are made freely available on DataVerse at
<https://doi.org/10.7910/DVN/0L3IP7>.

Deleted: derived from the RF

Author Contributions DP and DJJ designed the study. DP developed the RF and performed analysis.
SZ, MB and SK ran and analyzed chemical transport model data. SL aided in satellite data processing.
705 JK, HL and JHK provided scientific interpretation and discussion. All authors provided input on the
paper for revision before submission.

Competing interests The authors declare that they have no conflict of interest.

710 **Acknowledgements** This work was funded by the Samsung PM_{2.5} Strategic Research Program and the
Harvard-NUIST Joint Laboratory for Air Quality and Climate (JLAQC). GOCI data was provided by
Korea Institute of Ocean Science and Technology (KIOST). DCP was funded by a US National Science
Foundation Graduate Fellowship. [We thank the two anonymous reviewers for their thoughtful feedback.](#)

References

715 Alduchov, O. A., & Eskridge, R. E. (1996). Improved Magnus Form Approximation of Saturation
Vapor Pressure. *Journal of Applied Meteorology*, 35(4), 601–609. [https://doi.org/10.1175/1520-
0450\(1996\)035<0601:IMFAOS>2.0.CO;2](https://doi.org/10.1175/1520-
0450(1996)035<0601:IMFAOS>2.0.CO;2)

Azuma, K., Kagi, N., Kim, H., & Hayashi, M. (2020). Impact of climate and ambient air pollution on
the epidemic growth during COVID-19 outbreak in Japan. *Environmental Research*, 190,
720 110042. <https://doi.org/10.1016/j.envres.2020.110042>

Bae, M., Kim, H. C., Kim, B.-U., and Kim, S.: PM2.5 Simulations for the Seoul Metropolitan Area: (V)
Estimation of North Korean Emission Contribution, *J. Korean Soc. Atmos. Environ.*, 34, 294–
305, <https://doi.org/10.5572/KOSAE.2018.34.2.294>, 2018.

Bae, M., Kim, B.-U., Kim, H. C., Kim, J., and Kim, S.: Role of emissions and meteorology in the recent
725 PM2.5 changes in China and South Korea from 2015 to 2018, *Environmental Pollution*, 270,
116233, <https://doi.org/10.1016/j.envpol.2020.116233>, 2021.

Brasseur, G. P. and Jacob, D. J (2017). *Modeling of Atmospheric Chemistry*. Cambridge University
Press.

730 Breiman, L. (2001). Random Forests. *Machine Learning*, 45(1), 5–32.
<https://doi.org/10.1023/A:1010933404324>

735 Brokamp, C., Jandarov, R., Hossain, M., & Ryan, P. (2018). Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. *Environmental Science & Technology*, 52(7), 4173–4179. <https://doi.org/10.1021/acs.est.7b05381>

740 Burnett, R., et. al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. *Proceedings of the National Academy of Sciences*, 115(38), 9592–9597. <https://doi.org/10.1073/pnas.1803222115>

745 Center for International Earth Science Information Network – CIESIN – Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). <https://doi.org/10.7927/H49C6VHW>

750 Chen, J., Yin, J., Zang, L., Zhang, T., & Zhao, M. (2019). Stacking machine learning model for estimating hourly PM_{2.5} in China based on Himawari 8 aerosol optical depth data. *Science of The Total Environment*, 697, 134021. <https://doi.org/10.1016/j.scitotenv.2019.134021>

755 Chinese State Council (2013). Action Plan on Air Pollution Prevention and Control, available at: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (last access: 12 April 2021).

760 Choi, J.-K., Park, Y. J., Ahn, J. H., Lim, H.-S., Eom, J., & Ryu, J.-H. (2012). GOCCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. *Journal of Geophysical Research: Oceans*, 117(C9). <https://doi.org/10.1029/2012JC008046>

765 Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Jeong, U., Kim, W., Hong, H., Holben, B., Eck, T. F., Song, C. H., Lim, J.-H., & Song, C.-K. (2016). GOCCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. *Atmospheric Measurement Techniques*, 9(3), 1377–1398. <https://doi.org/10.5194/amt-9-1377-2016>

