
Response to Reviewers' Comments

We thank the reviewers for their detailed reading of the paper, for catching some
errors, and for the helpful suggestions for improvement. Please see the following
pages for a detailed response and a summary of our changes.

Sincerely,

Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen,
and Andreas Hauptmann
19 January 2021
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Response to Reviewer 1

I found the description of this hierarchical convolution technique to be clear and well-

organized, and I have high con�dence that I could implement the technique based on

reading the paper. I think this is an exciting area of development for processing radar

data and, in particular, incoherent scatter radar data, and I look forward to future

developments. I have some speci�c comments that follow, but they mainly touch on

areas where I think additional information or clari�cation would improve the paper.

Response: We thank the reviewer for the encouraging evaluation and for excellent
suggestions to improve the clarity of the paper. In the following we outline
our speci�c responses to the raised points.

1. In the paragraph containing Equation (7), it is introduced as, "In order to

reach resolutions better than the elementary pulse length". I found this slightly

confusing on the �rst read-through because I initially failed to recognize that

Equation (7) is a discretization of Equation (5) since my attention had been

directed to the resolution issue. The quoted clause implied to me that the

form of the following Equation (7) is specialized in order to achieve increased

resolution, but in truth the equation would look similar in all cases and is

necessary just for discretization. I suggest removing the quoted clause and

placing discussion of how to achieve resolutions better than the elementary

pulse length to after the description of Equation (7).

Response: We agree with the reviewer and will change the text before Equa-
tion (7) as follows: �In order to reach resolutions better than the elemen-
tary pulse length, → In order to move from the continuous time signals
to discrete samples,�

We will then add the sentence after Equation (7): �In order to reach
resolutions better than the elementary pulse length, we oversample the
signal, i.e. use sampling steps shorter than the elementary pulse length.�

Changes: We have changed the wording as follows.

In line 127: In order to move from the continuous time signals to discrete
samples

In line 136, 137: In order to reach resolutions better than the elementary
pulse length, we oversample the signal, i.e. use sampling steps shorter
than the elementary pulse length.
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2. Using a mean of 0 for the Gaussian Process prior for P is described as a

"convenience", and I appreciate from my own experience with GPs that it is

indeed such. Are there other justi�cations you can provide for why that is an

appropriate assumption in this case?

Response: Our target is in estimating the variability, and especially the high
frequency parts (non-stationarities) of P . Our approach is in modelling
this variability via the non-stationary covariance function with zero-mean
GPs. Alternatively, we could choose a non-zero mean parameter or a
continuous-parameter pro�le. These we could also estimate within our
model. However, if we have a continuous-parameter pro�le, this could
lead to overparameterisation and unidenti�ability of the unknown ob-
jects, as the high-frequency parts would be both in the non-stationary
covariance, as well as in the estimated continuous-parameter mean. A
straightforward alternative would be to use some other measurements
for mean estimation (this has been done e.g. for ionospheric tomogra-
phy by using ionosonde measurements for mean estimation). As ISR can
be considered as the baseline measurement for ionosphere, this is pretty
much impossible to achieve with standard experiments (perhaps exclud-
ing rocket experiments).

In summary, the zero-mean choice is a rough simpli�cation, but as our
target is to detect the non-stationarities and providing general purpose
tools (rather than tuning the model for speci�c cases), we feel that mak-
ing a more complex choice is not needed for the purpose in this paper.
We will add a short comment accordingly after introducing the 0 mean
in Section 3.1 and remove the wording �convenience�.

Changes: Starting from line 165, we have removed "Convenience" and added
the short reasoning: "which is a simpli�ed assumption, but su�cient to
detect the desired non-stationary features in this study."

3. Similarly, can you provide additional justi�cation for why a Matérn covariance

with ν = 1.5 is chosen? Including a quick statement in the text will help readers

who are less familiar with Gaussian Processes so they don't have to turn to one

of the references to �nd the answer.

