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Abstract. The need for highly accurate atmospheric wind observations is a high priority in the science community, particularly 

for numerical weather prediction (NWP). To address this need, this study leverages Aeolus wind LIDAR Level-2B data 

provided by the European Space Agency (ESA) as a potential comparison standard to better characterize atmospheric motion 15 

vector (AMV) bias and uncertainty. AMV products from geostationary (GEO) and low Earth orbiting (LEO) satellites are 

compared with reprocessed Aeolus horizontal line-of-sight (HLOS) global winds observed in August-September 2019. Winds 

from two Aeolus observing modes are compared with AMVs: Rayleigh-clear (RAY) (derived from the molecular scattering 

signal) and Mie-cloudy (MIE) (derived from the particle scattering signal). Quality controlled (QC’d) Aeolus winds are 

collocated with QC’d AMVs in space and time, and the AMVs are projected onto the Aeolus HLOS direction. Mean collocation 20 

differences (MCD) and the standard deviation (SD) of those differences (SDCD) are determined and analyzed.  

As shown in other comparison studies, the level of agreement between AMV and Aeolus wind velocities (HLOSV) varies with 

the AMV type, geographic region, and height of the collocated winds, as well as with the Aeolus observing mode. In terms of 

global statistics, QC’d AMVs and QC’d Aeolus HLOSV are highly correlated for both observing modes. Aeolus MIE winds 

are shown to have great potential value as a comparison standard to characterize AMVs, as MIE collocations generally exhibit 25 

smaller biases and uncertainties compared to RAY collocations. Aeolus RAY winds contribute a substantial fraction of the 

total SDCD in the presence of clouds where collocation/representativeness errors are also large. Stratified comparisons with 

Aeolus HLOSV are consistent with known AMV bias and uncertainty in the tropics, NH extratropics, the Arctic, and at mid- 

to upper-levels in clear and cloudy scenes. AMVs in the SH/Antarctic generally exhibit larger than expected MCD and SDCD 
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most probably due to larger AMV height assignment errors and collocation/representativeness errors in the presence of high 30 

wind speeds and strong vertical wind shear, particularly for RAY comparisons.  

1 Introduction 

Improving atmospheric 3D wind observations in the troposphere has long been a high priority in the science community. In 

2018, the National Academies Press published the 2017-2027 decadal survey for Earth science and applications from space 

(National Academies, 2018) that included 3D winds in a series of observation requirement priorities and accompanying 35 

recommendations. The survey found that radiometry-based atmospheric motion vector (AMV) tracking should be an important 

approach to address the priority requirement of 3D winds.  

AMVs are wind observations derived from tracking clouds and water vapor features in satellite images through time. Both 

geostationary (GEO) and polar-orbiting, i.e., low Earth orbiting (LEO), satellites observe the motion of such features in several 

spectral regions. Infrared bands that are specifically sensitive to water vapor (WV) absorption can capture different atmospheric 40 

motions using the same channel by tracking (1) upper-level cloud-tops, and (2) water vapor motions in clear air related to 

upper-tropospheric features (including the jet stream and atmospheric waves) (Velden et al., 1997). Window channel Infrared 

(hereafter IR) cloud-tracked AMVs are based on longwave and shortwave channels that are useful for detecting motions in 

cloudy scenes at mid- to upper-levels related to, e.g., cirrus clouds, and at lower levels related to, e.g., low stratus clouds and 

fog, respectively (Velden et al., 2005). AMVs are regularly assimilated in numerical weather prediction (NWP), and they have 45 

been shown to positively impact operational forecast skill (e.g., Le Marshall et al., 2008; Berger et al., 2011; Wu et al., 2014). 

Since NWP data assimilation (DA) methods assume knowledge of observational error statistics, any improved characterization 

of AMV observation errors has the potential to improve NWP DA and hence forecast skill. 

Aeolus is a novel polar-orbiting satellite that was launched in 2018 by the European Space Agency (ESA) to observe vertical 

wind profiles from space (Stoffelen et al., 2005; ESA, 2008; Straume-Lindner, 2018). Onboard Aeolus is a Doppler Wind 50 

Lidar (DWL) instrument (Reitebuch et al., 2009) which observes winds along the line-of-sight (LOS) of the DWL laser 

detected by precision timing of the backscattered signal. Rayleigh and Mie receivers detect molecular backscattering and 

aerosol and cloud backscattering, respectively (Straume et al., 2018) and are converted into horizontal LOS (HLOS) wind 

velocities (HLOSV). Rayleigh and Mie receivers observe both clear and cloudy scenes; hence, the resultant wind retrievals 

fall into one of four possible observing modes: Rayleigh-clear, Rayleigh-cloudy, Mie-clear, and Mie-cloudy. Rayleigh-clear 55 

and Mie-cloudy winds are of better quality and are recommended for use in analysis based on NWP assessments by ESA and 

ECMWF (Rennie and Isaksen, 2019; Rennie et al., 2020). Rayleigh-cloudy winds are not typically used as they sample the 

same locations as Mie-cloudy winds and are generally contaminated by the Mie channel. Mie-clear winds are routinely 

discarded as they are of poorer quality since the Mie backscattered signal is dominated by noise in clear conditions (Rennie et 

al., 2020; Abdalla et al., 2020).  60 
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This study aims to leverage Aeolus Level-2B (L2B) HLOS wind profiles as a potential comparison standard to characterize 

AMV observation bias and uncertainty. The availability of the consistent, global Aeolus dataset provides the unique 

opportunity to assess the performance of AMVs relative to a global reference wind profile dataset observed by a single unit. 

Such a direct global comparison has not previously been possible due to the limited spatial coverage of other available reference 

datasets, e.g., rawinsonde winds, which are mostly available in the Northern Hemisphere over land (e.g., Chen et al., 2021; 65 

Liu et al., 2021; Martin et al., 2021). Further, Aeolus observations are made at a set of fixed vertical levels that represent the 

averages of accumulated measurements within vertical range bins. The thickness of these range bins increases with height to 

mitigate the decrease in signal strength with height (Rennie and Isaksen, 2020a). As such, height-related HLOS wind errors 

should be small relative to errors in AMV height assignment.  

The structure of the paper is as follows: Section 2 describes the datasets used. Section 3 defines the quality controls, collocation 70 

methodology, and skill metrics. Section 4 compares AMVs with collocated Aeolus RAY and MIE wind observations and 

discusses the resulting characterization of AMVs in terms of mean collocation difference (MCD) and the standard deviation 

(SD) of collocation differences (SDCD) based on different sets of conditions. AMV performance metrics specific to GOES-

16 and the suite of available LEO satellites are described in more detail. Section 5 summarizes the findings. 

2 Data 75 

2.1 Aeolus Level-2B winds 

Aeolus Level-2B wind profiles (de Kloe, 2019; de Kloe et al., 2020) used in this study are derived from retrievals from the 

satellite’s backup laser, known as Flight Model-B (FM-B), that was switched on in 2019. The L2B wind product consists of 

geo-located vector wind profiles projected along the HLOS of the FM-B laser, which points away from the sun (i.e., 

perpendicular to the spacecraft track) at 35° off nadir. Aeolus observations are collected as a line of profiles to the right of the 80 

satellite track. Because of the terminator orbit and sensor geometry away from the poles, winds in ascending orbits (southeast 

to northwest ground track) are observed around sunset (local equator crossing time (LT) is 18:00 LT), and winds in descending 

orbits (northeast to southwest ground track) are observed around sunrise (local equator crossing time is 06:00 LT). The satellite 

completes one orbit around Earth in approximately 92 minutes and has a 7 day repeat cycle.  

This study uses Aeolus wind profiles (baseline B10 product) during the period of 2 August – 16 September 2019, with 12 85 

hours of 3 September omitted to account for the corresponding Aeolus blocklisted1 period (defined as a period of time when 

the Aeolus dataset is known to be degraded and should not be included in research or operations). The selected period of study 

was recommended by ESA for analysis as the Aeolus data are more stable and biases are relatively small (Rennie and Isaksen, 

                                                        
1 The meaning of the term “blocklist” is identical to the term “blacklist”; however, “blacklist” has racist connotations (Conger, 

2021). The term “blocklist” is intentionally used in an effort to support the usage of more neutral computing terminology in 

scientific research; in fact, the Aeolus project has already adopted this new terminology and refers to the list of dates when 

Aeolus data should be excluded as “blocklisted” dates. 
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2019; Rennie and Isaksen, 2020a). In this study, profiles of Aeolus Rayleigh-clear HLOS winds (hereafter RAY winds) and 

Mie-cloudy HLOS winds (hereafter MIE winds) are collocated with AMVs. The AMVs projected onto the collocated Aeolus 90 

HLOS will be referred to as AMV winds and the original AMVs will be referred to as AMV wind vectors hereafter. Data from 

the other observing modes (Rayleigh-cloudy and Mie-clear) are of poorer quality and quantity and are not used.  

The Aeolus winds were reprocessed by ESA using the updated L2B processor v3.3 that includes the M1 mirror temperature 

bias correction that was activated on 20 April 2020 (Rennie and Isaksen, 2020a). The M1 mirror temperatures are scene-

dependent and vary based on the top-of-atmosphere radiation. Since the M1 mirror reflects and focuses the backscattered laser 95 

signal onto the Rayleigh and Mie receivers, changes in the mirror shape due to thermal variations result in perceived frequency 

shifts of the signal. The operational M1 bias correction uses instrument temperatures as predictors and innovation departures 

from ECMWF backgrounds as a reference, and is shown to improve the quality of the Rayleigh and Mie wind retrievals, 

reducing the Aeolus HLOS wind bias relative to ECMWF background winds by over 80%: the global average Rayleigh-clear 

bias decreased to near-zero and the Mie bias decreased to -0.15 m s-1 (Abdalla et al., 2020). While the M1 bias correction is 100 

capable of considerably reducing the telescope-induced wind bias, some residual bias may remain, e.g., in cases where the top-

of-atmosphere reflected radiation strongly influences the telescope temperature (Weiler et al., 2021). Additionally, residual 

biases may remain in part due to potential calibration issues of the Aeolus L2B winds that could in turn lead to biases between 

Aeolus and NWP background winds (Liu et al., 2022).   

Recent studies have compared Aeolus winds with various reference wind datasets for validation (e.g., rawinsondes and NWP 105 

forecasts). For example, Martin et al. (2021) validated Aeolus HLOS winds against rawinsonde and NWP forecast equivalents 

for 2018-2019. They found that the estimates of global mean absolute biases and standard deviations of Aeolus based on 

comparisons with rawinsonde, the ECMWF Integrated Forecasting System (IFS), and the German Weather Service (DWD) 

forecast model reference datasets are all comparable, with bias magnitudes ranging from 1.8 to 2.3 m s-1 for Rayleigh and 1.3 

to 1.9 m s-1 for Mie and standard deviations ranging from 4.1 to 4.4 m s-1 for Rayleigh and 1.9 to 3.0 m s-1 for Mie. In addition, 110 

the biases vary with latitude and season in a similar way from reference dataset to reference dataset, with the largest differences 

observed in the tropics and extratropics, particularly during the summer/autumn season. Similarly, Straume et al. (2020) quality 

assessments showed good correspondence between Aeolus L2B winds and ECMWF model winds for September 2018. Even 

though Aeolus exhibited random errors that exceeded the mission requirements (4.3 m s-1 for Rayleigh) or just met the 

requirements (2.1 m s-1 for Mie), the Aeolus winds still had a positive impact on preliminary NWP experiments. (It should be 115 

noted that the results from Martin et al. (2021) and Straume et al. (2020) characterize Aeolus winds before they were 

reprocessed with the significant M1 wind bias correction applied. The Aeolus bias and error estimates should improve when 

using the reprocessed winds.) In addition, ECMWF conducted several studies to verify the quality of Aeolus observations 

(e.g., Rennie and Isaksen, 2019; de Kloe et al., 2020). They found that Aeolus provides high quality wind observations relative 

to ECMWF backgrounds after applying the M1 bias correction and proper quality controls (QC) (see Section 3) as well as 120 

accounting for Aeolus blocklisted dates. RAY winds minus ECMWF IFS HLOS winds have a global mean of -0.04 m s-1 and 
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a standard deviation of 5.3 m s-1. MIE minus IFS winds have a global mean of -0.16 m s-1 and a smaller standard deviation of 

3.8 m s-1 (Abdalla et al., 2020). Related NWP impact assessments show that Aeolus has a positive impact on operational global 

forecasts (Cress, 2020; Rennie and Isaksen, 2020b) at major NWP centers including ECMWF, the DWD, Météo-France, and 

the UK Met Office. It is noted that the ECMWF IFS is used as a reference in the calculation of the reprocessed Aeolus L2B 125 

winds (where the M1 bias correction is retroactively applied), and thus a model dependency is introduced into the dataset 

(Weiler et al., 2021).  