770 Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Holben, B., Eck, T. F., Li, Z., & Song, C. H. (2018). GOCCI Yonsei aerosol retrieval version 2 products: An improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. *Atmospheric Measurement Techniques*, 11(1), 385–408. <https://doi.org/10.5194/amt-11-385-2018>

775 Choi, M., Lim, H., Kim, J., Lee, S., Eck, T. F., Holben, B. N., Garay, M. J., Hyer, E. J., Saide, P. E., & Liu, H. (2019). Validation, comparison, and integration of GOCCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign. *Atmospheric Measurement Techniques*, 12(8), 4619–4641. <https://doi.org/10.5194/amt-12-4619-2019>

780 Choi, S., Kim, T., Lee, H., Kim, H., Han, J., Lee, K., Lim, E., Shin, S., Jin, H., Cho, E., Kim, Y., and Yoo, C.: Analysis of the National Air Pollutant Emission Inventory (CAPSS 2016) and the Major Cause of Change in Republic of Korea, 14, 24, 2020.

Crawford, J. H., Ahn, J.-Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim, J., Lee, G., Park, J.-H., Park, R. J., Woo, J. H., Song, C.-K., Hong, J.-H., Hong, Y.-D., Lefer, B. L., Lee, M., Lee, T., Kim, S., Min, K.-E., Yum, S. S., ... Kim, Y. P. (2021). The Korea–United States Air Quality (KORUS-AQ) field study. *Elementa: Science of the Anthropocene*, 9(1). <https://doi.org/10.1525/elementa.2020.00163>

775 Cusworth, D. H., Jacob, D. J., Sheng, J.-X., Benmergui, J., Turner, A. J., Brandman, J., White, L., & Randles, C. A. (2018). Detecting high-emitting methane sources in oil/gas fields using satellite observations. *Atmospheric Chemistry and Physics*, 18(23), 16885–16896.

780 Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M. B., Choirat, C., Kourakis, P., Lyapustin, A., Wang, Y., Mickley, L. J., & Schwartz, J. (2019). An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. *Environment International*, 130, 104909. <https://doi.org/10.1016/j.envint.2019.104909>

785 Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. *JAMA*, 295(10), 1127–1134. <https://doi.org/10.1001/jama.295.10.1127>

790 Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. *Quarterly Journal of the Royal Meteorological Society*, 125(554), 723–757. <https://doi.org/10.1002/qj.49712555417>

795 Geng, G., Zhang, Q., Martin, R. V., van Donkelaar, A., Huo, H., Che, H., Lin, J., & He, K. (2015). Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. *Remote Sensing of Environment*, 166, 262–270. <https://doi.org/10.1016/j.rse.2015.05.016>

800 Geng, G., Meng, X., He, K., & Liu, Y. (2020). Random forest models for PM2.5 speciation concentrations using MISR fractional AODs. *Environmental Research Letters*, 15(3), 034056. <https://doi.org/10.1088/1748-9326/ab76df>

805 Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. *Machine Learning*, 63(1), 3–42. <https://doi.org/10.1007/s10994-006-6226-1>

810 Gräler, B., Pebesma, E., & Heuvelink, G. (2016). Spatio-Temporal Interpolation using gstat. *The R Journal*, 8(1), 204–218.

Gupta, P., & Christopher, S. A. (2009). Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. *Journal of Geophysical Research: Atmospheres*, 114(D14). <https://doi.org/10.1029/2008JD011496>

815 Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., Zhang, D., Yao, W., Zhou, Z., & Guo, L. (2021). Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. *Science of The Total Environment*, 778, 146288. <https://doi.org/10.1016/j.scitotenv.2021.146288>

820 Hammer, M. S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M. J., Kalashnikova, O. V., Kahn, R. A., Brauer, M., Apte, J. S., Henze, D. K., Zhang, L., Zhang, Q., Ford, B., Pierce, J. R., & Martin, R. V. (2020). Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). *Environmental Science & Technology*, 54(13), 7879–7890. <https://doi.org/10.1021/acs.est.0c01764>

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Random Forests. In *The Elements of Statistical Learning: Data Mining, Inference, and Prediction* (pp. 587–604). Springer. https://doi.org/10.1007/978-0-387-84858-7_15

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo, G.,

Deleted: <https://doi.org/10.1016/j.rse.2015.05.016>

815 Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., ... Thépaut, J.-N. (2020). The ERA5 global reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730), 1999–2049. <https://doi.org/10.1002/qj.3803>

