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Abstract. We use 2011-2019 aerosol optical depth (AOD) observations from the Geostationary Ocean 
Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter 15 
(PM2.5) concentrations at continuous 6x6 km2 resolution over eastern China, South Korea, and Japan. 
This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data, 
including information encoded in GOCI AOD retrieval failure, and trained with PM2.5 observations 
from the three national networks. The predicted 24-h GOCI PM2.5 concentrations for sites entirely 
withheld from training in a ten-fold crossvalidation procedure correlate highly with network 20 
observations (R2 = 0.89) with single-value precision of 26-32% depending on country. Prediction of 
annual mean values has R2 = 0.96 and single-value precision of 12%. GOCI PM2.5 is only moderately 
successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) 
because these exceedances are typically within the single-value precisions of the RF, and also because 
of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends 25 
of GOCI PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015-2019 
declines consistent with surface networks, but the surface networks in eastern China and South Korea 
underestimate population exposure. Further examination of GOCI PM2.5 fields for South Korea 
identifies hotspots where surface network sites were initially lacking and shows 2015-2019 PM2.5 
decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of 30 
monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully 
captures observed seasonal variations of PM2.5 even though AOD and PM2.5 often have opposite 
seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing 
demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as 
spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula 35 
demonstrates the value of the continuous GOCI PM2.5 fields for testing air quality models, including 
over North Korea where they offer a unique resource.  
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1. Introduction 

Exposure to outdoor fine particulate matter (PM2.5,, less than 2.5 μm in diameter) is a global public 
health issue, accounting for 8.9 million deaths in 2015 [Burnett et. al., 2018]. Beyond mortality, short-40 
term exposure to elevated PM2.5 levels is associated with numerous adverse health outcomes including 
increased hospital admissions for respiratory and cardiovascular issues [Dominici et. al., 2006; Wei et. 
al., 2019]. Long-term exposure is associated with neurodegenerative diseases such as dementia, 
Alzheimer’s disease, and Parkinson’s disease [Kioumourtzoglou et. al., 2016]. High spatio-temporal 
monitoring of PM2.5 concentrations to inform population exposure is important for both air quality 45 
regulation and epidemiological studies. Ground monitors can provide highly accurate measurements but 
have limited spatial coverage. Here we show how geostationary satellite observations of aerosol optical 
depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) can be used with a 
random forest (RF) machine learning (ML) algorithm to provide continuous long-term reliable mapping 
of 24-h PM2.5 at 6x6 km2 spatial resolution.   50 

The potential of satellites for high-resolution monitoring of PM2.5 has long been recognized in 
the public health community [Liu et al., 2004; van Donkelaar et. al., 2006]. Satellites retrieve AOD by 
backscatter of solar radiation. The MODIS sensors launched in 1999 on the NASA Terra and Aqua 
satellites have been the main source of AOD data, with global coverage twice a day at up to 1 km 
resolution [Remer et. al., 2005, 2013; Lyapustin et. al., 2018]. Early approaches to relate AOD 55 
observations to surface PM2.5 used chemical transport models (CTMs) to estimate local PM2.5/AOD 
ratios [Liu et al., 2004; van Donkelaar et. al., 2006], with more recent studies adding ancillary satellite 
data on the vertical distribution of aerosol extinction [Geng et. al., 2015; van Donkelaar et. al., 2016; 
van Donkelaar et. al., 2019]. Other approaches have used PM2.5 network data to infer PM2.5/AOD ratios 
[Wang and Christopher, 2003], with statistical models based on meteorological and land-use predictor 60 
variables to enable spatial extrapolation [Gupta and Christopher, 2009; Liu et. al., 2009; Kloog et. al., 
2012; 2014].  

More recently, non-parametric machine learning models have been developed to predict PM2.5 
from satellite AOD observations including neural networks [Li et. al., 2017; Zang et. al., 2019] and 
RFs, including approaches that fuse both [Di et. al., 2019]. RF has been applied to MODIS AOD to 65 
produce high-resolution daily PM2.5 products for the US [Hu et. al., 2017] and China [Guo et. al., 
2021]. Others have used RF and satellite AODs to produce monthly PM2.5 data over the North China 
Plain [Huang et. al., 2018], as well as daily PM2.5 data in California [Geng et. al., 2020] and Cincinnati, 
Ohio [Brokamp et. al., 2018].  

Geostationary satellites are now dramatically increasing the capability for mapping of PM2.5 70 
from space. The GOCI instrument launched in 2010 by the Korea Aerospace Research Institute (KARI) 
observes AOD eight times daily at 0.5x0.5 km2 pixel resolution over eastern China, the Korean 
peninsula, and Japan [Choi et. al., 2018]. The fine-pixel hourly information is intrinsically valuable and 
also facilitates cloud clearing [Remer et al., 2012]. GOCI AOD data aggregated to 6x6 km2 resolution 
have been used to estimate PM2.5 in regional studies for the Yangtze River Delta [She et al., 2020] and 75 
eastern China [Xu et al., 2015]. Park et al. [2019] find that PM2.5 can be inferred over the Korean 
peninsula with greater accuracy using GOCI AOD than sparser MODIS data. AOD products from the 
Advanced Himawari Imager (AHI) onboard the Himawari-8 and -9 geostationary meteorological 
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satellites over East Asia have also been used to infer surface PM2.5 [Wang et. al., 2017; Chen et. al., 
2019]. 80 

AOD cannot be observed under cloudy conditions, and AOD retrievals from satellites can also 
fail for other reasons including snow surfaces. Different methods have been used to fill the data gaps 
and produce continuous data sets. Some studies use CTM AODs when satellite data are missing [Hu et. 
al., 2017; Stafoggia et. al., 2019]. Kianian et. al. [2021] used a statistical interpolation algorithm 
combining RF with the lattice kriging method to infer missing AOD over the US, while Di et al., [2019] 85 
used a RF trained on gap-free covariates to fill in the gaps for MODIS AOD. Yet others first estimate 
PM2.5 using available AOD observations, then infer missing PM2.5 estimates using a separate gap-filling 
model [Kloog et al., 2014; She et al., 2020]. Brokamp et al. [2018] show that AOD missingness is itself 
predictive of PM2.5, an insight we leverage in this work. 

