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Abstract Low-cost air quality sensors offer significant potential for enhancing urban air quality networks by providing higher
spatio-temporal resolution data needed, for example, for evaluation of air quality interventions. However, these sensors present
methodological and deployment challenges which have historically limited operational ability. These include variability in
performance characteristics and sensitivity to environmental conditions. In this work, we investigate field ‘baselining’ and
interference correction using Random Forest regression methods for low-cost sensing of NO,, PMio, and PMzs. Model
performance is explored using data obtained over a 7-month period by real-world field sensor deployment alongside reference
method instrumentation. Workflows and processes developed are shown to be effective in normalising variable sensor baseline

offsets and reducing uncertainty in sensor response arising from environmental interferences. We demonstrate improvements

of between 37% and 94% in the mean absolute error term of fully corrected sensor datasets; equivalent to performance within

+2.6 ppb of the reference method for NO2, 4.4 ug/m3 for PM10 and +2.7 ug/m3 for PM2.5. Expanded uncertainty estimates

for PM10 and PM2.5 correction models are shown to meet performance criteria recommended by European air quality

legislation, whilst that of the NO2 correction model was found to be narrowly (~5%) outside of its acceptance envelope.

Expanded uncertainty estimates for corrected sensor datasets not used in model training were 29%, 21% and 27% for NO2,

PM10 and PM2.5 respectively.A—-mean—absolute—error—of-2.6-ppb—5-1—pglm®-and-2.9pgim®*for NOxPMag—and-PMas

1 Introduction

1.1 Air Quality Context

Poor air quality is recognised as the largest environmental risk to human health worldwide (Public Health England, 2018).
Pollution levels in many UK cities regularly exceed legal limits and health-based guidelines and exert a national mortality
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burden equivalent to 28,000-36,000 deaths each year (Kelly, 2018), with estimated economic costs of more than £20Bn. Road
transport is widely recognised as the major urban air pollution source, particularly for NO; (Leach et al., 2020). Within this
context in the UK, there has been continued policy commitment to tackling poor air quality through the UK Clean Air Strategy
(Defra, 2019; Defra and DfT, 2017). As a result, there is much demand for air quality evidence which can contribute to
responsive decision making for pollutant mitigation interventions. In turn, low-cost sensor technologies have proved attractive,
offering some advantages over traditional instrumentation. These include lower operating costs (infrastructure, commissioning
and running costs), reduced administrative barriers (planning) and options for deployment in dense networks to deliver high
spatio-temporal resolution datasets. One such setting which has adopted this approach is in the city of Oxford, where the
‘OxAria’ study commissioned a low-cost sensor network to enhance regulatory grade air quality data for rapid assessment of
COVID-19 related transport variations and local emissions control policy interventions including a proposed Zero Emissions
Zone (National Institute for Health Research, 2020)

Low-cost, or, at least, more affordable air quality sensors provide considerable potential to enhance spatial coverage of high-
quality measurements which have historically been limited by the prohibitive cost of regulatory grade monitoring (Castell et
al., 2017). Low-cost sensors offer potential for (i) a more agile and responsive technique for capturing the impact of air quality
interventions and hotspots, being more flexible and quicker to deploy to capture the spatio-temporal variability in pollutant
levels arising from specific emissions sources or influences of the built environment (Schneider et al., 2017), (ii) supplementing
regulatory monitoring, modelling and source attribution evidence base for a better-informed population exposure estimates
and policy decisions (Morawska et al., 2018) and (iii) opportunities for mobile air quality measurements and citizen science
approaches that further challenge the traditional evidence base and democracy of information sources that contribute local air

quality policy (Lim et al., 2019; Wang et al., 2021).

Low-cost sensors utilise and require (i) hardware which is both sensitive and specific to air pollutants at ambient levels; (ii)
robust calibration and/or (iii) data processing methods to generate data of sufficient reliability and accuracy for the intended
purpose(s) (Hasenfratz et al., 2012; Zimmerman et al., 2018). The latter present multiple methodological challenges:
calibrations developed in the laboratory may not reflect real-world performance, resulting in sensor baseline drift, and post-
hoc data calibration is typically necessary to optimise data quality (Karagulian et al., 2019). For these reasons there remain
concerns about data quality and reliability which imposes limitations upon current applications beyond a research setting (Bigi
et al., 2018; Clements et al., 2019; Crilley et al., 2018, 2020; Woodall et al., 2017). However, their accelerated uptake in local
authority settings is testament to their potential to deliver a new, high-resolution evidence base capable of contributing to

modern policies for air quality management and public health protection.
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1.2 Machine Learning Applications

Given the challenges and opportunities above, several studies have been undertaken using, primarily, machine learning (ML)
algorithms, for low-cost sensor calibration and validation. ML techniques offer significant benefits in terms of utility over
simpler methods such as multivariate regression and decision trees which can offer greater interpretive facility to understand
and quantify the interfering factors. There is a trade-off, from an air quality domain perspective, between understanding and
quantifying the sensor performance and developing satisfactory, practicable methods to support higher quality sensor
observations at the expense of knowing ‘why and how much’. Given the setting for this research outlined above and more
broadly, the current appetite for low-cost sensor data to support and influence local policy, data volumes and complexity of
interferences, black-box ML approaches present greater utility. Techniques such as artificial neural networks (ANNSs) (Esposito
et al., 2016; Spinelle et al., 2017a; De Vito et al., 2009), high-dimensional multi-response models (Cross et al., 2017), and
multiple linear regression (MLR) models have been developed with variable results. In addition, experimental evidence
suggests that sensors from the same manufacturer can behave differently under the same environmental conditions (Spinelle
2017a); highlighting the importance of model development using data generated by multiple sensors. Furthermore, ANNSs have
been shown to be able to meet sufficiently low levels of uncertainty for certain gaseous pollutants such as ozone (Spinelle et

al., 2017a), but higher uncertainty levels for NO; persist and further model performance optimisation is required

Random Forest (RF) models present an alternative ML method which have shown promise as a tool for low-cost sensor
calibration and validation. Zimmerman et al. used a RF regression model (RFR) for validation of co-located sensor for four
gases (CO,, CO, O3 and NOy) and found error rates of <5% for CO,, ~10-15% for CO and Oz, and 30% for NO,. These
estimates were within the precision and accuracy error metrics from the US EPA Air Sensor Guidebook for personal exposure

(Tier IV) monitoring (Zimmerman et al., 2018).