Response: We agree that this needs more explanation. The parameter ν
determines the smoothness of the underlying process. In the case ν = 1.5,
the process is once mean square di�erentiable. We choose ν = p+0.5, p ∈
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N, as this provides a Markov approximation for the model, and thus there
exists a simple form for the covariance function via stochastic di�erential
equations. Hence by constructing and by choosing ν = 1.5, the square-
root of the inverted covariance matrix has a tridiagonal structure � which
is numerically convenient.

We will add an explanation accordingly to the text.

Changes: We have added the text in lines 172-174: "We choose ν = p +

0.5, p ∈ N, as this provides a Markov approximation for the model. By
the construction, the square-root of the inverted covariance matrix has a
tridiagonal structure � which is numerically convenient".

4. It is noted that Ll is a tridiagonal matrix with reference to Roininen et al.

2014. I suggest adding a quick statement saying why this is the case (e.g. �nite

di�erences approximating the derivative) and why it is useful (e.g. e�cient

computation especially as the problem size scales up). Providing an explicit

expression of Ll as a function of li here would also be good for clarity, although

I do note that it appears in-text later in lines 204 and 205.

Response: This is correct, and as pointed above, the Markov approximation
leads to numerically and computationally useful presentation. Moreover,
this also allows us to model `i via increments, thus simplifying both the
model and computations.

We will add a short motivation where it is �rst mentioned and point the
reader to the following section for the explicit representation.

Changes: We added text in line 182-184: "[...], motivated by the Markov ap-
proximation that leads to a computationally useful presentation. More-
over, this also allows us to model ` via increments, thus simplifying both
the model and computations. The explicit representation of L` is given
in the Section 4."

5. The Figure 3 labels and text discussing the �gure refer to u as the "length-

scale function". I think it would be clearer to note that this is the log of the

underlying length scale, so that statements like "by factor 3-5 large in smooth

parts of the pro�le" can more easily be associated with the log scale under

discussion. Better yet would be to reference the physical units associated with

the underlying length scale values.
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Response: We agree and will change the �gure captions. We also point to
our response to Reviewer 2 in Technical corrections 4, that we will add
[arb.units] as this depends on the sampling accuracy of the pro�les to be
recovered.

Changes: Accordingly, the labels to the Figures 3, 4, 6, 8 were changed from
"Length-scale function" to "Log of length-scale function [arb. units]"

6. The alpha tuning parameters were optimized to minimize the mean squared

error between P and P̂ , and the resulting estimates all underestimate the peak

power of the sporadic E layer. Presumably this is because the length scale would

need to reach a smaller value at those altitudes in order to permit the large

gradient that exists there. Did you test higher values for the alpha parameters,

and does that end up �tting the sporadic E peak better? What does that do for

the quality of the estimates at other altitudes for the background ionosphere?

In other words, if one was more interested in the highest quality estimates of

either a narrow feature or the background ionosphere at the expense of the

other, how does that a�ect the decision for setting the alpha parameters?

Response: This is a very good point, that we missed to discuss. We have con-
ducted some more experiments to test if a higher peak could be reached
with more parameter tuning. In fact, the particular values for αC and
αTV are already (very) close to optimal for the sporadic E peak. Tuning
the α parameters for the estimation of the narrow feature of the peak
will primarily a�ect the outer layers and does not improve the recon-
struction of the highest peak power. This nicely underlines the bene�t of
the length-scale function in the estimation procedure, as it is robust for
the narrow layers and the tuning parameters a�ect primarily the desired
smoothness of the outer layers.

We will add a comment to Section 5.1. as follows: �The presented mod-
elling proves to be robust in recovering the peak power. Speci�cally,
choosing di�erent tuning parameters to estimate the narrow feature of
the highest peak power not increasing signi�cantly the quality of the re-
construction in comparison to the optimal values of αC and αTV. This
underlines the need for an adaptive length-scale function in the estimation
procedure.�

Changes: We have added the following to line 260-263: "The presented mod-
elling proves to be robust in recovering the peak power. Speci�cally,
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choosing di�erent tuning parameters to estimate the narrow feature of
the highest peak power not increasing signi�cantly the quality of the re-
construction in comparison to the optimal values of αC and αTV. This
underlines the need for an adaptive length-scale function in the estimation
procedure."

