
Response to Reviewers' Comments

We thank the reviewers for their detailed reading of the paper, for catching some

errors, and for the helpful suggestions for improvement. Please see the following

pages for a detailed response and a summary of our changes.

Sincerely,

Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen,

and Andreas Hauptmann

May 2, 2022
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Response to Editor

As you can see from the reviews, your paper requires minor revision before it is

ready for publication. It is not expected that you redo the whole method to include

the high SNR cases. You might want to leave that for a future e�ort. However, some

discussions and limitations of the current method, need to be included (see reviewer

1's suggestions).

Response: We thank the editor for the possibility to address the further comments

and for the generous time extension for the revision. As suggested we have

added a section 6.1 on "Limitations of the presented model" where the men-

tioned issues are discussed and added further information to the manuscript

were necessary.
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Response to Reviewer 1

This manuscript presents a novel approach to radar data analysis by applying re-

cently developed mathematical techniques involving hierarchical statistical models and

hyperpriors. The manuscript clearly motivates the utility of these techniques for

radar data analysis in situations where di�erent atmospheric targets are present

with signi�cantly di�erent length-scales, and no single characteristic length scale

can reasonably be assumed a priori. This situation is common in radar studies of

the D- and E-region ionosphere where sporadic E layers, PMSE, or PMWE can be

observed. Overall the results presented in this manuscript are a promising proof-of-

concept demonstrating the utility of these hierarchical techniques. Nonetheless, the

models used make certain inaccurate assumptions about radar signals that make the

present work incomplete. The limitations of these assumptions require explanation

and discussion of how future work could apply these techniques to more realistic

signal models.

1. The use of a constant and diagonal noise covariance matrix is not

correct for the radar signals of interest. This study assumes that the

measurements Pm are normally distributed with covariance matrix σ2I, where

σ2 is a known constant. This assumption is only appropriate for weak signals

in a particular limit, and it will generally not be appropriate for strong signals

such as PMSE and PMWE. Line 136 acknowledges that the �self-noise� con-

tribution from the target may violate this assumption in some cases without

adequate additional discussion.

The correct way to model the radar signals is to write Eq. 4 as

zm(t) = (W ∗ σ)(t) + n(t)

where both the target scattering amplitudes σ and the noise contributions n

are independent Gaussian random processes. Assuming the noise power, N =

E {|n|2}N is independently known, Eq. 5 should be written as

Pm(t) =
1

M

M∑
`=1

∣∣z`m∣∣2 −N
In general Pm(t) is not Gaussian, but if M is su�ciently large one may invoke

the central limit theorem and derive an approximate Gaussian distribution for

Pm(t).
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If the target signals are extremely weak compared to the receiver noise, then

the covariance matrix of Pm is simply N2

N
I. Therefore the model from this

manuscript is correct in this weak signal limit if one identi�es σ2 = N2

M
. Many

of the signals of interest for this work, such as sporadic E, PMSE, and PMWE

will usually not satisfy this weak signal limit, and therefore the model in this

manuscript is inappropriate.

In the high signal limit, the complete expression for the relevant covariance

matrix of Pm(t) has all of the following di�cult properties

• It is not a constant

• It is non-diagonal for every point-spread function other than the ideal

Dirac delta (self-clutter e�ect).

• It explicitly depends on the signal power P = E {|σ(t)|2}, which is un-

known apriori (self-noise e�ect).

• It generally depends on the pulse-to-pulse correlation function of the target

as well, R`,k = E
{
σ`(t)σ̄k(t)

}
, which is also unknown apriori.

For interpulse periods of several milliseconds the pulse-to-pulse correlations

can be neglected for normal E-region incoherent scatter and for sporadic E

layers. For D-region incoherent scatter, PMWE, and PMSE, however, these

correlations are signi�cant, and the individual σ` from di�erent pulses cannot

be analyzed as independent measurements.

A complete formulation that correctly treats the complete covariance matrix

is probably best left to future work, but the manuscript should at least discuss

whether the method could conceivably accommodate more accurate treatments

of the covariance matrix in the future.

Response: We agree that the high SNR around the strong layers makes the

measurement variances range dependent and probably also leads to mea-

surement errors correlations. However, the simple model with a constant

variance σ2 is a practical choice for this manuscript, in which the main

emphasis is in the range-dependent length-scales. The full measurement

error covariance matrix could be calculated from the data if samples from

each individual radar pulse were stored separately and if the radar code

cycle is not excessively long. The latter limitation is because the covari-

ance structure is di�erent for each code in a cycle.

Changes: We have added Section 6.1. where we discuss the error covariance

calculation:
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In the radar signal model presented in Section 2, the incoherent scatter

self-noise contribution was neglected and the measurement noise was as-

sumed to be stationary, zero-mean, Gaussian white noise. While this is a

reasonable starting point for the analysis technique development, the self-

noise contribution in our data may be signi�cant due to the presence of

strong layers. The self-noise makes the noise process non-stationary and

correlated, which means that one should estimate the full measurement

error covariance and use it in the deconvolution process. One should thus

consider possibilities to include the self-noise in the signal model and to

use the improved model in the hierarchical deconvolution process.

If time resolution of the data analysis is much coarser than duration of

a radar code cycle, several observations of the echoes from each code are

available, and one can readily calculate the full error covariance matrix of

the measurements Pm with the cost of increased computational complex-

ity (Huuskonen and Lehtinen, 1996). The technique fails at the limit of

very long code cycles or very high time resolutions, but this limitation is

not speci�c to our deconvolution technique. Furthermore, the diagonal of

the error covariance can be calculated also for very long code sequences,

because the variances do not depend on the phase-coding.