Despite the high quality and positive impacts, limitations remain with the Aeolus L2B dataset (Abdalla et al., 2020; Weiler et 

al., 2021). Mie and Rayleigh random errors could be further improved, as the Mie error standard deviations average to 

approximately 3.5 m s-1 and Rayleigh error standard deviations increase from 4 m s-1 to over 5 m s-1 from July to December 130 

2019 (Abdalla et al., 2020). Further, MIE winds exhibit a slow (fast) wind speed dependent bias for high HLOS speeds of 

negative (positive) sign. Additionally, at the time of writing, issues thought to be due to instrumentation or software 

malfunctions have become apparent that affect the quality of the winds. One specific issue is a more rapid decrease in the 

atmospheric return signal relative to the laser energy itself, and this is linked to slowly increasing random errors for Rayleigh-

clear winds (Straume et al., 2021). Efforts at ESA are currently underway to resolve these issues. 135 

2.2 Atmospheric motion vectors 

AMVs examined in this study (Tables 1-2) are operationally used by the National Oceanic and Atmospheric Administration 

(NOAA) National Centers for Environmental Prediction (NCEP) and are archived in 6-hour satellite wind (SATWND) BUFR 

files centered on the analysis times 00, 06, 12, and 18 UTC. All AMVs included in the SATWND files are produced by 

NESDIS, JMA and EUMETSAT. AMVs derived from sequences of GEO satellite images are observed equatorward of ~60° 140 

latitude and are stratified by type, including IR, water vapor cloudy (WVcloud), and water vapor clear (WVclear) AMVs; 

visible band AMVs are not used in this study. Polar AMVs (observed at latitudes poleward of 60°) are derived from cloud-

tracked IR channels in areas covered by three consecutive LEO satellite images.  

Table 1: Collocation counts for each type of GEO AMV. The table lists total counts (RAY + MIE) and counts of collocated AMVs 

(% of total in parentheses) with forecast-independent QI > 80% that pass RAY QC and MIE QC. 145 

Satellite Operator Sensor 
Total Collocation Counts Counts (%) Passing RAY QC Counts (%) Passing MIE QC 

IR WVcloud WVclear IR WVcloud WVclear IR WVcloud WVclear 

GOES-15 NOAA 
GOES 

Imager 
102019 26580 17509 15389 (15.1) 7089 (26.7) 6700 (38.3) 16825 (16.5) 9053 (34.1) 935 (5.3) 

GOES-16 NOAA ABI 138851 40197 34784 22723 (16.4) 11380 (28.3) 15180 (43.6) 31200 (22.5) 18418 (45.8) 1480 (4.3) 

Himawari-8 JMA AHI 84359 49892 — 20565 (24.4) 22170 (44.4) — 24066 (28.5) 17215 (34.5) — 

INSAT 3D ISRO 
INSAT 
Imager 

30724 20089 — 1353 (4.4) 1916 (9.5) — 1133 (3.7) 551 (2.7) — 

Meteosat-8 EUMETSAT SEVIRI 80966 69405 31426 11722 (14.5) 18505 (26.7) 5612 (17.9) 14070 (17.4) 20714 (29.8) 582 (1.9) 

Meteosat-11 EUMETSAT SEVIRI 75192 57975 32948 11118 (14.8) 16694 (28.8) 6047 (18.4) 11977 (15.9) 17022 (29.4) 510 (1.5) 
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Table 2: As in Table 1 but for all LEO IR window channel AMVs. 

Satellite Operator Sensor Total Collocation Counts Counts (%) Passing RAY QC Counts (%) Passing MIE QC 

Aqua NASA MODIS 32806 1732 (5.3) 1882 (5.7) 

MetOp-A EUMETSAT AVHRR 27710 2935 (10.6) 4930 (17.8) 

MetOp-B EUMETSAT AVHRR 31258 3354 (10.7) 5652 (18.1) 

NOAA-15 NOAA AVHRR 4879 489 (10.0) 654 (13.4) 

NOAA-18 NOAA AVHRR 3822 358 (9.4) 557 (14.6) 

NOAA-19 NOAA AVHRR 10456 1074 (10.3) 1308 (12.5) 

NOAA-20 NOAA VIIRS 70610 5230 (7.4) 9598 (13.6) 

S-NPP NOAA VIIRS 60395 4262 (7.1) 8268 (13.7) 

Terra NASA MODIS 17818 1916 (10.8) 2571 (14.4) 

 

Numerous studies have evaluated bias and uncertainty characteristics of AMVs through direct comparison with in situ 150 

rawinsonde observations and NWP analyses (e.g., Velden et al., 1997; Bormann et al., 2002, 2003; Le Marshall et al., 2008; 

Bedka et al., 2009; Velden and Bedka, 2009; Key et al., 2016; Daniels et al., 2018; Cotton et al., 2020). The derived motion 

wind algorithms that generate IR, WVcloud, and WVclear AMVs can vary between centers (Santek et al., 2014; Santek et al., 

2019). AMV performance metrics vary significantly by season, level, type, satellite/producer, etc. (e.g., Santek et al., 2019; 

Daniels et al., 2018; Cotton et al., 2020; Key et al., 2016; Le Marshall et al., 2008). For example, typical values of AMV wind 155 

speed bias acquired from seven different data producers and verified against rawinsonde winds can range from -1.8 m s-1 to 

0.3 m s-1, and wind speed uncertainty represented by standard deviation can range from 4 to 6.5 m s-1, with higher vector wind 

root mean square errors of 6-9 m s-1. Even for a single satellite, e.g., GOES-16 or Aqua, speed bias and uncertainty can vary 

geographically as well as vertically.  

In fact, AMVs have state-dependent errors that can vary based on wind speed and water vapor content and gradient (Posselt 160 

et al., 2019). Past reports show that AMVs tend to exhibit a slow speed bias (1-5 m s-1) at high levels (above 400 hPa) in the 

extratropics and a fast speed bias (1-3 m s-1) at middle levels (400-700 hPa) in the tropics (Bormann et al., 2002; Schmetz et 

al., 1993; von Bremen, 2008). Recent improvements to AMV derivation schemes, e.g., in GOES-16/17 and Himawari-8, have 

reduced the fast speed bias, with the residual bias largely attributed to height assignment errors (Cotton et al., 2020). Height 

assignments to the AMVs via satellite- and ground-based techniques (Jung et al., 2010; Salonen et al., 2015) have been shown 165 

to account for a large source of AMV uncertainty (Velden and Bedka, 2009). One factor of height assignment error is that 

AMVs are generally assigned to discrete levels when instead they better correlate with atmospheric motions in layers of varying 

depth that depend on the vertical moisture profile (Velden et al., 2005; Velden and Bedka, 2009). Moreover, speed biases and 
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uncertainties tend to be higher at higher elevations and in combination with strong wind shear (Bormann et al., 2002; Cordoba 

et al., 2017), and this is attributable to larger height assignment errors (hereafter the wind-shear height assignment error effect). 170 

3 Approach and quality controls 

Aeolus HLOS global wind profiles are collocated with satellite-derived AMVs. The collocation approach implemented here 

was also used by Hoffman et al. (2022) and follows that employed at UW-Madison/Cooperative Institute for Meteorological 

Satellite Studies (CIMSS) (Santek et al., 2021). AMV collocation datasets are prepared separately for RAY and MIE winds. 

(A single AMV might appear in both datasets.) AMV observations are compared with Aeolus observations from the same and 175 

neighboring 6-h cycles to account for all possible collocations. An Aeolus observation is retained for comparison with an 

AMV if the Aeolus observation satisfies all the following collocation criteria: 

1. Aeolus time falls within 60 minutes of the AMV time. 

2. Aeolus pressure is within 0.04 log10(pressure) of the AMV height assignment. (Note that the log of pressures 

is used to account for the non-linear decrease of pressure with increasing altitude.) 180 

3. Aeolus observation location is within 100 km horizontal great circle distance of the AMV location. 

If multiple Aeolus observations satisfy these criteria for the same AMV observation, the Aeolus observation closest in distance 

is retained. Then, if multiple Aeolus observations still meet all collocation criteria, the observation closest in pressure to the 

AMV observation is kept for analysis. There is no need to consider closeness in time given the collocation criteria and the 

Aeolus orbit. After collocation, the AMV wind vector is projected onto the HLOS direction of its paired Aeolus observation.  185 

Our choice of collocation criteria is conservative compared to those defined by the IWWG 1998 workshop (Velden and 

Holmlund 1998). Although the larger time and distance criteria defined by IWWG (90 vs 60 minutes and 150 vs 100 km) 

might retain more collocation pairs and thus a larger sample, the collocated winds would more likely have larger MCD and 

SDCD. Our smaller time and distance criteria restrict the number of possible Aeolus matches to any one AMV and help avoid 

Aeolus matches from two different orbits. The IWWG height criterion is a fixed pressure difference (25 hPa) that might be too 190 

small at lower levels where pressure layers are tightly spaced in elevation but too large in the upper atmosphere where the 

elevation distance between pressure layers is much larger. Our height criterion is based on a log10 scale and accounts for the 

varying distances between pressure layers throughout the vertical and corresponds to pressure differences ranging from 

approximately 300 to 1 hPa for pressures from 1000 to 10 hPa, respectively. 

Once collocated, Aeolus winds and AMVs are filtered by additional QC tests to retain pairs of QC’d observations. (QC was 195 

implemented after collocation in order to test and compare the use of different QC criteria without having to repeat the 

collocation process.) Aeolus QC criteria were chosen following ESA’s recommendations for the RAY and MIE observing 

modes, and these are consistent with those listed in Rennie and Isaksen (2020a). Specifically, RAY winds are rejected if winds 
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are close to topography (pressure > 800 hPa), have horizontal accumulation lengths < 60 km, vertical accumulation lengths < 

0.3 km, L2B uncertainty > 12 m s-1 at upper levels (pressure < 200 hPa), or L2B uncertainty > 8.5 m s-1 at lower levels (pressure 200 

> 200 hPa). L2B uncertainty refers to the Aeolus HLOS wind error estimate assigned to each wind measurement. Horizontal 

and vertical accumulation lengths refer to the horizontal and vertical distances over which individual measurement signals are 

accumulated and averaged to improve the signal-to-noise ratio. In this way, the Aeolus observations represent wind volumes 

and not discrete points or levels. The accumulation lengths can vary and depend on the processor settings. Similarly, MIE 

winds are rejected if winds are near topography (pressure > 800 hPa) or L2B uncertainty > 5 m s-1 at any level. For all AMVs, 205 

a forecast-independent quality indicator (QI) of at least 80% is used to filter and retain the high-quality data; this threshold is 

recommended for AMV studies and in NWP by the user community and has been shown to improve statistical agreement 

between AMV-producing centers (Santek et al., 2019). No explicit outlier QC is applied and since there are no extreme outliers 

(seen below in Figs. 6 and 9), the QC that is applied is sufficient to eliminate them. Total collocation counts per satellite as 

well as the percentage of observations that pass QC for each AMV type and Aeolus mode are presented in Tables 1-2. (It is 210 

noted that Himawari-8 and INSAT 3D WVclear AMVs are not included in the NCEP data archive.) 

