

1
2
3 **Top of the Atmosphere Reflected Shortwave Radiative Fluxes from GOES-R**

4
5 Rachel T. Pinker¹, Yingtao Ma¹, Wen. Chen¹, Istvan Laszlo², Hongqing Liu³,
6 Hye-Yun Kim³ and Jamie Daniels²

7 ¹Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD

8 ²NOAA NESDIS Center for Satellite Applications and Research, College Park, MD

9 ³I.M. Systems Group, Inc., Rockville, MD

10 Correspondence to: Rachel T. Pinker (pinker@atmos.umd.edu)

11
12 **Abstract.** Under the GOES-R activity, new algorithms are being developed at the National Oceanic and
13 Atmospheric Administration (NOAA)/Center for Satellite Applications and Research (STAR) to derive
14 surface and Top of the Atmosphere (TOA) shortwave (SW) radiative fluxes from the Advanced Baseline
15 Imager (ABI), the primary instrument on GOES-R. This paper describes a support effort in the
16 development and evaluation of the ABI instrument capabilities to derive such fluxes. Specifically, scene
17 dependent narrow-to-broadband (NTB) transformations are developed to facilitate the use of observations
18 from ABI at the TOA. Simulations of NTB transformations have been performed with MODTRAN4.3
19 using an updated selection of atmospheric profiles and implemented with the final ABI specifications.
20 These are combined with Angular Distribution Models (ADMs), which are a synergy of ADMs from the
21 Clouds and the Earth's Radiant Energy System (CERES) and from simulations. Surface condition at the
22 scale of the ABI products as needed to compute the TOA radiative fluxes come from the International
23 Geosphere-Biosphere Programme (IGBP). Land classification at 1/6° resolution for 18 surface types are
24 converted to the ABI 2-km grid over the (CONtiguous States of the United States) (CONUS) and
25 subsequently re-grouped to 12 IGBP types to match the classification of the CERES ADMs. In the
26 simulations, default information on aerosols and clouds is based on the ones used in MODTRAN.

27 Comparison of derived fluxes at the TOA is made with those from the CERES ~~and/or the Fast Longwave~~
28 ~~and Shortwave Radiative Flux (FLASHFlux) data~~. An satisfactory agreement between the fluxes was
29 observed and possible reasons for differences have been identified; the agreement of the fluxes at the
30 TOA for predominantly clear sky conditions was found to be better than for cloudy sky due to possible
31 time shift in observation times between the two observing systems that might have affected the position
32 of the clouds during such periods. Differences in assumed cloud properties can also lead to differences in
33 the fluxes derived from the two instruments.

34

35 **1.4-Introduction**

36

37 When a new satellite is contemplated, the exact characteristics of the newly selected sensors are not fully
38 known; simulations of proposed sensors are also not readily available. Yet, there is a need to obtain a
39 priori information on the expected performance of the new instruments. This is usually accomplished by
40 using characteristics of instruments in closest resemblance to the proposed ones and performing
41 simulations that can provide insight on the expected performance of the new instrument. As such, an
42 evolutionary process can be expected ~~precedes the final stage that is reported in this paper~~, and it did
43 precede activities reported in this manuscript. One of the objectives at The ultimate objective at
44 NOAA/STAR in respect to the utilization of observations from ~~is to be able to derive shortwave (SW) radiative fluxes~~
45 ~~from the Advanced Baseline Imager (ABI) is to be able to derive shortwave (SW) radiative fluxes from~~. To get to the
46 surface SW from TOA satellite observations, there are two generic approaches: 1) the direct approach and
47 2) the indirect approach. In the direct approach one uses all the necessary information needed for deriving
48 the surface fluxes (some of which can be derived from satellites). Implementation of such an approach
49 is feasible, for instance, with observations from MODIS where there is which has a long history of product
50 availability and evaluation. Examples of such an approach using MODIS observation are illustrated in Wang and
51 Pinker (2009), Ma et al. (2016), Pinker et al. (2018), Pinker et al., (2017a), Pinker et al. (2017b), Niu and
52 Pinker, (2015). GOES-R is a new instrument and as yet, similar information to the one available from

Formatted: Font: Bold, Complex Script Font: Bold

Formatted: List Paragraph, Numbered + Level: 1 +
Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment:
Left + Aligned at: 0.25" + Indent at: 0.5"

53 MODIS is not yet available. Therefore, the indirect approach is used where one starts from satellite
54 information at the TOA and models the atmosphere and surface with best available inputs (which do not
55 have to be based on ABI). Examples of such an approach are discussed in Pinker, Zhang and Dutton
56 (2005), Ma and Pinker (2012) and Zhang et al. (2019). The “indirect path method” is used at the Center
57 for Satellite Applications and Research (STAR) (Laszlo et al., 2020) for deriving SW radiative fluxes
58 from satellite observations; it requires knowledge of the SW broadband (0.2 – 4.0 μm) top of the
59 atmosphere (TOA) albedo. The Advanced Baseline Imager (ABI) observations onboard of the NOAA
60 GOES-R series of satellites provide reflectancesreflectance in six narrow bands in the shortwave spectrum
61 (**Table 1**); these must be first transformed into broadband reflectance (the narrow-to-broadband, NTB,
62 conversion process), and then the broadband reflectance must be transformed into a broadband albedo
63 (the ADM conversion process).

64 During the pre-launch activity NTB transformations were developed based on theoretical radiative
65 transfer simulations with MODTRAN-3.7 and 14 land use classifications from the International
66 Geosphere-Biosphere Programme (*IGBP*) (Hansen et al., 2010). They were augmented with ADMs from
67 (CERES) observed ADMs (Loeb et al., 2003) and theoretical simulations (Niu and Pinker, 2011) to
68 compute TOA fluxes. The resulting NTB transformations and ADMs have been tested using proxy data
69 and simulated ABI data. The proxy instruments used in the simulations include the GOES-8 satellite, the
70 Advanced Very-High Resolution Radiometer (AVHRR) sensor on the Polar Orbiting satellites, the
71 Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor on the European METEOSAT Second
72 Generation (MSG) satellites, and the Moderate Resolution Imaging Spectroradiometer (MODIS)
73 instrument on the NASA Terra and Aqua Polar Orbiting satellites (Pinker et al., 2021, unpublished). For
74 each of these satellites, the evaluation of the methodologies was done differently; some results were
75 evaluated against ground observations while others, against TOA information from CERES as well as
76 from the (ESA) Geostationary Earth Radiation Budget (GERB) satellite (Harries et al., 2005). The results
77 obtained provided an insight on the expected performance of the new ABI sensor. Those procedures have

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Font: 12 pt, Complex Script Font: 12 pt

Formatted: Comment Text, Indent: First line: 0", Tab
stops: Not at 0.69"

78 been subsequently updated and applied to the new ABI instrument once it was built and fully
79 characterized.

80 In this paper we describe activity in support of methodologies to derive surface shortwave (SW) radiative
81 fluxes from the operational Advanced Baseline Imager (ABI) instrument on the GOES-R series of the
82 NOAA geostationary meteorological satellites. We describe the physical basis and the development of
83 the (NTB) transformations of satellite observed radiances and the bi-directional corrections to be applied
84 to the broadband reflectance to obtain broadband TOA albedo. The methodology will be presented in
85 section 2, [data used are described in section 3](#), results in section [3-4](#) and a summary and discussion in
86 section 5.

87

88 2. Methodology

89

90 The following two flowcharts (**Figs. 1 and 2**) describe the necessary steps to derive the NTB
91 transformations and the ADMs. Details of these two steps will follow.
92 The TOA narrowband and broadband reflectances can be calculated from the spectral radiances
93 simulated from MODTRAN 4.3 and the response functions of the satellite sensor as shown in equations
94 (1) and (2):

$$95 \quad \rho_{nb}(\theta_0, \theta, \phi) = \frac{\pi \int_{\lambda 1}^{\lambda 2} I(\lambda, \theta_0, \theta, \phi) G(\lambda) d\lambda}{\int_{\lambda 1}^{\lambda 2} \cos(\theta_0) S_0(\lambda) G(\lambda) d\lambda} \quad (1)$$

$$96 \quad \rho_{bb}(\theta_0, \theta, \phi) = \frac{\pi \int_{0.2 \mu m}^{4 \mu m} I(\lambda, \theta_0, \theta, \phi) d\lambda}{\int_{0.2 \mu m}^{4 \mu m} \cos(\theta_0) S_0(\lambda) d\lambda} \quad (2)$$

← **Formatted:** Line spacing: 1.5 lines

98 where ρ_{nb} is narrowband reflectance; ρ_{bb} is broadband reflectance; θ_0 : solar zenith angle; θ : view
99 (satellite) zenith angle; ϕ : relative azimuth angle;

100 I_λ : reflected spectral radiance; $S_0(\lambda)$: solar spectral irradiance;

101 G_λ : spectral response functions of satellite sensors; λ_1 and λ_2 are the spectral limits of the sensor spectral
102 band. This approach is widely used in the scientific community as also implemented in the work of Loeb
103 et al (2005), Wielicki et al. (2008), Su et al. (2015) and Akkermans et al. (2020).

