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Abstract. High-frequency parts of ocean wave spectra are strongly coupled to the local wind. Measurements of ocean wave 10 

spectra can be used to estimate sea surface winds. In this study, two deep neural networks (DNNs) were used to estimate the 

wind speed and direction from the first five Fourier coefficients from buoys. The DNNs were trained by wind and wave 

measurements from more than 100 meteorological buoys during 2014-2018. It is found that the wave measurements can best 

represent the wind information about 40 minutes ago, because the high-frequency portion of the wave spectrum integrates 

preceding wind conditions. The overall root-mean-square error (RMSE) of estimated wind speed is ~1.1 m/s, and the RMSE 15 

of wind direction is ~14° when wind speed is 7~25 m/s. This model can not only be used for the wind estimation for compact 

wave buoys but also for the quality control of wind and wave measurements from meteorological buoys. 

1 Introduction 

Sea surface wind and waves are important parameters for the marine environment and ocean dynamics. High-quality 

simultaneous measurements of sea surface wind and wave information are helpful for the study of many oceanic and coastal 20 

phenomena. Such simultaneous measurements can be obtained from meteorological buoys and remote sensing satellites. Many 

meteorological buoys can provide comprehensive wind and wave information, such as surface wind speeds, wind directions, 

and wave spectra, with high accuracy. However, the deployment and maintenance of these buoys and platforms usually need 

relatively high costs. Therefore, meteorological buoys are very sparsely distributed and are mostly only available along the 

coastlines of developed countries.  25 

The earth observation satellite network, such as scatterometers, altimeters, and synthetic aperture radars can serve as 

effective complements for the buoy network. Meanwhile, these remote sensors also have some limitations. Scatterometers can 

retrieve both wind speed and direction with a wide swath and the best overall accuracy, but wave information is not available 

from them. Besides, their temporal resolutions are (usually one or two revisits per day except for Polar Regions) still much 

lower than in-situ measurements. Altimeters can simultaneously measure wind speed and significant wave height (SWH), but 30 

wind directions and other wave parameters are not available from them. Besides, the cross-track spatial coverage and temporal 
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resolution of an altimeter are low because they can only measure the nadir. Synthetic aperture radars’ wave mode can provide 

wind speed, wind direction, SWH, and low-frequency wave spectra (high-frequency is not available due to nonlinear imaging), 

but the accuracy of wind speed, wind direction, and SWH is usually not as good as those from scatterometers and altimeters, 

and they are also limited by the sparse sampling. Moreover, space-borne remote sensors often perform worse in nearshore 35 

regions than in the open ocean due to the land contamination of backscatter.   

Another important data source for collocated winds and waves is compact wave buoys. These types of buoys are usually 

low-cost and are suited for deploying in large numbers, and they perform better in measuring waves compared to large 

meteorological buoys because their small sizes have a more sensitive response to short waves (Voermans et al. 2020). Although 

wave buoys are not designed for wind observation, Voermans et al. (2020) have shown that both wind speed and direction can 40 

be estimated from the wave spectra using a 𝑓−4 spectral dependence in the equilibrium range. Their model can estimate wind 

speed with a root-mean-square error (RMSE) of 2 m/s and wind directions with an RMSE of ~20° when wind speed is higher 

than 10 m/s. Although this model has good theoretical support, the accuracy of this model is lower than typical remote sensing 

retrievals. For example, altimeter-retrieved wind speed has a typical overall RMSE of 1.2-1.5 m/s (e.g., Jiang et al. 2020) and 

scatterometer-retrieved wind speed and wind directions has a typical overall RMSE of ~1 m/s and 15° (e.g., Wang et al. 2021) 45 

when using buoys’ anemometer data as the reference.  