The performance of QC’d AMVs relative to collocated QC’d Aeolus winds are characterized by analyzing the statistics of the 

difference AMV HLOSV minus Aeolus HLOSV. The two key statistics calculated for the collocation difference (always in 

the sense of AMV minus Aeolus) are the MCD and the SDCD. Because we are comparing the AMV and Aeolus HLOSV, a 

scalar quantity, our statistics can only be analogs of the standard one. We include the formulae for all the statistics in Appendix 215 

A. It is important to emphasize that the collocation differences have several components that include errors in both AMVs and 

Aeolus winds. Specifically, these are due to the observation error of the AMVs and Aeolus HLOSV, representativeness errors 

due to differences in scales observed, which are related to different shapes of the observing volumes, and to collocation errors 

due to the space and time mismatches between the observations. As previously mentioned, the estimated SD for Aeolus L2B 

winds is 3.8 m s-1 for MIE and 5.3 m s-1 for RAY. We note that it might be possible to estimate the statistics of the collocation 220 

and representativeness errors. The collocation difference may be considered to have three independent components: the error 

of the AMV winds, the error of the Aeolus winds, and the difference between the truth evaluated for the AMV and the Aeolus 

winds. We can isolate the first component, the AMV error, if we know the other two components, and we already have 

estimates of the second component, the Aeolus wind error in the L2B data. The last component is the error due to 

representativeness and collocation differences. The differences in time and location give rise to the collocation error. The 225 

difference in the shapes of the observing volumes gives rise to the representativeness error. If we simulate the AMV and Aeolus 

observations from a high-quality forecast or analysis or simulation, taken to be the truth, then we can calculate estimates of 

the combined representativeness and collocation errors. If the truth fields are simply interpolated to the observation locations 

then the calculated estimates are for the collocation errors alone. For this study we take the first step in isolating the 

collocation/representativeness errors by removing the influence of the Aeolus error from the SDCD, as the simulation of the 230 

AMV and Aeolus observations is out of the scope of this study. The removal of the Aeolus error estimate results in a smaller 
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SDCD, which still includes AMV random and representativeness errors and collocation error. The SDCD are larger for RAY 

comparisons than for MIE comparisons in terms of both the original (or total) and adjusted values. Although the Aeolus L2B 

uncertainty is highly dependent on the time period and processor used to determine the HLOS winds, it is the correct 

uncertainty estimate for our study. 235 

The geometry of the Aeolus observation affects how the HLOS winds are interpreted for analysis (Straume et al., 2018). The 

observed HLOSV provides both a speed and direction and represents the motion of air projected onto the line-of-sight of the 

laser that in 2D space is nearly orthogonal to the satellite orbit direction (see Fig. 1 in de Kloe, 2019). Thus, in the ascending 

orbit phase away from the poles, a positive HLOSV indicates a westerly wind, and a negative HLOSV indicates an easterly 

wind; the opposite is true for winds in the descending orbit phase. Figure 1 illustrates that in the tropics the HLOSV is 240 

approximately equal to the zonal wind in ascending and descending orbit phases. In the left column of Fig. 1, profiles of mean 

HLOSV for AMVs (solid lines) and Aeolus (long dashed lines) as well as mean AMV wind speed not projected onto the HLOS 

direction (short dashed lines) are shown. In the center column of Fig. 1, HLOSV MCD (solid lines) and total SDCD (short 

dashed lines) are plotted as well as the adjusted SDCD with the mean Aeolus L2B uncertainty removed (long dashed lines). 

Open circles indicate pressure levels at which MCD are statistically significant at the 95% level (p-value < 0.05) using the 245 

paired two-sided Student’s t-

test. Corresponding collocation 

counts are shown in the right 

column of Fig. 1. The mean 

AMV and Aeolus HLOSV and 250 

their differences exhibit similar 

magnitudes of opposite sign 

throughout the vertical between 

ascending (Fig. 1a-b) and 

descending (Fig. 1d-e) orbit 255 

phases. This indicates that 

mean HLOSV differences that 

include winds from both 

ascending and descending orbit 

phases would be small and 260 

would represent differences of 

larger opposing magnitudes. 

Moreover, the removal of 

Aeolus L2B uncertainties from 

Figure 1: Vertical comparisons of collocated GOES-16 AMVs and RAY winds in the tropics (30° 

S to 30° N). The top row shows Aeolus ascending orbits (ASC), (a) mean AMV (solid lines) and 

RAY (dashed lines) winds (m s-1), (b) MCD (solid), SDCD (short dashed), and AMV HLOSV 

error as represented by SDCD-Aeolus L2B uncertainty (long dashed) (m s-1); and (c) collocation 

counts. (d-f) as in (a-c) but for Aeolus descending orbits (DESC). Colors denote AMV type: IR 

(red), WV cloud (blue), and WV clear (green). Colored open circles indicate levels where MCD 

are statistically significant at the 95% level (p-value < 0.05) using the paired Student’s t-test. 

Vertical zero lines are displayed in the left and center panels in black. Levels with observation 

counts > 25 are plotted. 
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the total SDCD results in adjusted SDCD of similar magnitude between the orbit phases, implying that the quality of Aeolus 265 

winds is not wholly dependent on orbit phase during the study period. To simplify the interpretation of the observed HLOS 

winds, we multiply HLOSV in descending orbit phases by -1. In doing so, positive HLOSV (away from the poles) now 

indicates a westerly wind and negative HLOSV an easterly wind, regardless of Aeolus orbit phase. All statistics in what 

follows, including Figs. 2, 3, and 5-14, are based on collocation differences that combine ascending and -1 times descending 

orbit phase winds. 270 

4 AMV-Aeolus comparison results 

In this section we examine in detail the performance of AMVs from the GOES-16 GEO satellite and summarize the AMV 

performance of all LEO satellites available in the study period. Here, the reader should keep in mind that performance is 

relative to Aeolus and for the vector AMV projected onto the Aeolus HLOS. In agreement with previous studies, our results 

confirm that the level of agreement between AMVs and Aeolus winds varies per combination of conditions including the 275 

observing scene type (clear vs. cloudy) coupled with AMV type, geographic region, and height of the observable. Moreover, 

the findings highlight the value of using Aeolus MIE winds as a comparison standard to characterize AMVs. For context, we 

begin with summary statistics for samples that include all conditions. 

Figure 2 summarizes the performance of all available GEO AMV HLOS winds relative to Aeolus RAY (left column) and MIE 

winds (right column) in the period of study; likewise, Fig. 3 summarizes LEO AMV performance. The statistics include 280 

correlation (r), MCD, and SDCD, and their formulae are listed in Appendix A. The correlation between collocated HLOS 

winds describes the overall relation of AMVs to Aeolus. The other statistics have their usual meaning (Wilks, 2011) applied 

to the HLOSV. Since the MCD are small compared to the SDCD, the RMSD and SDCD are very similar and in the following 

we will only discuss the SDCD, but any statement concerning the SDCD also applies to the RMSD. Using the paired two-

tailed Student’s t-test, mean differences significantly different from zero at the 90% (p-value < 0.10) and 95% (p-value < 0.05) 285 

confidence levels are indicated in Figs. 2-3 by striped and solid bars, respectively, and dotted bars indicate the differences are 

not statistically significant. Observation counts are displayed by grey-blue shading. Direct comparisons between our statistics 

and those from previous studies are limited because all our statistics are HLOSV, not vector winds. Although we compare 

mean AMV-Aeolus collocation differences with speed statistics, recall that in general, the HLOS wind generally approximates 

the zonal component of the horizontal flow rather than the wind speed. 290 

The main points from the summary collocation statistics of RAY and MIE winds with AMVs are the following: MIE 

comparisons exhibit higher correlations and lower SDCD values relative to RAY, reflecting the general higher accuracy of 

MIE vs. RAY winds. In Fig. 2, GOES and Himawari-8 AMVs have high correlations with Aeolus (> 0.90). MCD vary 

depending on the AMV satellite, but are generally smallest in the tropics and largest in the SH extratropics where the SDCD 

are larger. For RAY comparisons with GOES and Himawari-8 AMVs, the SDCD range from 5.27 m s-1 in the NH extratropics 295 

to 6.5 m s-1 in the SH extratropics and are comparable to wind speed RMSD relative to rawinsonde winds (Santek et al., 2019). 
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Of the satellites listed in Fig. 2, Meteosat wind correlations are lowest and corresponding SDCD values are highest by at least 

2-3 m s-1. LEO AMV-Aeolus collocations in Fig. 3 exhibit statistically significant MCD that are comparable to observed wind 

speed biases for Aqua and Terra AMVs (Key et al., 2016; Le Marshall et al., 2008). AMVs from most LEO satellites exhibit 

higher SDCD values by ~1-2 m s-1 relative to GEO, particularly in the Antarctic where SDCD values are on the order of 7.5-300 

8.5 m s-1 for RAY and 5.9-7.5 m s-1 for MIE. 

 

Figure 2: AMV-Aeolus global mean statistics in the (top row) NH, (middle row) tropics (TR), and (bottom row) SH for GEO satellites 

that include correlation (r) in red, mean collocation difference (MCD) between the HLOS winds (AMV-Aeolus) in navy blue, 

standard deviation of the collocation difference (SDCD) in yellow, and collocation counts as light blue shaded areas. Solid colors 305 
denote 95% statistical significance, stripes denote 90% statistical significance, and dots indicate the differences are not statistically 

significant. 
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Differences in the SH extratropics and Antarctic pole exhibit higher SDCD values compared with the rest of the globe. This is 

likely due to several factors. During the study period, the SH region of GEO fields-of-view covers a portion of the winter storm 

tracks that propagate eastward all the way around the Southern Ocean. The SH storm tracks exist year-round, and in winter 310 

(June-July-August) the upper-tropospheric subtropical jet is stronger and acts as a waveguide for eastward propagating 

baroclinic waves over a broader latitude range (Trenberth, 1991; Nakamura and Shimpo, 2004; Hoskins and Hodges, 2005), 

thus amplifying wind shear and storm track intensity. This is one factor that explains the higher SDCD values observed in 

GEO differences in the SH extratropics, as AMV uncertainties tend to increase with increasing wind speed (Posselt et al., 

2019) and high wind shear (Bormann et al., 2002; Cordoba et al., 2017). In the Antarctic polar region, the general strengthening 315 

of the polar vortex aloft in late winter/early spring (i.e., during the study period) is related to a stronger equator-pole 

temperature gradient brought about by gradually increasing subtropical lower stratospheric temperatures from March to 

September (Zuev and Savelieva, 2019). A stronger Antarctic polar vortex is associated with stronger zonal winds aloft (and 

stronger shear) which could increase the corresponding SDCD values for AMVs due to the wind-shear height assignment error 

effect. Surface effects may also play a role, as very cold brightness temperatures at or near the polar surface may be 320 

misinterpreted as cloud tops due to the low temperature contrast between clouds and the surface snow or ice (Key et al., 2016). 