2. The manuscript does not discuss whether the estimation scheme

could accommodate self- noise e�ects. Equations 13, 14, and 15 are

independent of the unknown P if σ2 is assumed to be known. If self-noise

e�ects are included, however, then the data covariance depends on the unknown

powers P , and these three equations cannot be solved. The manuscript should

discuss strategies for dealing with this di�culty. One possibility is to use Pm

instead of P when evaluating the self-noise contributions. Another possibility

is an iterative approach where P̂ from the previous iteration is used to evaluate

the self-noise contributions for the next iteration.

Response: In theory, the measurement error covariance matrix could be used

in the inversion via Cholesky factorization, but implementing this is left

for a future work.

Changes: Section 6.1.:

The full measurement error covariance matrix, denoted by R, can be in-

corporated into the deconvolution model. We can utilise the Cholesky

factor S of R, i.e., SST = R, such that S−1Pm = S−1AP + S−1ε.
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This whitens the error vector, making its components independently dis-

tributed. After this, the original algorithm can be used by setting the

theory matrix to A∗ = S−1A and σ2 = 1.

3. The manuscript does not explain how the data variances are set for

the examples. Lines 247-250 describe a synthetic signal generation process

that will produce realistic radar signals with self-noise and self-clutter included.

As explained above these signals will be inconsistent with a constant σ2 . The

real EISCAT signals will also contain self-noise and self-clutter that are in-

consistent with a constant σ2 . The manuscript does not explain what value

is used for σ2 when inverting these example signals, and the results will likely

depend on the choice of σ2 .

Response: We have added the values of the standard deviations (in the same

arbitrary units that are used in the �gures). We have included also the

thermal background noise levels, because the standard deviations used in

the inversion were larger than the thermal background to accommodate

for the self-noise from the strong layers.

Changes: Line 240: a noise variance σ2 and

Line 269: The results depend also on the standard deviation of the mea-

surement error, which was set to σ = 0.1 (in the arbitrary units used in

Fig. 3). The value is larger than standard deviation of the background

noise in the averaged data (0.04) to accommodate for the self-noise from

the strong scattering layer.

Line 317: Standard deviation of the measurement error was set to σ = 0.1

(in the units used in Fig. 6). The value is an order of magnitude larger

than the thermal background noise in the time-averaged data (0.01) to

accommodate for the signi�cant self-noise from the strong layer.

Line 355: Measurement error standard deviation was set to σ = 0.06 (in

the units used in Fig. 8). The value is again considerably larger than

the thermal background level (0.005) to accommodate from the self-noise

from the very strong layer.

4. The prior model for P does not constrain the solution to be positive.

The scattering power is always a positive number, and it is physically related to

quantities that are positive by de�nition (e.g. electron density). Nonetheless,

the prior model for P discussed in section 3.1 is a zero-mean Gaussian process,

which implies that negative numbers are equally as likely as positive numbers,
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a priori. The negative numbers are unphysical. The manuscript should discuss

why this prior was chosen and whether the technique could be adapted to use

more physical priors in the future.

Response: While the prior model as such promotes values which can be neg-

ative, and thus non-physical, the estimators produced are dominated by

the likelihood which typically guarantees positivity of the estimators. In

the case the estimators would be negative, then the algorithm can be

considered to produce non-physical estimators, and we can use this in-

formation as an indicator to pinpoint the cases where, e.g., the data is

somehow corrupt. Naturally we could force the prior to be non-negative

with standard tricks, like logarithmic transformation of the unknown.

However, this would induce non-linearities and further complicate the

computations, and thus increasing the computation times signi�cantly.

Thus, even though of the possible negativity of the prior process, in prac-

tice, this is computationally faster, and provides clear estimators for all

the properly measured cases.

Changes: We added the following test to Section 3.1: "We note that the

prior model is a zero-mean process with negative, and thus non-physical

values. We could force the prior to be non-negative with standard tricks,

like logarithmic transformation of the unknown. However, this would

induce non-linearities and thus increase computation times. In addition,

as the likelihood typically guarantees positivity of the estimators, so one

could consider non-physical estimators as indicator pinpointing the cases

where, e.g., the data is somehow corrupt. "

5. The use of arbitrary units power units throughout the examples

limits the reader's ability to assess the signal-to-noise regime. While

arbitrary units are acceptable, the manuscript should state the noise power level

in the same arbitrary units and state the number of samples M involved. As

presented it is impossible to determine the signal-to-noise ratios of the signals

and how large the self-noise and self-clutter e�ects are likely to be.

Response: We have added the number of averaged pulses and standard devi-

ation of the background noise for each of the examples.

Changes: Line 253: average power pro�les were calculated over 665 subse-

quent transmitted pulses, which leads to 1 s time resolution.



8

Line 313: average pro�les of the backscattered power were calculated

with 0.9 s (665 pulses) time resolution.

Line 353: The pro�le is an average over 128 subsequent pulses (0.2 s in

time).

Changes related to noise power levels are included in our response to

comment 3.

Minor Corrections

1. Line 258 should read �explicitly control�

Response: We believe that the comment was about line 58, which said "with-

out the need to explicit control" instead of 258.

Changes: Line 58: explicitly control