Compact wave buoys are increasingly widely used in global wave observations. For example, more than 2,000 Spotter 

buoys have been deployed in global oceans by Sofar Ocean Technologies (The location of these buoys can be viewed at 

https://weather.sofarocean.com/) to improve the performance of their wave modelling (Smit et al, 2021). Although the data is 

not open to the public, more accurate wind estimation from wave spectra can definitely benefit users of such buoys. Voermans 50 

et al. (2020) have shown the possibility to estimate wind speed and wind direction with wave measurements alone. This study 

aims to improve the accuracy of such estimation as much as possible. A model based on a deep neural network (DNN) is 

presented to achieve this goal. The rest of this paper is organized as follows: The simultaneous observations of wind and waves 

to train the DNN model are introduced in Section 2, along with the structure and training method of the DNN. The main results 

are presented in Section 3. A brief discussion about the selection of the DNN input terms is made in Section 4, followed by 55 

the concluding remarks in Section 5. 

2 Data and Methods 

2.1 Collocated Wind and Wave Data 

Many buoys from the National Data Buoy Center (NDBC) coastal-marine automated network can provide quality-

controlled in-situ wave and wind measurements. The data used in this study is the NDBC buoy data archived in National 60 

Centers for Environmental Information where the data is available in NetCDF form. After removing the data records with bad-

quality flags, more than 1.6 million records from 101 buoys in coastal and oceanic regions during 2014-2018 were used in this 

study (Fig. 1). Most buoys’ anemometers are 4-5 meters from the sea surface, and winds are measured every ten minutes with 

sampling time of eight minutes and accuracy within 1 m/s and 10° for wind speed and direction, respectively, in moderate sea 
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state (in extreme sea states, the swing and tilting of the buoy can introduce larger errors). The wind speed was converted to the 65 

standard height of 10 m (U10) using the power law (Hsu et al. 1994) that was also used in Voermans et al. (2020). This 

conversion was also tried using the log profile (Young 1995), which has almost no impact on the results. The waves are 

measured every one hour with sampling time of 20 minutes. The buoy wave data includes five Fourier coefficients of waves 

for different frequencies in the range of 0.02-0.485 Hz (47 frequency bins) derived from the translational or pitch-roll 

information from the accelerometers and inclinometers on board buoys (Steele et al. 1998). The five Fourier coefficients are 70 

wave variance spectral densities (E) which describe the wave energy for each frequency, mean and principal wave directions 

for each frequency (α1 and α2), and first and second normalized polar coordinates of Fourier coefficients (r1 and r2) which 

describe the directional spreading about the main direction the for each frequency. The five Fourier coefficients of different 

frequencies are the minimum requirement to reconstruct the directional wave spectrum. These NDBC data, especially the 

offshore ones, are widely used in the validation of wind and wave remote sensing and numerical weather and wave models 75 

(e.g., Jiang et al. 2016, Jiang 2020, Wang et al. 2021). The wave data and the wind data were collocated if their ends of 

sampling time are within ten minutes (the sampling duration is ~20 minutes for wave measurements and ~10 minutes for wind 

measurement).  

 

Figure 1. The bias (1st row) and RMSE (2nd row) of DNN-estimated wind speed and RMSE of DNN-estimated wind direction (when 80 
wind speed is higher than 7 m/s, 3rd row) for the individual NDBC buoys in the North Pacific (left), the west coast of the United 

States (middle), and the Atlantic region (right). The overall RMSEs of wind speed and wind direction (when wind speed is higher 

than 7 m/s) are ~1.1 m/s and ~14°, respectively, for the complete validation data set. Therefore, blue and red colors in RMSE maps 

indicate below and above the overall RMSE, respectively.  
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2.2 DNN Models for Estimating Wind Speed and Direction 85 

As a nonparametric model, a DNN can theoretically be used to fit any form of function with any number of input 

parameters provided the network is wide and deep enough. The DNN has been proved to be effective for regression problems 

with more than two input parameters and is widely used in the training of retrieval models and correction models in studies of 

ocean remote sensing (e.g., Wang et al. 2020, Jiang et al. 2020). A DNN is a useful tool for the problem that there is causal 

relationships between inputs and outputs (in this study, wave spectra and winds, respectively) but the explicit form of the 90 

relationship is not known. In this study, two DNNs were established with the same structure, one for estimating wind speed 

and one for wind directions. In the beginning, the input layer of the DNN was set up in a “violent” way which simply contains 