104 As stated previously, the ADMs from CERES-based observations (Loeb et al., 2003~~2005~~; Kato et al.
105 2015) were augmented with theoretical simulations (Niu and Pinker, 2011) to compute TOA fluxes. This
106 was done since due to the fact that CERES observations at that time higher latitudes are were under-
107 sampled. or not existent, at higher latitudes.

108 The combined ADMs are developed for each angular bin by weighting the modeled and CERES ADMs
109 based on the number of samples used to derive the ADMs of each type (Niu et al., 2011). Specifically:

$$110 \quad \bar{R}(\theta_0, \theta, \phi) = \frac{1}{m+n} (m \times R_{CERES}(\theta_0, \theta, \phi) + n \times R_s(\theta_0, \theta, \phi)) \quad (3)$$

111 $\bar{R}(\theta_0, \theta, \phi)$: averaged ADMs at each angular bin;

112 R_{CERES} : anisotropic factor from CERES ADMs;

113 R_s : anisotropic factor from simulated ADMs;

114 m and n : observation numbers at angular bins for CERES and simulated ADMs.

115
116 **2.1 Selection of Atmospheric profiles for simulations**
117

118 We have selected 100 atmospheric profiles covering the globe and the seasons, to use as input for
119 simulations with MODTRAN4.3. A tool was developed to select profiles from a Training Data set known
120 as SeeBor Version 5.0 (https://cimss.ssec.wisc.edu/training_data/) (Borbas et.al. 2005). Originally it
121 consisted of 15704 global profiles of temperature, moisture, and ozone at 101 pressure levels for clear
122 sky conditions. The profiles are taken from NOAA-88, and the European Centre for Medium-Range
123 Weather Forecasts (ECMWF) 60L training set, TIGR-3, ozone-sondes from 8 NOAA Climate Monitoring
124 and Diagnostics Laboratory (CMDL) sites, and radiosondes from the Sahara Desert during 2004. A
125 technique to extend the temperature, moisture, and ozone profiles above the level of existing data was
126 also implemented by the providers (University of Wisconsin-Madison, Space Science and Engineering
127 Center, Cooperative Institute for Meteorological Satellite Studies (CIMSS). **Fig. 3** shows the selected
128 profile locations; each season includes 25 profiles.

129 The SeeBor profiles are clear sky profiles. The top of the profiles is at 0.005 mb which is about 82.6 km.
130 We did an experiment to check the impact of reducing the number of levels for a profile (initially,
131 we have used only 40 levels). In the experiment computed were radiances from profiles with 50
132 levels as well as radiances from profiles with 98 Levels. The difference between the two radiances
133 (50 lev-98 lev) were below 5 % reaching 15 % around 2.5 μ m. In the experiment we used the odd
134 number levels starting from surface (plus the highest level) to reduce the number of profile levels.
135 Based on these experiments we have opted to keep all 98 profile levels.

136 The atmospheric profiles at each pressure level include temperature, water vapor and ozone. The surface
137 variables include surface skin temperature, 2 m temperature, land/sea mask, and albedo. We have
138 conducted a thorough investigation how the selected profiles represent the entire sample of 15704 profiles.
139 An example showing the comparison of temperature, humidity and ozone profiles is shown in **Fig. 4**. As
140 seen, there is a positive bias in the selected profile of temperatures due to their higher concentration at the
141 lower latitudes. A positive bias can be found at the lower levels while a negative bias is seen above 1 mb.
142 Since our domain of study is in such latitudes this selection should not have adverse effects on the
143 simulations.

144 **2.2 Surface conditions**

145

146 Surface condition is one of the primary inputs into the MODTRAN simulations. The International
147 Geosphere-Biosphere Programme (IGBP) land classification is used as data source (Hansen et al., 2010;
148 Loveland et al., 2010). The dataset is at 1/6-degree resolution and includes 18 surface types. We have
149 converted the 1/6° (~18.5 km) resolution to the ABI 2-km grid using the nearest grid method (**Fig. 5**). The
150 surface type is fixed in time. The method for cloudy sky uses 4 surface types; these are also derived from
151 12 IGBP types (**Table 2**).

152

153 **2.3 Clear and cloudy sky simulations**

154

155 Under clear sky, multiple scattering from aerosols is important. We have included 6 aerosol types (**Table**
156 **3**) to cover a range of possible conditions under clear sky. Aerosol models are selected based on the type
157 of extinction and a default meteorological range for the boundary-layer aerosol models as listed below:

158 Aerosol Type 1: Rural extinction, visibility = 23 km

159 Aerosol Type 4: Maritime extinction, visibility = 23 km

160 Aerosol Type 5: Urban extinction, visibility = 5 km

161 Aerosol Type 6: Tropospheric extinction, visibility = 50 km

162 Aerosol Type 8: Advection Fog extinction, visibility = 0.2 km

163 Aerosol Type 10: Desert extinction, visibility based on wind speed

164 For the 6 aerosol types, the total number of MODTRAN simulations for each surface type is

165 462,000,288,000. It is obtained as follows; 6 aerosol types x 100 profiles x 770 angles.

166 When doing NTB simulation, we use all 6 types of aerosols. The Rural, Ocean, Urban and Fog aerosols
167 are distributed in the lower 0-2 km region. Tropospheric aerosol is distributed from 0 to 10 km tropopause.
168 The Rural, Ocean, Urban and Tropospheric aerosol optical properties have Relative Humidity (RH)
169 dependency. The Single Scattering Albedo (SSA) is given on 4 RH grids (0, 70, 80, 99) on a spectral grid

Formatted: Line spacing: 1.5 lines

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

70 of 788 points ranging from 0.2 to 300 microns. ~~The Desert aerosol is wind speed dependent and the optical~~
71 ~~properties are given for 4 wind speeds (0, 10, 20, 30).~~

172 Simulations were performed for ABI for all the cloud cases described in **Table 3**. To merge cloud layers
173 with atmospheric profiles we have followed the procedure as described in *Berk et al. (1985, 1998)*,
174 namely: “Cloud profiles are merged with the other atmospheric profiles (pressure, temperature, molecular
175 constituent, and aerosol) by combining and/or adding new layer boundaries. Any cloud layer boundary
176 within half a meter of an atmospheric boundary layer is translated to make the layer altitudes coincide;
177 new atmospheric layer boundaries are defined to accommodate the additional cloud layer boundaries.”
178 100% relative humidity is assumed within the cloud layers (default).

179
180 **2.4 Selection of angles**

181 The total number of angles used in the simulations is given in **Table 4**. The selected spectral grids for
182 solar zenith angles, satellite view angles and relative azimuth angles are at Gaussian quadrature points,
183 plus 0° to solar zenith angles (sza) and satellite viewing angles (vza) and 0° and 180° (forward and
184 backward view) to the satellite relative azimuth angles. Solar angle and satellite view angle are referenced
185 to target or surface for satellite simulation with 0° meaning looking up (zenith). Relative aAzimuth angle
186 is defined as when the relative azimuth angle equals 180°, the sun is in front of observer.

187
188 The definitions of solar zenith angle and azimuth angle in this table corresponds to the definitions of
189 MODTRAN but that is not the case for the satellite zenith angle. MODTRAN uses nadir angle as 180°-
190 satellite zenith angle, ignoring spherical geometry.

191
192 **2.5 Selection of optimal computational scheme**

193
194 Computational speed is an issue for simulations that account for multiple scattering. MODTRAN4.3
195 provides three multiple scattering models (Isaacs, DISORT, and Scaled Isaacs) and three band models at

196 resolutions (1 cm^{-1} , 5 cm^{-1} , and 15 cm^{-1}). The DISORT model (Stamnes et al., 1988) provides the most
197 accurate radiance simulations but the runs are very time consuming. The Isaacs (Isaacs et al. 1987) 2-
198 stream algorithm is fast but oversimplified. The Scaled Isaacs method performs radiance calculations at
199 a small number of atmospheric window wavelengths. The multiple scattering contributions for each
200 method are identified and ratios of the DISORT and Isaacs methods are computed. This ratio is
201 interpolated over the full wavelength range, and finally, applied as a multiple scattering scale factor in a
202 spectral radiance calculation performed with the Isaacs method.

203 To optimize simulation speed and accuracy, we performed various sensitivity tests, including
204 combinations of multiple scattering models, band resolution, and number of streams. **Table 5** lists
205 simulation options and their corresponding calculation speed. The most computationally extensive option
206 is DISORT 8-stream with 1 cm^{-1} resolution which requires 930 seconds to finish one single run. The
207 fastest is Scaled Isaacs with 15 cm^{-1} resolution which only needs 6.67 seconds. Number of streams does
208 not affect the Scaled Isaacs calculation speed. This is different from Isaacs and DISORT for which both
209 stream number and band resolution have notable effects.

