Supplement of

Horizontal distribution of tropospheric NO₂ and aerosols derived by dual-scan multiwavelength MAX-DOAS measurements in Uccle, Belgium

Table S1. DOAS settings for O₄ and NO₂ in the six different fitting intervals.

Fitting	Reference	Molecule	Reference
window/ nm	wavelength/		
	nm		
330 – 361	343	BrO (223 K)	Fleischmann et al. (2004)
350 - 370	360	O_4	Finkenzeller, H. (private communication)
		NO ₂ (298 K)	Vandaele et al. (1998) with I_{o} correction (SCD of 10^{17}
			molec.cm ⁻²)
		O ₃ (223 K)	Serdyuchenko et al. (2014) with I_0 correction (SCD of
			10 ²⁰ molecules/cm ²)
		HCHO (297 K)	Meller and Moortgat (2000)
		O ₃ (243 K)	Pre-orthogonalized Serdyuchenko et al. (2014) with I ₀
			correction (SCD of 10 ²⁰ molecules/cm ²)
		Ring	Pseudo cross-section according to Chance and Spurr
			(1997) and normalized as in Wagner et al. (2009)
		Polynomial	Order 3 (4 coefficients)
360-383.5	380	BrO	Fleischmann et al. (2004)
		O_4	Finkenzeller, H. (private communication)
		NO ₂ (298 K)	Vandaele et al. (1998) with I _o correction (SCD of 10 ¹⁷ molec.cm ⁻²)
		NO ₂ (220 K)	Pre-orthogonalized Vandaele et al. (1998) with I_0 correction
		Ring	Pseudo cross-section according to Chance and Spurr
			(1997) and normalized as in Wagner et al. (2009)
		Polynomial	Order 5 (6 coefficients)
420-460	447	NO ₂ (298 K)	Vandaele et al. (1998) with I_0 correction (SCD of 10^{17}
450 - 490	477		molec.cm ⁻²)
		$O_4(293 \text{ K})$	Thalman and Volkamer (2013)

		O ₃ (223 K)	Serdyuchenko et al. (2014) with I_0 correction (SCD of
			10 ²⁰ molecules/cm ²)
		H_2O	HITRAN (Rothman et al., 2013)
		NO ₂ (220 K)	Pre-orthogonalized Vandaele et al. (1998) with I_0 correction
		Ring	Pseudo cross-section according to Chance and Spurr
			(1997) and normalized as in Wagner et al. (2009)
		Polynomial	Order 3 (4 coefficients)
- 10 - 101	520	NO (200 II)	V 1 1 (1000) 11 V (1007) 11 V
510 – 540.1	530	NO ₂ (298 K)	Vandaele et al. (1998) with I _o correction (SCD of 10 ¹⁷ molec.cm ⁻²)
		0 (202 H)	,
		O ₄ (293 K)	Thalman and Volkamer (2013)
		O_3 (223 K)	Serdyuchenko et al. (2014) with I ₀ correction (SCD of
			10 ²⁰ molecules/cm ²)
		H_2O	HITRAN (Rothman et al., 2013)
		NO ₂ (220 K)	Pre-orthogonalized Vandaele et al. (1998) with I_0 correction
		Ring	Pseudo cross-section according to Chance and Spurr
			(1997) and normalized as in Wagner et al. (2009)
		Polynomial	Order 2 (3 coefficients)

Figure S1. Simulated L_{NO2} as a function of the RAA for different MLH_{NO2} values (from left to right panel: MLH_{NO2} equal to 500 m, 1000 m, and 1500 m), wavelengths, one SZA value (30°), and one AOD value (0.3).

Figure S2. Simulated L_{NO2} as a function of the SZA for different MLH $_{NO2}$ values (from left to right panel: MLH $_{NO2}$ equal to 500 m, 1000 m, and 1500 m), wavelengths, one RAA value (60°), and one AOD value (0.3).

Figure S3. Seasonal near-surface NO₂ concentration grids as estimated over Brussels by the RIO air-quality model. The black square shows the MAX-DOAS position, the black polygon the National Airport, the black dots the NO₂ hotspots, and the black line represents the Brussels Ring motorway.

Figure S4. Simulated differential effective light path of O_4 dSCDs (L_{O4} sim.) and NO_2 dSCDs (L_{NO2} sim) as a function of wavelength for different AOD scenarios.