235 (vectorization of five Fourier coefficients × 47 frequency bins) neurons.  However, we will show in Section 4 that the 

input layer of the DNNs can be refined after obtaining the basic knowledge of how these models work. Each of the 235 inputs 

was normalized to have zero mean and unit variance. The DNNs have two hidden layers with 64 neurons followed by an output 95 

layer with one term (wind speed or direction). The activation function is the rectified linear unit (ReLU). It was tested that 

adding hidden layers and hidden neurons does not improve the performance of these models. The 1.7 million buoy records 

were randomly divided into training (50%) and validation (50%) sets. The DNN for U10 was trained to minimize the RMSE 

between the target (buoy-measured) and output U10: 
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where y and x denote the output and target/reference parameters, respectively. The DNN for wind directions was trained to 

minimize the distance between target and output unit vector corresponding to the wind direction: 
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For both DNNs, the training used the Adam optimizer with a batch size of 2048. The learning rate (initially set to 0.004) 

was decreased by 50% if the loss of the training set did not decrease for two epochs, and the training process stopped when 105 

the RMSE of the validation set did not decrease for six epochs. The DNN was realized by PyTorch. Besides RMSE, the bias, 

STandard Deviation (STD), and Correlation Coefficient (CC) were also selected as the error metrics to evaluate the model 

performance: 
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3 Results 110 

       The comparison between the collocated DNN-estimated and direct-measured U10 for the validation data set is shown as 

a scatterplot in Fig. 2a, and the corresponding comparison for wind directions is shown in Fig. 2d. These results suggest that 

estimating wind speed and direction from wave spectra using such a simple DNN works reasonably well. For wind speed, the 

DNN can give an estimation with an overall RMSE of ~1.3 m/s and a small overall bias. For wind direction, the RMSE is ~16° 

for U10 > 7 m/s. These results have significant improvement compared to the error metrics of Voermans et al. (2020). 115 

 

Figure 2. (a-c) Comparison between wind speeds measured by buoys and those estimated by wave spectra. (a) Scatter plot of 

collocated DNN-estimated wind speed and direct-measured wind speed. (b) The same as (a), but the spectra were used to estimate 

the wind speed 40 minutes ago. (c) The bias, STD, and RMSE of the DNN-estimated wind speed one hour ago as a function of direct-

measured wind speed. The blue shadow indicates the empirical distribution function of direct-measured wind speed. (d-f) The same 120 
as (a-c), but for wind directions.  

       It is noted that the sampling duration is ~20 minutes for wave measurements and ~10 minutes for wind measurement. 

Different from the capillary waves with very high frequencies always in instant equilibrium with the local wind, the growth of 

gravity waves is time-dependent. Besides the current wind information, the wave spectrum measured by a buoy at a given 

location and time also contains remote and past wind information (Jiang and Mu 2019), because the wave spectrum is, to some 125 

degree, integrated winds. Therefore, it is possible that the buoy wave spectrum can better represent the local wind information 

some time ago. Based on this idea, the wave spectra were also collocated with past wind measurements using different time 

lags. For the collocations of each time lag, DNNs were re-trained to estimate the corresponding wind speed and directions and 

the error metrics were re-computed.  The error metrics as a function of time lag were shown in Fig. 3. The results indicate that 

the DNN perform significantly better in estimating wind information a short period ago than the current wind information. The 130 

best error metrics for wind speed and wind direction were found at 40-50 minutes and 40-60 minutes before the end of wave 
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sampling time, respectively. Voermans et al. (2020) found that the wind acceleration is related to model error residuals, which 

is consistent with the results here.  