210 Based on results presented in **Table 5**, the efficient options (< 40 seconds) are Isaacs, DISORT 2-stream
211 with 15 cm^{-1} , DISORT 4-stream 15 cm^{-1} , and Scaled Isaacs all streams at all resolutions. Although the
212 ideal option is DISORT 8-stream with 1 cm^{-1} resolution, there is a trade-off between speed and accuracy.

213 **Fig. 6** compares DISORT simulated radiances at three band resolutions. We use two spectral ranges of
214 $0.4 - 0.5\text{ }\mu\text{m}$ and $1.5 - 2.0\text{ }\mu\text{m}$ to illustrate the differences. **Fig. 6** shows that the coarser band resolution
215 has smoothed out the radiance variations. The 15 cm^{-1} has the smoothest curve among the three, and 1 cm^{-1}
216 shows more variations than the other two. Another (scientific) criteria for selecting the spectral
217 resolution is the ability to resolve/match the relative spectral response function (SRF) of a sensor. For
218 example, the SRFs of channels 1-6 of ABI are given at every 1 cm^{-1} .

219 Accordingly, we have chosen the 1 cm^{-1} band model for the MODTRAN radiance simulations. Performed
220 were also radiance simulations from different multiple scattering models at 1 cm^{-1} resolution. The whole
221 spectrum of $0.2 - 4\text{ }\mu\text{m}$ was separated to 14 sections so that the differences can be assessed clearly. For

222 wavelength below 0.3 μm and beyond 2.5 no discernible differences were found among Isaacs, DISORT
223 2-, 4-, and 8-stream, and Scaled Isaac. The largest differences occurred in the spectral range of 0.4 – 1.0
224 μm . Scaled Isaac 8-stream follows DISORT 8-stream closely across the whole spectral range; the Scaled
225 Isaac method provided near-DISORT accuracy with the speed of Isaacs. Thus, the MODTRAN4.3
226 simulations for GOES-R ABI were set-up with Scaled Isaac 8-stream with 1 cm^{-1} band resolution.
227 For illustration, in **Fig. 7** compared are radiances simulated by Isaac 2 stream, Scaled Isaac, and DISORT-
228 4 stream for the case of Relative Azimuthal Angle=1.9°, View Angle=76.3°, Solar Zenith Angle=87.2°.
229 The lines are differences between various settings and DISORT-8 stream (e.g. Isaacs minus DISORT-8).
230 Isaac has the least accuracy since it is oversimplified, 4-stream showed some improvements when
231 compared with Isaac while still has large differences for 0.4 μm and is still computationally demanding.
232 Scaled Isaac provides the smallest differences between DISORT-8. **Fig. 6** (lower) zoomed in to the large
233 difference area of 0.3-0.35 μm which indicates that Scaled Isaacs still provides satisfactory results.
234

235 2.6 Regression methodologies

236 We have derived coefficients of regression using a constrained least-square curve fitting methods of
237 Matlab, “lsqnonneg”, which can solve a linear or nonlinear least-squares (data-fitting) problem and
238 produce non-negative coefficients. Non-negative coefficients avoid generating negative TOA flux,
239 which is not a physically valid.

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Line spacing: 1.5 lines

240 To ensure that information from all channels is used and avoid the complex cross-correlation problem,
241 it was opted to generate Narrow to Broad (NTB) coefficients for each ABI channel separately (using
242 “lsqnonneg”). These channel specific NTB coefficients are applied to each channel to convert ABI
243 narrow-band reflectance to extended band. The final broad-band TOA reflectance is taken as the
244 weighted sum of all 6-channel specific broad-band reflectance. The logic behind this approach is the
245 assumption that the narrow-band reflectance from each channel is a good representative for a limited
246 spectral region centered around the channel and the total spectral reflectance is dominated by the
247 spectral region that contains the most solar energy

148
149 We have derived coefficients of regression using a non constrained and constrained least square curve
150 fitting methods of Matlab “stepwisefit” and “lsqnonneg”. The first one does is a stepwise regression by
151 adding terms to and removing terms from a multilinear model based on their statistical significance. It
152 may give negative coefficients that results in a negative TOA flux, which is not a physically valid result.
153 Subsequently, we have re-derived all the coefficients with “lsqnonneg” which can solve a linear or
154 nonlinear least squares (data fitting) problem and produce non-negative coefficients.

155 To ensure that information from all channels is used and avoid the complex cross correlation
156 problem, it was opted to generate Narrow to Broad (NTB) coefficients for each ABI channel
157 separately (using “lsqnonneg”). These channel specific NTB coefficients are applied to each channel
158 to convert ABI narrow band reflectance to extended band. The final broad band TOA reflectance is
159 taken as the weighted sum of all 6 channel specific broad band reflectance. The logic behind this
160 approach is the assumption that the narrow band reflectance from each channel is a good
161 representative for a limited spectral region centered around the middle of the channel and the total
162 spectral reflectance is dominated by the spectral region that contains the most solar energy.

263 To generate “separate-channel” NTB coefficients, each narrow-band ABI channel reflectance is
264 converted to a reflectance $\rho_{bb,i}$ separately,

265
$$\rho_{bb,i}(\theta_0, \theta, \phi) = c_{0,i}(\theta_0, \theta, \phi) + c_{1,i}(\theta_0, \theta, \phi) * \rho_{nb,i}(\theta_0, \theta, \phi) \quad (4)$$

266 where $\rho_{bb,i}$ is the band reflectance for an interval around each channel i ; $c_{0,i}$ and $c_{1,i}$ are regression
267 coefficients for channel i . These regression coefficients are derived separately for various combination of
268 surface, cloud and aerosol types.² The total shortwave broad band (0.25 – 4.0 μm) reflectance ρ_{bb}^{est} is
269 obtained by taking the weighted sum of all 6 $\rho_{bb,i}$ reflectance

270
$$\rho_{bb}^{est}(\theta_0, \theta, \phi) = \sum_i \rho_{bb,i}(\theta_0, \theta, \phi) \frac{S_{0,i}}{S_0} \quad (5)$$

271 Here, S_0 and $S_{0,i}$ are total solar irradiance and band solar irradiance for each channel, respectively. Band
272 edges around the six ABI channels are: 49980, 18723, 18723-13185, 13185-9221, 9221-6812, 6812-

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

273 **5292, 2500 cm⁻¹ (0.2001-0.5341, 0.5341-0.7584, 0.7584-1.0845, 1.0845-1.4680, 1.4680-1.8896,**

274 **1.8896-4.0000 μm**). The corresponding band solar irradiance values are 364, 360, 287, 168, 91, 87

275 W m⁻². **Fig. 8** shows the sensor response function (SRF) and locations of the six ABI channels.

276 Coefficients are generated for clear condition and 3 types of cloudy conditions. Comparison between ABI

277 TOA flux and CERES products are shown in **Figure Fig. 9**. The “separate-channel” coefficients work

278 well for predominantly clear sky (**Fig.10**). Differences are somewhat more scattered for cloudy cases.

279 The reason may be due to the fact that the ABI observation time and CERES product time do not match

280 perfectly since cloud condition change quickly. **As discussed in Gristey et al. (2019) there are SW spectral**

281 **reflectance variations for different cloud types. Possibly, for ABI bands some spectral variations**

282 **associated with cloud variability are missed. It is important to have the correct cloud properties to be able**

283 **to select correct ADM. Misclassification of cloud properties will therefore result in flux differences. They**

284 **also argue that ADMs have an uncertainty due to within-scene variability and within-angular bin**

285 **variability leading to additional flux differences.**

Commented [RTP1]: Something seems missing here.

Formatted: Highlight

Formatted: Not Superscript/ Subscript

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Line spacing: 1.5 lines

Formatted: Font: (Default) +Headings CS (Times New Roman), Bold, Complex Script Font: +Headings CS (Times New Roman), Bold

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: Bold, Complex Script Font: Bold

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

286 287 **3.0 Data used**

288 289 **3.1 Satellite data for GOES-16 and GOES17**

290 The GOES Imager data **used (Table 6)** were downloaded from <https://www.bou.class.noaa.gov/> and the
291 SRF from <https://ncc.nesdis.noaa.gov/GOESR/ABI.php>

Formatted: Font: Bold

292 * The CODC data were not always available from CLASS and had to be obtained from NOAA/STAR
293 temporary archives. Also, not all the required angular information needed for implementation of
294 regressions was available online and had to be recomputed.

298 **3.2 Reference data from CERES and-FLASHFlux Level2 (FLASH_SSF) Version 3C**

299

300 Near real-time CERES fluxes and clouds in the SSF format are available within about a week of
301 observation (Kratz et al., 2014). They do not use the most recent CERES instrument calibration and thus
302 contains some uncertainty. Before GOES data were transferred to the Comprehensive Large Array-data
303 Stewardship System (CLASS) system, the NOAA/STAR archive was holding new data for about a week.
304 Therefore, the initial evaluations had to be done only with data that overlapped in time. The CERES data
305 known as the FLASHFlux Level2 (FLASH_SSF) were available almost in real time and did overlap with
306 GOES. These data were downloaded from:

307 <https://ceres.larc.nasa.gov/products.php?product=FLASHFlux-Level2>

308 Due to these limitations the early comparison was done between ABI data as archived at NOAA/STAR
309 and the FLASHFlux products. The archiving of GOES-R at the NOAA Comprehensive Large Array-data
310 Stewardship System (CLASS) started only in 2019, however, it contains data starting from 2017. Once
311 the CLASS archive became available, we have augmented GOES-16 cases with observations from
312 GOES-17; only those cases will be shown in this paper.