Here we apply a RF algorithm to 2011-2019 GOCI AOD data to construct a continuous dataset 90 
of 24-h PM2.5 concentrations at 6x6 km2 resolution for eastern China, South Korea, and Japan trained 
with surface network data. This is a larger spatial domain than has been attempted in previous studies. 
We ensure continuity by using gap-filled AOD, calculated by blending a CTM simulation with 
statistical interpolation, along with a parameter characterizing the length scale of the interpolation as 
inputs to the RF algorithm. This strategy maximizes training set size and allows the RF to determine a 95 
strategy to handle information encoded by retrieval failure. The resulting gap-filled product predicts 
PM2.5 with comparable skill when AOD observations are absent as when they are available. We 
characterize the error in the RF-produced GOCI PM2.5 dataset for both 24-h and annual concentrations 
and demonstrate the ability of the dataset to capture spatial and day-to-day variability on urban scales. 
We exploit the continuity of the dataset to determine trends of PM2.5 air quality in East Asia over the 100 
past half decade.  

2 Data and methods 

2.1 Datasets 

GOCI AODs. GOCI is onboard the Korean Communication, Ocean, and Meteorological Satellite 
(COMS) that was launched by KARI in June 2010 [Choi et. al., 2012; Choi et. al., 2016]. The first 105 
ocean color imager placed in geostationary orbit, GOCI covers a 2,500x2,500 km2 domain centered on 
the Korean peninsula at 36ºN and 130ºE with 0.5x0.5 km2 pixels observed every hour from 00:30 to 
07:30 UTC. AOD at 550 nm over land is retrieved using the GOCI Yonsei aerosol retrieval (YAER) V2 
algorithm at an aggregated 6x6 km2 spatial resolution and 1 h temporal resolution [Choi et. al., 2018]. 
Aggregation filters out pixels affected by sunglint or clouds, as well as the darkest 20% and brightest 110 
40% pixels within the 6x6 km2 scene [Choi et. al., 2018]. We further aggregate the hourly AOD 
measurements of AOD into a daily mean for use in the RF. 

Validation of the GOCI YAER V2 AOD with surface measurements from the AERONET 
surface network shows high correlation (𝑅 = 0.91), a root mean squared error (RMSE) of 0.16, and a 
mean bias (MB) of 0.01 with no significant spatial variation across East Asia [Choi et. al., 2018]. GOCI 115 
YAER V2 also reports a Fine Mode Fraction (FMF) and a Multiple Prognostic Expected Error (MPEE) 
for the AOD but we find that they are not useful in our RF, as discussed later. For comparison, we also 
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calculate a RF trained on the GOCI-AHI fusion AOD product of Lim et. al. [2021]. The Advanced 
Himawari Imager (AHI) instruments onboard the Himawari-8 and -9 geostationary meteorological 
satellites were launched in October 2014 and November 2016, respectively. AHI has a larger field of 120 
view than GOCI but a shorter record. 
  

PM2.5 network data.  We use hourly PM2.5 data from operational air quality networks in eastern 
China, South Korea, and Japan, and average them over 24 hours and over the 6x6 km2 GOCI AOD grid 
to define targets for the RF algorithm. Data for eastern China are from the National Environmental 125 
Monitoring Center (https://quotsoft.net/air/) including 443 sites within the GOCI observing domain 
starting in May 2014 and increasing to 596 sites by 2019. Following Zhai et. al. [2019] we remove 
values with more than 24 consecutive repeats in the hourly timeseries as likely in error. Data for South 
Korea are from the AirKorea surface network of 123 sites (https://www.airkorea.or.kr/) starting in 
January 2015 and increasing to 298 sites by 2019. Data for Japan are from 1054 sites reported by the 130 
Japanese National Institute for Environmental Studies (NIES) for 2011-2017 
(https://www.nies.go.jp/igreen/tj_down.html) and by the real-time Atmospheric Environmental 
Regional Observation System (AEROS) portal for 2018-2019 (Soramame; 
http://soramame.taiki.go.jp/DownLoad.php). 

 135 

 

Figure 1: Mean aerosol optical depth (AOD) and surface network PM2.5 concentrations over the Geostationary Ocean Color Imager 
(GOCI) viewing domain, 2011-2019.  Panel (a) shows mean GOCI AOD data on the 6x6 km2 grid. Panel (b) shows the mean surface 
network PM2.5 data for eastern China (starting in May 2014), South Korea (starting in January 2015), and Japan, using large data symbols 
for visibility. Zoomed inset for South Korea shows the surface network observations with symbols corresponding to the 6x6 km2 grid of 140 
the GOCI data. Log scale is used for colorbar. 
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Meteorological and geographical predictor variables. We use hourly meteorological data from the 
ERA5 global reanalysis, with resolution of 30x30 km2 [Hersbach et. al., 2020], as input predictor 
variables for the RF algorithm. For this purpose we aggregate the data to 24-h averages and allocate 
them to 6x6 km2 GOCI grid cells by bilinear interpolation. We consider boundary layer height, 2-m air 145 
temperature and relative humidity (RH), 10-m meridional and zonal winds, and sea level pressure as 
potential meteorological predictor variables. We also include latitude, year, day of year (1-366), and 
nation category (eastern China, South Korea, or Japan) as geographical predictor variables. We 
considered 2015 population density [CIESIN, 2018] as a potential predictor variable but found that it 
was not useful as discussed in section 3.2. 150 
 

Figure 1 shows the mean distributions of GOCI AOD and surface network PM2.5 for 2011-2019 
or for the more limited durations of their records (2014-2019 for eastern China PM2.5, 2015-2019 for 
South Korea PM2.5). The PM2.5 networks are extensive but coverage is nevertheless sparse and often 
limited to large urban areas, as illustrated by the zoomed inset for South Korea. We find that only 1.0% 155 
of GOCI 6x6 km2 grid cells have PM2.5 observations in eastern China, 7.4% in South Korea, and 7.9% 
in Japan. This geographic limitation in the PM2.5 networks emphasizes the value of continuous coverage 
from the AOD data.  