820 Hu, H., Hu, Z., Zhong, K., Xu, J., Zhang, F., Zhao, Y., & Wu, P. (2019). Satellite-based high-resolution mapping of ground-level PM2.5 concentrations over East China using a spatiotemporal regression kriging model. *Science of The Total Environment*, 672, 479–490. <https://doi.org/10.1016/j.scitotenv.2019.03.480>

825 Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., & Liu, Y. (2017). Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. *Environmental Science & Technology*, 51(12), 6936–6944. <https://doi.org/10.1021/acs.est.7b01210>

830 Huang, K., Xiao, Q., Meng, X., Geng, G., Wang, Y., Lyapustin, A., Gu, D., & Liu, Y. (2018). Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. *Environmental Pollution*, 242, 675–683. <https://doi.org/10.1016/j.envpol.2018.07.016>

835 Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., ... He, K. (2021). Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. *National Science Review*, 8(2). <https://doi.org/10.1093/nsr/nwaa137>

Jung-a, Song (2016). South Korean shipbuilders engulfed in crisis. *Financial Times*. <https://www.ft.com/content/d74127ac-3140-11e6-8825-ef265530038e>

840 Kianian, B., Liu, Y., & Chang, H. H. (2021). Imputing Satellite-Derived Aerosol Optical Depth Using a Multi-Resolution Spatial Model and Random Forest for PM2.5 Prediction. *Remote Sensing*, 13(1), 126. <https://doi.org/10.3390/rs13010126>

Kioumourtzoglou Marianthi-Anna, Schwartz Joel D., Weisskopf Marc G., Melly Steven J., Wang Yun, Dominici Francesca, & Zanobetti Antonella. (2016). Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. *Environmental Health Perspectives*, 124(1), 23–29. <https://doi.org/10.1289/ehp.1408973>

845 Koo, J.-H., Kim, J., Lee, Y. G., Park, S. S., Lee, S., Chong, H., Cho, Y., Kim, J., Choi, K., & Lee, T. (2020). The implication of the air quality pattern in South Korea after the COVID-19 outbreak. *Scientific Reports*, 10(1), 22462. <https://doi.org/10.1038/s41598-020-80429-4>

Kloog, I., Nordio, F., Coull, B. A., & Schwartz, J. (2012). Incorporating Local Land Use Regression And Satellite Aerosol Optical Depth In A Hybrid Model Of Spatio-Temporal PM2.5 Exposures In The Mid-Atlantic States. *Environmental Science & Technology*, 46(21), 11913–11921. <https://doi.org/10.1021/es302673e>

850 Kloog, I., Chudnovsky, A. A., Just, A. C., Nordio, F., Kourakis, P., Coull, B. A., Lyapustin, A., Wang, Y., & Schwartz, J. (2014). A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. *Atmospheric Environment*, 95, 581–590. <https://doi.org/10.1016/j.atmosenv.2014.07.014>

855 Li, T., Shen, H., Yuan, Q., Zhang, X., & Zhang, L. (2017). Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach. *Geophysical Research Letters*, 44(23), 11,985–11,993. <https://doi.org/10.1002/2017GL075710>

Lim, H., Choi, M., Kim, J., Kasai, Y., & Chan, P. W. (2018). AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, Validation and Merged Products. *Remote Sensing*, 10(5), 699. <https://doi.org/10.3390/rs10050699>

860 Lim, H., Go, S., Kim, J., Choi, M., Lee, S., Song, C.-K., & Kasai, Y. (2021). Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns. *Atmospheric Measurement Techniques*, 14(6), 4575–4592. <https://doi.org/10.5194/amt-14-4575-2021>

Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., & Sarnat, J. A. (2004). Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. *Journal of Geophysical Research: Atmospheres*, 109(D22). <https://doi.org/10.1029/2004JD005025>

865 Liu Yang, Paciorek Christopher J., & Koutrakis Petros. (2009). Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information. *Environmental Health Perspectives*, 117(6), 886–892. <https://doi.org/10.1289/ehp.0800123>

870 Lyapustin, A., Wang, Y., Korkin, S., & Huang, D. (2018). MODIS Collection 6 MAIAC algorithm. *Atmospheric Measurement Techniques*, 11(10), 5741–5765. <https://doi.org/10.5194/amt-11-5741-2018>

875 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. *Earth System Science Data*, 13(9), 4349–4383. <https://doi.org/10.5194/essd-13-4349-2021>

880 Park, S., Shin, M., Im, J., Song, C.-K., Choi, M., Kim, J., Lee, S., Park, R., Kim, J., Lee, D.-W., and Kim, S.-K. (2019). Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. *Atmos. Chem. Phys.*, 19, 1097–1113, <https://doi.org/10.5194/acp-19-1097-2019>.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, 12(85), 2825–2830.