313

314 **3.3 Data preparation**

315 For the re-mapping, we adopted the ESMF re-gridding package. The detailed information can be found

315 **Formatted:** Line spacing: Double

316 at:

317 <http://earthsystemmodeling.org/regrid/>

318 For an ideal situation, the ABI high-resolution TOA SW fluxes should be mapped into the CERES
319 footprint for validation as suggested by the Reviewer. However, there are reasons that make it difficult to
320 do so. For example, the case 12/26/2019 UTC 19. There can be more than 18000 pixels in a single swath
321 of the SSF, when constrained to U.S. Different pixels have different times. Neglecting the seconds, there
322 are still more than 30 mins differences (this changes case by case) between the first pixel and the one at
323 the end and this brings up a time matching time issue. But if remapping the SSF to ABI, we can set up a
324 unique time for ABI (ABI is at 5 min intervals) and then constrain the region and the time range of SSF.
325 Both remapping the ABI to SSF and remapping SSF to the ABI bring up spatial matching errors as
326 recognized by the scientific community. In **Fig. 11**, we show the SSF before re-gridding (Figs 11 (a) &
327 (b)) and after re-gridding (Figs. 11 (c) and (d)). The fluxes after re-mapping CERES SSF to the ABI
328 resolution resemble well the original mapping. Another consideration is the computational efficiency of
329 re-mapping the curvilinear tripolar grid to unconstructed grid. For large arrays, it is more efficient to
330 remap the unconstructed grid to the curvilinear tripolar grid.

331
332 Formatted: Font: Bold, Complex Script Font: Bold

332 The CERES FLASHFlux_SSF data are re gridded to match ABI spatial resolution by bi-linear
333 interpolation method from the Earth System Modeling Framework (ESMF) package. The full description
334 of the package can be found via <http://earthsystemmodeling.org/regrid/#overview>. The time difference
335 between CERES FLASHFlux_SSF and GOES-16 data must be less than ± 5 min. e.g., if the GOES-R
336 scanning time is 18:51, then the scripts search the FLASHFLUX points between 18:46-18:56, and use

337 ~~the re gridding method mentioned above to remap the FLASHFLUX to the GOES R (2 km) domain.~~

338 ~~Several cases will be illustrated.~~

339 ~~The statistics are based on all available points in overlap area. No outliers are removed. All sky, clear sky~~

340 ~~only, and cloudy only are compared for dates randomly selected. The hour was selected when both GOES-~~

341 ~~16 and GOES 17 had overlap with CERES FLASHFlux_SSF (Aqua/Terra) data. The coefficients for~~

342 ~~GOES 17 were obtained by replacing the GOES 16 spectral response function (SRF) by the GOES 17~~

343 ~~SRF. All the regressions have been repeated for GOES 17. The GOES 17 SRF was downloaded from~~

344 ~~<https://nec.nesdis.noaa.gov/GOESR/ABI.php>. Simultaneous evaluation for both satellites was performed.~~

345 ~~The evaluations against the CERES FLASHFlux_SSF data is at footprint scale and covers one hour. The~~

346 ~~GOES 16 and 17 CONUS data have 5 min intervals, and there are 12 cases in one hour; this requires to~~

347 ~~test each case independently to find the best time match with CERES FLASHFlux_SSF.~~

348

349 **4.0 Results**

350

351 **4.1 Comparison between ABI TOA fluxes to those from CERES ~~SSF and/or FLASHFlux~~**

352 ~~The CERES Single Scanner Footprint (SSF) is a unique product for studying the role of clouds, aerosols,~~

353 ~~and radiation in climate. Each CERES footprint (nadir resolution 20-km equivalent diameter) on the SSF~~

354 ~~includes reflected shortwave (SW), emitted longwave (LW) and window (WN) radiances and top-of-~~

355 ~~atmosphere (TOA) fluxes from CERES with temporally and spatially coincident imager-based radiances,~~

356 ~~cloud properties, and aerosols, and meteorological information from a fixed 4-dimensional analysis~~

357 ~~provided by the Global Modeling and Assimilation Office (GMAO). Each file in this data product~~

Formatted: Font: 12 pt, Complex Script Font: 12 pt

358 contains one hour of full and partial-Earth view measurements or footprints at a surface reference level.

359 Detailed information can be found via <https://ceres.larc.nasa.gov/data/#ssf-level-2>.

360 The FLASHFLUX is in footprint format thus it is a variable in time [flux (time)].

361 In the matching, points that fall in the ± 5 min interval of the GOES-R scanning time are used using

362 bilinear interpolation method to get the values for GOES-R domain (e.g., if the GOES-R scanning time

363 is 18:51, then the scripts search the FLASHFLUX points between 18:46-18:56, and use bilinear

364 interpolation method to do the remapping to GOES-R (2 km) domain). A case for 2019/12/26 (doy 360)

365 UTC 19:36 is illustrated in Figs. 1011-134. Statistical summaries from an extended number of cases are

366 presented in Table 7, and cover all four seasons.

Formatted: Font: Not Bold

Formatted: Font: Not Bold

367 The derivation and evaluation of TOA radiative fluxes as simulated for any given instrument are quite
368 challenging. In principle, there is a need to account for all possible changes in the atmospheric and surface
369 conditions one may encounter in the future. Yet, to know what these conditions are at the time of actual
370 observation when there is a need to select the appropriate combination of variables from the simulations,
371 is a formidable task. Therefore, error can be expected due to discrepancies between the actual conditions
372 and the selected simulations and these are difficult to estimate. The approach we have selected is based
373 on high-quality simulations using a proven and accepted radiative transfer code (MODTRAN) of known
374 configurations and a wide range of atmospheric conditions. We have also selected the best available
375 estimates of TOA radiative fluxes from independent sources for evaluation. However, the matching
376 between different satellites in space and time is challenging. In selecting the cases for evaluation, we have
377 adhered to strict criteria of time and space coincidence as described in section 3.3.

378 We have conducted several experiments to select an appropriate regression approach to the NTB
379 transformation ensuring that non-physical results are not encountered. Based on the samples used in this
380 study (Table 7) the differences found for Terra and GOES-16 were in the range of -0.5-(-12.10) for bias
381 and 43.28-82.09 for standard deviation; for Terra and GOES-17 they were 10.81-48.17 and 70.25-109.19,
382 respectively. For Aqua and GOES-16 they were 7.02-29.66 and 45.55-109.08 respectively while for Aqua
383 and GOES-17 they were 0.19-26 and 53.08-94.90, respectively (all units are W m^{-2}). The evaluation

Formatted: Font: Bold

384 process revealed the challenges in undertaking such comparisons. Both estimates of TOA fluxes (CERES
385 and GOES) do no account for seasonality in the land use classification; the time matching for the different
386 satellites is important and limits the number of samples that can be used in the comparison. Based on the
387 results of this study recommendation for future work include the need to incorporate seasonality in land
388 use and spectral characteristic of the various surface types. Possible stratification by season in the
389 regressions could also be explored.

390

391 **4.2 Causes for differences between ABI and CERES TOA fluxes**

392 **4.2.1 Differences in surface spectral reflectance**

393

394 In the MODTRAN simulations we use the spectral reflectance information on various surface types as
395 provided by MODTRAN. MODTRAN version 4.3.1 contains a collection of spectral surface reflectance
396 dataset from the Moderate Spectral Atmospheric Radiance and Transmittance (MOSART) model
397 (Cornette et al., 1994) and others from Johns Hopkins University Spectral Library (Baldridge et al., 2009).
398 When doing simulation, we call the built-in surface types and use the provided surface reflectance. As
399 such, the spectral dependence of the surface reflectance used in the simulations and matched to the
400 CERES surface types may not be compatible with the classification of CERES. [Also, seasonal changes](#)
401 [in surface type classification can introduce errors due to changes in the spectral surface reflectances](#)
402 [for different surface types \(Fig. 145\).](#)

403 **4.2.2 Issues related to surface classification**

404

405 Another possible cause for differences between the TOA fluxes is the classification of surface types as
406 originally identified by the IGBP and used in the simulations. No seasonality is incorporated in the surface
407 type classification [and the impact can be illustrated in the following case study while such variability is](#)
408 [part of the CERES observations. Simulation results for surface type 8 \(open shrub\) have been checked](#)

410 in depth. The average simulated broad band reflectance is around 0.2. The regression residual for this
411 surface type is reasonably small for sun angle < 80 degrees, namely, the fitted broad band reflectance is
412 very close to the simulated broad band reflectance. This would indicate that the regressions are
413 performing properly. However, when we applied the regression coefficient to the GOES 16 ABI
414 observations, the calculated TOA broad band reflectance was around 0.45, which seemed too high. To
415 explain why the coefficient for channel 6 for “open shrub” was high we illustrate the filter function for
416 channel 6 and spectral albedos for open shrub, desert, woody savanna and grassland in **Fig. 14**.