2.2 AOD gap-filling 

160 
Figure 2: Percentage of days in 2011-2019 with at least one successful hourly retrieval of AOD on the 6x6 km2 grid. Panel (a) shows year-
round statistics while panel (b) shows winter months (DJF) only. 
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Figure 2 shows the percentage of days with at least one successful hourly GOCI AOD retrieval 
on the 6x6 km2 retrieval grid. There are substantial gaps in the record, mostly reflecting clouds and also 
snow cover in winter [Choi et. al., 2018]. We seek to fill in these gaps to produce a continuous daily 165 
data set while accounting for the associated errors and leveraging information implicitly encoded in 
retrieval failure. We fuse two strategies according to the availability of nearby AOD retrievals: an 
inverse distance weighted (IDW) interpolation AODIDW of nearby retrievals [Shepard, 1968] and a bias-
corrected monthly AODGC from the GEOS-Chem CTM: 
 170 
 AOD = 𝛼	AOD!"# + (1 − 𝛼)AOD$%	 (1) 

 
where α is a weighting factor that depends on the distance from nearest retrievals. GEOS-Chem is a 
widely used CTM for inferring PM2.5 from satellite AOD data [Liu et al., 2004; van Donkelaar et. al., 
2006; 2016; 2019; Geng et. al., 2015]. Here we use scaled monthly mean GEOS-Chem AODs from a 
simulation by Zhai et al. [2021] for 2016 in East Asia with 0.5ox 0.625o resolution, bias-corrected to the 175 
annual mean GOCI AODs on the 6x6 km2 grid. In this way we obtain a spatial distribution of monthly 
mean AODGC values for 2011-2019 for use in equation (1).  

We calculate the weighting factors 𝛼 used in Equation (1) via the Gaspari-Cohn function, a fifth-
order piecewise polynomial with a radial argument 𝑟 [Gaspari and Cohn, 1999]. The Gaspari-Cohn 
function resembles a Gaussian distribution but with compact support, taking on a maximum value of 1 180 
for 𝑟 = 0 and a minimum value of 0 for 𝑟 ≥ 2. We define 𝑟 = l/c for a given 6x6 km2 grid cell and day 
to be the distance l from the midpoint of the grid cell to that of the nearest observed grid cell, 
normalized by a spatial correlation length scale 𝑐 determined from available AOD observations in and 
around that grid cell. We find that the value of c ranges from 110 km to 170 km over our domain.  

2.3 Random forest algorithm  185 

Table 1 lists the predictor variables included in the RF to infer 24-h PM2.5 as dependent variable. RF is 
an ensemble machine learning method where many individual decision trees are fit to the training data 
and vote on an output value, with the average value taken as best estimate [Breiman, 2001].  
 
Table 1. Random Forest predictor variables for 24-h PM2.5a 

GOCI gap-filled AOD observationsb 
     8-h average AOD at 550 nm wavelength 
     𝛼 from Equation 1 
Meteorologyc 
     Boundary layer height (m) 
     10-m meridional wind (m s-1) 
     10-m zonal wind (m s-1) 
     2-m temperature (K) 
     2-m relative humidityd (%) 
     Sea-level pressure (Pa) 
Metadata 
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     Country dummy variablese 
     Latitude 
     Day of year 
     Year 

aThe RF algorithm predicts continuous 24-h PM2.5 on a 6x6 km2 grid for eastern China, South Korea, and Japan after training with PM2.5 190 
surface network data. 
b8-hr average 550 nm AODs on the 6x6 km2 grid retrieved with the YAER v2 algorithm [Choi et al., 2018] 
c ECMWF ERA5 fields [Hersbach et. al., 2020] at 30x30 km2 spatial resolution and hourly temporal resolution, interpolated bilinearly to 
the GOCI grid and averaged over 24 hours. 
d Estimated from temperature and dewpoint using the August-Roche-Magnus approximation [Alduchov and Eskridge, 1996]. 195 
eThree variables that, for each of eastern China, South Korea, and Japan, has value 1 if a grid cell is within those national borders and 0 
otherwise. 
 
Decision trees are fit recursively to the predictor variable. Suppose we have a collection of N data 
elements i ∈ [1, N], denoted 𝑥&, each composed of m predictor variables (𝑥& ∈ ℝ'), and a corresponding 200 
list of N labels yi that we would like to learn. In our case yi denotes the observed PM2.5 concentrations 
from the surface networks averaged on the 6x6 km2 grid, and N denotes the number of these 
observations. The algorithm works by splitting the data into left and right subsets L and R at an 
optimum split point determined from the predictor variables in 𝑥& [Pedregosa et. al., 2011]. The 
optimum split point is defined as the one that minimizes the impurity G, 205 
 𝐺(𝐿, 𝑅) = 𝛽 ⋅ MSE(𝐿) + (1 − 𝛽) ⋅ MSE(𝑅) (2) 

where 𝛽 represents the fraction of data in the subset L and MSE represents the mean squared error of 
each of the subsets, 
 MSE(𝑋) =

1
𝑛A (𝑦& − 𝑦C)(

&
 

(3) 

where 𝑦C is the mean of the target labels within a given subset 𝑋 and n is the number of elements in that 
subset. From there the same algorithm is recursively applied to the left and right subsets L and R until 
the tree is grown. We follow the advice of Hastie et. al. [2009] and grow trees until the data are fully 210 
classified (each leaf contains only one value).   