RFs are an ensemble decision tree approach which employ multiple decision trees to solve regression and classification
problems. They are a bagging technique, growing their decision trees in a bootstrap fashion (random sampling with
replacement). A final prediction of the target value (in our case the reference method air quality concentration) being made as

an aggregation (average) of the values estimated by the component trees.

Decision trees are known to be prone to overfitting, especially when allowed to grow deep, because after bootstrap sampling,
their trees are grown by considering all sampled features at each decision node. RFs use an alternative, improved tree growth
method which tends to limit this propensity for overfitting. The RF method achieves this by adding greater diversity to the
data used to train its decision trees. As a result, predictions from all trees have less correlation and, therefore, when aggregated,
a better prediction. RFs do this by selecting a random subset of training features for consideration at each decision node for

each bootstrapped sample. Consequently, even if by chance, the same bootstrapped sample were selected to train two trees,
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the resulting trees will likely to be different because subsequent random sampling of features at each decision node (Breiman,
1996).

A generic example of a two variable regression problem is presented in Fig. 1. In this figure, the decision tree (on the left)
splits the parameter space into partitions (branches) based on logical operators on criteria relating to the parameter space
(variable X* < 0.* etc.). These operations continue until a terminal node is reached. At this point, a single prediction is made
which is the average of all the available values that the dependent variable takes in that partition. The same process is navigated

for more than two features, however the parameter space becomes non-trivial to visualise.

One major problem that decision trees can suffer from is high variance (Hastie et al., 2009). Often a small change in the data
can result in a very different series of splits and to a large change in the structure of the optimal decision tree. At least in part,
this specificity of decision trees contributes to a tendency to overfit which results in models that do not generalise well to
unseen data / situations. Although methods to manage this behaviour exist, they add an extra burden and are either not needed

by RF models or included out-of-the-box.

The disinclination of RF models to over-fit is a key advantage of the technique and comes from the bagging and random feature
selection methods employed. They build a diverse ensemble of many weakly correlated predictors (decision trees) which, at
run time, predict based on the modal class (in classification models) or the average of all predictions (regression models). It is
the diversity of predictions and their prediction error that present advantages for RF models, as when averaged to make the

ensemble prediction, they often result in better performance than decision trees.

From an operations perspective they offer benefits to the multivariate regression problems presented in this paper: (i) tolerant
of multiple collinearity, which is intrinsic to the air quality datasets of interest; (ii) suffer less from over-fitting and therefore
promote a well generalised model which is adept to deployment across multiple datasets derived from different sensor
locations; (iii) do not require data transformation for optimisation, thereby simplifying the data logistics and computational
burden; (iv) handle multiple inputs variables with ease; (v) relatively easy to deploy, train and test across common desktop

computer environments available to air quality practitioners.

This study further develops practicable methods for enhancing low-cost air quality sensor data uncertainty. Whilst ML
techniques are established for low-cost air quality sensor validation with co-located sensors for NO; (and other gases), in this
study we aim to advance the base-lining strategies of low-cost air quality sensors by repurposing existing analytical techniques
which, to the best of our knowledge have not previously been used for field baselining and interference correction. In addition,
we apply RF algorithms to low-cost particle sensors. We present an approach which utilises an RFR to predict and compensate

for interferences from multiple environmental parameters upon the sensor signals. These methods offer a flexible, extendable,
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and reusable technique(s) to account for drift/changes in sensor calibration that can commonly occur in the field, in addition
to a correction model to compensate for environmental interferences from, for example, temperature and relative humidity

amongst others.

2 Methods and Materials
2.1 Air Quality Instrumentation

The sensor technology used in this research was the Praxis Urban sensor system supplied by South Coast Science Ltd. The
units were equipped with an Alphasense NO2-A43F electrochemical NO; sensor (Alphasense Ltd., 2019a) and an Alphasense
N3 optical particle counter (OPC) (Alphasense Ltd., 2019b). The sensor system sample rate was set to 10 second intervals.
The sensor was deployed as received from the sensor manufacturer, with no additional calibration was performed prior to field

deployment beyond standard acceptance tests.

Reference measurements of ambient NO,, PM3p and PM2 5 were obtained from the Defra, Oxford St Ebbe’s, Automatic Urban
& Rural Network (AURN) monitoring station (UKA00518) (Defra, 2021). The St Ebbe’s monitoring is located in a south
Oxford residential area, approximately 250 m from the nearest main road; as such it presents a typical urban background
environment. St Ebbe’s employs a Teledyne T200 chemiluminescence NOy analyser and a Palas FIDAS 200 fine dust aerosol
optical spectrometer. Both the Praxis Urban sensors and the AURN sensor inlets are located at a height of 2.7m and 8m from
the nearest minor road. The reference methods are designated type approved reference instrumentation for regulatory
compliance monitoring (Defra, 2013). Reference measurements were obtained at 15-minute resolution by special arrangement
with the network operators for the period 1% June to 31% December 2020. Official 1-hour time resolution datasets were
considered too coarse for RF model development and sourcing of higher time resolution data was, therefore, essential for the
characterisation of the transient interferences. Sensor and reference method sample inlets were co-located within 0.5 metres

(gases) and 2 metres (particles) for the study duration.