 
 135 

Figure 3. (a) The RMSE and CC of the DNN-estimated wind speed as a function of lag time between wave and wind measurements 

(waves’ end sampling time minus winds’ end sampling time). (b) The RMSE of DNN-estimated wind direction as a function of lag 

time between wave and wind measurements for wind speed higher than 7 m/s.  

 

      Obtaining wind information with only a 40-minute delay (near real-time) is acceptable for most scientific and operational 140 

applications. Therefore, the DNNs for wind of 40-minute delay were used in the following analysis. The results of wind speed 

and direction in the validation data set are shown in Figs. 2b and 2e, respectively. The corresponding error metrics as a function 

of direct-measured U10 are shown in Figs. 2c and 2f. The overall RMSE for U10 is ~1.1 m/s and is only ~1 m/s for U10 

between 2 and 10 m/s where the sample size is relatively large. The DNN model tends to overestimate the U10 when it is lower 

than 2 m/s, and the DNN model seldom gives an output of U10 less than 1 m/s. These are probably because the NDBC buoys 145 

do not well response to the small waves generated by very low wind while the geophysical noises such as ocean currents have 

a large impact on the wind-estimation during low wind speed. Meanwhile, it is noted that other indirect methods for wind 

speed estimation, such as remote sensing, also always overestimate low wind speed (e.g., Stopa et al. 2017, Jiang et al. 2020). 

Both the bias and STD increase with the U10 when U10 > 10 m/s. This is partly because the distribution of wind speed is not 

uniform and the error of DNN is often larger for the less sampled conditions. Although the DNN model tends to underestimate 150 

high wind speed, the relative RMSE remains less than 14% for U10 < 20 m/s and the accuracy is also improved for high U10 

compared to Voermans et al. (2020). For U10 > 20 m/s, the bias becomes higher than the STD, which means the systematic 

error becomes the main contributor to the RMSE. This is not surprising because the air-sea interaction becomes much more 

complicated during extreme wind and it is also noted that the U10 extrapolated from the wind speed measured at 4-5 m might 

be overestimated to some extent in extreme sea states because the anemometers might be within the wave boundary layer 155 

(Babanin et al., 2018). The overall RMSEs of U10 retrieved from space-borne altimeters and scatterometers using 

corresponding state-of-the-art combinations of sensors and algorithms are ~1.2 m/s and ~1.0 m/s, respectively, compared to 

buoy-measurements (Jiang et al. 2020; Wang et al. 2021). According to the RSME, the accuracy of the DNN-estimated U10 

is higher than altimeter U10 retrievals, and similar to scatterometer U10 retrievals if the data of U10 < 2 m/s is excluded.  
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For wind directions, the RMSE is larger than 25° when U10 < 5 m/s but decreases fast with the increase of U10. The 160 

RMSE becomes less than 20°, 15°, and 13° for U10 = 6, 8,10 m/s, respectively. Beyond U10 = 10 m/s, the RMSE of DNN-

estimated wind directions slightly increases with the increase of U10 but remains < 20° until U10 > 21 m/s. It is noted that 

there were only less than 100 samples for U10 > 21 m/s, and most of them correspond to some strong cyclones where the 

directions of the wind vary rapidly. Following Voermans et al. (2020), if only the condition of U10 > 7 m/s was considered, 

the overall RMSE of the DNN-estimated wind directions was only ~14°. To test the robustness of the DNN framework, we 165 

tried the random division, training, and validation processes more than 20 times, and the resulting error metrics in the validation 

data set stayed stable that there was no change in the first two significant digits of RMSEs of both U10 (1.1 m/s) and wind 

directions (14°). Wind direction information is also available from space-borne scatterometers, and the RMSE of wind 

directions between scatterometers (e.g., ASCAT-B/C, OSCAT2, HSCAT-B) and buoys is 15~18° according to Wang et al. 

(2021). Therefore, the performance of the DNN model is also as good as state-of-the-art scatterometers with respect to wind 170 

directions for U10 > 7 m/s.    