 

Figure 3: As in Fig. 2 but for LEO satellites. 

As a case study, we examine in greater detail the performance of AMVs from GOES-16, a GEO satellite (Section 4.1). This is 

done because compared with other GEO satellites, GOES-16 exhibits high correlations with Aeolus RAY (> 0.90) and MIE 325 
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winds (> 0.94), relatively small SDCD (5.8-6.5 m s-1 for RAY, 4.7-5 m s-1 for MIE), and have the largest extratropical sample 

size from which to compute robust statistics (see Fig. 2). The other GEO satellites are not further examined as they exhibit 

larger RAY SDCD (Meteosat-8 and -11), have a much smaller extratropical sample size (Himawari-8, Meteosat-8 and -11), 

or are not actively used in NCEP operations (GOES-15 and INSAT 3D). GOES-16 AMVs are derived from full disk images 

centered at 75.2° W longitude from the onboard Advanced Baseline Imager (ABI). GOES-16 cloud-top AMVs are generally 330 

of good quality and when validated against rawinsonde winds exhibit a relatively small mean difference in wind speed ranging 

from -1.0 m s-1 to +0.5 m s-1 and mean vector differences of 3-6 m s-1 that tend to increase with height (Daniels et al., 2018). 

Figure 4 presents the GOES-16/Aeolus collocation number densities (i.e., the total number of collocated observation pairs 

within each grid cell on a 1.25° (~140 km) resolution map) covering the period of study. QC’d GOES-16 AMVs collocated 

with QC’d RAY and MIE winds are shown in Fig. 4a and Fig. 4b, respectively. MIE collocations exhibit three bands of high-335 

density winds along the intertropical convergence zone (ITCZ) and extratropical storm tracks, with few winds found between 

0-30° S. A similar but smoother version of the MIE distributions is shown for collocated RAY winds. The MIE collocation 

number density is greater than that for RAY, as AMV observation density tends to be higher in very cloudy or very moist 

scenes (Velden et al., 1997).  

 340 

Figure 4: Number densities of quality-controlled GOES-16 AMV observations collocated with quality-controlled Aeolus (a) 

Rayleigh-clear (RAY), and (b) Mie-cloudy (MIE) HLOS winds. Colors indicate total number of collocated observation pairs within 

a grid cell at 1.25° (approximately 140 km in the N-S direction) horizontal resolution. Total observation count per panel is displayed 

at the top left corner. This and all subsequent plots are for all collocations with quality controlled AMV and Aeolus winds during 

the study period (2 August 2019 to 16 September 2019). 345 
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For the LEO perspective, we choose to examine the performance of all LEO IR AMVs rather than from a single satellite 

(Section 4.2). This is done because compared to GEO, LEO AMVs from each satellite comprise a relatively small sample of 

collocated winds, and this would render any associated performance metrics unreliable. Further, unlike the suite of available 

GEO satellites where each observe a different 

region of the globe (except for small areas 350 

where the footprints of neighboring satellites 

overlap), each LEO satellite observes AMVs 

in the same polar regions and thus samples the 

same atmospheric motions. Figure 5 depicts 

observation number densities of QC’d LEO 355 

AMVs collocated with QC’d RAY and MIE 

winds in the Arctic and Antarctic polar 

regions bounded by 60° latitude: Arctic RAY 

(Fig. 5a), Arctic MIE (Fig. 5b), Antarctic 

RAY (Fig. 5c), and Antarctic MIE (Fig. 5d). 360 

In general, more LEO/MIE collocation pairs 

pass QC and are retained in the analysis than 

for RAY winds. Collocations in the Arctic are 

found across the high latitudes with MIE 

comparisons exhibiting higher concentrations 365 

poleward of Eurasia and North America. 

Antarctic collocations are primarily found 

over the western half of the continent. In this 

region, water vapor features are more suitable 

for tracking and deriving AMVs as they exist 370 

downstream of intense upper-level storm 

tracks (Hoskins and Hodges, 2005) in an area 

of higher annual precipitation (Grieger et al., 

2016).  

4.1 GOES-16 AMVs vs. Aeolus 375 

To increase the size of our collocation data set, we compared all types of GOES-16 AMVs to both Rayleigh-clear and Mie-

cloudy winds. In addition, we do not show results from WVclear AMV collocations with Mie-cloudy winds as correlations for 

this category of collocations are poor and the sample size is very small (see Table 1), and this result may be unreliable. With 

Figure 5: Number densities of IR-derived AMVs from all available LEO satellites 

collocated with Aeolus RAY (left, a, c) and MIE (right, b, d) winds in the (a, b) 

Arctic (north of 60° N), and (c, d) Antarctic (south of 60° S). Colors indicate total 

number of collocated observation pairs within a grid cell at 1.25° (approximately 

140 km in the N-S direction) horizontal resolution. Dashed latitude lines are 

spaced every 5 degrees. Total observation count per panel is displayed at the top 

left corner. 
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a larger data set it might be possible to compare Rayleigh-clear and Mie-cloudy winds to clear and cloudy AMVs only, 

respectively. Additionally, winds retrieved from tracking clear-sky and cloud motions represent different dynamical features 380 

and tend to behave differently. For example, the recommended time interval for tracking cloud motions is 10-15 minutes to 

capture short cloud lifetimes and rapid intensification/deformation, while the recommended time interval for clear-air motions 

of 30 minutes is suitable to capture variations in jet streams and other clear-air features (Schmetz et al., 2000). 

4.1.1 Rayleigh-clear (RAY) comparisons 

Figure 6 depicts density scatterplots that summarize the relationship of GOES-16 AMVs to RAY winds to highlight the 385 

regional differences in IR (Fig. 6a, 6d, 6g), WVcloud (Fig. 6b, 6e, 6h), and WVclear AMVs (Fig. 6c, 6f, 6i). Sample statistics 

are based on Aeolus as the reference dataset and are displayed in the lower right of each panel. AMVs are highly correlated 

with RAY winds (0.88-0.91 in the extratropics and 0.93-0.95 in the tropics), with most collocations for each AMV type falling 

close to the one-to-one line that indicates a perfect match. Note that in the NH and SH extratropics, most collocations are found 

in the upper-right quadrant where HLOS winds are of positive sign and indicate the dominant westerly flow of the extratropics. 390 

In the tropics, many collocations are grouped in the lower-left quadrant that indicates the easterly flow of the tropical trade 

winds at lower levels, and the rest are found in the upper-right quadrant that represents westerly tropical flow at upper levels. 

Of the three AMV types, the best match is for WVclear AMVs, with the comparisons exhibiting the smallest SDCD values in 

each geographic region, that in turn are comparable to known wind speed SD and RMS of all GEO AMVs relative to 

rawinsonde winds (Santek et al., 2019). This is expected since WVclear AMVs and Aeolus RAY winds are most probably 395 

sampling similar clear-sky scenes, and clear scenes are more homogeneous over time and space scales, which in turn implies 

smaller collocation differences. Ideally, one would expect samples large enough to provide statistically significant collocation 

differences between RAY winds and WVclear AMVs only; as it turns out, collocation differences are also statistically 

significant for IR and WVcloud AMVs (see Fig. 7). In these cases cloudy AMVs are collocated with Aeolus RAY winds that 

represent clear scenes, and since they do not observe the same type of scene, Aeolus and/or AMV representativeness errors 400 

are most probably larger (hereafter we refer to this as the cloudy/clear sampling effect).  

Figure 7 presents mean vertical profiles of GOES-16 AMVs and Aeolus RAY winds, and corresponding MCD and SDCD 

distributions, similar to what is shown in Fig. 1. This perspective can provide additional insight into the accuracy of AMVs in 

representing the mean horizontal flow throughout the atmospheric column. Mean vertical profiles are plotted per AMV type 

in the NH extratropics (Fig. 7a-c), tropics (Fig. 7d-f), and SH extratropics (Fig. 7g-i). In Figs. 7a, 7d, and 7g, AMV HLOSV 405 

(solid lines) and Aeolus HLOSV (long dashed lines) generally show good agreement at all latitudes, and large gradients of 

HLOSV correspond to layers of strong vertical wind shear inferred by the higher rate of change of AMV wind speed in the 

vertical (short dashed lines). Corresponding MCD are statistically significant at most levels at all latitudes (Figs. 7b, 7e, and 

7h) and seem to depict known AMV biases relative to high-quality sources of wind profile observations, particularly outside 

of the SH. For example, in the NH extratropics, MCD range from -0.5 to -1.0 m s-1 at levels where collocation counts peak and 410 
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could represent a small slow AMV bias as previously noted by Bormann et al. (2002). In the tropics, AMVs exhibit an apparent 

small fast bias, that is the positive MCD of 0.5 to 1.0 m s-1, that could be associated with larger AMV errors (and larger Aeolus 

errors) in layers of high winds and strong vertical wind shear (Cotton et al., 2020).  

Figure 6: Density scatterplot of collocated GOES-16 AMVs and RAY winds. Rows are for the (top, a-c) NH extratropics (30-60° N), 

(middle, d-f) tropics (TR) (30° S to 30° N), and (bottom, g-i) SH extratropics (30-60° S). Columns are for different AMV types: (left, 

a, d, g) IR, (center, b, e, h) WVcloud, and (right, c, f, i) WVclear. Colors indicate total number of collocated observation pairs within 

the cells plotted, which are 1 ms-1 on a side. Sample statistics are displayed in the bottom right corner of each panel. Horizontal and 

vertical zero lines are plotted in black, as is the diagonal one-to-one line. Red star denotes statistical significance at 95% using the 

paired two-tailed Student’s t-test. HLOSV units are m s-1. 
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Figure 7: Vertical profiles of collocated GOES-16 AMVs and RAY winds. The top row shows the NH extratropics (30-60° N), (a) 415 
mean AMV HLOSV (solid lines), RAY HLOSV (long dashed lines), and mean AMV wind speed (short dashed lines) (m s-1); (b) 

MCD (solid), SDCD (short dashed), and AMV HLOSV error as represented by SDCD-Aeolus L2B uncertainty (long dashed) (m s-

1); and (c) collocation counts. (d-f) as in (a-c) but for the tropics (30° S to 30° N), and (g-i) as in (a-c) but for the SH extratropics (30-

60° S). Colors denote AMV type: IR (red), WV cloud (blue), and WV clear (green). Colored open circles indicate levels where MCD 

are statistically significant at the 95% level (p-value < 0.05) using the paired Student’s t-test. Vertical zero lines are displayed in the 420 
left and center panels in black. Levels with observation counts > 25 are plotted. 
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Profiles of the total RAY SDCD (short dashed lines in Figs. 7b, 7e, and 7h) that include AMV errors, Aeolus errors, and 

collocation/representativeness errors exhibit rather large values (> 6 m s-1) that tend to increase with height in layers of strong 

wind shear, particularly in the tropics and SH extratropics. Moreover, the Aeolus QC acts to retain HLOSV with larger 

uncertainties at levels above 200 hPa; this would explain the corresponding increase in total SDCD at those levels. To better 425 

isolate the AMV error, the Aeolus error estimate is removed from the total SDCD at each level, resulting in mean profiles of 

adjusted SDCD (long dashed lines in Figs. 7b, 7e, and 7h) that include AMV errors and collocation/representativeness errors. 