7. Following on from the previous comment: did you test any other prior distri-

butions (i.e. not Cauchy or TV/Laplace) for the length scale di�erence that

might be better suited to really sharp gradients? If not, can you point to direc-

tions for future work in this area?

Response: This is a good point for discussion, in our study we have not chosen
any other priors. Naturally, there is a large selection of di�erent priors
one can use for speci�c applications: Gaussian priors (easy to use for
continuous models, but not good for rough features), Besov priors (good
for rough features, but have dyadic structures due to wavelets), geometric
priors (requires model-speci�c constructions), and data-driven priors via
neural networks, especially GANs (requires training data).

As mentioned, for this particular study, we concentrated on the Cauchy
and TV priors. This is because we want to avoid the dyadic structures,
speci�c geometries and dependence of data, which could be well suited for
future studies, but out-of-scope here. For instance, one could use rougher
features by using general alpha-stable processes, but losing the analyt-
ical properties of Cauchy distributions, which would further complicate
the process due the needed computations of approximations of probabil-
ity density functions of alpha-stable densities. Moreover, as the Cauchy
probability density function is already an in�nite-variance model, we sus-
pect that the result of going to rougher models would have a marginal
e�ect to the �rst-layer GP non-stationary model.

We will add a comment accordingly to the Discussion in Section 6 and
point to possible improvements in future studies.

Changes: We have added a short discussion of possible other priors to the
Conclusions as a possible direction for future studies (Lines 413-417):
"In this study we have not investigated other priors than the Cauchy
di�erence and TV prior. Naturally, there is a large selection of priors one
can use for speci�c applications (Gelman et al., 2013): Gaussian priors,
geometric priors, and even data-driven priors via neural networks (Adler
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and Öktem, 2018). The reason why we have concentrated on the Cauchy
di�erence and TV priors, is because we want to avoid dyadic structures,
speci�c geometries and dependence of data, which could be well suited
for future studies, but out-of-scope here."

8. How speci�cally did you choose the tuning parameter values for the PMWE

and PMSE results? (i.e. What "performance" [line 296] is being optimized?)

Response: Naturally, the ground truth is not available for the PMWE and
PMSE measured signals. As such, the tuning parameters in this case were
chosen empirically and were validated visually by professional judgment
to improve reconstruction characteristics. Speci�cally, concentrating on
the resolution of the narrow layer and continuity over time (in Figure 7),
while maintaining smooth characteristics of the outer layers.

We will add a comment in Sections 5.2 and 5.3 accordingly.

Changes: We added the corresponding text to lines 315-318: "The ground
truth is not available for the PMWE and PMSE measured signals. As
such, the tuning parameters in this case were chosen empirically and were
validated visually by professional judgment to improve reconstruction
characteristics. Speci�cally, concentrating on the resolution of the narrow
layer and continuity over time (in Figure 7), while maintaining smooth
characteristics of the outer layers."

Response to Reviewer 1. Technical corrections

1. (line 313) "from in TV prior" → "from the TV prior"?

(line 334) "Cauchy di�erence TV" → "Cauchy and di�erence TV"?

Response: Thank you for carefully reading the manuscript, we will correct
the errors.

Changes: All the errors have been corrected.
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Response to Reviewer 2

1. While the model and the algorithm are quite complicated, the authors made

a large e�ort to make them as clear as possible in the text. In addition, no

serious errors and �aws were found. On the other hand, it is very hard to

overview the whole structure of the model at a glance. For the sake of readers,

I give some minor comments in what follows.

The current version of Fig. 2 simply shows the relationship between the param-

eters, and the model structure is described in detail part by part throughout the

sections 2-4. However, the current structure requires readers to go back and

forth in the text until the model is understood and this is rather painful. In my

opinion, Fig. 2, or perhaps better to add another �gure, should also include

the model structure itself to grasp the whole structure at a glance. More specif-

ically, it should illustrate relationship of the Gaussian Process and Matern

covariance, the additive epsilon and Gaussian pdf and so on in the diagram,

as well as MCMC and MAP.