2.2 Air Quality Datasets

Measurements obtained from the OxAria sensor unit co-located at the Oxford St Ebbe’s AURN monitoring station was the
primary source of data for model development in this work. The unit was installed in June 2020 as part of a wider project
aimed at understanding the impacts of COVID-19 upon air and noise quality in Oxford. Sensor and reference measurement
data were collected throughout June to December 2020. Sensor data were aggregated to a 15-minute mean resolution, from
the initial logging interval of 10s, to ensure conformity with the time datum for the AURN datasets. The quality assurance

status of the AURN datasets was valid / verified.
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2.3 Sensor Baseline Offset Correction

The rationale for the baseline correction was to prepare sensor datasets for interference correction using an RF model. There
was clear evidence for variability in the baseline of the NO, sensors deployed (more details are in the results section), but less
so in the PM sensor data. Any variation in the baseline conditions at a network level will confound comparisons undertaken
across the network and with air quality limit values and guidelines, irrespective of the pollutant species. Importantly, baseline
variability was also anticipated to be problematic for the deployment of a generalised RF correction model, the characteristics
of which will be ‘locked-in’ to the baseline of the dataset used for its training. In this case, the co-located sensor at St Ebbe’s
displayed a baseline offset of approximately +80 ppb (NO2). To address this issue, sensor baseline correction was handled
separately from transient environmental interferences. A series of filters and baseline identification techniques were developed
to adjust for variance in sensor signal and correct for the sensor baseline in a systematic and automatable way. This method
enables the sensor baseline to be standardised across a small network of sensors and has been applied in this ongoing research
to the NO2, PM1 and PM; s datasets. The 4-stage processing approach is summarised in the schematic presented in Fig. 2 and
outlined in more detail in the sections below. The offset correction model operated at the same resolution as the reference data
(15-minute means) and was initialised with ~6 months of continuous sensor data.

2.3.1 Stage 1 — Empirical Filters for Removal of Outliers and Anomalies.

The data filtering criteria presented in Table 1 was developed to facilitate pragmatic screening of anomalous sensor data points.
Their development was informed by a combination of local meteorological observations, data logged by the reference
monitoring station, and an analysis of typical sensor performance from the sensor. The acceptable sample flow rate criteria for
the PM sensor was recommended by the manufacturer. When one or more parameters were detected outside the bands of
acceptance shown (in Table 1), the sensor observation(s) were excluded from further analysis. Filters for NO, and particles
are presented in Table 1. Filters (i) and (iii) removed data points outside of precautionary estimates of the normal range of
ambient temperature in Oxford, thereby excluding any anomalies arising from temperature dependent sensor system
corrections that may be performing out of range. Filters (ii) and (iv) performed a similar role for relative humidity. Filter (v)
removed particles data during periods of low OPC sample flow rate. Application of these empirical filters rejected ~1% of the

initialisation dataset.

2.3.2 Stage 2 - Baseline Identification & Offset / Drift Correction.

Stage 2 implemented a statistical method developed in the analytical domain for baseline correction in chromatography and
Raman spectroscopy The method, Adaptive lteratively Reweighted Penalised Linear Squares regression (airPLS) (Zhang et al
(2010) and (2011)), combines least squares regression smoothing, a penalty to control the amount of smoothing, and a

weighting function to constrain the baseline from following peaks in the sensor signal. Weightings are changed iteratively,
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after an initial best-fit, with large weights applied where the newly iterated signal was below the previously fitted baseline and
conversely small weights applied where the signal was above the fitted baseline.

Performance and flexibility were a key factor in selection of a preferred method for baseline correction. airPLS does not require
significant user intervention to perform satisfactorily, nor prior information or supervision, e.g. peak detection. It is a fast,
flexible technique, and readily deployable in code (Zhang et al, 2011). In addition, airPLS offers important benefits as
controlled, systematic and reproducible approach to the handling of baseline offset in individual and networked sensors. No
data losses occurred in Stage 2 corrections.

2.3.3 Stage 3 — Baseline Over-fit Compensation

airPLS is highly efficient in correcting a baseline to zero, an artefact that derives from its intended application domain
(chromatography) where a zero baseline is generally encouraged. Stage 3 applies a compensation method for the efficacy of
the airPLS algorithm in correcting sensor baseline to zero, which in effect removes the urban, regional, and rural background
contributions from the sensor signal. The method scales the Stage 2 outputs by the difference between the identified Stage 2
baseline and that of the city scale background; the latter having been calculated using airPLS in this case using observations
from Oxford St Ebbe’s, urban background AURN station. A compensation was calculated for each data point i.e. at a 15-
minute time resolution. Taking the NO; time series this compensation method resulted in an average uplift of +2.4 ppb. For
PM1o and PMy s the uplift was +2.6 and +1.5 pg/m? respectively. No data losses occurred during the Stage 3 corrections.

2.3.4 Stage 4 — Residual Error Removal

The final stage of the sensor offset correction method accounts for remaining residual anomalies that present as negative
concentrations not accounted-er-corrected for in stages 1-3. The impact of this stage on the sample population was intended to
be low and accounted for a further ~3% reduction in sample size. Approximately 6-months of continuous 15-minute mean

sensor data, paired with reference methods concentrations was then used for RF training and validation activities.