Overall, the adjusted SDCD for all AMV types exhibit similar magnitudes and distributions in each geographic region 

throughout the vertical. WVclear comparisons have slightly smaller adjusted SDCD at upper levels, suggesting that sampling 

differences may play a role in the 430 

higher accuracy observed for WVclear 

AMVs, given that WVclear 

representativeness errors are likely 

small due to Aeolus RAY and WVclear 

AMVs observing similar scenes. 435 

Aeolus RAY uncertainty is larger in the 

presence of clouds and appears to have 

a considerable impact on the 

corresponding SDCD, as the reductions 

in IR and WVcloud SDCD (~1 m s-1) 440 

are larger than for WVclear SDCD (0.5 

m s-1). In the NH extratropics, the 

adjusted SDCD for each AMV type is 

generally constant around 5 m s-1, and 

in the tropics it increases with 445 

decreasing pressure from 5 to 6 m s-1. 

AMV-RAY comparisons generally 

exhibit larger MCD and SDCD in the 

SH extratropics at upper levels due to 

the wind-shear height assignment error 450 

effect. This is illustrated in Fig. 8 that 

shows that the adjusted SDCD (solid 

lines) for all AMV types notably 

increase with increasing AMV wind 

Figure 8: AMV HLOSV error (SDCD-Aeolus uncertainty) derived from GOES-16 RAY 

comparisons (solid lines) (m s-1) and Aeolus L2B uncertainty (dashed lines) (m s-1) with 

respect to AMV wind speed binned at 10 m s-1 for (a) NH, (b) tropics (TR), and (c) SH. 

(d-f) Counts per 10 m s-1 bin for each region. 
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speed in the SH extratropics relative to the other regions. This is also true for Aeolus error estimates (dashed lines) associated 455 

with IR and WVcloud comparisons in the SH (Fig. 8e). 

4.1.2 Mie-cloudy (MIE) comparisons 

Figure 9 presents density scatterplots like those in Fig. 6 but compares GOES-16 AMVs and MIE winds. MIE SDCD are 

considerably smaller than those for RAY comparisons, and this is attributed to the general higher accuracy of Aeolus MIE 

wind retrievals. Another possible reason is that MIE comparisons might generally have smaller collocation errors: because 460 

collocated Aeolus MIE winds and IR and WVcloud AMVs are by definition more likely sampling similar cloudy scenes at 

similar altitudes, we expect the Aeolus and AMV random and representativeness errors to be small (hereafter the cloudy/cloudy 

sampling effect). IR and WVcloud AMVs are 

highly correlated with MIE winds, ranging 

from 0.93 in the NH extratropics to 0.97 in the 465 

tropics. Most MIE collocations fall along the 

one-to-one line that corresponds to a perfect 

match. Statistics of AMV minus MIE 

collocation differences are generally 

consistent, albeit with some notable 470 

exceptions, with those for AMV comparisons 

with high-quality rawinsonde winds. MCD 

and SDCD are smallest in the tropics at -0.3 

m s-1 and 4.4 to 4.6 m s-1, respectively, 

particularly for WVcloud comparisons which 475 

seem to have the fewest outliers. SH 

extratropical comparisons exhibit the largest 

SDCD (around 5 m s-1) but are still 

comparable to those associated with high-

quality rawinsonde winds (Velden and 480 

Bedka, 2009; Santek et al., 2019). The smaller 

SDCD observed in the NH and tropics 

suggest that AMVs accurately represent 

cloud-tracked motions associated with the 

North Atlantic storm track in summer and the 485 

summer-shifted ITCZ; such features are well-

Figure 9: As in Fig. 6 but for comparisons of IR (left) and WVcloud (right) 

AMVs and MIE winds. 
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defined by high MIE number densities in the north and middle portions of the GOES-16 field-of-view in Fig. 4b. The larger 

SH SDCD suggest reduced accuracy in AMV winds that could be due to the wind-shear height assignment error effect. 

Similar to Fig. 7, Fig. 10 depicts vertical distributions of AMV and MIE HLOSV and their differences. In the tropics and NH 

extratropics, MIE comparisons have nearly identical profiles of HLOSV for the IR and WVcloud samples, with the largest 490 

MCD observed at mid-levels in the tropics (at -1.5 m s-1) and at upper-levels in the NH extratropics (-2.0 m s-1), respectively. 

However, some of the larger differences occur at levels with a small sample size and may not be reliable. Despite the vertical 

variation of the MCD, profiles of total and adjusted SDCD are relatively constant at 4-5 m s-1, and the contribution of Aeolus 

uncertainty to the total SDCD is small, as the removal of Aeolus errors only slightly reduces the SDCD. The results suggest 

that for MIE comparisons, the dominant factors contributing to the error consist of some combination of AMV random and 495 

representativeness/collocation error.  

 

Figure 10: As in Fig. 7 but for comparisons of IR (red) and WVcloud (blue) AMVs and MIE winds. 
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In the NH above 250 hPa, SDCD increase slightly with decreasing pressure in a region of strong wind shear that could lead to 

larger AMV height assignment errors and representativeness errors. Indeed, the adjusted SDCD is shown to be larger for faster 500 

AMV wind speeds while the corresponding Aeolus MIE error estimates remain relatively constant (Fig. 11). This result in 

combination with likely small AMV-MIE collocation errors from the cloudy/cloudy sampling effect suggests that AMV height 

assignment errors dominate the larger SDCD observed in layers of high wind speed and strong shear. Additionally, in the 

tropics, a comparison with Aeolus MIE winds reveals a negative HLOSV bias in the IR and WVcloud GOES-16 AMVs below 

the higher cloud-tops of the ITCZ (Fig. 10e). Larger MCD appear at levels with higher wind speeds, as do larger values of 505 

adjusted SDCD, although the samples are 

small. Because Aeolus MIE errors remain 

small and constant around 2 m s-1 with respect 

to AMV wind speed (Fig. 11c), and AMV-MIE 

collocation errors are likely small, the results 510 

suggest that AMV height assignment errors 

contribute most to the negative MCD and 

corresponding larger SDCD, in agreement with 

Cotton et al. (2020, 2021) who also note a 

negative bias largely thought to be attributed to 515 

AMV height assignment errors. This finding is 

relatively new, and the fact that comparisons 

with Aeolus depict this feature hints at the 

value of using Aeolus MIE winds as a standard 

for comparison to characterize cloud-tracked 520 

AMVs. Additionally, our comparisons with 

Aeolus depict another noted feature in 

monitoring AMVs by Cotton et al. (2020, 

2021): a pronounced negative wind speed bias 

in the tropics for Meteosat-8 is evidenced by 525 

large negative MCD and corresponds to large 

SDCD in all regions (not shown). This feature 

is evident in both RAY and MIE comparisons. 

MCD are largest in the SH extratropics and are statistically significant throughout the vertical, ranging from -1.0 m s-1 at low 

levels to < -3.0 m s-1 above 300 hPa (Fig. 10h). Strong wind shear corresponding to an intensified jet is inferred at upper levels 530 

(Fig. 10g). The larger MCD aloft are associated with increases in adjusted SDCD with height, which are on the order of 4-6 m 

Figure 11: As in Fig. 8 but for MIE comparisons with GOES-16 IR (red) and 

WVcloud (blue) AMVs. 
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s-1. Moreover, the large MCD represent over 8.5% of the corresponding HLOSV at upper levels and could be attributed to 

larger AMV height assignment errors corresponding to stronger storm tracks in winter. This is exemplified in Fig. 11e where 

Aeolus MIE errors are shown to be small (2 m s-1) and remain relatively constant with increasing AMV wind speed, while the 

adjusted SDCD are larger and increase with AMV wind speeds > 40 m s-1. The results imply that the large systematic 535 

differences in MCD at upper levels in the SH extratropics are most probably attributed to larger AMV errors in combination 

with strong wind shear.  

4.2 LEO AMVs vs. Aeolus 

Figure 12 presents density scatterplots that compare LEO AMVs derived from IR window channels with RAY and MIE winds 

in the Arctic (Fig. 12a-b) and Antarctic (Fig. 12c-d) during the study period. LEO AMVs show good correspondence with 540 

both Aeolus observing modes in the polar 

regions. In general, comparisons in the 

Arctic have small yet significant MCD 

(around -0.2 m s-1) and SDCD estimates of 

5.2-6.5 m s-1, while Antarctic comparisons 545 

exhibit larger MCD and SDCD. Moreover, 

MIE comparisons in the Arctic exhibit the 

smallest SDCD, and RAY comparisons in 

the Antarctic have the largest SDCD and 

more evident outliers. This suggests that 550 

during the study period, IR LEO AMVs are 

best able to capture cloud-tracked motions 

during the summer season (in the Arctic) 

when cloudiness increases in the vertical 

and more water vapor content is generally 555 

available to track features (Alekseev et al., 

2018). Water vapor content in the Arctic is 

largest in summer due to an influx of water 

vapor from melting ice and snow and 

receding sea ice extent as well as 560 

intensified meridional moisture fluxes 

from low latitudes (Alexseev et al., 2018). 

Figure 12: Density scatterplot of collocated IR-window AMVs from all available LEO 

satellites and RAY (left, a, c) and MIE (right, b, d) winds: Comparisons in (a-b) Arctic 

(north of 60° N), and (c-d) Antarctic (south of 60° S). Colors indicate total number of 

collocated observation pairs within the cells plotted, which are 1 ms-1 on a side. Sample 

statistics are displayed in the bottom right corner of each panel. Horizontal and 

vertical zero lines are plotted in black, as is the diagonal one-to-one line. Red star 

denotes statistical significance at the 95% level using the paired two-tailed Student’s 

t-test. HLOSV units are m s-1. 
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As was done for the GOES-16 case study, we examine the vertical differences between all LEO AMVs and Aeolus winds to 

ascertain how AMVs characterize the dynamical flow at the poles (Fig. 13). RAY (red colors) and MIE comparisons (blue 

colors) are presented together. AMV HLOSV and Aeolus HLOSV profiles are similar throughout the vertical, with notably 565 

larger MCD in the Antarctic at upper levels. In the Arctic (Fig. 13, top row), MIE winds and collocated AMVs depict faster 

motions relative to RAY comparisons. Statistically significant MCD are on the order of -0.5 m s-1 at mid-levels where 

collocation counts peak, representing slower AMV winds relative to Aeolus. The MCD become larger (more negative) nearer 

the tropopause (around 300-250 hPa) where HLOSV reach upwards of 15 m s-1 and AMV wind speeds reach 30 m s-1, while 

corresponding total SDCD are generally constant but smaller for MIE (~5 m s-1) than RAY (~7 m s-1). Removal of the Aeolus 570 

uncertainty yields adjusted SDCD profiles that are nearly equal to the total MIE SDCD, indicating the higher accuracy of MIE 

winds in the Arctic at all levels including those with higher wind speeds. This independence of Aeolus MIE uncertainty to 

changes in wind speed is clear in Fig. 14a where Aeolus MIE errors are shown to be smaller relative to RAY and remain 

relatively constant with increasing AMV wind speeds. In addition, the near doubling of MIE collocation counts at mid-levels 

relative to RAY (Fig. 13c) could be due to increased cloudiness associated with more moisture availability in Arctic summer 575 

(Alekseev et al., 2018).  