Phillips, Tom. Beijing smog: Pollution red alert declared in China capital and 21 other cities. (2016). *The Guardian*. <http://www.theguardian.com/world/2016/dec/17/beijing-smog-pollution-red-alert-declared-in-china-capital-and-21-other-cities> (last access: 13 April 2021)

890 Poulidis, A. P., Takemi, T., Shimizu, A., Iguchi, M., & Jenkins, S. F. (2018). Statistical analysis of dispersal and deposition patterns of volcanic emissions from Mt. Sakurajima, Japan. *Atmospheric Environment*, 179, 305–320. <https://doi.org/10.1016/j.atmosenv.2018.02.021>

895 Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., & Holben, B. N. (2005). The MODIS Aerosol Algorithm, Products, and Validation. *Journal of the Atmospheric Sciences*, 62(4), 947–973. <https://doi.org/10.1175/JAS3385.1>

Formatted: Hyperlink

900 Remer, L. A., Mattoo, S., Levy, R. C., Heidinger, A., Pierce, R. B., & Chin, M. (2012). Retrieving aerosol in a cloudy environment: Aerosol product availability as a function of spatial resolution. *Atmospheric Measurement Techniques*, 5(7), 1823–1840. <https://doi.org/10.5194/amt-5-1823-2012>

905 Remer, L. A., Mattoo, S., Levy, R. C., & Munchak, L. A. (2013). MODIS 3 km aerosol product: Algorithm and global perspective. *Atmospheric Measurement Techniques*, 6(7), 1829–1844. <https://doi.org/10.5194/amt-6-1829-2013>

910 She, Q., Choi, M., Belle, J. H., Xiao, Q., Bi, J., Huang, K., Meng, X., Geng, G., Kim, J., He, K., Liu, M., & Liu, Y. (2020). Satellite-based estimation of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze River Delta, China. *Chemosphere*, 239, 124678. <https://doi.org/10.1016/j.chemosphere.2019.124678>

915 Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. *Proceedings of the 1968 23rd ACM National Conference*, 517–524. <https://doi.org/10.1145/800186.810616>

920 Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., de Hoogh, K., de' Donato, F., Gariazzo, C., Lyapustin, A., Michelozzi, P., Renzi, M., Scorticchini, M., Shtein, A., Viegi, G., Kloog, I., & Schwartz, J. (2019). Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. *Environment International*, 124, 170–179. <https://doi.org/10.1016/j.envint.2019.01.016>

925 van Donkelaar, A. van, Martin, R. V., & Park, R. J. (2006). Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. *Journal of Geophysical Research: Atmospheres*, 111(D21). <https://doi.org/10.1029/2005JD006996>

930 van Donkelaar Aaron, Martin Randall V., Brauer Michael, Kahn Ralph, Levy Robert, Verduzco Carolyn, & Villeneuve Paul J. (2010). Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. *Environmental Health Perspectives*, 118(6), 847–855. <https://doi.org/10.1289/ehp.0901623>

935 van Donkelaar, A., et. al. (2016). Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. *Environmental Science & Technology*, 50(7), 3762–3772. <https://doi.org/10.1021/acs.est.5b05833>

940 van Donkelaar, A., Martin, R. V., Li, C., & Burnett, R. T. (2019). Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. *Environmental Science & Technology*, 53(5), 2595–2611. <https://doi.org/10.1021/acs.est.8b06392>

945 Wang, J., and Christopher, S. A. (2003). Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. *Geophysical Research Letters*, 30(21). <https://doi.org/10.1029/2003GL018174>

950 Wang, W., Mao, F., Du, L., Pan, Z., Gong, W., & Fang, S. (2017). Deriving Hourly PM2.5 Concentrations from Himawari-8 AODs over Beijing–Tianjin–Hebei in China. *Remote Sensing*, 9(8), 858. <https://doi.org/10.3390/rs9080858>