417 In **Fig. 15** we show the TOA fluxes for the entire domain using the original IGBP classification (open
418 shrub) in the area of interest and subsequent replacement with a desert surface. Due to seasonal changes
419 in surface properties, “Desert” classification may be more appropriate for the surface type at the time of
420 the observations. This would indicate the need for introducing seasonal variability in the classification of
421 surface types before one selects the representative NTB transformations.

423 4.2.3 Issues related to match-up between GOES-R and CERES

424
425 Both Terra and Aqua have sun-synchronous, near-polar circular orbits. Terra is timed to cross the equator
426 from north to south (descending node) at approximately 10:30 am local time. Aqua is timed to cross the
427 equator from south to north (ascending node) at approximately 1:30 pm local time. The periods for Terra
428 and Aqua are 99 and 98 minutes, respectively. Both have 16 orbits per day. CERES on Terra and Aqua
429 optical FOV at nadir is 16 x 32 or 20 km resolution. Terra passes CONUS during 03-06 UTC (US night
430 time), 16-20 UTC (US day time), and Aqua passes CONUS during 07-11 UTC (US night time), 18-22
431 UTC (US day time).

432 Both Terra and Aqua have an instantaneous FOV values at SWATH level. There is no
433 perfect overlap, temporally or spatially with ABI data. The ABI radiance and cloud data are on a regular
434 grid of 2*2 km over CONUS at each hour. To use CERES data for evaluation of ABI, there is a need to
435 perform collocation in both time and space.

436

437 **5.0 Summary**

438

439 Critical elements of an inference scheme for TOA radiative flux estimates from satellite observations are:

440 1) transformation of narrowband quantities into broadband ones;

441 2) transformation of bi-directional reflectance into albedo by applying Angular Distribution Models

442 (ADMs). In principle, the order in which these transformations are executed is arbitrary. However, since

443 well established, observation-based broadband ADMs derived from the Clouds and the Earth's Radiant

444 Energy System (CERES) project already exist, the logical procedure is to do the NTB transformation on

445 the radiances first, and then apply the ADM. This is the sequence that has been followed here. While the

446 road map to accomplish above objectives seems well defined, reaching the final goal of having a stable

447 up-to-date procedure for deriving TOA radiative fluxes from a new instrument like the ABI on the new

448 generation of GOES satellites is quite complicated. ~~The process of preparing for the usefulness of a new~~

449 ~~satellite sensor needs to be done in advance. Since~~ the final configuration of the instrument becomes

450 known at a much later stage. ~~As such,~~ the evaluation of ~~the~~ new algorithms is in a fluid stage for a long

451 time. ~~Agreements on early evaluation or disagreement with know~~ “ground truth” is not ~~fully~~

452 ~~informative conclusive about on~~ the performance of ~~the~~ new algorithms ~~to estimate desired geophysical~~

453 ~~parameters.~~ Additional complication is related to the lack of maturity of basic information needed in the

454 implementation process, such as a reliable cloud screened product which in itself is in a process of

455 development and modifications. The “ground truth”, namely, the CERES observations are also

456 undergoing adjustments and recalibration. As such, the process of deriving best possible estimates of

457 TOA radiative fluxes from ABI underwent numerous iterations to reach its current status. An effort was

458 made to deal the best way possible with the fluid situation. All the evaluations against CERES were

459 repeated once the ABI data reached stability and were archived in CLASS and we used the most recent

460 auxiliary information. The prominence of certain issues surfaced from this study itself. One example is

461 the sensitivity to land classification which currently is static. Another issue is related to the representation

462 of real time aerosol optical depth which is important under clear sky conditions. It is believed that only
463 now when NOAA/STAR has a stable aerosol retrieval algorithm, it would be timely to address the aerosol
464 issue in the estimation of TOA fluxes under clear sky.

465

466 Data availability. The data are available upon request from the corresponding author.

467 Author contributions. The investigation and conceptualization were carried out by RTP, IL and JD. YM
468 and WC developed the software. RTP prepared the original draft. All authors contributed to the writing,
469 editing and review of the publication.

470 Competing interests. The authors declare that they have no conflict of interest.

471 Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims
472 in published maps and institutional affiliations.

473 Acknowledgements. We acknowledge the benefit from the use of the numerous data sources used in this
474 study. These include the Clouds and the Earth's Radiant Energy System (CERES) teams, the Fast
475 Longwave and Shortwave Radiative Flux (FLASHFlux) teams, the
476 University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for
477 Meteorological Satellite Studies (CIMSS) for providing the SeeBor Version 5.0 data
478 (https://cimss.ssec.wisc.edu/training_data/), and the final versions of the GOES Imager data were
479 downloaded from <https://www.bou.class.noaa.gov/>. Several individuals have been involved in the early
480 stages of the project whose contribution led to the refinements of the methodologies. These include M.
481 M. Woncsick and Shuyan Liu. We thank the anonymous Reviewers for a very thorough and constructive
482 comments that helped to improve the manuscript. We thank the Editor Sebastian Schmidt for overseeing
483 the disposition of the manuscript.

484

485 Financial support. This research was supported by NOAA/NESDIS GOES-R Program under grants
486 [5275562 1RPRP_DASR](#) and [275562 RPRP_DASR_20](#) to the University of Maryland.

487

488

Formatted: Justified

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

489 **Reference:**

490 Akkermans Tom and Nicolas Clerbaux, 2020. Narrowband-to-Broadband Conversions for Top-of-
491 Atmosphere Reflectance from the Advanced Very High-Resolution Radiometer (AVHRR)
492 *Remote Sens.* 2020, **12** (2), 305; <https://doi.org/10.3390/rs12020305>

493 Berk, A., L. W. Bernstein, and D. C. Robertson: MODTRAN: A moderate resolution model for
494 LOWTRAN 7, Philips Laboratory, Report AFGL-TR-83-0187, 1985, Hanscom AFB, MA.

495 Berk, A., G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, S. M. Adler-Golden:
496 MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS, *Remote Sensing*
497 of Environment, 65 (3), 367-375, [https://doi.org/10.1016/S0034-4257\(98\)00045-5](https://doi.org/10.1016/S0034-4257(98)00045-5), 1998.

498 Baldridge, A. M., S J. Hook, C. I. Grove, G. Rivera: The ASTER spectral library version 2, *Remote*
499 *Sensing of Environment* 113, doi: 10.1016/j.rse.2008.11.007, 2009.

500 Borbas, E. E., S. Wetzel Seemann, H.-L Huang, J. Li, and W. P. Menzel: Global profile training database
501 for satellite regression retrievals with estimates of skin temperature and emissivity. *Proceedings of*
502 the XIV, International ATOVS Study Conference, Beijing, China, University of Wisconsin-
503 Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite
504 Studies (CIMSS), Madison, WI, pp.763-770, 2005.

505 Clerbaux, N., J. E. Russell, S. Dewitte, C. Bertrand, D. Capron, B. De Paepe, L. Gonzalez Sotelino, A.
506 Ipe, R. Bantges, and H. E. Brindley: Comparison of GERB instantaneous radiance and flux
507 products with CERES Edition-2 data, *Rem. Sens. of Environ.*, **113**, 102-114. doi:
508 10.1016/j.rse.2008.08.016, 2009.

509 Cornette, W. M., P. K. Acharya, D. C. Robertson, and G. P. Anderson: Moderate Spectral Atmospheric
510 Radiance and Transmittance Code (*MOSART*), Rep. R-057-94 (11–30), La Jolla, CA: Photon
511 Research Associates, 1994.

512 Gristey, J. J., Su, W., Loeb, N. G., Vonder Haar, T. H., Tornow, F., Schmidt, K. S., Hakuba, M. Z.,
513 Pilewskie, P., Russell, J. E.; Shortwave Radiance to Irradiance Conversion for Earth Radiation
514 Budget Satellite Observations: A Review, *Remote Sens.* **2021**, *13*, 2640.
515 <https://doi.org/10.3390/rs13132640>.

516 Kato, S., Norman G. Loeb David A. Rutan, Fred G. Rose: Clouds and the Earth's Radiant Energy
517 System (CERES) Data Products for Climate Research Journal of the Meteorological Society of
518 Japan, 93 (6), 597–612, 2015. DOI:10.2151/jmsj.2015-048,

519 Kratz, D. P., P. W. Stackhouse Jr., S. K. Gupta, A. C. Wilber, P. Sawaengphokhai, and G. R. McGarragh⁴:
520 The Fast Longwave and Shortwave Flux (FLASHFlux) Data Product: Single-Scanner Footprint
521 Fluxes, *J. Appl. Meteor. Climatol.*, 53, 1059–1079, doi: 10.1175/JAMC-D-13-061.1, 2014.