2.4 Sensor Interference Correction with Random Forest Regression Modelling

The following sections present the configuration of the RF model and approach to model training. RF modelling was carried
out in Python implemented using the Scikit-Learn open-source machine learning library (Pedregosa et al., 2011).

2.4.1 Feature Engineering

Feature engineering describes the process of creating new training features (variables / parameters) that are more illustrative

of the underlying problem being modelled. The aim of feature engineering is to affect better model training and performance.
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It is a common pre-processing step in RF modelling and many other regression and classification techniques (Breiman, 2001;
Yuetal., 2011).

Feature engineering was constrained in scope and complexity by the need to deploy the model across a network of sensors.
Hence, feature datasets must be readily available or replicable throughout the network of sensors. This operational constraint
introduced a simplification of the known environmental interferences acting upon the Alphasense NO2-A43F electrochemical
sensor. Spinelle et al (2017b) reported evidence of cross sensitivities with NO2 and O3 on the (similar) Alphasense NO2-B43F
electrochemical sensors. However, because O3 was only measured at half of the wider OxAria sensor network and is less
commonly found within an air quality management setting in the UK, we chose to forego its inclusion as a training feature for
the RF correction model. Although this may come with the penalty of reduced model training performance - Spinelle et al
(2017b) reported an Ozto NO; cross sensitivity of ~6% per ppb of NO,, it comes with the benefit of a potentially broader real-

world application domain, outside of a research setting

Table 2 presents the features used in model training of the pollutant specific correction model. The source of the training

feature is presented in the ‘type’ column.

2.4.2 Random Forest Regression Model Training

RF model training was performed with co-located sensor and reference measurements acquired at the St Ebbe’s AURN
monitoring station over the period June to November 2020. After feature engineering (above), the core dataset was split into
training and validation datasets using a 75% to 25% split, respectively. This ‘hold-out’ validation method was combined with
a K-Fold cross-validation approach (Berrar, 2018) to estimate the performance of the model in terms of the mean absolute

error score (MAE) (Buitinck et al., 2013; Pedregosa et al., 2011).

In many cases, RF models work reasonably well with the default values for the hyper-parameters specified in the software
packages (Probst et al., 2019). Even so, for standardisation across pollutant applications and computational efficiency we
considered constraining the models using tree size metrics — number of trees, maximum number of leaf nodes and the minimum

number of samples required to split an internal node.

The maximum number of leaf nodes hyper-parameter was established by way of a cross validation sensitivity test on an array
of 10 to 5,000 nodes (node spacing set to 50). The cross-validation exercise fitted an RFR model to the input feature dataset
and iterated over the array of nodes to predict the MAE. Cross validation results for NO, are presented in Fig. 3. These are
illustrative of similar behaviours for PM1o and PM_ . Figure 3 shows the MAE decreasing as a function of increasing maximum
number of leaf nodes (model complexity). Cross validation results similar to those presented in Fig. 3 were used to identify

the optimum number of leaf nodes for each pollutant-specific model, the point on the x-axis where increased model complexity
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delivers only marginal improvement in MAE for training, validation and cross validation test samples. The process was

repeated for the PMyo and PM2 5 models. Figure 3 also confirms some assumptions about RFR model training in general:

e Gains in MAE quickly drop-off with increasing feature numbers,
¢ For RF model predictions which are based on an ensemble average of all trees, the MAE of predictions based on
training data will tend towards but never reach zero,

e K-fold cross validation produced the most conservative estimates of model accuracy (highest MAE).

The maximum of 3,500 of leaf nodes was established by this cross-validation process for the NO, RFR model whereas the
same hyper-parameter for both PM1g and PM;s models was set at 3,000 nodes. The minimum number of samples allowed in
a single partition was set to two.

Having established the maximum number of leaf nodes for the three pollutant-specific models (NO,, PMig and PM;5), the
number of trees was determined. Best-practice on setting the optimum number of trees within RF is variable with advice
ranging from between 64-128 (Oshiro et al., 2012) For this research, the incremental improvement in MAE arising from
between 100 and 500 trees was evaluated. Results did not show significant improvement in model MAE over this range within
the context of the typical ambient air quality concentrations expected. The number of trees used was set to 100 to minimise
computational cost during training. Table 3 presents a summary of the hyperparameters used in the training of each Random
Forest model. As a check on the hyperparameters presented in Table 3, the model's sensitivity to departures from these
parameters was tested using the Scikit-Learn GridSearch function (Pedregosa et al., 2011). These tests showed that only small
(<0.01 ppb) improvements in the MAE associated with the validation could be achieved by further tuning the hyperparameters
shown in Table3.

3 Results and Discussion
3.1 Uncorrected sensor data

Figure 4 presents the 3-hour rolling mean of ‘raw’ real-world NO; observations from three OxAria low-cost electrochemical
sensors and a reference method i.e. sensor data outputs before any correction algorithms are applied. The rolling 3-hour mean
is presented to attenuate noise in the datasets for visualisation. Sensor A and the reference method are co-located at an urban
background location, Sensor B is located at an urban centre location, and Sensor C at a roadside location. The sensor systems
are identical and were calibrated at the same time by the manufacturer. Figure 4 shows a comparatively low signal to noise
ratio in the sensor's observations when compared with the reference method and marked variability in the baseline(s) which
confound interpretation of the pollutant levels. The severity of the variability in sensor baseline offset is further contextualised