Response: Thank you for the encouraging evaluation and the critical com-
ments. We agree that the structure might be a bit hard to follow at �rst
and welcome the suggestions how to make it more accessible. We have
discussed how to best address the reviewers comments to improve the
presentation and came the the conclusion that we will include an addi-
tional subsection 4.1 on "Model overview", that aids to summarise the
whole process. In particular, to address the suggestion of adding another
Figure, we will include a �owchart that shows which steps have to be
taken and how these relate to each other.

Changes: We have now added a new section 4.1 on "Model overview". We
have decided not to include a �ow chart, in contrast to what we wrote in
the previous response as we felt it will be redundant. Nevertheless, we
have now formulated the full hierarchical model in equation (16) followed
by a pseudo-code for both, the MAP estimate and MCMC inference. We
believe this should help the reader to follow the necessary steps, while all
information is now collected in one concise subsection.

2. In addition to the logical relationship of the model parts mentioned above, it

is recommended if possible schematically to show the sequence (in time) of the

procedures to show which part of the model and how to start the calculation

from.
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Response: Following the previous point, we will not only add the �owchart
as visual illustration, but also include a summarising pseudo-code for the
MAP and MCMC estimation. We believe that this should provide the
necessary overview of the model in a concise manner.

Changes: As previously outline, we have now included a pseudo-code in sec-
tion 4.1.

3. In L.152, which is �Here p(Pm|P,L) is the likelihood. . . � (L is intentionally

capitalized for readability purpose in this communication), can p(Pm|P,L) be
p(Pm|P )? It is because Pm is presumably conditionally independent from L

given P.

Response: This is correct, we will add a short comment that it can be also
simply p(Pm|P ) due to conditional independence.

Changes: Text added in lines 153, 154: "and due to conditional independence
is just p(Pm|P )"

4. Equation (12) indicates the name of prior PDFs (Cauchy & Laplace) but

does not show their mathematical forms. While this is accepted in case actual

expressions are not concerned, it is recommended to show them in this paper

because the de�nitions of αC/TV are needed in the following discussions.

Response: We fully agree on this point and the corresponding mathematical
expressions will be added add the corresponding location in Section 3.2.
after Equation (12).

Changes: Lines 188-190: Text added "The probability density functions of
Cauchy and Laplace distributions are given as p(x) ∝ ((x− x0)2 + s2)−1

and p(x) ∝ exp(|x− x0|s−1), respectively, where x0 is the center and s is
the scaling of the distribution."

5. In Figure 5, what is the reason by which the sidelobe of the left plot (PMWE)

is wavy while the other (PMSE) is quite smooth?

Response: We agree, that it is bene�cial to include more detail about the
sidelobe behaviour. We will add some more explanation in Section 5.2.
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Speci�cally, for the wavy sidelobes we will add: �Considerable side lobes
are produced in matched �ltering of the shortcodes that are not Barker
codes�.

Regarding the PMSE, we will add that �the range side lobes are smooth
because the long codes behave reasonably well in matched �ltering, and
sidelobe patterns of each code in the long code sequence are di�erent.�

Finally, the corresponding caption to Figure 5 will be changed to: �The
pair of 10-bit codes used in the PMWE observation produces signi�cant
side lobes in matched �lter decoding, while the sequence of 128 61-bit
codes used in the PMSE observation leads to a smooth pattern of smaller
side lobes�

Changes: We have made the following changes.

Line 311, 312: Text added "Considerable side lobes are produced in
matched �ltering of the shortcodes that are not Barker codes"

Lines 344, 345 : Text added "the range side lobes are smooth because
the long codes behave reasonably well in matched �ltering, and sidelobe
patterns of each code in the long code sequence are di�erent."

Caption to Figure 5, text added "The pair of 10-bit codes used in the
PMWE observation produces signi�cant side lobes in matched �lter de-
coding, while the sequence of 128 61-bit codes used in the PMSE obser-
vation leads to a smooth pattern of smaller side lobes"

6. In Figures 6 and 8, what is the reason by which uC and uTV are quite di�erent

where they are higher than 4.0?