 

Figure 13: Vertical profiles of collocated LEO AMVs and RAY (red) and MIE (blue) winds. The top row shows the Arctic (north of 

60° N), (a) mean AMV HLOSV (solid lines), Aeolus HLOSV (long dashed lines) (m s-1), and mean AMV wind speed (short dashed 

lines) (m s-1); (b) MCD (solid), SDCD (short dashed), and AMV HLOSV error as represented by SDCD-Aeolus L2B uncertainty 580 
(long dashed) (m s-1); and (c) collocation counts. (d-f) as in (a-c) but for the Antarctic (south of 60° S). Colored open circles indicate 

levels where MCD are statistically significant at the 95% level (p-value < 0.05) using the paired Student’s t-test. Vertical zero lines 

are displayed in the center panels in black. Levels with observation counts > 25 are plotted. 
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In the Antarctic (Fig. 13, bottom row), HLOSV increase from 5 m s-1 at mid-levels to nearly 30 m s-1 at very high levels (~150 

hPa), and RAY comparisons are shown to capture generally faster motions throughout much of the vertical column. MCD are 585 

small (around -0.5 m s-1) at mid-levels where collocation counts peak but are larger aloft and represent over 10% of the 

corresponding HLOSV. Larger MCD 

aloft could be attributed to the wind-shear 

height assignment error effect related to 

the strengthening of the Antarctic polar 590 

vortex in late winter/early spring. As 

shown in the Arctic, MIE comparisons in 

the Antarctic have smaller total SDCD (5-

7 m s-1) than RAY (6-12 m s-1, 

respectively) throughout the vertical; 595 

however, Antarctic MIE and RAY SDCD 

are larger than in the Arctic and appear to 

increase with height. Higher SDCD 

values at upper levels may be attributed to 

larger AMV and Aeolus errors in layers of 600 

faster winds. Adjusted SDCD as well as 

Aeolus error estimates for RAY 

comparisons increase with increasing 

AMV wind speed (Fig. 14c), suggesting 

that both AMV errors and Aeolus errors 605 

in layers of high winds and strong shear 

contribute to the larger SDCD observed in 

the Antarctic.  

5 Summary and conclusions 

This study summarizes statistical comparisons of AMVs with the novel Aeolus L2B HLOS winds for samples stratified by 610 

specific sets of conditions and discusses their relationship to known AMV characteristics. Because Aeolus observes the 

HLOSV—the horizontal wind projected onto the HLOS of the DWL—derived from the detection of molecular and aerosol 

backscattering signals, the assessments of mean collocation differences (AMV minus Aeolus) and SD of the differences are 

all in terms of AMV winds projected onto the collocated Aeolus HLOS. In the tropics, due to the Aeolus observing geometry, 

HLOSV represents the zonal wind. Aeolus HLOSV profiles utilized in this study are classified as RAY or Rayleigh-clear 615 

Figure 14: As in Fig. 8 but for LEO IR RAY and MIE comparisons at the poles. 

 



25 

 

winds (representing mostly clear-sky scenes) and MIE or Mie-cloudy winds (representing cloudy scenes only). Winds quality 

controlled (QC’d) following recommendations by ESA for Aeolus and by the user community for the satellite winds are 

retained for analysis. The performance of QC’d AMVs relative to collocated QC’d Aeolus winds are characterized by 

analyzing sample statistics of the collocated differences, AMV HLOSV minus Aeolus HLOSV. These statistics should not be 

strictly interpreted as overall AMV performance, as differences arise from errors in both AMVs and Aeolus winds and from 620 

representativeness and collocation errors.  

Comparisons of GOES-16 AMVs and IR cloud-tracked AMVs from LEO satellites are assessed to estimate the dependence 

of AMVs on different combinations of conditions including Aeolus observing mode/scene type (clear or cloudy), AMV type 

(IR, WVcloud, and WVclear), and geographic region (tropics and extratropics for GOES-16, Arctic and Antarctic polar regions 

for LEO). GOES-16 was chosen as a representative of GEO performance, as the AMVs exhibit high correlations with Aeolus, 625 

relatively low MCD and SDCD, and have a large sample size from which to compute robust statistics. The summary assessment 

of all LEO AMVs provides a unique, comprehensive perspective on the characteristics of polar AMVs using a larger sample 

of collocated Aeolus wind profiles relative to other available datasets, e.g., rawinsonde profile data. Vertical distributions of 

differences in HLOSV are examined, as this perspective has the potential to provide additional insight into how accurately 

each AMV type represents the horizontal flow in the vertical. AMVs exhibit different characteristics in clear and cloudy scenes 630 

that vary with geographic region and in the vertical, in agreement with the findings in Velden et al. (1997), Posselt et al. (2019), 

and others. Overall, GEO and LEO AMVs are found to compare as well with Aeolus RAY and MIE winds as they do to 

conventional data sources and NWP products, particularly in the tropics, NH extratropics, in the Arctic, and at mid- to upper-

levels in both clear and cloudy scenes. SH comparisons generally exhibit larger than expected SDCD that could be attributed 

to larger height assignment errors and larger representativeness and collocation errors in regions of high winds and strong 635 

vertical wind shear. 

The main findings from comparing GOES-16 AMVs with RAY and MIE winds are the following. Aeolus MIE winds show 

great potential value as a comparison standard to characterize AMVs. MIE comparisons generally exhibit smaller biases and 

uncertainties compared to RAY, reflecting the higher accuracy of MIE winds and AMVs in cloudy scenes as well as larger 

collocation errors for RAY winds in cloudy scenes. This is attributed to a combination of smaller Aeolus MIE uncertainties 640 

and smaller collocation/representativeness errors due to the cloudy/cloudy sampling effect, that is, the fact that both Aeolus 

and AMV winds are, by definition, sampling similar cloudy scenes at similar altitudes. The contribution of Aeolus MIE 

uncertainty to the overall SDCD is small; in fact, removal of Aeolus uncertainties further reduces the small MIE SDCD 

without much change to its vertical distribution, suggesting that for MIE comparisons, the dominant factors contributing to 

the total error consist of AMV random errors and representativeness/collocation errors. Additionally, the AMV-Aeolus MIE 645 

comparisons depict a relatively new finding that is also noted in Cotton et al. (2020, 2021) and is largely thought to be 

attributed to AMV height assignment errors: a negative speed bias in the IR and WVcloud AMVs in the tropics. The fact that 

comparisons with Aeolus exhibit this feature hints at the usefulness of Aeolus MIE winds as a standard for comparison to 
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characterize AMVs. (It should be noted that because the period of study is relatively short, the datasets are not large enough 

to examine in detail many of the “features” identified and studied in the NWP SAF AMV monitoring. However, it could be 650 

possible to verify the identification of such features in AMV comparisons with Aeolus observations by using a larger 

collocation dataset, which the authors are preparing and making publicly available.) 

Regarding GOES-16 RAY comparisons, sampling differences may play a role in the higher correlation between Aeolus RAY 

winds and WVclear AMVs, since they both represent similar clear-sky scenes. This is especially true in the tropics and NH 

extratropics where MCD are small and SDCD are comparable to AMV error values compared with high-quality rawinsonde 655 

winds. It is likely that collocation errors play a larger role in the RAY SDCD for IR and WVcloud AMVs due to the 

cloudy/clear sampling effect, where clear-sky Aeolus winds are collocated with cloudy AMVs and thereby observe different 

scenes, yielding larger errors. In addition, the removal of Aeolus uncertainties from the total SDCD considerably reduces the 

RAY SDCD, particularly for IR and WVcloud comparisons, indicating that Aeolus contributes a substantial fraction of the 

total SDCD in the presence of clouds. 660 

Polar AMVs have smaller MCD for MIE compared to RAY, although Antarctic AMVs have larger SDCD than the Arctic. In 

fact, GEO and LEO comparisons in the SH/Antarctic exhibit the largest SDCD of all regions examined. Large wind shear is 

evident in the SH/Antarctic throughout much of the atmospheric column, and this can dramatically affect AMV height 

assignment errors. Indeed, AMV errors are shown to generally increase with increasing AMV wind speed, as do corresponding 

Aeolus errors for RAY winds, suggesting that both contribute to the larger SDCD observed in layers of high wind speed. 665 

Additionally, larger RAY MCD aloft could be attributed to larger collocation/representativeness errors due to IR AMVs and 

RAY winds viewing different scenes. The possible mischaracterization of very cold surface temperatures as clouds may also 

be a factor. For GOES-16 MIE comparisons in the SH, AMV errors are larger and increase with AMV speeds > 40 m s-1 while 

Aeolus MIE errors are small and remain relatively constant. This implies that the large systematic differences in MCD at upper 

levels in the SH extratropics are most probably attributed to larger AMV errors in combination with the wind-shear height 670 

assignment error effect.   

The use of Aeolus winds as a benchmark dataset for the comparative assessment of AMVs has valuable implications for future 

research, including the validation of 3D winds and the use of such data in NWP. For example, the findings presented here 

contribute to the ongoing development of a feature track correction (FTC) observation operator to account for AMV height 

assignment and other biases in data assimilation (Hoffman et al., 2022). Future studies should use larger datasets like those the 675 

authors are preparing to compare clear-scene AMVs with Aeolus Rayleigh-clear winds only, and cloudy-scene AMVs with 

Aeolus Mie-cloudy winds only. Such studies are anticipated to yield additional insights into the seasonal performance of AMV 

characteristics representing different dynamical features in clear and cloudy scenes and how this might be accounted for or 

improved upon in AMV algorithms. Moreover, the robustness of dynamical features identified in AMV monitoring could be 

further validated following this approach. In addition, Aeolus Mie-cloudy comparisons using larger datasets are expected to 680 
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have a significant impact towards improving our understanding and characterization of AMV quality in cloudy scenes, given 

the cloudy/cloudy sampling effect and the small contribution of Aeolus Mie-cloudy error to the total SDCD throughout the 

vertical in all geographic regions, implying that the corresponding adjusted SDCD better depicts true AMV uncertainty. This 

is especially critical where AMV height assignment errors are likely large but Aeolus Mie-cloudy errors are small and remain 

relatively constant with respect to height and AMV wind speed, e.g., in layers of strong vertical wind shear and in the SH. One 685 

lesson learned from this study is that QC of both AMV and Aeolus observations is critical and largely improves the results. 

The Aeolus project has done much to eliminate errors of all types, but some improvements are expected, e.g., via the removal 

of DWL instrument calibration-dependent error. Further, some of the bias corrections currently applied depend on ECMWF 

forecasts, and the analysis of Liu et al. (2022) demonstrates that additional bias corrections for Aeolus are possible, and that 

such corrections can improve NWP analysis and forecast results (Garrett et al., 2022).   690 

Appendix A 

Formulae for the statistics used in this study are presented here. Since HLOSV is a scalar, these formulae correspond directly 

with the standard textbook formulae. The collocation database is composed of pairs (xi, yi) for i=1, n, where n is the number 

of collocations, i is the collocation index, x is the Aeolus HLOSV, and y is the AMV HLOSV. The correlation (r) between 

collocated HLOSV describes the overall relation of AMVs to Aeolus and is defined as 695 

𝑟 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

𝑠𝑥𝑠𝑦
      (A1) 

Overbars denote sample means. The corresponding standard deviations sx and sy are defined as 

𝑠𝑚 ≡ √
1

𝑛−1
∑ (𝑤𝑖 − �̅�𝑛

𝑖=1 )2     (A2) 

where w can equal x or y. The collocation difference (CD) is the difference in m s-1 between each pair of collocated AMV 

HLOSV and Aeolus HLOSV,  700 

𝐶𝐷 =  𝑦𝑖 − 𝑥𝑖       (A3) 

and the mean (MCD) represents the sample mean of the CD for select conditions, such as a specific geographic region, pressure 

level, AMV type, or Aeolus observing mode.  