when sensor location is considered (as noted above). Sensor A being at the urban background is far from significant NO;
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emissions sources, whereas Sensors B (urban centre) and C (roadside) are comparatively close to major road transport emission
sources. Despite their relative proximity to emission sources the baseline for the urban background sensor is ~40 ppb higher
than its urban centre / roadside neighbours. Given that the sensors were calibrated to the same standard within a laboratory
environment prior to deployment in the field, our assumption is that the sensor baselines have been influenced in some way
after calibration, then stabilised as shown. In addition, frequent spikes in the sensor trace(s) can be observed which manifest
as both short lived, transient events of ~10 s duration in the 100-500 ppb range and as longer-lived 60 s+ events, frequently in
the 1000-2000 ppb range. This sort of sensor behaviour is linked to multiple environmental interferences of which temperature
and relative humidity are amongst the most important (Spinelle et al., 2015). We anticipate that these sensor characteristics are
replicated across the OxAria sensor network and indeed throughout similar sensor networks using electrochemical NO; sensors

and are therefore the focus of the sensor offset correction model described in the following sections.

3.1 Sensor Baseline Offset Correction Results

Figure 5 presents the incremental outputs of each stage of the sensor baseline correction model described in section 2.3. As an
example, co-located NO, sensor and reference method observations from St Ebbe’s are presented for August 2020. This sensor
and fragment of the 2020 time series was chosen as illustrative of the performance of the model on a sensor of known offset

(~80 ppb) and the general effect of each stage in the correction process.

Commenting individually on each stage presented in Fig. 5; Fig.5a indicates the presence of a clear offset in the NO; sensor
signal of ~+80 ppb relative to the co-located reference method. Fig.5b presents the outcome of applying empirical filters to
screen out anomalous sensor behaviours and data outliers. Noticeably for this location, the empirical filters have screened out
observations around 10 August but left the 250+ ppb spike in concentrations on 13 August in place. Fig.4c presents the removal
of the sensor baseline using airPLS and Fig.5d compensation for its efficacy; the baselines of the part-corrected sensor time
series and reference method baseline are recalculated (again using airPLS) and the sensor baseline scaled by the difference in

the two terms. The last step shown in Fig.5e removes any residual negative errors not already captured.

The data presented in Fig. shows the airPLS based baseline correction model to be effective at standardising the -variable
baseline shown in the NO2, PM1g and PMz s sensor signals across the network. The method also maintains the fidelity of the
dynamic range of the original sensor signal. Its effectiveness facilitates the training of generalised RF correction models. In
terms of optimisations, the approach was relatively insensitive to changes in the configuration of the empirical filters applied
in stage 1 corrections and the lambda value of the airPLS technique which controls the order of smoothing applied to the

baseline estimate.

The over-fitting of the part-corrected sensor baseline (to zero ppb) introduced by the efficacy of the airPLS technique is

compensated for by rescaling of the sensor baseline to that of the city background. If this is an over-simplification of the

10



320

325

330

335

340

345

experimental error handling it is a reasonable trade-off given the volumes of data involved and computational logistics involved

overall.

The availability of a reliable and high-quality city background at a time resolution comparable to that of sensor observations
e.g. at most 15-minute means, is essential for effective screening transient anomalous sensor behaviours which skew sensor
datasets significantly and mask important underlying data structure or anomalies. We also note that reference method data

resolved to these time resolutions is difficult to obtain in the UK.
3.2 Random Forest Correction Modelling Results

3.2.1 Random Forest Regression Model Training

Outputs from the model training exercise are shown in Figs. 6-8 as a series of regression plots for the RFR models developed
for NOz, PMyo and PMs. For each pollutant, three regression plots are presented to illustrate (i) the relationship between the
baseline_-corrected sensor observations and reference method (left), (ii) the same relationship constrained to the validation
subset (middle) and (iii) the relationship between the eorrectedfully corrected sensor observations (with both baseline

correction and RFR interference corrections applied) and reference method. A simple ordinary least squares (OLS) regression

analysis is presented in each case to describe each relationship. All data shown are at a 15-minute mean resolution.

The plots to the right of Figs. 6-8 show that the respective RF models are highly effective in predicting the target observations
(reference method). In doing so, they demonstrate their capability to predict the combined interferences from a variety of
environmental factors found in the data of the left and middle regression plots. The left and middle plots also show that training
and validation datasets come from the same sample population (one having been randomly sampled from the other) providing
a useful internal validation of model training to reflect variations in training features. Further checks on the models using
unseen data from outside of the sample populations will better test likely performance of the models in the field.

Figs. 6-8 show the dramatic impact of the RF model correction as demonstrated by the coefficients of variation in each of the
three cases. The R-squared value of eerrectedfully corrected sensor vs reference method observations is a convenient evaluator
for the ability of the models to capture the variability in the dependent datasets. Clearly, the PM2s model performs excellently
in this respect with an R-squared value of 0.96-91 and OLS slope and intercept terms approaching unity. The respective R-
squared value for both PMso and NO, RF models (0.82-79 and 0.86) also indicate good model performance. The values for R-
squared above are consistent with the out of bag scores achieved at training time (0.85, 0.82-79 and 0.91 for NO,, PMjo, and
PM: s respectively) which provide an additional check on model performance using data not explicitly used in the training.
Even so, it is clear from Figs. 6 and 7 that the models struggled, on occasion, to accurately predict higher reference

concentrations and NO, and PMs predicted concentrations are generally more scattered compared with PM3s. It is also
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noticeable that in all three cases the RF models are biased, tending to under-predict the reference concentration as demonstrated

by the regression equation slope terms and this is particularly noticeable in the > 15 ppb concentration unit range.