522 Hansen, M. C., R. S. Defries, J. R. G. Townshend and R. Sohlberg: Global land cover classification at
523 1km spatial resolution using a classification tree approach, *International Journal of Remote*
524 *Sensing*, 21(6-7):1331 – 1364, DOI:10.1080/014311600210209
525 <https://doi.org/10.1080/014311600210209>, 2010.

526 Harries, J. E., J. E. Russell, J. A. Hanafin, H. Brindley, J. Futyan, J. Rufus, S. Kellock, G. Matthews, R.
527 Wrigley, A. Last, J. Mueller, R. Mossavati, J. Ashmall, E. Sawyer, D. Parker, M. Caldwell, P M.
528 Allan, A. Smith, M. J. Bates, B. Coan, B. C. Stewart, D. R. Lepine, L. A. Cornwall, D. R. Corney,

Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Indent: Before: 0", Hanging: 0.5", Line spacing: Double
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt
Field Code Changed
Formatted: Font: (Default) Times New Roman, 12 pt, Complex Script Font: Times New Roman, 12 pt

529 M. J. Ricketts, D. Drummond, D. Smart, R. Cutler, S. Dewitte, N. Clerbaux, L. Gonzalez, A.
530 Ipe, C. Bertrand, A. Joukoff, D. Crommelynck, N. Nelms, D. T. Llewellyn-Jones, G. Butcher, G.
531 L. Smith, Z. P Szewczyk, P E. Mlynczak, A. Slingo, R. P. Allan, and M. A. Ringer: The
532 Geostationary Earth Radiation Budget Project, Bull. Amer. Meteor. Soc. 86 (7): 945, doi:
533 10.1175/BAMS-86-7-945, 2005.

534 Isaacs, R. G., W.-C. Wang, R. D. Worsham, and S. Goldenberg, S.: Multiple scattering LOWTRAN and
535 FASCODE models. Applied Optics, 26(7), 1272 – 1281, 1987.

536 Kato, S., and N. G. Loeb (2005), Top-of-atmosphere shortwave broadband observed radiance
537 and estimated irradiance over polar regions from Clouds and the Earth's Radiant Energy System
538 (CERES) instruments on Terra, J. Geophys. Res., 110, D07202,
539 doi:10.1029/2004JD005308

540 Laszlo, I., H. Liu, H. -Y. Kim, and R. T. Pinker: GOES-R Advanced Baseline Imager (ABI) Algorithm
541 Theoretical Basis Document (ATBD) for Downward Shortwave Radiation (Surface), and Reflected
542 Shortwave Radiation (TOA), version 3.1, Available at <https://www.goes-r.gov/resources/docs.html>,
543 2018.

544 Laszlo, I., H. Liu, H.-Y. Kim, and R. T. Pinker: Shortwave Radiation from ABI on the GOES-R Series,
545 in *The GOES-R Series*, edited by S. J. Goodman, T. J. Schmit, J. Daniels and R. J. Redmon, pp. 179-
546 191, Elsevier, doi: <https://doi.org/10.1016/B978-0-12-814327-8.00015-9>, 2020.

547 Loeb, N. G., N. M. Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki: Angular
548 Distribution Models for Top-of Atmosphere Radiative Flux Estimation from the Mission Satellite,
549 Part I: Methodology, *Journal of Applied Meteorology*, 42 240-265, 2003.

550 [Loeb et al. \(2005\). Angular distribution models for top-of- atmosphere radiative flux estimation from](#)
551 [the Clouds and the Earth's Radiant Energy System Instrument on the Terra satellite. part I:](#)
552 [Methodology. J. Atmos. Oceanic Technol., 22:338–351.](#)

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Indent: Before: 0", Hanging: 0.5", Space After: 0 pt, Line spacing: Double

553 Loveland T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, J. W. Merchant: Development
554 of a global land cover characteristics database and IGBP DISCover from 1 —km AVHRR data,
555 *International Journal of Remote Sensing*, 21 (6-7), 1303-1330, 2010.

Formatted: Indent: Before: 0", Hanging: 0.31"

556 Niu, X. and Rachel T. Pinker: Revisiting satellite radiative flux computations at the top
557 of the atmosphere, *International Journal of Remote Sensing*, DOI:10.1080/01431161.2011.571298,
558 2011.

559 [Scarino et al.: A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived](#)
560 [from SCIAMACHY Hyperspectral Data, IEEE Trans. Geo. Remote Sens., 54, 5,](#)
561 [2016,10.1109/TGRS.2015.2502904.](#)

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Indent: Before: 0", Hanging: 0.5", Space After: 0 pt, Line spacing: Double

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Line spacing: Double

Formatted: Indent: First line: 0.56", Line spacing: Double

562 Stamnes, K., S.-C. Tsay, W. Wiscombe and K. Jayaweera: Numerically stable algorithm for discrete-
563 ordinate-method radiative transfer in multiple scattering and emitting layered media, *Applied*
564 *Optics*, 27 (12), 2502–2509, 1988.

565 [Su, W., Corbett, J., Eitzen, Z., and Liang, L.: Next-generation angular distribution models for](#)
566 [top-of-atmosphere radiative flux calculation from CERES instruments: methodology, Atmos.](#)

567 Meas. Tech., 8, 611–632, <https://doi.org/10.5194/amt-8-611-2015>, 2015

568 Wielicki, B.A.; Doelling, D.R.; Young, D.F.; Loeb, N.G.; Garber, D.P.; MacDonnell, D.G. Climate
569 quality broadband and narrowband solar reflected radiance calibration between sensors in orbit.
570 In Proceedings of the IGARSS 2008 IEEE International Geoscience and Remote Sensing
571 Symposium, Boston, MA, USA, 7–11 July 2008.

572 Zhang, Taiping, Paul W. Stackhouse Jr., Stephen J. Cox, J. Colleen Mikovitz, Charles N. Long Clear-
573 sky shortwave downward flux at the Earth's surface: Ground-based data vs. satellite-based data,
574 Journal of Quantitative Spectroscopy & Radiative Transfer, 224, 247–260, 2019.
575 www.elsevier.com/locate/jqsrt

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Space After: 0 pt, Line spacing: Double

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Formatted: Font: (Default) +Headings CS (Times New Roman), 12 pt, Complex Script Font: +Headings CS (Times New Roman), 12 pt

Field Code Changed

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Font: (Default) +Headings CS (Times New Roman), Complex Script Font: +Headings CS (Times New Roman)

Formatted: Indent: Before: 0.56", Space After: 0 pt, Line spacing: Double

Tables

Table 1. ~~Relevant information for the derivation of SW fluxes from selected satellites:~~

~~Ce~~hannel information and spectral bands for ABI.

<i>ABI Band #</i>	<i>Central wavelength (μm)</i>	<i>Spectral band (μm)</i>
1	VIS 0.47	0.45-0.49
2	VIS 0.64	0.60-0.68
3	VIS-NIR 0.86	0.847-0.882
4	NIR 1.38	1.366-1.380
5	NIR 1.61	1.59-1.63
6	NIR 2.26	2.22-2.27

Formatted Table

Field Code Changed

578

579

580

581 Table 2. Surface classification description for IGBP 18 types, IGBP 12 types, CERES clear sky 6
 582 types, and NTB cloudy sky 4 types

<u>IGBP (18 types)</u>	<u>IGBP (12 types)</u>	<u>CERES clear-sky (6 types)</u>	<u>NTB cloudy-sky (4 types)</u>
<u>Evergreen</u>			
<u>Needleleaf</u>	<u>Needleleaf Forest</u>		
<u>Deciduous</u>			
<u>Needleleaf</u>			
<u>Evergreen Broadleaf</u>	<u>Broadleaf Forest</u>	<u>Mod-High Tree/Shrub</u>	
<u>Deciduous Broadleaf</u>			
<u>Mixed Forest</u>	<u>Mixed Forest</u>		
<u>Closed Shrublands</u>	<u>Closed Shrub</u>		
<u>Woody Savannas</u>	<u>Woody Savannas</u>		
<u>Savannas</u>	<u>Savannas</u>		
<u>Grasslands</u>			
<u>Permanent Wetlands</u>	<u>Grasslands</u>	<u>Low-Mod Tree/Shrub</u>	
<u>Tundra</u>			
<u>Croplands</u>	<u>Croplands</u>		
<u>Open Shrublands</u>	<u>Open Shrub</u>		
<u>Urban and Built-up</u>	<u>Open Shrub</u>	<u>Dark Desert</u>	<u>Desert</u>
<u>Bare Soil and Rocks</u>	<u>Barren and Desert</u>	<u>Bright Desert</u>	
<u>Snow and Ice</u>	<u>Snow and Ice</u>	<u>Snow and Ice</u>	<u>Snow and Ice</u>
<u>Water Bodies</u>	<u>Ocean</u>	<u>Ocean</u>	<u>Water</u>