Due to the recursive training structure, decision trees are sensitive to the data on which they are 
trained, because a change in one split point changes the composition of all its child nodes. Individual 
decision trees thus have high error variance but no inherent bias. It follows that averaging many 
individual and uncorrelated trees should yield a low variance, low bias prediction. We construct 200 215 
trees in parallel and reduce correlation between them through a bagging procedure: for each of the 200 
decision trees in the RF, sample the input data with replacement to form a new dataset of the same 
dimensions and then grow a decision tree from this bootstrapped data [Breiman, 2001]. Because of the 
high input sensitivity, a wide variety of decorrelated trees are grown. The predictions of each individual 
tree are averaged to yield the prediction of the RF. We fit our RF using the RandomForestRegression 220 
class in the Python module Scikit-learn [Pedregosa et. al., 2011]. We attempted to further decorrelate 
trees by following Breiman [2001] and calculating split points of each individual tree using only a 
random subset of the m predictor variables; however, a sensitivity test we performed showed only minor 
differences with the base case and therefore we follow Guerts et. al. [2006] in considering all predictor 
variables in the training process. 225 
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We evaluate how the RF generalizes to predictions for the full 6x6 km2 domain via a 10-fold 
crossvalidation. For each fold of the crossvalidation, we leave out a randomly selected 10% of PM2.5 
network sites (averaged on the 6x6 km2 grid if needed) from each country. These 10% represent the test 
set; because we perform the validation ten times, each grid cell is in the test set exactly once. We 
compare predicted PM2.5 to withheld observed PM2.5 using four metrics: root mean square error 230 
(RMSE); the RMSE divided by mean observed PM2.5 (relative RMSE, or RRMSE); the coefficient of 
variation (R2); and the mean bias computed by averaging the difference between predicted and observed 
PM2.5 (MB).  

An outcome of interest is the ability of our predictions to capture exceedances of National 
Ambient Air Quality Standards (NAAQS). We categorize each prediction within the test sets into one of 235 
four classes: true positives (TP) where both predicted and observed PM2.5 exceed the NAAQS 
threshold; true negatives (TN) where neither exceed the threshold; false positives (FP) where an 
exceedance is predicted but not observed; and false negatives (FN) where an exceedance is observed but 
not predicted [Brasseur and Jacob, 2017; Cusworth et. al., 2018]. We use these classes to compute 
three overall prediction grades. The first, percent of detection (POD), gives the fraction of observed 240 
exceedances that were successfully predicted: 

 
 POD =

Σ	TP
Σ	TP + Σ	FN 

(4) 

 
The second, false alarm ratio (FAR), gives the fraction of predicted exceedances that did not occur: 
 245 
 FAR =

Σ	FP
Σ	TP + Σ	FP 

(5) 

 
The third, equitable threat score (ETS), compares how well the prediction does relative to random 
chance: 
 

ETS =
Σ	TP − β

Σ	TP + Σ	FP + Σ	FN − β 
(6) 

 
 250 
where β is the number of true positives obtained by random chance, 
 

 
 

β =
(Σ	TP + Σ	FP) ⋅ (Σ	TP + Σ	FN)
Σ	TP + Σ	TN + Σ	FP + Σ	FN  

(7) 

 
ETS is 1 for perfect prediction skill and 0 for no better or worse than chance.  255 

 
Predictor variable selection is an important task in implementing a RF, as the addition of non-

informative variables can decrease performance. Unlike linear regression which can naturally ignore 
unhelpful predictors, irrelevant data can by chance aid in minimizing impurity G at some stage in the 
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optimization process making all subsequent splits suboptimal. The six meteorological variables given in 260 
Table 1 are standard in AOD/PM2.5 prediction [e.g. Kloog et. al., 2014; Li et. al., 2017], while the four 
spatio-temporal variables (location dummies, latitude, year, and day of year) and the retrieval gapfilling 
parameter 𝛼 proved to be informative in sensitivity tests. In addition to the predictor variables in Table 
1, we considered as additional variables the population density, the GOCI fine mode fraction (FMF), 
and the GOCI multiple prognostic expected error (MPEE), but we found that they worsened accuracy of 265 
the fit and so we did not retain them. Because population density worsened the fit we did not include 
other spatially varying but temporally fixed land-use variables such as road data, elevation, or 
emissions. We also compared RFs trained on GOCI AOD and on GOCI-AHI fused AOD and found no 
significant difference in the fitting of PM2.5. We therefore use the GOCI AOD product because of its 
longer record. 270 

3 Results and discussion  

3.1 Accuracy and precision of RF predictions  

Figure 3 shows scatterplots, color-coded by count, comparing surface observations of 24-h and annual 
mean PM2.5 to the predicted GOCI PM2.5 values in grid cells whose records are entirely withheld from 
training in the crossvalidation procedure. GOCI PM2.5 values for the annual mean are obtained by 275 
averaging the 24-h predictions. Table 2 gives comprehensive GOCI PM2.5 evaluation statistics for East 
Asia and for each country. The 24-h predictions for East Asia have a negligible mean bias of 0.23 μg m-

3 (annual, 0.22 μg m-3), though the RF underpredicts PM2.5 at the high tail of the distribution; we will 
return to that issue later in the context of NAAQS exceedances. Root mean square error (RMSE) 
between observed and predicted 24-h PM2.5 is 8.8 μg m-3 (annual, 3.3 μg m-3) corresponding to a 280 
relative RMSE (RRMSE) of 37% (annual, 14%), as defined in section 2.3. The prediction captures 89% 
of the observed 24-h variance (R2 = 0.89) and 96% of annual (R2 = 0.96). These results compare 
favorably to previous reconstructions of PM2.5 from satellite AOD data. For example, a 1-km 2000-
2015 continental US product and 3-km 2015-2016 east China product have crossvalidation R2 of 0.86 
and 0.87 respectively for daily PM2.5 [Di et. al., 2019; Hu et. al., 2019], while a global 0.01o 1998–2018 285 
product and a 0.1o degree 2000-2016 product for China have crossvalidated R2 of 0.90-0.92 and 0.77 
respectively for annual PM2.5 [Hammer et. al., 2020; Xue et. al., 2019]. R2 for annual mean PM2.5 in 
South Korea is relatively low (0.41), which can be explained by the weak dynamic range of observed 
annual PM2.5 in the country (Figure 1), as will be discussed later in this section. 