3.2.2 RF Correction Performance Characteristics (hold-out validation set)

The performance of each component of the correction method upon 15-minute mean data is presented in Table 4 in terms of
the MAE delivered by correction outputs at each stage, relative to the reference method observations. Table 4 shows that the
RFR correction adds significant value to the baseline correction alone contributing to a further 90-95% reduction in the MAE
terms. In concentration units this equates to fully -corrected NO, sensor observations within approximately +1-1.2 ppb of the
reference observation. Similar comparisons for PM1o and PM. s indicate eerrectedfully corrected concentrations within £0.9

ug/m? (PMyo) and 1.9 pg/m3 (PM, 5)1-2 pug/m? of the reference method. These compare favourably with results in the literature

for all three pollutants.

The impact of corrections to this order of magnitude upon the sensor time series can be visualised in Figs. 9-11 which presents
15-minute mean uncorrected -baseline normalised sensor observations, futly-correctedfully corrected sensor observations and
reference observations for NO2, PM1 and PM2s. Figure 9 shows that for NO; there is some visual evidence of the RFR model
over correction (relative to the reference method) during periods of peak concentration, particularly in mid to late June and

August. Otherwise, the NO, correction tracks that of the reference observations well.

3.2.3 RF Correction Model Performance Characteristics (unseen data)

Table 5 presents estimates of the correction model performance based on 15-minute mean unseen data from December 2020
i.e. data not previously used for model training nor validation. The data shown are, as expected, less favourable compared with
the validation set, returning higher values for the MAE metric, but for air quality context, within =11.4 ppb (NOy) and 2-32.5
pg/m? (PMyg) and 2:91.8 pg/m? (PMy ) -of the MAE returned by the model validation set (Tables 4 and 5).

In late November / December 2020 and latterly, continuing through quarter one of 2021 (not shown), the sensor network
observed episodes of high particle concentrations which coincided with a drop in ambient temperature (and dew point
temperature) to the order of 10°C. Reciprocal changes in relative humidity were not observed, nor was there an obvious change
in sensor sample flow rate. It is noteworthy also, that similar conditions were not commonplace throughout the model training
dataset (June to November 2020). The episode conditions observed by the sensor network were not replicated in the reference
method dataset and are likely the main driver for the increase in the MAE for the particulate matter correction models shown
in Table 5. Figs 13-14 show examples of the episodes in December 2020 for PM1 and PMys respectively, including the

absence of a reciprocal peak in the reference data and the performance of the model correction.

12



380

385

390

395

400

405

410

Despite these issues, and as demonstrated in Figs 13-14, the RF models deliver substantial improvements on the raw dataset
(not shown in Table 5) and baseline-adjusted data (shown). Improvements in MAE attributable to the RF model in the range
of 37-94% are shown; equivalent to eorrectedfully corrected observation within, on average approximately +3-2.6 ppb of the
reference method for NO,, +5-4.4 pg/m® for PMy and +3-2.7 ug/m? for PMys.

The decrease in model performance observed with the unseen dataset and the observations on ambient conditions and sensor
operation (above), illustrate the need for long time series for model training, covering all environmental conditions to which
the sensors will be exposed.

3.2.4 Corrected Sensor Performance vs. European Air Quality Data Quality Objectives

Tables 6 and 7 present expanded uncertainty estimates for fully corrected sensor observations. These estimates were calculated

using a spreadsheet tool (EC Working Group., 2020) to provide a further performance indicator on the adequacy of these data

for air quality assessment applications. Table 6 presents expanded uncertainty estimates associated with fully corrected sensor

data from the validation dataset, (data not used in the RFR model training) and shows that these data for all pollutants perform

well against the target expanded uncertainty criteria recommended by European legislation, (expanded uncertainties of 21%,

40% and 19% respectively for NO,, PMjo and PM,s). Guidance on the calculation of expanded uncertainty (EC Working

Group, 2010), also allows for the correction of slope and intercept terms in the relationship between sensor and reference

method. The result of this further correction is presented in Table 6 as the ‘full and final correction’. Expanded uncertainty

estimates for the validation set with full and final corrections applied were 17%, 15% and 12% for NO,, PMjo and PMy 5

respectively. Highly respectable coefficients of determination between reference and full and final-corrected sensor

observations were also found in all cases as already shown in Figure 6-8. However, because the validation set and model

training datasets are closely coupled — the validation set being taken at random from the same sample population as that used

for model training — expanded uncertainty estimates based solely on these data should be interpreted with caution and may,

depending on the application scenario of the correction model, present an overly optimistic estimate of real-world measurement

uncertainty.

Results from reciprocal calculations based on unseen data offer a more rigorous / precautionary test of expanded uncertainty,

indicative of real-world applications. Table 7 presents these data for fully corrected sensor observations from December 2020.

Table 7 shows the expanded uncertainty estimates for fully corrected unseen sensor data of 29%, 21% and 27% respectively

for NO,, PMyo and PM,s are returned. Further corrections, for slope and intercept terms, had negligible change on these

estimates, (30%, 25% and 28% expanded uncertainty respectively for NO,, PMigand PMys). As expected, these data are more

uncertain than the validation set, even so, performance is good relative to the target DQOs. The full and final corrected datasets

for PM1o and PM,s meet the expanded uncertainty criteria recommended by European legislation. The expanded uncertainty

estimate for NO, was within 5% of the acceptance criteria.
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4 Conclusions

This study has presented and demonstrated a simple and effective method for attenuating the confounding effects of sensor
baseline variability and interferences from ambient environmental parameters upon low-cost electrochemical and optical

particle counter sensor signals.