The error metrics of the DNN-estimated wind information (with a time lag of 40 minutes) for different buoy locations are 

shown in Fig. 1. The error metrics vary with buoy locations. The distribution of U10 RMSE for individual buoys is similar to 

that of Voermans et al. (2020), but the RMSE values are much lower here. For most buoys in the open oceans to the South of 

40°N, the RMSEs of DNN-estimated U10 and wind directions (for U10 > 7 m/s) are less than 1.0 m/s and 10°, respectively. 175 

Two buoys are found to have a U10 RMSE larger than 2 m/s: Station 44066 (2.1 m/s) at ~40°N in the U.S. East Coast and 

Station 46070 (2.2 m/s) in the southwest Bering Sea. It is noted that the biases of U10 for the two buoys (44066 and 46070) 

are also large. After a further check of the time series of measured and estimated U10, it is found that there seems to be an 

anemometer problem at Station 44066 from 22-Jan-2014 to 13-Feb-2014 (Fig. 4a). The measured and estimated U10 have a 

good agreement before 22-Jan-2014, but the measured U10 values become significantly lower than the estimated ones after 180 

22-Jan-2014. After a sudden drop on 26-Jan-2014, the measured U10 remains lower than 5 m/s for more than 15 days, which 

is unrealistic. A similar condition happened at Station 46070 from 03-Mar-2016 to 20-Apr-2016 (Fig. 4b), when the estimated 

U10 suddenly becomes significantly lower than the measured U10. Because the DNN model is unbiased and time-independent, 

such a systematic underestimation or overestimation of U10 for a long period has to be attributed to the problem of either wind 

or wave sensor. Therefore, such a DNN-based U10 estimation model can also serve as an additional quality control/monitoring 185 

method for wind and wave sensors on meteorological buoys. If the bias between estimated and measured U10 remains 

significant for a short period (e.g., 3~5 days), the wind and wave data then needs to be further checked or discarded. Because 

the buoy data has been quality controlled by NDBC, such conditions were only identified in the two cases in Fig. 4. If we 

remove the bad-quality data in Fig. 4, the U10 RMSEs for Station 44066 and 46070 will drop to only 1.10 m/s and 1.25 m/s, 

respectively.   190 
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Figure 4. Time-series comparison of direct-measured (orange) and DNN-estimate (blue) wind speed for (a) Station 44066 from 16-

Jan-2014 to 15-Feb-2014 and (b) Station 46070 from 01-Feb-2016 to 20-Apr-2016. For 44066, the measured wind speed values 

became significantly lower than the DNN-estimated ones after 22-Jan-2014. For 46070, the DNN-estimated wind speed values 

became significantly lower than the direct-measured ones after 03-Mar-2016. 195 

The other two buoys with relatively high U10 RMSE (> 1.5 m/s), Station 46087 and 46088, are both at the Strait of Juan 

de Fuca where tidal currents are strong. First of all, the wind estimated from wave measurements is the wind relative to currents 

because waves are forced by relative wind. A strong current will make the estimated relative wind deviate from the absolute 

wind from the anemometer, introducing errors to the DNN model. Secondly, the phase velocity of the high-frequency waves 

and the current velocity are at the same order of magnitude during strong currents. In this case, the dispersion relation of high-200 

frequency waves is strongly distorted by the currents via Doppler shift. This will lead to different frequency spectra for the 

same wavenumber spectra, introducing another error source for DNN-estimated wind speed. The surface currents are generally 

larger in coastal regions (tides) and westerlies (wind drifts) than in low-latitude open oceans, which can explain the spatial 

distributions of the U10 RMSE and can also partly explain why this model tends to underestimate large winds. Strong drifts 

along the wind direction will shift the wind-wave energy to lower frequencies.   205 

If the aforementioned problematic data are excluded from the training and validation dataset (they are included in the 

results in Figures 1~4), the overall performance of the model will not be significantly improved (the overall RMSE only 

reduced by 0.02 m/s), because the number of samples for these corrupt data is very small compared to the overall sample size. 