Our gap-filling strategy does not introduce bias for days without GOCI observations (and with 290 
AOD inferred instead from equation (1)). Figure S1 shows that surface network PM2.5 has distinct 
distributions on days where AOD retrieval fails as compared to when AOD retrieval succeeds, a pattern 
successfully reproduced by GOCI PM2.5. Table 2 shows that the mean bias statistic on days where AOD 
retrieval fails is similar to the whole population. This suggests that the RF algorithm is able to 
successfully exploit the information encoded in AOD missingness in making a PM2.5 prediction, a 295 
phenomenon also noted by Brokamp et. al. [2018]. 
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Figure 3: Ability of the random forest algorithm to predict 24-h (panel a) and annual mean PM2.5 (panel b) in East Asia. Scatterplots depict 300 
the relationship between GOCI and surface network PM2.5 at grid cells withheld from training in the crossvalidation. The plots are two-
dimensional histograms where pixel color corresponds to the count of observation/prediction correspondences within the corresponding bin 
on a logged scale. The identity line is plotted in black. For annual mean PM2.5, grid cells with fewer than 80% of PM2.5 observation days in 
a given year are removed to avoid biasing the average. For panel (a), 0.002% of the data are not shown as they exceed the plot range; all 
data are shown in panel (b). 305 

 
Table 2. Error statistics for fitting of PM2.5 data by the RF algorithma  
 RMSE (µg m-3)   RRMSE R2 MB (µg m-3)    MBnr (µg m-3)    
24-h PM2.5      
     Overall 8.8 37% 0.89 0.23 0.23 
     Eastern China 15 32% 0.85 0.49 0.53 
     South Korea 6.4 26% 0.82 0.16 0.10 
     Japan 3.6 27% 0.79 0.12 0.13 
Annual PM2.5      
     Overall 3.3 14% 0.96 0.22  
     Eastern China 5.6 12% 0.86 0.53  
     South Korea 2.9 12% 0.41 0.24  
     Japan 1.6 12% 0.70 0.094  

aComparison statistics between GOCI and surface network PM2.5 are for the grid cells in each of eastern China, South Korea, and Japan 
completely withheld from the RF training process in the crossvalidation procedure. Statistics shown are for root-mean-square error (RMSE), 
relative RMSE (RRMSE), coefficient of variation (R2), and mean bias (MB), and mean bias on days where AOD retrieval fails (MBnr). 

One potential application of PM2.5 monitoring from space would be to diagnose exceedances of 310 
national ambient air quality standards (NAAQS) at locations without network sites.  Table 3 shows the 
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NAAQS for 24-h and annual PM2.5 for the three countries and the ability of GOCI PM2.5 to diagnose 
NAAQS exceedances in grid cells excluded from the training process in the crossvalidation procedure. 
24-h exceedances correspond to the high tails of the distributions but annual exceedances are much 
more widespread. The POD column shows percent of true positives successfully detected, while the 315 
FAR shows the rate of false positives (defined in section 2.3). POD for 24-h exceedances ranges from 
47%-78% by country (FAR: 16%-21%). PODs are higher for annual exceedances but that reflects the 
higher observed frequency of these exceedances. The ETS values ranging from 0.43-0.63 indicate that 
the model captures exceedances with much better skill than random guessing. 
 320 
Table 3. Ability of the RF algorithm to diagnose exceedances of air quality standardsa 
 NAAQS Exceedance frequencyc PODd FARe ETSf 
 (µg m-3)b Observed RF    
24-h PM2.5       
     Eastern China 75  16% 15% 78% 16% 0.63 
     South Korea (old NAAQS) 50 5.9% 4.2% 57% 21% 0.47 
     South Korea (new NAAQS) 35 19% 17% 73% 20% 0.55 
     Japan 35 1.6% 0.91% 47% 17% 0.43 
Annual PM2.5       
     Eastern China 35 77% 83% 97% 9.2% 0.54 
     South Korea (old NAAQS) 25 40% 44% 67% 39% 0.23 
     South Korea (new NAAQS) 15 100% 100% 100% 0% NA 
     Japan 15 24% 20% 68% 20% 0.49 

a Calculated using sites withheld from training in the crossvalidation procedure. 
b National Ambient Air Quality Standards, specific to each country. We show results for the class 2 NAAQS in eastern China and for both 
pre-2018 (‘old’) and post-2018 (‘new’) NAAQS for South Korea because all observed grid cells exceed the new annual NAAQS of 15 μg 
m-3. 
c Percentage of site-days (24-h standard) or site years (annual standard) exceeding the NAAQS.  325 
d Percent of detection (POD) defined as the percentage of exceedances successfully detected.  
e False alarm ratio (FAR) defined as the percentage of predicted exceedances that did not occur.  
f Equitable threat score (ETS) defined as the ability of the RF to predict exceedances beyond random chance.  
 

The main difficulty for GOCI PM2.5 to predict NAAQS exceedances is that many of those 330 
exceedances fall within the precision of individual predictions. This is illustrated in Figure 4 with the 
cumulative probability density function (pdf) of the 24-h and annual mean PM2.5 concentrations in 
eastern China, South Korea, and Japan, representing the same withheld data from the crossvalidation as 
in Tables 2 and 3. The 24-h RRMSE of 26-32% depending on country (Table 2) is shown as the grey 
envelope and is relatively flat across the distribution. Prediction of NAAQS exceedances within that 335 
uncertainty envelope is limited by the precision of the algorithm. All of the 24-h exceedances in Japan 
are within that envelope, as are most of the exceedances in eastern China and Korea. China has the 
largest fraction of exceedances beyond the RRMSE of the GOCI PM2.5 and therefore the best prediction 
success. An additional though smaller cause of bias is that GOCI PM2.5 underestimates the high tail of 
the pdf, as is apparent in Figure 4, which explains in particular why we achieve a better FAR than POD 340 
for 24-h PM2.5 in South Korea and Japan. Our worst NAAQS prediction performance is for annual 
PM2.5 in South Korea for the old 25 µg m-3 standard, because most of the distribution is within the 



12 
 

RRMSE envelope. Additionally, the already small dynamic range of surface network annual PM2.5 
(black dots) is underestimated by the GOCI PM2.5 (blue dots). These culminate in a GOCI PM2.5 
estimate with good RMSE but low R2. 345 

 
Figure 4: Cumulative probability density functions (pdfs) of 24-h and annual mean PM2.5 concentrations in Eastern China, South Korea, and 
Japan. Surface network PM2.5 (black) is compared to GOCI PM2.5 (colored) taken from the crossvalidation. The grey envelope represents 
the relative root mean square error (RRMSE) of the RF algorithm as given in Table 2, measuring the predictive capability of the algorithm 
for individual events. The NAAQS for each country is shown as the horizontal line, with both the pre-2018 and post-2018 NAAQS shown 350 
for South Korea. Left panel scales are log-log while right-panel scales are linear. y-axis scales vary for the different countries. 