Response: We acknowledge that this needed more explanation. The funda-
mental reason is that the Cauchy and TV process priors are di�erent
models, and have di�erent parameterisations, thus leading to di�erent
estimators. The crucial point is that we want both models to detect two
distinct parts, the smooth part and the high-frequency part, that is, even
though the estimators look di�erent, both of them lead to estimators
which clearly model the targets as wanted. Even though the di�erences
between the models may seem to be signi�cant, the resulting backscat-
tered power pro�les are similar, thus one can claim that the model is
robust against parameter tuning within this range.
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We will add corresponding comments to the Discussion in Section 6. Fol-
lowing Reviewer 1, comment 7, as well as the next point.

Changes: We have added a short comment in the discussion starting line
373: "In this study we have chosen two process priors, Cauchy di�erence
and TV, which have di�erent parameterisations, thus leading to di�erent
estimators. The primary goal herein is that we want both models to
detect two distinct parts, the smooth part and the high-frequency part."

Additionally, we have added a new paragraph to the discussion, starting
in line 386: "Indeed, Cauchy di�erence priors lead to marginal distribu-
tions which are either unimodal or bimodal (See Markkanen et al. 2019).
Bimodality is the key ingredient in designing models with rough features,
that is, the edges are modelled with bimodal probability densities. For
the TV prior, the edges are modelled via the product of two exponen-
tial functions, by which edges have uniform density. This means that the
Cauchy di�erence prior promotes rougher features than the TV prior, and
this is, in our understanding, the reason for di�erences in the reconstruc-
tions. Nevertheless, even though the di�erences between the models may
seem to be signi�cant, the resulting backscattered power pro�les are of
similar appearance, thus we believe that the proposed models are robust
against parameter tuning within the presented range."

7. On p. 17, the authors discuss the di�erence between the results from Cauchy

and Laplace priors, but its underlying reason is not mentioned at all. Since

the di�erence is very curious and interesting, it is preferable to mention some

of your ideas about it if you have any.

Response: This nicely complements the previously raised points. Indeed, our
main idea is that the Cauchy process priors lead to marginal distribu-
tions which are either unimodal or bimodal (See Markkanen et al. 2019).
Bimodality is the key ingredient in building models with rough features,
that is, the edges are modelled with bimodal probability densities. For
the TV prior, the edges are de facto modelled via the product of two
exponential functions, which means, that at the edges there is "uniform"
density. This means that the Cauchy process prior promotes rougher
features than the TV, and this is, in our understanding, the reason for
di�erences in the reconstructions.

As previously mentioned, we will add more details on priors and their
di�erences to the Discussion in Section 6.
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Changes: Please see response to the last point 6.

Response to Reviewer 2. Technical corrections

1. L169 and L177: Roininen et al. (2014) corresponds to two papers in the

reference list. Please identify which one it is.

Response: Thank you, the appropriate publications will be identi�ed cor-
rectly in the text.

Changes: Lines 171, 181. The appropriate publication � Roininen et al.
(2014b) has been identi�ed

2. L169: Is �partial di�erential equation� correct? (10) and (11) look like ordinary

di�erential equations.

Response: As it depends on dimensionality, we will remove �partial� to avoid
any ambiguity.

Changes: Line 171, "partial" was removed

3. L313: out from in → out in

L334: di�erence TV → di�erence and TV

L395: STEL → ISEE

Response: Thank you for your careful reading, the errors will be corrected.

Changes: All the errors have been �xed

4. Figures 3, 4, 6, & 8: Is the "unit" of length-scale function [km] or [log km]?

Response: We agree with the reviewer that on the Figures 3, 4, 6 and 8
units of the log length-scale functions needs to be clari�ed. Following
Reviewer 1 comment 5, we will change the caption to �logarithm of length-
scale function�. The units are more di�cult, as they are non-physical
and depend on the sampling resolution of the underlying pro�le and are
assumed to be universally 1. Thus, we have decided to add [arb.units]
here as well.

Changes: Labels to the Figures 3, 4, 6, 8 were changed from "Length-scale
function" to "Log of length-scale function [arb. units]"