However, the U10 RMSEs will be less than 1.5 m/s for all buoys at different locations. This indicates that the geographic 

dependence of the DNN model’s error is weak. To further test the robustness of the DNN model in different locations, the 210 

training set and validation set were divided according to the buoys’ locations. The data from buoys 45001-51101 (53 buoys) 

were selected as the training set and the buoys 41002-44066 (48 buoys) were selected as the validation set. The locations, 

wind-wave climate, and other environmental properties are significantly different for the two sets because none of the buoys 

in the validation set is in the same basin as the buoys in the training set. In this case, the established DNN model still has a 
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good performance in the validation set with an RMSE of ~1.15 m/s (the result can be seen in the reply to the reviewer in the 215 

online discussion). 

For wind directions (U10 > 7 m/s), the lowest RMSE is 7° and 68/94/100 out of the 101 buoys have RMSEs less than 

14°/20°/22°, showing the robustness of the DNN model. The spatial distribution of RSME is similar to U10 RMSE (the CC 

between the RMSEs of U10 and wind directions is 0.51, significant at 99.9% level) with the lowest value in the open ocean at 

low latitudes. The only buoy with RMSE larger than 22° is at Station 46082 (59.68°N,143.37°W). However, after a further 220 

check of the data, a bias of ~25° was found after 22-Sep-2018 (not shown), indicating there might be something wrong with 

the data themselves like the condition in Fig. 4. Similar conditions occur in some other buoys with RMSE > 20° (46001 and 

44009). Two aforementioned buoys, 46087 and 46088, that are impacted by currents also have RMSEs > 20°. The reason for 

RMSE > 20° is unknown for the other two buoys, but errors of ~180° sometimes occur at the two buoys, largely increasing 

the overall RMSE.  225 

4 Discussions 

The wind information estimated from wave spectra achieves good accuracy, but the DNN model uses all available wave 

spectral information as the input. Usually, not all input terms are important for the model. Therefore, we tried to refine the 

DNN model using a sensitivity test. By blocking some of the inputs (setting the values of normalized input into zeros), one 

can know which input is more important for the DNN model. 230 

Low-frequency waves are usually not coupled to the local wind, thus, the importance of different frequency bins was 

analyzed. The RMSEs after blocking some frequencies are shown in Fig. 5. For U10, it can be seen that inputs under 0.1 Hz 

are not important for the model, and blocking only one frequency bin has little impact on the result. However, blocking more 

bins at high frequencies, especially the bins near 0.2 Hz, has large impacts. For wind directions, it seems the inputs under 0.25 

Hz are not important and the inputs near 0.38 Hz play the most important role in the model. Therefore, what the DNN learns 235 

from the data is a weighting average of the information from different frequencies. Voermans et al. (2020) also only considered 

the wave spectra higher than some frequencies in a spectrum, which is consistent with the model here.  

The importance of each of the Fourier coefficients was also analyzed. For the U10 (wind direction) DNN, the RMSEs 

after blocking E, α1, α2, r1, and r2 are 3.75, 1.17, 1.14, 1.47, and 1.20 m/s (17.3°, 111.9°, 16.2°,14.3°, and 14.4°, for U10 > 7 

m/s), respectively. This indicates that E and α1 are the most important parameters for estimating U10 and wind directions, 240 

respectively. This is in line with Voermans et al. (2020) where E and α1 is the only parameter for the estimation of U10 and 

wind directions, respectively. Meanwhile, r1 (E and α2) seems to also play some roles in the estimation of U10 (wind directions). 