We experimented with several modifications to the RF algorithm to improve prediction of 
NAAQS exceedances but with no success. These tests included training separate RFs for each of the 
three countries; training annual PM2.5 predictions on annual (rather than 24-h) PM2.5 data; directly 
predicting NAAQS exceedances by setting the learned label to be true if a day (year) is above the 24-h 355 
(annual) NAAQS for a given country; and applying different weights to the data so that the high tail is 
oversampled in the training process. None of these tests yielded significant improvements. Smoothing 
of the tails in RFs is a well-recognized problem [Zhang and Lu, 2012]. Following Zhang and Lu [2012] 
we attempted to train RFs to predict and correct the residuals but found this to be ineffective. Part of 
this tail smoothing could also result from the underlying GOCI AOD land product, which has a negative 360 
bias (-0.02) for high AODs and a positive bias (+0.02) for low AODs [Choi et. al., 2018]. 
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3.2 PM2.5 temporal trends and spatial distributions 

Figure 5 shows long-term trends of annual PM2.5 for each country, as measured by the PM2.5 surface 
network and as inferred in the GOCI PM2.5 for both areal and population-weighted means. We do not 
include GOCI PM2.5 for years before the networks became available (and hence when the RF could be 365 
trained) because of concern over extrapolation bias. The PM2.5 networks show decreasing trends in all 
three countries and these trends are consistent with the GOCI PM2.5 for both areal and population-
weighted means, demonstrating that the trends reported by the PM2.5 networks are representative of the 
countries. However, the PM2.5 networks in eastern China and South Korea underestimate the 
population-weighted means. Trends in South Korea and eastern China become flat between 2018 and 370 
2019 (with a slight population-weighted increase in South Korea). This could possibly reflect 
interannual meteorological variability [Zhai et al., 2019; Koo et. al., 2020], but also an increase in 
oxidants producing secondary aerosol [Huang et. al., 2021]. Figure S2 shows maps of annual GOCI 
PM2.5 across the entire study domain. 
 375 

 
 
Figure 5: Trends in annual mean PM2.5 concentrations for eastern China, South Korea, and Japan. Trends determined from the national 
surface PM2.5 networks (dashed black line) averaged over 6x6 km2 grid cells, requiring at least 80% of data for all years plotted, are compared 
to GOCI PM2.5 trends inferred by the random forest (RF) algorithm with continuous temporal and spatial coverage on the 6x6 km2 grid and 380 
weighted either by area (solid colored line) or by population (dashed colored line). Here we use an RF trained on all the data. Gridded 
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population data are from CIESIN [2018]. The national PM2.5 networks include 413 continuously observed grid cells in eastern China, 74 in 
South Korea, and 307 in Japan. Trends are initialized at the onset of the surface network for complete years of data; due to the unavailability 
of the early months of the year, 2011 is discarded for Japan and 2014 for eastern China. 

Figure 6 shows the changes in annual mean PM2.5 concentrations over South Korea between 385 
2015 and 2019 as observed from the national network and as inferred from GOCI. We focus on South 
Korea here because it demonstrates how GOCI PM2.5 adds considerable information to a region that 
already has relatively good network coverage, including detection of PM2.5 hotspots missing from the 
network such as the Iksan region on the west coast in 2015 that was subsequently added to the network 
by 2019. Figures S3 and S4 show analogous maps for China and Japan, respectively. 390 

 

 

Figure 6: Annual mean PM2.5 concentrations in South Korea in 2015 and 2019. GOCI PM2.5 (top) inferred from an RF trained on all 
available data are compared to AirKorea network observations (bottom). Network observations are shown only if at least 80% of the year 
was observed. 395 

Figure 7 depicts the relative 2015-2019 trends of PM2.5 concentrations in South Korea derived 
from a linear regression applied to the annual GOCI PM2.5 in each 6x6 km2 grid cell. Such a spatially 
resolved trend analysis is uniquely enabled by the GOCI coverage. We find decreases across the 
country except in the Seoul Metropolitan area which mostly shows no significant trend except for a few 
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pixels in Incheon. These results are consistent with the spatial patterns calculated from AirKorea data 400 
by Yeo and Kim [2019], who found 2015-2018 decreases in Incheon but not Seoul or the surrounding 
Gyeonggi province. Despite the insignificant changes in Seoul, substantial PM2.5 decreases are found 
over other large urban areas including Busan, Ulsan, Daegu, and Gwangju. The three rapidly decreasing 
spots on the southern coast are Gwangyang, Sacheon, and Changwon, which house industrial 
complexes related to the South Korean shipbuilding industry that has recently declined [Jung-a 2016]. 405 
Figure S5 shows absolute 2015-2019 trends of GOCI PM2.5 concentrations across the entire study 
domain, and demonstrates that the North China Plain has the largest overall PM2.5 reductions. 
 

 

Figure 7: 2015-2019 trends per year in PM2.5 concentrations across South Korea. The trends are obtained by ordinary linear regression of 410 
the annual mean GOCI PM2.5 in each 6x6 km2 grid cell with significant regression slopes (𝒑 < 𝟎. 𝟎𝟓), where the RF is trained on all the 
available data. Grid cells with insignificant trends are plotted in gray. 