← Formatted Table

586 Table 2. Surface classification description for IGBP 18 types, IGBP 12 types, CERES clear sky 6
 587 types, and NTB cloudy sky 4 types

IGBP (18 types)	IGBP (12 types)	CERES clear sky (6 types)	NTB cloudy sky (4 types)
Evergreen Needleleaf	Needleleaf Forest		
Evergreen Broadleaf	Broadleaf Forest		
Deciduous Needleleaf	Needleleaf Forest	Mod High Tree/Shrub	
Deciduous Broadleaf	Broadleaf Forest		
Mixed Forest	Mixed Forest		
Closed Shrublands	Closed Shrub		
Open Shrublands	Open Shrub	Dark Desert	
Woody Savannas	Woody Savannas	Mod High Tree/Shrub	
Savannas	Savannas		
Grasslands	Grasslands	Low Mod Tree/Shrub	
Permanent Wetlands			
Croplands	Croplands		
Urban and Built up	Open Shrub	Dark Desert	Desert
Cropland Mosaics	Croplands	Low Mod Tree/Shrub	Land
Snow and Ice	Snow and Ice	Snow and Ice	Snow and Ice
Bare Soil and Rocks	Barren and Desert	Bright Desert	Desert
Water Bodies	Ocean	Ocean	Water
Tundra	Grasslands	Low Mod Tree/Shrub	Land

590

591 Table 3. The various classes for which NTB coefficients are generated.

Parameter	Clear condition	Cloudy condition
Aerosol or cloud type	6 aerosol types (rural, maritime, urban, tropospheric, fog, desert)	3 cloud types (cirrus, stratocumulus, altostratus)
Optical depth (OD)	Typical VIS (km) values for each aerosol types (no OD grid for each aerosol type). Rural: 23, maritime: 23, urban: 5, tropospheric: 50, fog: 0.2, desert: (default VIS for wind speed 10m/s)	Cirrus: [0, 0.8, 1.2, 1.8, 3.2] Stratocumulus: [0, 0.8, 1.2, 1.8, 3.2, 5.8, 8.2, 15.8, 32.2, 51.8, 124.2] Altostratus: [0, 15.0, 30.0, 50.0, 80.0]
Surface type	12 IGBP surface types	4 types (Water, Land, Desert, Snow/Ice)

592

593

594

595

596 Table 4. Angles used in simulations. To be consistent with what is presented in the
597 ABI Shortwave Radiation Budget (SRB) Algorithm Theoretical Basis Documents (ATBD) (Laszlo
598 et al, 2018) the additional angles used in the simulations are not given in this Table.

Angle Type	Angles
Solar Zenith Angle [°]	0.0, 12.9, 30.8, 41.2, 48.3, 56.5, 63.2, 69.5, 75.5, 81.4, 87.2
Satellite Zenith Angle [°]	0.0, 11.4, 26.1, 40.3, 53.8, 65.9, 76.3
Azimuth Angle [°]	0.0, 1.9, 10.0, 24.2, 44.0, 68.8, 97.6, 129.3, 162.9, 180

← Formatted Table

599

600

601

602
603 Table 5. MODTRAN simulation speed test (CPU MHz 2099.929).

Algorithm	Stream	Band Resolution (cm ⁻¹)	Speed (~seconds)
Isaacs	2	1	40
DISORT	2	1, 5, 15	280, 70, 30
	4	1, 5, 15	560, 120, 40
	8	1, 5, 15	930, 300, 110
Scaled Isaac	2	1, 5, 15	30, 10, 6.67
	4	1, 5, 15	30, 10, 6.67
	8	1, 5, 15	30, 10, 6.67

607

608 Table 6. Details on data used as input for calculations.
609

Short Name	Long Name	MODE	ABI-Channel	Scan Sector	Spatial Resolution
RadC	L1b Radiance	M6	C01-C06	CONUS	5000x3000
AODC	L2 Aerosol	M6	--	CONUS	2500x1500
ACMC	L2 Clear Sky Masks	M6	--	CONUS	2500x1500
ACTPC	L2 Cloud Top Phase	M6	--	CONUS	2500x1500
CODC*	L2 Cloud Optical Depth	M6	--	CONUS	2500x1500

610

611

612

613
614 Table 7. Statistical summary for all selected cases intercompared at instantaneous time
scale.

<u>Case</u>	<u>CERES</u>	<u>GOES-R</u>	<u>Corr</u>	<u>Bias</u>	<u>Std</u>	<u>RMSE</u>	<u>N</u>
<u>07/31</u>	<u>Terra</u>	<u>G16</u>	<u>0.82</u>	<u>0.81</u>	<u>69.81</u>	<u>69.81</u>	<u>0.22 x10⁶</u>
		<u>G17</u>	<u>0.87</u>	<u>29.13</u>	<u>90.10</u>	<u>94.70</u>	<u>1.78 x10⁶</u>
	<u>Aqua</u>	<u>G16</u>	<u>0.76</u>	<u>33.87</u>	<u>117.43</u>	<u>122.22</u>	<u>1.58 x10⁶</u>
		<u>G17</u>	<u>0.78</u>	<u>31.53</u>	<u>129.42</u>	<u>133.21</u>	<u>0.29 x10⁶</u>
<u>09/13</u>	<u>Terra</u>	<u>G16</u>	<u>0.87</u>	<u>-17.37</u>	<u>81.72</u>	<u>83.54</u>	<u>0.13x10⁶</u>
		<u>G17</u>	<u>0.71</u>	<u>47.09</u>	<u>108.73</u>	<u>118.48</u>	<u>1.73x10⁶</u>
	<u>Aqua</u>	<u>G16</u>	<u>0.76</u>	<u>18.22</u>	<u>108.50</u>	<u>110.02</u>	<u>1.46x10⁶</u>
		<u>G17</u>	<u>0.73</u>	<u>25.14</u>	<u>81.95</u>	<u>85.72</u>	<u>0.53x10⁶</u>
<u>09/21</u>	<u>Terra</u>	<u>G16</u>	<u>0.85</u>	<u>6.78</u>	<u>66.66</u>	<u>67.00</u>	<u>0.35x10⁶</u>
		<u>G17</u>	<u>0.83</u>	<u>26.41</u>	<u>87.64</u>	<u>91.57</u>	<u>1.75x10⁶</u>
	<u>Aqua</u>	<u>G16</u>	<u>0.82</u>	<u>29.66</u>	<u>105.09</u>	<u>109.20</u>	<u>1.67x10⁶</u>
		<u>G17</u>	<u>0.76</u>	<u>6.03</u>	<u>94.70</u>	<u>94.89</u>	<u>0.15x10⁶</u>
<u>09/30</u>	<u>Terra</u>	<u>G16</u>	<u>0.88</u>	<u>4.49</u>	<u>64.79</u>	<u>64.94</u>	<u>0.40x10⁶</u>
		<u>G17</u>	<u>0.80</u>	<u>19.35</u>	<u>86.41</u>	<u>88.55</u>	<u>1.74x10⁶</u>
	<u>Aqua</u>	<u>G16</u>	<u>0.80</u>	<u>19.87</u>	<u>100.45</u>	<u>102.40</u>	<u>1.69x10⁶</u>
		<u>G17</u>	<u>0.72</u>	<u>2.71</u>	<u>91.79</u>	<u>91.83</u>	<u>0.12x10⁶</u>

<u>10/23</u>	<u>Terra</u>	<u>G16</u>	<u>0.86</u>	<u>5.84</u>	<u>51.44</u>	<u>51.77</u>	<u>0.35×10^6</u>
<u>2019</u>		<u>G17</u>	<u>0.87</u>	<u>22.47</u>	<u>70.25</u>	<u>73.76</u>	<u>1.75×10^6</u>
<u>UTC</u>		<u>G16</u>	<u>0.89</u>	<u>17.10</u>	<u>75.95</u>	<u>77.85</u>	<u>1.67×10^6</u>
<u>19</u>	<u>Aqua</u>	<u>G17</u>	<u>0.78</u>	<u>8.98</u>	<u>72.52</u>	<u>73.07</u>	<u>0.15×10^6</u>
<u>11/08</u>	<u>Terra</u>	<u>G16</u>	<u>0.87</u>	<u>-0.5</u>	<u>43.28</u>	<u>43.28</u>	<u>0.35×10^6</u>
<u>2019</u>		<u>G17</u>	<u>0.82</u>	<u>17.18</u>	<u>71.27</u>	<u>73.31</u>	<u>1.75×10^6</u>
<u>UTC</u>		<u>G16</u>	<u>0.90</u>	<u>10.08</u>	<u>71.27</u>	<u>71.98</u>	<u>1.67×10^6</u>
<u>19</u>	<u>Aqua</u>	<u>G17</u>	<u>0.68</u>	<u>1.53</u>	<u>47.55</u>	<u>47.58</u>	<u>0.15×10^6</u>
<u>11/24</u>	<u>Terra</u>	<u>G16</u>	<u>0.79</u>	<u>7.98</u>	<u>49.10</u>	<u>49.75</u>	<u>0.35×10^6</u>
<u>2019</u>		<u>G17</u>	<u>0.87</u>	<u>14.10</u>	<u>78.35</u>	<u>79.61</u>	<u>1.76×10^6</u>
<u>UTC</u>		<u>G16</u>	<u>0.82</u>	<u>7.63</u>	<u>58.68</u>	<u>59.17</u>	<u>1.67×10^6</u>
<u>19</u>	<u>Aqua</u>	<u>G17</u>	<u>0.65</u>	<u>0.19</u>	<u>63.14</u>	<u>63.14</u>	<u>0.15×10^6</u>
<u>12/26</u>	<u>Terra</u>	<u>G16</u>	<u>0.88</u>	<u>5.24</u>	<u>53.28</u>	<u>53.54</u>	<u>0.35×10^6</u>
<u>2019</u>		<u>G17</u>	<u>0.76</u>	<u>11.26</u>	<u>73.95</u>	<u>74.80</u>	<u>1.76×10^6</u>
<u>UTC 19</u>	<u>Aqua</u>	<u>G16</u>	<u>0.83</u>	<u>9.79</u>	<u>58.90</u>	<u>59.56</u>	<u>1.67×10^6</u>
		<u>G17</u>	<u>0.73</u>	<u>0.85</u>	<u>52.53</u>	<u>52.54</u>	<u>0.15×10^6</u>