𝑀𝐶𝐷 =  
1

𝑛
∑ (𝐶𝐷)𝑛

𝑖=1       (A4) 

Using (A2), we can define the corresponding SDCD in terms of CD: 705 

𝑆𝐷𝐶𝐷 = √
1

𝑛−1
∑ (𝐶𝐷𝑖 − 𝑀𝐶𝐷𝑛

𝑖=1 )2     (A5) 
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Finally, the “adjusted SDCD” 𝑠𝑎𝑑𝑗 is defined as the SDCD with the corresponding Aeolus error estimate 𝑠𝑥 removed:  

𝑠𝑎𝑑𝑗 = √𝑆𝐷𝐶𝐷2 − 𝑠𝑥
2      (A6) 

Data availability 

The Aeolus L2B Earth Explorer data used in this study are publicly available and can be accessed via the ESA Aeolus Online 710 

Dissemination System (https://aeolus-ds.eo.esa.int/oads/access/). The NCEP SATWND BUFR AMV dataset can be provided 

by the corresponding author (katherine.lukens@noaa.gov) upon request. Additionally, the authors are preparing an Aeolus-

AMV collocation dataset that will be provided upon request. 

Author contributions 

Kevin Garrett and Kayo Ide proposed the project as co-investigators and provided expertise that guided this work. Brett Hoover 715 

and David Santek developed the collocation algorithm used. Katherine E. Lukens performed most of the work that included 

the implementation of the collocation algorithm and comparison analysis. David Santek and Ross N. Hoffman provided 

additional intellectual support that considerably improved the article. Katherine E. Lukens prepared the manuscript with 

contributions from all co-authors.  

Competing interests 720 

The authors declare that they have no conflict of interest. 

Acknowledgements 

The authors thank the two anonymous referees for their careful and helpful comments that considerably improved the article. 

The authors also thank their colleagues at NOAA/NESDIS/STAR for overseeing this work as well as Mike Hardesty, Iliana 

Genkova, and the rest of the US Aeolus Cal/Val team for guidance and support. The University of Wisconsin-Madison S4 725 

supercomputing system (Boukabara et al., 2016) was used in this work. The authors acknowledge support from the 

NOAA/NESDIS Office of Projects, Planning, and Acquisition (OPPA) Technology Maturation Program (TMP) through CICS 

and CISESS at the University of Maryland/ESSIC [NA14NES4320003 and NA19NES4320002] and CIMSS at the University 

of Wisconsin-Madison [NA20NES4320003]. The scientific results and conclusions, as well as any views or opinions expressed 

herein, are those of the authors and do not necessarily reflect those of NOAA or the U.S. Department of Commerce. 730 

References 

Abdalla, S., de Kloe, J., Flament, T., Krisch, I., Marksteiner, U., Reitebuch, O., Rennie, M., Weiler, F., and Witschas, B.: 

Verification report of first Reprocessing campaign for FM-B covering the time period 2019-06 to 2019-12. Tech. 

rep., Aeolus Data Innovation Science Cluster DISC, Version 1.0, REF: AED-TN-ECMWF-GEN-040, internal 



29 

 

document available for registered Aeolus Cal/Val teams; Summary of this document available at: 735 

https://earth.esa.int/eogateway/documents/20142/0/Aeolus-Summary-Reprocessing-1-DISC.pdf, 2020. 

Alekseev, G., Kuzmina, S., Bobylev, L., Urazgildeeva, A., and Gnatiuk, N.: Impact of atmospheric heat and moisture transport 

on the Arctic warming. Int. J. Climatol., 39, 3582–3592, doi:10.1002/joc.6040, 2018. 

Bedka, K. M., Velden, C. S. Petersen, R. A. Feltz, W. F., and Mecikalski, J. R.: Comparisons of Satellite-Derived Atmospheric 

Motion Vectors, Rawinsondes, and NOAA Wind Profiler Observations. J. Applied Meteor. Clim., 48, 1542-1561, 740 

doi: 10.1175/2009JAMC1867.1, 2009. 

Berger, H., Langland, R., Velden, C. S., Reynolds, C. A., and Pauley, P. M.: Impact of enhanced satellite-derived atmospheric 

motion vector observations on numerical tropical cyclone track forecasts in the western North Pacific during 

TPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 2309–2318, doi:10.1175/JAMC-D-11-019.1, 2011. 

Bormann, N., Kelly, G., and Thépaut, J.-N.: Characterising and correcting speed biases in atmospheric motion vectors within 745 

the ECMWF system. In Sixth Int. Winds Workshop, Madison, WI, EUMETSAT, 113–120. Available online at 

http://cimss.ssec.wisc.edu/iwwg/iww6/session3/bormann_1_bias.pdf, 2002. 

Bormann, N., Saarinen, S., Kelly, G., and Thepaut, J.-N.: The Spatial Structure of Observation Errors in Atmospheric Motion 

Vectors from Geostationary Satellite Data. Mon. Wea. Rev., 131, 706-718, doi:10.1175/1520-

0493(2003)131<0706:TSSOOE>2.0.CO;2, 2003. 750 

Boukabara, S. A., Zhu, T., Tolman, H. L., Lord, S., Goodman, S., Atlas, R., Goldberg, M., Auligne, T., Pierce, B., Cucurull, 

L., Zupanski, M., Zhang, M., Moradi, I., Otkin, J., Santek, D., Hoover, B., Pu, Z., Zhan, X., Hain, C., Kalnay, E., 

Hotta, D., Nolin, S., Bayler, E., Mehra, A., Casey, S. P. F., Lindsey, D., Grasso, L., Kumar, V. K., Powell, A., Xu, J., 

Greenwald, T., Zajic, J., Li, J., Li, J., Li, B., Liu, J., Fang, L., Wang, P., and Chen, T.-C.: S4: An O2R/R2O 

infrastructure for optimizing satellite data utilization in NOAA numerical modeling systems. a step toward bridging 755 

the gap between research and operations. Bull. Amer. Meteor. Soc., 97, 2359–2378, doi:10.1175/bams-d-14-00188.1, 

2016. 

Chen, S., Cao, R., Xie, Y., Zhang, Y., Tan, W., Chen, H., Guo, P., and Zhao, P.: Study on the seasonal variation of Aeolus 

detection performance over China using ERA5 and radiosonde data. Atmos. Chem. Phys. Discuss., 

https://doi.org/10.5194/acp-2021-298, 2021. 760 

Conger, K.: ‘Master’,’slave’ and the fight over offensive terms in computing. The New York Times. 13 April 2021. Available 

online at https://www.nytimes.com/2021/04/13/technology/racist-computer-engineering-terms-ietf.html.  

https://www.nytimes.com/2021/04/13/technology/racist-computer-engineering-terms-ietf.html


30 

 

Cordoba, M., Dance, S. L., Kelly, G. A., Nichols, N. K., and Walker, J. A.: Diagnosing atmospheric motion vector observation 

errors for an operational high-resolution data assimilation system. Q. J. R. Meteorol. Soc., 143: 333–341, 

doi:10.1002/qj.2925, 2017. 765 

Cotton, J., Doherty, A., Lean, K., Forsythe, M., and Cress, A.: NWP SAF AMV monitoring: the 9th Analysis Report (AR9). 

Tech. rep., NWP SAF, Version 1.0, REF: NWPSAF-MO-TR-039. Available at: https://nwp-

saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-analysis-reports/, 2020. 

Cotton, J., A. Doherty, and K. Lean: Characterising AMV errors using the NWP SAF monitoring. In 15th IWWG Workshop. 

Available online at https://www.ssec.wisc.edu/meetings/iwwg/2021-meeting/presentations/oral-cotton/, 2021. 770 

Cress, A.: Validation and impact assessment of Aeolus observations in the DWD modelling system Status report. In Aeolus 

NWP impact working meeting 2, Virtual. Available online at 

https://www.aeolus.esa.int/confluence/display/CALVAL/Aeolus+NWP+impact+working+meeting+2?preview=/12

354328/12354463/5_DWD_acress_aeolus_20200617.pdf, 2020. 

Daniels, J., Bresky, W., Bailey, A., Allegrino, A., Wanzong, S., and Velden, C.: Introducing Atmospheric Motion Vectors 775 

Derived from the GOES-16 Advanced Baseline Imager (ABI). In 14th International Winds Workshop, Jeju City, 

South Korea, CIMSS. Available online at 

http://cimss.ssec.wisc.edu/iwwg/iww14/talks/01_Monday/1400_IWW14_ABI_AMVs_Daniels.pdf, 2018. 

de Kloe, J.: Aeolus L2B/L2C Product Handbook. Tech. rep., ESA, REF: AE-TN-KNMI-GS-0185, internal document available 

for registered Aeolus Cal/Val teams, 2019. 780 

de Kloe, J., Stoffelen, A., Tan, D., Andersson, E., Rennie, M., Dabas, A., Poli, P., and Huber, D.: Aeolus Data Innovation 

Science Cluster DISC ADM-Aeolus Level-2B/2C Processor Input/Output Data Definitions Interface Control 

Document. Tech. rep., KMNI, Aeolus, DISC, REF: AED-SD-ECMWF-L2B-037. Available at: 

https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-2C-Input-Output-DD-ICD.pdf, 2020. 

European Space Agency (ESA): ADM-Aeolus Science Report, ESA SP-1311, 121 pp. Available 785 

at: https://earth.esa.int/documents/10174/1590943/AEOL002.pdf, 2008. 

Garrett, K., Liu, H., Ide, K., Hoffman, R., and Lukens, K. E.: Optimization and Impact Assessment of Aeolus HLOS Wind 

Data Assimilation in NOAA's Global Forecast System. Q. J. Roy. Meteor. Soc., in revision, 2022. [Manuscript QJ-

21- 0307] 

Grieger, J., Leckebusch, G. C., and Ulbrich, U.: Net Precipitation of Antarctica: Thermodynamical and Dynamical Parts of the 790 

Climate Change Signal. J. Climate, 29, 907-924, doi:10.1175/JCLI-D-14-00787.1, 2016. 

https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-analysis-reports/
https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-analysis-reports/
https://www.ssec.wisc.edu/meetings/iwwg/2021-meeting/presentations/oral-cotton/


31 

 

Hoffman, R. N., Lukens, K. E., Ide, K., and Garrett, K.: A Collocation Study of Atmospheric Motion Vectors (AMVs) 

Compared to Aeolus Wind Profiles with a Feature Track Correction (FTC) Observation Operator. Q. J. Roy. Meteor. 

Soc., 148(742):321–337, Jan. (Part A). https://doi.org/10.1002/qj.4207, 2022. 

Hoskins, B. J., and Hodges, K. I.: A new perspectives on Southern Hemisphere storm tracks. J. Climate, 18, 4108–4129, doi: 795 

https://doi.org/10.1175/JCLI3570.1, 2005. 

Jung, J., Le Marshall, J., Daniels, J., and Riishojgaard, L. P.: Investigating height assignment type errors in the NCEP global 

forecasting system. In the 10th International Wind Workshop, Tokyo, Japan, EUMETSAT P.56. Available at: 

https://www-cdn.eumetsat.int/files/2020-04/pdf_conf_p56_s3_04_jung_v.pdf, 2010. 

Key, J., Santek, D., and Dworak, R.: Polar winds from shortwave infrared cloud tracking. Proc. 13th Int. Winds Workshop, 800 

pp. 1-6, Monterey, California. Available online at: https://www.researchgate.net/profile/Jeffrey-Key-

2/publication/309727571_Polar_winds_from_shortwave_infrared_cloud_tracking/links/581f84da08aea429b29907f

d/Polar-winds-from-shortwave-infrared-cloud-tracking.pdf, 2016. 