AOD and PM2.5 in East Asia tend to have opposite seasonalities driven by boundary layer depth 
and RH [Zhai et al., 2021]. Figure 8 compares GOCI and surface network monthly mean PM2.5 in the 
Beijing, Seoul, and Tokyo metropolitan areas, with predictions coming from withheld data in the 10-415 
fold crossvalidation. Correspondence between GOCI and network PM2.5 may be tighter than the 
nationwide annual means plotted in Figure 5 because these urban areas are well-observed. We see that 
the RF algorithm fully captures the observed seasonality in PM2.5, although some observed monthly 
spikes are underestimated. The Figure illustrates the lack of trend in the Seoul Metropolitan Area over 
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2015-2019 but also shows that winter and summer PM2.5 in the region have opposite and roughly equal 420 
trends, with winter growing more polluted while summers become cleaner. 

 

Figure 8: Monthly PM2.5 concentrations in the Beijing Seoul and Tokyo metropolitan areas. GOCI PM2.5 inferred from the RF algorithm 
for totally withheld sites in the crossvalidation are compared to network observations. Beijing is defined by the namesake province 
boundary, Seoul by the Seoul and Incheon boundaries, and Tokyo as Ibaraki, Saitama, Chiba, Tokyo, Kanagawa, and Yamanashi 425 
prefectures.  

3.3 Urban-scale pollution events 

We examine here the ability of GOCI PM2.5 to capture the spatial and temporal variability of 
PM2.5 pollution events on urban scales. Figure 9 shows a map of GOCI PM2.5 — produced by a RF 
trained on all the data, with surface network PM2.5 overlaid — across the Seoul metropolitan area on 430 
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May 24-29, 2016 corresponding to a severe pollution event sampled during the KORUS-AQ field 
campaign [Crawford et. al., 2021]. The dense PM2.5 network for Seoul shows large variability at the sub 
6x6 km2 scale that GOCI does not resolve. However, GOCI PM2.5 captures most of the variability in the 
network data aggregated on the 6x6 km2 grid (R2 = 0.74). It also captures successfully the day-to-day 
variability during the event.  435 

Figure 9: 24-h PM2.5 concentrations during a pollution event in Seoul-Incheon (May 24-29, 2016). GOCI PM2.5 inferred from the RF 
algorithm (background, on 6x6 km2 grid scale) trained on all available data is compared to observations from the AirKorea surface 
network (circles).   

Figure 10 shows an additional test of the RF algorithm with one of the most severe pollution 440 
events in the record, the December 16-21, 2016 Beijing winter haze episode. 24-h PM2.5 concentrations 
exceeded 400 μg m-3 at some of the network sites. While there is a tight correspondence between the 
GOCI and surface network 24-h PM2.5 for Beijing grid cells (R2 range: 0.74-0.99), the network 
observations are on average 20 μg m-3 higher than the GOCI PM2.5. The difference is most pronounced 
at the December 21 concentration peak which has mean observed value 396 μg m-3 to the predicted 348 445 
μg m-3. This reflects the RF smoothing and AOD underestimate for the high tail of the distribution as 
previously illustrated in Figure 4.  It nevertheless illustrates the ability of GOCI combined with our 
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gap-filling method to capture severe winter haze episodes that are particularly challenging to observe 
from space. 

 450 
Figure 10: Same as Figure 9 but for a pollution event in Beijing on December 16-21, 2016.  

3.4 Regional air quality model evaluation 

Regional air quality model predictions of PM2.5 are typically evaluated with observations from 
surface network sites, but the spatially continuous GOCI PM2.5 fields offer more extensive coverage and 
hence broader opportunity for model evaluation. We demonstrate this capability here with Community 455 
Multiscale Air Quality Modeling System (CMAQ version 4.7.1) simulations for the Korean peninsula 
including both South and North Korea at 9-km resolution [Bae et al., 2018; Bae et al., 2021]. There are 
no surface PM2.5 data in North Korea to train the RF so we use the South Korea categorical variable to 
generate the GOCI PM2.5 fields there. 

The simulation for South Korea was conducted for 2015-2019 using emissions from the Clean 460 
Air Policy Support System (CAPSS) 2016 [Choi et al., 2020] for South Korea and KORUSv5 [Woo et 
al., n.d] for outside South Korea. The simulation for North Korea was conducted for 2016 using 
emissions from the Comprehensive Regional Emissions Inventory for Atmospheric Transport 
Experiment (CREATE) 2015 [Woo et al., 2020] and CAPSS 2013. Natural aerosols including sea salt 
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and mineral dust are included. To prepare the boundary conditions, a coarse domain at 27-km horizontal 465 
grid resolution covering Northeast Asia was used.  

Figure 11 illustrates the increased capability for model evaluation in South Korea enabled by 
the GOCI PM2.5 fields. The bottom row shows the mean 2015-2019 PM2.5 concentrations in CMAQ 
compared to the AirKorea network and to GOCI PM2.5, and the top row shows comparison scatterplots. 
The top left panel compares the CMAQ simulation to 2015-2019 mean PM2.5 observations from the 398 470 
AirKorea network sites. The top middle panel compares the GOCI PM2.5 to the same AirKorea network 
data, showing excellent agreement. The GOCI PM2.5 fields provide 1353 points for South Korea on the 
9x9 km2 CMAQ grid, and the top right panel shows the resulting increase in capability for evaluation of 
the CMAQ simulation. It shows in particular that CMAQ underestimates PM2.5 in coastal environments, 
possibly because of unaccounted ship emissions.  475 
 

 
Figure 11: Mean PM2.5 concentrations in South Korea in 2015-2019 as simulated by CMAQ, measured at the AirKorea sites, and inferred 
from GOCI. The top panels show scatterplots comparing the CMAQ and GOCI PM2.5 fields to the Air Korea measurements (398 sites), and 
CMAQ to GOCI PM2.5 on the 9x9 km2 CMAQ grid (1353 grid cells to compare). The bottom panels show maps of the mean 2015-2019 480 
concentrations.  