955 Wei, Y., Wang, Y., Di, Q., Choirat, C., Wang, Y., Koutrakis, P., Zanobetti, A., Dominici, F., & Schwartz, J. D. (2019). Short term exposure to fine particulate matter and hospital admission

Deleted: <https://doi.org/10.1029/2003GL018174>

940 risks and costs in the Medicare population: Time stratified, case crossover study. *BMJ*, 367, 16258. <https://doi.org/10.1136/bmj.l6258>

Woo, J.-H., Kim, Y., Kim, H.-K., Choi, K.-C., Eum, J.-H., Lee, J.-B., Lim, J.-H., Kim, J., and Seong, M.: Development of the CREATE Inventory in Support of Integrated Climate and Air Quality Modeling for Asia, *Sustainability*, 12, 7930, <https://doi.org/10.3390/su12197930>, 2020.

945 Woo, J.-H., Kim, Y., Kim, J., Park, M., Jang, Y., Kim, J., Bu, C., Lee, Y., Park, R., Oak, Y., Fried, A., Simpson, I., Emmons, L., Crawford, J. n.d. KORUS Emissions: A comprehensive Asian emissions information in support of the NASA/NIER KORUS-AQ mission. *Elementa: Science of the Anthropocene*, in press.

Xu, J.-W., Martin, R. V., van Donkelaar, A., Kim, J., Choi, M., Zhang, Q., Geng, G., Liu, Y., Ma, Z., 950 Huang, L., Wang, Y., Chen, H., Che, H., Lin, P., & Lin, N. (2015). Estimating ground-level PM_{2.5} in eastern China using aerosol optical depth determined from the GOCI satellite instrument. *Atmospheric Chemistry and Physics*, 15(22), 13133–13144. <https://doi.org/10.5194/acp-15-13133-2015>

Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., & Zhang, Q. (2019). Spatiotemporal 955 continuous estimates of PM_{2.5} concentrations in China, 2000–2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. *Environment International*, 123, 345–357. <https://doi.org/10.1016/j.envint.2018.11.075>

Yeo, M. and Kim, Y. (2019). Trends of the PM_{2.5} concentrations and high PM_{2.5} concentration cases by region in Korea. *Particle and Aerosol Research*, 15(2), 45-56. <http://dx.doi.org/10.11629/jpaar.2019.15.2.045> (in Korean).

960 Zang, L., Mao, F., Guo, J., Wang, W., Pan, Z., Shen, H., Zhu, B., & Wang, Z. (2019). Estimation of spatiotemporal PM_{1.0} distributions in China by combining PM_{2.5} observations with satellite aerosol optical depth. *Science of The Total Environment*, 658, 1256–1264. <https://doi.org/10.1016/j.scitotenv.2018.12.297>

Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., & Liao, H. (2019). Fine 965 particulate matter (PM_{2.5}) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. *Atmospheric Chemistry and Physics*, 19(16), 11031–11041. <https://doi.org/10.5194/acp-19-11031-2019>

Zhai, S., Jacob, D. J., Brewer, J. F., Li, K., Moch, J. M., Kim, J., Lee, S., Lim, H., Lee, H. C., Kuk, S., 970 Park, R. J., Jeong, J. I., Wang, X., Liu, P., Luo, G., Yu, F., Meng, J., Martin, R. V., Travis, K. R., ... Liao, H. (2021). Interpretation of geostationary satellite aerosol optical depth (AOD) over East Asia in relation to fine particulate matter (PM_{2.5}): Insights from the KORUS-AQ aircraft campaign and seasonality. *Atmospheric Chemistry and Physics Discussions*, 1–23. <https://doi.org/10.5194/acp-2021-413>

Zhang, G., & Lu, Y. (2012). Bias-corrected random forests in regression. *Journal of Applied Statistics*, 975 39(1), 151–160. <https://doi.org/10.1080/02664763.2011.578621>

Zhuang, J., Dussin, R., Jüling, A., & Rasp, S. (2020). JiaweiZhuang/xESMF: v0.3.0 Adding ESMF.LocStream capabilities (Version v0.3.0). Zenodo. <https://doi.org/10.5281/ZENODO.1134365>

Deleted: 1