615
616
617
618
619
620

621
622 Table 7. Statistical summary for all selected cases intercompared at instantaneous time
— scale.

Case	CERES	GOES-R	Corr	Bias	Std	RMSE	N
09/13 2019 UTC 20	Terra	G16	0.87	-12.10	82.09	82.98	0.13x10 ⁶
		G17	0.71	48.17	108.19	118.42	1.73x10 ⁶
	Aqua	G16	0.76	17.38	109.08	110.45	1.46x10 ⁶
		G17	0.73	26.00	81.96	85.98	0.53x10 ⁶
09/21 2019 UTC 19	Terra	G16	0.85	6.78	66.66	67.00	0.35x10 ⁶
		G17	0.83	26.41	87.64	91.57	1.75x10 ⁶
	Aqua	G16	0.82	29.66	105.09	109.20	1.67x10 ⁶
		G17	0.76	6.03	94.70	94.89	0.15x10 ⁶
09/30 2019 UTC 19	Terra	G16	0.88	4.49	64.79	64.94	0.40x10 ⁶
		G17	0.80	19.35	86.41	88.55	1.74x10 ⁶
	Aqua	G16	0.81	19.99	99.98	101.96	1.67x10 ⁶
		G17	0.70	1.22	94.90	94.91	0.12x10 ⁶
10/23 2019 UTC 19	Terra	G16	0.86	5.84	51.44	51.77	0.35x10 ⁶
		G17	0.87	22.47	70.25	73.76	1.75x10 ⁶
	Aqua	G16	0.89	17.10	75.95	77.85	1.67x10 ⁶
		G17	0.78	8.98	72.52	73.07	0.15x10 ⁶
11/08 2019	Terra	G16	0.87	-0.5	43.28	43.28	0.35x10 ⁶
		G17	0.82	17.18	71.27	73.31	1.75x10 ⁶

UTC +9	Aqua	G16	0.90	10.08	71.27	71.98	1.67×10^6
		G17	0.68	1.53	47.55	47.58	0.15×10^6
11/24 2019	Terra	G16	0.79	7.98	49.10	49.75	0.35×10^6
		G17	0.87	14.10	78.35	79.61	1.76×10^6
UTC +9	Aqua	G16	0.82	7.63	58.68	59.17	1.67×10^6
		G17	0.65	0.19	63.14	63.14	0.15×10^6
12/26 2019	Terra	G16	0.89	7.6	52.79	53.33	0.35×10^6
		G17	0.77	10.81	73.14	73.93	1.76×10^6
UTC+9	Aqua	G16	0.83	7.02	59.16	59.58	1.67×10^6
		G17	0.73	1.09	53.08	53.09	0.15×10^6

623
624
625

626 **Figures**

627

628

629 Figure 1. Flowchart of the NTB transformations illustrating the main processing sections.

630

631

632

633

634 Figure 2. Schematic illustration of the logic employed to synthesize modeled and observed ADMs.

635
636
637
638

639
640
641
642

Figure 3. The location of the 100 selected clear sky profiles from SeeBor used in the simulations.

645
646
647 Figure 4. Profile statistics of: (a) temperature; (b): water vapor; (c) ozone for the entire available
648 sample and for the reduced sample used in this study. Error bar is 1 standard deviation. (logarithmic
649 scale).

650
651

652

653 Figure 5. Re-mapped IGBP surface classifications over the CONUS at 2-km ABI grid.

654

655

656

657

658 Figure 6. Simulated Radiances from DISORT 8-stream (with 1, 5, and 15 cm^{-1} resolution band
 659 model for spectral range of 0.4 – 0.5 μm (left) and 1.5 – 2.0 μm (right).

660

661

Figure 7. Radiance differences between various multi-scattering algorithms and DISORT-8 stream.

666 Upper: the whole simulated spectrum of 0.2-4 μm ; Lower: zoom on 0.3-0.35 μm (Relative
 667 Azimuthal Angle=1.9°, View Angle=76.3°, Solar Zenith Angle=87.2°)

670 ~~Figure 7. Radiance differences between various multi scattering algorithms and DISORT 8 stream.~~
671 ~~Upper: the whole simulated spectrum of 0.2-4 μm ; Lower: zoom on 0.3-0.35 μm (Relative Azimuthal~~
672 ~~Angle=1.9°, View Angle=76.3°, Solar Zenith Angle=87.2°).~~

678 **Figure 8.** Locations of the six ABI channel SRFs. X-axis is wavenumber. Y-axis is solar irradiance.

680

681

682

683

701 **Figure 9.** Comparison of TOA flux from ABI and CERES based FLASHFlux for 2017/11/25, 17:57Z.
 702 (a) CERES Terra product; (b): results with “separate-channel” coefficients. (c): difference (ABI-
 703 CERES); (d): histogram of ABI-CERES differences [this is the only case illustrated in this paper with](#)
 704 [data from FLASHFlux](#)–

705

706

707
708
709 Figure 10. Statistics for relative Bias and RMSE. The y-axis is percentage. The x-axis is the case used ←
710 in the intercomparison. Blue - cloudy orange - clear sky and t gray - all sky.

Formatted: Line spacing: 1.5 lines

719
 720 ~~Figure 10. All-sky TOA SW from CERES FLASHFlux/Aqua (a), CERES FLASHFlux/Terra (b), re-~~
 721 ~~gridded CERES FLASHFlux/Aqua (c), CERES FLASHFlux/Terra GOES-16 (d) and GOES-17 (f) on~~
 722 ~~12/26/2019 at UTC 19:36.~~

725
 726 Figure 11. (a) All-sky TOA SW from CERES SSF/Aqua, (b) CERES SSF/Terra, (c) re-gridded
 727 CERES SSF/Aqua, (d) re-gridded CERES SSF/Terra, (e) GOES-16 and (f) GOES-17 on
 728 12/26/2019 at UTC 19:36.

729
 730
 731 Formatted: No underline

Formatted: No underline

Formatted: Not Highlight

Formatted: Line spacing: 1.5 lines

Formatted: Not Highlight

732
733 **Figure 11.** Frequency distribution of all sky TOA SW differences between ABI on GOES 16 and CERES
734 (Left) and ABI on GOES 17 and CERES (Right) using Aqua (Upper) and Terra (Lower). All observations
735 were used (clear and cloudy) on 12/26/2019 at UTC 19:36.

739
 740 **Figure 13.** Same as Figure 11 but for cloudy TOA SW differences.
 741

742

743
744 Figure 12. (a) Frequency distribution of all-sky TOA SW differences between ABI on GOES-16 and
745 CERES. (b) ABI on GOES-17 and CERES SSF using Aqua (Upper) and Terra (Lower). All
746 observations were used (clear and cloudy) on 12/26/

Formatted: No underline
Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Indent: Before: 0", Hanging: 0.5", Line spacing: 1.5 lines

747
748 2019 at UTC 19:36.

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Figure 14. Same as Figure 11 but for cloudy TOA SW differences.

Formatted: Not Highlight

Formatted: Not Highlight

757

758
 759 **Figure 1415.** *Left:* Sensor response function for ABI channel 6; *Right:* Spectral albedo for desert and
 760 open shrubs. Desert albedo value is much higher than open shrubs at 2.2 μm.

761

762

Figure 15. TOA fluxes using two different NTB coefficients: *Left*: used “open shrub” coefficients; *Right*: “Desert” coefficients. Lower panels show the frequency distribution of TOA fluxes for a reduced domain (over Mexico in the orange boxes) that includes the open shrub/desert classification. Case time stamp is 2017/11/25 17:32Z.

← **Formatted:** Space After: Auto, Line spacing: single