The methods presented in this paper have been tested at a high temporal resolution against high-quality, co-located reference
method observations sourced from the UK’s regulatory monitoring network (AURN). Using MAE as an indicator of sensor
error (relative to reference observations), the methods developed can reduce the error in NO2, PM;o and PM,s observations
from the low-cost sensors tested by up to 88-95% (based on model validation data not used in RF training). In the case of the
low-cost NO; sensor, corrections reduced the MAE of sensor observations to within £ 1.2 ppb of the reference observation.
Similarly, for PM;o and PM2s MAE estimates were within + 2:01.9 pg/m? and + 1.00.9 pg/m3 respectively. The R-squared

value achieved for correctedfully corrected NO,, -and-PMig and PM, s sensor observations was-were 0.86, 6:0.79 and 6.92
0.91forPMosrespectively.

Tests on how the methods generalised to unseen conditions have shown that the RFR correction models trained on data from
June to November 2020, are tolerant of a wide range of competing environmental interferences. Tests based on data from
December 2020, unseen by the RF model in training, delivered MAE estimates for correctedfully corrected low-cost NO,
PMyo and PM5 sensors of 2.6 ppb, 5-14.4 ug/m?® and 2.97 pg/m?® respectively. Despite this observed (and expected) drop in
performance, the MAE in corrections to unseen datasets were within 1.4 ppb (NO,) and 2.53.2 pg/m?® (PM) and 2:.91.8 pg/m?®

(PM, 5)~1-ppb-(NO)-or 2-3-pg/m*(PM)-of those returned by the model validation set.

Given these indicators for the level of improved uncertainty that can be achievable with the methods presented, we propose
that data from reputable, high-quality sensors may now have a meaningful role in the air quality assessment toolkit. Indeed,
using the methods presented, sensor data may deliver data quality of at least comparable levels to that displayed by passive

sampler methods (for NO>), with the benefit of higher temporal resolution.

To substantiate potential future applications, this paper has presented data demonstrating that the RF-based methods are
capable of delivering eerrectedfully corrected low-cost sensor data that meet the general requirements for ‘indicative
measurements’ as set out by the European Ambient Air Quality Directive. In doing so, we have used methods prescribed by
the European Commission Working Group on Guidance for the Demonstration of Equivalence to calculate expanded
uncertainty estimates for eerrectedfully corrected sensor observations. For tests based on beth-validation and unseen datasets,
the expanded uncertainty of eerrectedfully corrected sensor data was within the requirements set by the European Ambient

Air Quality Directive for indicative monitoring (within £25% of the reference observation for NO, £50% for particles) for

15



480

485

490

495

500

PMso and PM,s. Estimates for NO, were outside of the acceptance criteria by ~5%. tdeed,—these-tests—showed-that-the
correctedfFully corrected expanded uncertainty estimates for PMig and PM»5 were within or proximal to the equivalence

thresholds (£25%) established by the European Commission Working Group on Guidance for the Demonstration of
Equivalence. In tests using unseen data, the most stringent test available to the study, the expanded uncertainty estimates for
RFR model corrected observations for NO2, PM1o and PM; s were 1030%, 2425% and 2928% respectively.

Demonstrating conformance with these regulatory thresholds in a traceable way is a significant milestone, not least for the
potential to unlock applications as ‘supplementary assessment’ method for compliance assessments but also within the context
of the stringency of the acceptance criteria, and the rigour of the expanded uncertainty calculation method set out by the
Working Group.

We anticipate application of the model in other local contexts will require re-training and validation of the RF model for local
conditions; an important focus for future research. As such, the techniques developed are presented as a working method to be
adapted for other applications, rather than a definitive model for wider generalisations. We also note that scaling of the method
to applications across a sensor network is likely to be limited by the diversity of the RF training datasets and the quality of the
city scale background (both spatial and scalar representativeness). However, this work has demonstrated capabilities for

application to monitoring across a small city, with clear potential benefits for supporting air quality management.
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Figure 1: Visual representation of a generic, two variable Decision Tree regression problem (left) and its mapping on to a parameter
space for the independent variables (right).
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Figure 2. Schematic of the sensor baseline correction model including interfaces with downstream RFR interference correction
model.
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Table 1. Filtering criteria used for initial screening out of anomalous sensor data.

Acceptable sensor parameters - NO;

Acceptable sensor parameters — PMio and PMz s

Q) -10 °C < sensor temperature < 35 °C (iii) -10 °C < sensor temperature < 35 °C
(i) | Sensor relative humidity > 35%" (iv)  |Sensor relative humidity > 35%"
(v) Sensor sample flow rate > 2 ml/min

Filters (i-iv) were derived from local meteorological data. Filter (v) is a manufacturer recommendation.

* There were ~ 1,400 15-minute periods or 2.5 weeks (total) in 2020 when relative humidity was <35%

Table 2. Model feature (variables) used in RF model training and prediction by pollutant model.

Model NO; PM1o PM2s Type
Sensed concentration / mass Yes Yes Yes Stock
Working electrode voltage Yes No No Stock
Auxiliary electrode voltage Yes No No Stock
Corrected working electrode voltage (offset corrected) Yes No No Stock
Sample flow rate No Yes Yes Stock
Sample time of flight No Yes Yes Stock
Temperature Yes Yes Yes Stock
Relative humidity (RH) Yes Yes Yes Stock
Rate of change in temperature at T-15 mins Yes Yes Yes Engineered
Rate of change in temperature at T-30 mins Yes Yes Yes Engineered
Rate of change in RH at T-15 mins Yes Yes Yes Engineered
Rate of change in RH at T-30 mins Yes Yes Yes Engineered
Hour of day Yes Yes Yes Engineered
Day of week Yes Yes Yes Engineered
Rush hour classifier Yes Yes Yes Engineered

‘Stock’ indicates a feature based directly upon logged sensor observations, ‘Engineered’ indicates a featured

derived from re-analysis of one of more stock features.
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Figure 3. NO2 RFR model performance returns with increasing model complexity (maximum number of leaf nodes included in
training, validation and cross-validation datasets).
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Table 3. Summary of Random Forest hyperparameter setting used in model training.