Le Marshall, J., Jung, J., Zapotocny, T., Redder, C., Dunn, M., Daniels, J., and Riishojgaard, L. P.: Impact of MODIS 

atmospheric motion vectors on a global NWP system. Aust. Met. Mag., 57, 45-51. Available at: 805 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.6537&rep=rep1&type=pdf, 2008. 

Liu, B., Guo, J., Gong, W., Zhang, Y., Shi, L., Ma, Y., Li, J., Guo, X., Stoffelen, A., de Leeuw, G., and Xu, X.: Intercomparison 

of wind observations from ESA's satellite mission Aeolus, ERA5 reanalysis and radiosonde over China. Atmos. 

Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, 2021. 

Liu, H., Garrett, K., Ide, K., Hoffman, R. N., and Lukens, K. E.: A Statistically Optimal Analysis of Systematic Differences 810 

between Aeolus HLOS Winds and NOAA’s Global Forecast System. Atmos. Meas. Tech. Disc., submitted, 

https://doi.org/10.5194/amt-2022-20, 2022. 

Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde 

observations and numerical weather prediction model equivalents. Atmos. Meas. Tech., 14, 2167–2183, 

https://doi.org/10.5194/amt-14-2167-2021, 2021. 815 

Nakamura, H., and Shimpo, A.: Seasonal Variations in the Southern Hemisphere Storm Tracks and Jet Streams as Revealed 

in a Reanalysis Dataset. J. Climate, 17, 1828-1844, doi: https://doi.org/10.1175/1520-

0442(2004)017<1828:SVITSH>2.0.CO;2, 2004. 

National Academies of Sciences, Engineering, and Medicine: Thriving on Our Changing Planet: A Decadal Strategy for Earth 

Observation from Space. National Academies Press, Washington, DC. doi:10.17226/24938, 2018. 820 

https://doi.org/10.1002/qj.4207
https://doi.org/10.5194/amt-2022-20


32 

 

Posselt, D., Wu, L., Mueller, K., Huang, L., Irion, F. W., Brown, S., Su, H., Santek, D., and Velden, C. S.: Quantitative 

Assessment of State-Dependent Atmospheric Motion Vector Uncertainties. J. Appl. Meteorol. Climatol., 58, 2479-

2495, doi:10.1175/JAMC-D-19-0166.1, 2019. 

Reitebuch, O., Lemmerz, C., Nagel, E., Paffrath, U., Durand, Y., Endemann, M., Fabre, F., and Chaloupy, M.: The Airborne 

Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design 825 

and Comparison to Satellite Instrument, J. Atmos. Ocean. Tech., 26, 2501-

2515, https://doi.org/10.1175/2009JTECHA1309.1, 2009. 

Rennie, M., and Isaksen, L.: Guidance for Aeolus NWP impact experiments during the period September 2018 to November 

2019. Tech. rep., ECMWF, Reading, United Kingdom, internal document available for registered Aeolus Cal/Val 

teams, 2019. 830 

Rennie, M., and Isaksen, L.:  The NWP impact of Aeolus Level-2B winds at ECMWF. Tech. rep., Aeolus Data Innovation 

Science Cluster DISC, Ref: AED-TN-ECMWF-NWP-025, doi: https://doi.org/10.21957/alift7mhr, 2020a. 

Rennie, M., and Isaksen, L.: Assessment of the Impact of Aeolus Doppler Wind Lidar Observations for Use in Numerical 

Weather Prediction at ECMWF. In EGU 2020, Virtual. Available online at: 

https://presentations.copernicus.org/EGU2020/EGU2020-5340_presentation.pdf, 2020b. 835 

Rennie, M., Tan, D., Andersson, E., Poli, P., Dabas, A., de Kloe, J., and Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical 

Basis Document: Mathematical Description of the Aeolus Level-2B Processor. Tech. rep., ESA, Version 3.4, Ref: 

AED-SD-ECMWF-L2B-038. Available at: https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-

Algorithm-ATBD.pdf, 2020. 

Salonen, K., Cotton, J., Bormann, N., and Forsythe, M.: Characterizing AMV height-assignment error by comparing best-fit 840 

pressure statistics from the Met Office and ECMWF data assimilation systems. J. Appl. Meteor. Climatol., 54 (1), 

225–242, doi:10.1175/JAMC-D-14-0025.1, 2015. 

Santek, D., Dworak, R., Nebuda, S., Wanzong, S., Borde, R., Genkova, I., García-Pereda, J., Negri, R. G., Carranza, M., 

Nonaka, K., Shimoji, K., Oh, S. M., Lee, B.-I., Chung, S.-R., Daniels, J., and Bresky, W.: 2018 Atmospheric Motion 

Vector (AMV) Intercomparison Study. Remote Sens., 11, 2240, doi:10.3390/rs11192240, 2019. 845 

Santek, D., García-Pereda, J., Velden, C., Genkova, I., Wanzong, S., Stettner, D., and Mindock, M.: 2014 AMV 

Intercomparison Study. In 12th International Winds Workshop, Copenhagen, Denmark, June 2014. Technical Report 

available online at: http://www.nwcsaf.org/aemetRest/downloadAttachment/225; Summary available online at: 

http://www.nwcsaf.org/aemetRest/downloadAttachment/226, 2014. 



33 

 

Santek, D., Hoover, B., Zhang, H., and Moeller, C.: Evaluation of Aeolus Winds by Comparing to AIRS 3D Winds, 850 

Rawinsondes, and Reanalysis Grids. In 15th International Winds Workshop, Virtual, 12-16 April 2021. Available 

online at https://www.ssec.wisc.edu/meetings/iwwg/2021-meeting/presentations/oral-santek/, 2021. 

Schmetz, J., Holmlund, K., Hoffman, J., Strauss, B., Mason, B., Gaertner, V., Koch, A., and Van De Berg, L.: Operational 

cloud-motion winds from Meteosat infrared images. J. Appl. Meteor., 32, 1206–1225, doi: 

https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2, 1993. 855 

Schmetz, J., Holmlund, K., Roesli, H. P., and Levizzani, V.: On the Use of Rapid Scans, Proceedings of the Fifth International 

Winds Workshop, Lorne, Australia, 28 February – 3 March 2000. EUM P28, Published by EUMETSAT, D-64295 

Darmstadt, 227-234. Available online at http://cimss.ssec.wisc.edu/iwwg/iww5/S5-2_Schmetz-OnTheUse.pdf, 2000. 

Stoffelen, A., Pailleux, J., Källén, E., Vaughan, J. M., Isaksen, L., Flamant, P., Wergen, W., Andersson, E., Schyberg, H., 

Culoma, A., Meynart, R., Endemann, M., and Ingmann, P.: The atmospheric dynamics mission for global wind field 860 

measurement. Bull. Amer. Meteor. Soc., 86 (1), 73–87, doi:10.1175/BAMS-86-1-73, 2005. 

Straume, A. G., Elfving, A., Wernham, D., Kanitz, T., de Bruin, F., Buscaglione, F., von Bismarck, J., Lengert, W., and 

colleagues: Status of ESA’s Doppler Wind Lidar Mission Aeolus. In 14th International Winds Workshop, Jeju City, 

South Korea, ESA. Available online at 

http://cimss.ssec.wisc.edu/iwwg/iww14/talks/04_Thursday/1000_IWW14_Aeolus_Straume.pdf, 2018. 865 

Straume, A. G., Parrinello, T., von Bismarck, J., Bley, S., Ehlers, F., and the Aeolus teams: ESA's Wind Lidar Mission Aeolus 

- status and scientific exploitation after 2.5 years in space. In 15th International Winds Workshop, Virtual, ESA. 

Available online at: https://www.ssec.wisc.edu/meetings/wp-

content/uploads/sites/33/2021/02/IWW15_Presentation_AG_Straume.pdf, 2021. 

Straume, A. G., Rennie, M., Isaksen, L., de Kloe, J., Marseille, G.-J., Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, 870 

D., Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., 

Nikolaus, I., Geiss, A., Flamant, P., Kanitz, T., Wernham, D., von Bismarck, J., Bley, S., Fehr, T., Floberghagen, R., 

and Parinello, T.: ESA’s space-based Doppler wind lidar mission Aeolus – first wind and aerosol product assessment 

results. EPJ Web Conferences, 237, 01007, https://do i.org/10.1051/epjconf/202023701007, 2020. 

Straume-Lindner, A. G.: Aeolus Sensor and Product Description. Tech. rep., European Space Agency - European Space 875 

Research and Technology Centre, The Netherlands. REF: AE-SU-ESA-GS-000. Available at: 

https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-Sensor-and-Product-Description.pdf, 2018. 

Trenberth, K.: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48(19), 2159-2178, doi: https://doi.org/10.1175/1520-

0469(1991)048<2159:STITSH>2.0.CO;2, 1991. 

http://cimss.ssec.wisc.edu/iwwg/iww5/S5-2_Schmetz-OnTheUse.pdf


34 

 

Velden, C. S., and Bedka, K. M.: Identifying the Uncertainty in Determining Satellite-Derived Atmospheric Motion Vector 880 

Height Attribution. J. Meteo. Clim., 48, 450-463, doi:10.1175/2008JAMC1957.1, 2009. 

Velden, C., Daniels, J., Stettner, D., Santek, D., Key, J., Dunion, J., Holmlund, K., Dengel, G., Bresky, W., and Menzel, P.: 

Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86 (2), 

205–223, doi:10.1175/BAMS-86-2-205, 2005. 

Velden, C. S., Hayden, C. M., Nieman, S. J., Menzel, W. P., Wanzong, S., and Goerss, J. S.: Upper-tropospheric winds derived 885 

from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173–195, doi:10.1175/1520-

0477(1997)078,0173:UTWDFG.2.0.CO;2, 1997. 

Velden, C. S., and Holmlund, K.: Report from the working group on verification and quality indices (WG II). In 4 th 

International Winds Workshop, Saanenmöser, Switzerland. Available online at 

https://cimss.ssec.wisc.edu/iwwg/iww4/p19-20_WGReport3.pdf, 1998. 890 

von Bremen, L.: Using simulated satellite images to improve the characterization of Atmospheric Motion Vectors (AMVs) 

and their errors for Numerical Weather Prediction. NWP SAF, Version 1.4, REF: NWPSAF-EC-VS-015. Available 

at: http://research.metoffice.gov.uk/research/interproj/nwpsaf/vs.html, 2008. 

Weiler, F., Rennie, M., Kanitz, T., Isaksen, L., Checa, E., de Kloe, J., and Reitebuch, O.: Correction of wind bias for the 

lidar on-board Aeolus using telescope temperatures. Atmos. Meas. Tech., 14, 7167–895 

7185, https://doi.org/10.5194/amt-14-7167-2021, 2021. 

Wilks, D.: Statistical Methods in the Atmospheric Sciences, Volume 100, 3rd Edition. Academic Press, 9780123850225, 2011. 

Wu, T.-C., Liu, H., Majumdar, S. J., Velden, C. S., and Anderson, J. L.: Influence of assimilating satellite-derived atmospheric 

motion vector observations on numerical analyses and forecasts of tropical cyclone track and intensity. Mon. Wea. 

Rev., 142, 49–71, doi:10.1175/MWR-D-13-00023.1, 2014. 900 

Zuev, V. V., and Savelieva, E.: The cause of the spring strengthening of the Antarctic polar vortex. Dyn. Atmos. Oceans, 87, 

101097, doi: 10.1016/j.dynatmoce.2019.101097, 2019. 

 

 

https://cimss.ssec.wisc.edu/iwwg/iww4/p19-20_WGReport3.pdf
https://doi.org/10.5194/amt-14-7167-2021