20 
 

Figure 12 evaluates the CMAQ simulation with the GOCI PM2.5 fields over North Korea. 
Unlike in South Korea, there are no observation sites in North Korea and GOCI PM2.5 offers the only 
opportunity for local evaluation. CMAQ and GOCI PM2.5 show dramatically different patterns. The 
highest PM2.5 in CMAQ is in the Pyongyang capital region, while GOCI shows highest values in the 485 
north-central region. The lack of reliable emission inventories for North Korea makes it difficult to 
arbitrate this difference. The RF is not trained for North Korea, which might lead to positive biases 
because the AOD/PM2.5 ratio modeled in the Zhai et al. [2021] GEOS-Chem simulation is higher over 
North Korea outside the mountainous east (range: 0.010-0.013 m3 µg-1) than over South Korea (0.008-
0.010 m3 µg-1). However, the difference could also be explained by missing emissions in the inventory. 490 
Further evaluation could be done with border sites in South Korea and northeastern China. China MEE 
sites along the border are consistent with high PM2.5 in north-central North Korea. 

 

 
Figure 12:  Mean PM2.5 concentrations in North Korea in 2016 as simulated by CMAQ and as represented by the GOCI PM2.5 product 495 
assuming South Korea as categorical variable. The middle panel shows surface PM2.5 concentrations from the AirKorea and China MEE 
networks. 

4 Conclusions 

We used 2011-2019 geostationary aerosol optical depth (AOD) observations from the GOCI satellite 
instrument, in combination with a random forest (RF) machine learning algorithm trained on air quality 500 
network data, to produce a continuous 24-h PM2.5 data set for eastern China, South Korea, and Japan at 
6x6 km2 resolution. The resulting gap-free GOCI PM2.5 product complements the air quality networks 
that cover only 1% of 6x6 km2 grid cells in eastern China, 7% in South Korea, and 8% in Japan. It 
provides a general dataset for PM2.5 mapping to serve regional pollution analysis, air quality 
monitoring, and public health applications.  505 

We trained the RF algorithm on gap-filled AODs from the GOCI instrument and a suite of 
twelve meteorological, geographical, and temporal predictor variables. Gap filling of AODs was done 
by a weighted combination of nearest-neighbor data and chemical transport model fields, with the 
weight serving as an additional predictor variable. The RF algorithm is successfully able to exploit 
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information encoded in AOD missingness to produce a continuous product. Testing of the RF algorithm 510 
by prediction of withheld network sites shows single-value precisions in each country of 26-32% for 24-
h PM2.5 and 12% for annual mean PM2.5, with negligible mean bias. Accuracy statistics for PM2.5 
inferred on grid cells with no AOD retrieval (i.e., estimated using equation (1)) show similar accuracy 
statistics as the entire population, indicating that the gap-filling procedure does not bias the results. The 
algorithm has only moderate success at predicting NAAQS exceedance events because most of these 515 
events are within the single-value precision, and also because of some smoothing of the extreme high 
tail of the PM2.5 frequency distribution. 

We compared the continuous 24-h GOCI PM2.5 fields to spatial and temporal patterns observed 
at the national network sites. National trends of PM2.5 inferred from GOCI and weighted by area or 
population are consistent with those observed at network sites (2015-2019 in eastern China and South 520 
Korea, 2011-2019 in Japan), confirming that the trends observed at these sites are representative. 
However, the network sites in eastern China and South Korea underestimate population exposure. The 
GOCI PM2.5 fields over South Korea show PM2.5 hotspots missing in the early AirKorea network (2015) 
that are confirmed by subsequent addition of sites to the network (2019).  The spatial distribution of 
GOCI PM2.5 trends in South Korea shows decreases everywhere except in the Seoul metropolitan area 525 
where trends are flat. We show with time series in the capital cities (Beijing, Seoul, Tokyo) that the RF 
successfully captures the seasonality of PM2.5 even though AOD and PM2.5 have different and often 
opposite seasonalities. 

We examined the ability of the RF algorithm to map air quality on urban scales by analysis of 
two multi-day pollution episodes in Seoul and Beijing. The algorithm captures the day-to-day temporal 530 
variability observed by the surface networks as well the spatial variability on the 6x6 km2 scale. The 
highest PM2.5 concentrations are underpredicted, which reflects the smoothing of the high tail of the 
distribution. 

The continuous spatial coverage of PM2.5 provided by the GOCI fields enables improved 
evaluation of the air quality models used in support of emission control policies. Comparison to a 535 
CMAQ simulation for South Korea in 2015-2019 reveals a large model underestimate in coastal 
environments undersampled by the AirKorea network. Comparison to a CMAQ simulation for North 
Korea in 2016, where the RF provides the only PM2.5 data for model evaluation, shows drastically 
different patterns with the RF featuring high PM2.5 throughout North Korea. The RF results in North 
Korea could be affected by errors due to lack of training data but they appear consistent with the PM2.5 540 
network observations at Chinese border sites. 

More work could be done to improve our GOCI PM2.5 product. We find in our current RF 
algorithm, consistent with Hu et. al. [2017], that the addition of certain predictor variables such as 
population decreases performance. This motivated our practice of excluding spatially varying but 
temporally constant fields such as elevation and emissions. However, these variables have been found 545 
to be useful in other inferences of PM2.5 from AOD data [Kloog et al., 2012; Di et al., 2019], so further 
investigation is needed on how to accommodate them in our modeling framework. A higher resolution 
meteorological reanalysis such as ERA5-Land [Muñoz-Sabater et al., 2021] could be used for the 
meteorological predictor variables and enable the inclusion of additional variables such as precipitation. 
Additional remote sensing products such as NDVI could also be useful. More work needs to be done to 550 
address our underestimate of the high tail of the PM2.5 distribution, i.e., extreme pollution events. Such 
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an underestimate is common in RF applications [Zhang and Lu, 2012] but could be addressed by 
leveraging specialized statistical tools like extreme value theory. Additional training methods could be 
used to improve the ability of the RF to predict NAAQS exceedances, such as data sampling 
adjustments. Moreover, it is possible that skill in modeling NAAQS exceedance could be improved by 555 
leveraging data that better captures diurnal variations of PM2.5, as high concentrations tend to occur at 
night. The unique geostationary capability of GOCI to generate hourly AOD data could be used to 
produce an hourly PM2.5 product. A new GOCI AOD product with 2x2 km2 resolution is expected to 
become available in the near future and will provide motivation to explore these improvements in a new 
version of our RF algorithm. 560 
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