Model Type

Hyperparameter

NO- PMio PMzs
No. of trees 100 100 100
Criterion 0 0 0
Max. tree depth 0 0 0
Min. samples per leaf node 1 1 1
Max. no. of leaf nodes 3500 3000 3000
Min. sample per node 2 2 2
Min. leaf node weight fraction 0 0 0
Min. impurity decrement 0 0 0
Min impurity split 0 0 0
Max. no. features 15 15 15
No. jobs -1 -1 -1
Bootstrap sampling 1 1 1
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Flgure 4. Three hour rolllng mean raw Iow cost sensor and reference method NOz tlme serles at three locations in Oxford 2020-.(Fhe
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Figure 5. {a-e)-lllustrative impacts of each stage in the sensor baseline offset correction model_upon 15-minute mean sensor

observations, St Ebbe’s, August 2020._(a) Raw sensor signal & reference method, (b) Correction 1- Application of empirical filters

for anomaly & outlier removal, (¢) Correction 2 - Baseline offset correction, (d) Correction 3 - Compensation for efficacy of baseline
655  offset correction, (e) Correction 4 - Removal of residuals.
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Note. Figure 5 presents the sensor offset correction model for illustrative purposes. Outputs from (5¢) are in turn
660 parsed by the RF interference correction model to correct for transient effects of environmental parameters (not shown).
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Figure 6. Relationship between uncorrected, RF model corrected sensor and reference method observations for NOz2, the dotted line
shows the unity slope.
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665  Figure 7. Relationship between uncorrected, RF model corrected sensor and reference method observations for PM1o, the dotted
line shows the unity slope.
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Figure 8. Relationship between uncorrected, RF model corrected sensor and reference method observations for PMas, the dotted
670 line shows the unity slope.
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Table 4. RFR correction model performance in terms of MAE relative to reference method observations, validation data, June to
675  November 2020.

Mean absolute error (MAE) Coefficient of determination (R?)
_ Fully corrected _ Fully corrected | change in MAE arising
Base!lne (Baseline + RFR) Basellng (Baselllne + from full RFR correction
correctedion-enly . correctedion @)&s&m%RFR
correction
NO: (ppb) 16.8 1.2 0.056 0.86 93%
PMyo (pg/m?) 36.534.6 2.01.9 0.012 0.8279 95%
PM 5 (ug/m?) 8.91 0.93.0 0.248 0.912 9088%

Figure 9. Time series of uncorrected-baseline-rormatisedadjusted, fully corrected sensor observations and reference method
680  observations for NO2 St Ebbe’s Oxford 2020.
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685

690

Figure 10. Time series of uncorrected-baseline-normalised, fully corrected sensor observations and reference method observations
for PM1o St Ebbe’s Oxford 2020.
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Figure 11. Time series of uncorrected-baseline-normalised, fully corrected sensor observations and reference method observations
for PM2s St Ebbe’s Oxford 2020.
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Table 5. RFR correction model performance in terms of MAE relative to reference method observations, unseen data December

2020.
Mean absolute error (MAE) . o
_ Change in MAE arising from full
Baseline ) ) )
. Fully corrected (Baseline + RFR correction) RFR correction
correctedion
NO; (ppb) 4.1 2.6 37%
PM1o (ng/m3) 8175.5 5444 94%
PMas (1g/m3) 10.0 2.79 731%
695
Figure 12. Time series of uncorrected-baseline-rermalisedadjusted, fully corrected sensor observations and reference method
observations for NO2 St Ebbe’s Oxford, unseen data, December 2020.
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Figure 13. Time series of uncorrected-baseline-normalised, fully corrected sensor observations and reference method observations

for PMy St Ebbe’s Oxford, unseen data, December 2020.
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Figure 14. Time series of uncorrected-baseline-normalised, fully corrected sensor observations and reference method observations
for PM2s St Ebbe’s Oxford, unseen data, December 2020.
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Table 6. Expanded uncertainty estimates for eorrectedfully corrected sensor observations using RFR validation dataset.;
(the target values are the target expanded uncertainty criteria recommended by European legislation).

Pollutant Expanded Full and final €corrected R-squared Value Conformance with Target Expanded
Uncertainty Expanded Uncertainty? g Uncertainty Objective
NO; 21% 417% 0.86 True, <25%
PMjio 3440% 1215% 0.8279 True, <50%
PM_5 1819% 1012% 0.912 True, <50%
a. expanded uncertainty estimates with allowance to correct for non-zero intercept and non-unitary slope in the
linear regression relationship of sensor to reference method.
715
Table 7. Expanded uncertainty estimates for correctedfully corrected sensor observations from unseen dataset, December 2020.
(theThe target values are the target expanded uncertainty criteria recommended by European legislation).
Full and final corrected
Expanded Expanded Conformance with Target Expanded
Pollutant P . i R-squared Value . g . P
Uncertainty Uncertainty®Cerrected Uncertainty Objective
e
NO, 2129% 1030% 0.8772 TFrueFalse, <25%
PMag 3421% 254% 0.2730 True, <50%
PM_ s 2927% 2928% 0.4547 True, <50%
a. expanded uncertainty estimates with allowance to correct for non-zero intercept and non-unitary slope in the
|720 linear regression relationship of sensor to reference method.
725
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