If we re-train the model with only E (α1), the RMSE on the validation set can only reach 1.26 m/s (15.5°), slightly worse than 

the original model. This is probably because the r1 contains the wave spreading information and the wave spreading at high 

frequencies are also correlated to the wind speed, which can be used to slightly reduce the random error of the U10 from E 245 

only. Similarly, α2 information can also partially reveal the wave direction in high frequencies, and E is helpful to give the 
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energy weights for each frequency, which are helpful to reduce the random error of estimated wind directions. The above 

sensitivity test indicates that E and r1 above 0.1 Hz (α1, α2, and E above 0.25 Hz) are the most important inputs for the estimation 

of U10 (wind directions), which is also in line with Voermans et al. (2020). Previous studies of wind remote sensing showed 

that the modulation of swells on capillary waves has some impacts on the wind speed retrievals (e.g., Stopa et al. 2016, Li et 250 

al. 2018, Jiang et al. 2020). Long swells also modulate short wind-seas (waves with relatively high frequencies measured by 

buoys, they are gravity waves instead of capillary waves). If this modulation process significantly impacts the buoy wind-

estimation model, removing the long swell information will negatively impact the model accuracy. However, according to the 

results in Figure 5, the swell’s modulation on wind-seas has little impact on wind estimation using buoy wave spectra. If we 

re-train a DNN using only these inputs (33×2=66 inputs for U10 and 17×3=51 inputs for wind directions) without changing 255 

other settings, the performance of the models is nearly the same as the original ones. The RSMEs stay less than 1.15 m/s and 

14.5° for U10 and wind directions, respectively, in 20 independent experiments.   

 

Figure 5. (a) The RMSE between DNN-estimated and direct-measured U10 as a function of the blocked central frequency. Different 

colors indicate the results of blocking different numbers of bins. For example, the orange line indicates that the RMSE of the DNN 260 
model is ~1.45 m/s (the peak) when the input at 0.2 Hz and its two neighbouring bins, 0.19 and 0.21 Hz, are blocked (set to zero after 

normalization). (b) is the same as (a), but for the RMSE of wind direction.    

5 Concluding Remarks 

        Ocean wave spectra can be used to sea surface winds. Here, we trained two DNNs that can estimate U10 and wind 

directions ~40 minutes ago from high-frequency wave spectra. The overall accuracy of the wind-estimation DNN models is 265 

comparable with the state-of-the-art scatterometers under moderate U10.  The two models can also be used as a quality control 

tool for wind and wave measurements from meteorological buoys. 

The DNNs were trained using a large amount of data from only NDBC buoys but not compact wave buoys. However, 

applying the two models directly to compact wave buoy data (after interpolating the spectra from compact buoys into the 

frequency bins of NDBC buoys) will not result in significantly lower accuracy. This is because the DNN will automatically 270 
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select the NDBC wave spectra in the frequency with relatively high accuracy, and the accuracy of measured spectra from 

compact wave buoys is usually higher.  

For the wave data from NDBC buoys, the performance of the U10 DNN is significantly biased when U10 is too high or 

too low, and the performance of the wind direction DNN becomes worse with the decrease of U10. Also, the accuracy of both 

models decreases when the surface currents are strong. We believe these shortcomings can be partly solved by compact wave 275 

drifters, resulting in better accuracy in estimating near-real-time wind properties. First, a smaller buoy size can resolve high-

frequency wave spectra more accurately, which is helpful for wind estimation. Second, in the condition of strong wind or 

current, the moving velocity of the wave drifter is usually similar to that of the surface current, making the wavenumber and 

frequency spectra follow dispersion relation again in the buoy reference system. This can compensate for some of the errors 

induced by strong surface currents or wind-induced drifts. Therefore, significantly better accuracy can be achieved by training 280 

new DNN models with the spectral data (maybe also the drifting velocity data) from compact buoys using collocated wind and 

wave measurements. Such measurements can be obtained by placing some compact buoys near meteorological buoys or simply 

using the scatterometer or re-analysis wind as the training target. 

Finally, we hope to point out that such DNN models need not to be trained from the beginning using a large amount of 

data. The DNN models presented in this paper can serve as pre-trained models which will significantly reduce the complexity 285 

of training the new models. With the compact wave buoys becoming increasingly widely used in observing wave parameters, 

their global network can be a new good-quality data source for both waves and wind after applying these models.  
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