Supplement of ## Horizontal distribution of tropospheric NO₂ and aerosols derived by dual-scan multiwavelength MAX-DOAS measurements in Uccle, Belgium Table S1. DOAS settings for O₄ and NO₂ in the six different fitting intervals. | Fitting | Reference | Molecule | Reference | |------------|-------------|-------------------------|---| | window/ nm | wavelength/ | | | | | nm | | | | 330 – 361 | 343 | BrO (223 K) | Fleischmann et al. (2004) | | 350 - 370 | 360 | O_4 | Finkenzeller, H. (private communication) | | | | NO ₂ (298 K) | Vandaele et al. (1998) with I_{o} correction (SCD of 10^{17} | | | | | molec.cm ⁻²) | | | | O ₃ (223 K) | Serdyuchenko et al. (2014) with I_0 correction (SCD of | | | | | 10 ²⁰ molecules/cm ²) | | | | HCHO (297 K) | Meller and Moortgat (2000) | | | | O ₃ (243 K) | Pre-orthogonalized Serdyuchenko et al. (2014) with I ₀ | | | | | correction (SCD of 10 ²⁰ molecules/cm ²) | | | | Ring | Pseudo cross-section according to Chance and Spurr | | | | | (1997) and normalized as in Wagner et al. (2009) | | | | Polynomial | Order 3 (4 coefficients) | | 360-383.5 | 380 | BrO | Fleischmann et al. (2004) | | | | O_4 | Finkenzeller, H. (private communication) | | | | NO ₂ (298 K) | Vandaele et al. (1998) with I _o correction (SCD of 10 ¹⁷ molec.cm ⁻²) | | | | NO ₂ (220 K) | Pre-orthogonalized Vandaele et al. (1998) with I_0 correction | | | | Ring | Pseudo cross-section according to Chance and Spurr | | | | | (1997) and normalized as in Wagner et al. (2009) | | | | Polynomial | Order 5 (6 coefficients) | | 420-460 | 447 | NO ₂ (298 K) | Vandaele et al. (1998) with I_0 correction (SCD of 10^{17} | | 450 - 490 | 477 | | molec.cm ⁻²) | | | | $O_4(293 \text{ K})$ | Thalman and Volkamer (2013) | | | | O ₃ (223 K) | Serdyuchenko et al. (2014) with I_0 correction (SCD of | |--------------------------|-----|-------------------------|---| | | | | 10 ²⁰ molecules/cm ²) | | | | H_2O | HITRAN (Rothman et al., 2013) | | | | NO ₂ (220 K) | Pre-orthogonalized Vandaele et al. (1998) with I_0 correction | | | | Ring | Pseudo cross-section according to Chance and Spurr | | | | | (1997) and normalized as in Wagner et al. (2009) | | | | Polynomial | Order 3 (4 coefficients) | | - 10 - 101 | 520 | NO (200 II) | V 1 1 (1000) 11 V (1007) 11 V | | 510 – 540.1 | 530 | NO ₂ (298 K) | Vandaele et al. (1998) with I _o correction (SCD of 10 ¹⁷ molec.cm ⁻²) | | | | 0 (202 H) | , | | | | O ₄ (293 K) | Thalman and Volkamer (2013) | | | | O_3 (223 K) | Serdyuchenko et al. (2014) with I ₀ correction (SCD of | | | | | 10 ²⁰ molecules/cm ²) | | | | H_2O | HITRAN (Rothman et al., 2013) | | | | NO ₂ (220 K) | Pre-orthogonalized Vandaele et al. (1998) with I_0 correction | | | | Ring | Pseudo cross-section according to Chance and Spurr | | | | | (1997) and normalized as in Wagner et al. (2009) | | | | Polynomial | Order 2 (3 coefficients) | Figure S1. Simulated L_{NO2} as a function of the RAA for different MLH_{NO2} values (from left to right panel: MLH_{NO2} equal to 500 m, 1000 m, and 1500 m), wavelengths, one SZA value (30°), and one AOD value (0.3). Figure S2. Simulated L_{NO2} as a function of the SZA for different MLH $_{NO2}$ values (from left to right panel: MLH $_{NO2}$ equal to 500 m, 1000 m, and 1500 m), wavelengths, one RAA value (60°), and one AOD value (0.3). Figure S3. Seasonal near-surface NO₂ concentration grids as estimated over Brussels by the RIO air-quality model. The black square shows the MAX-DOAS position, the black polygon the National Airport, the black dots the NO₂ hotspots, and the black line represents the Brussels Ring motorway. Figure S4. Simulated differential effective light path of O_4 dSCDs (L_{O4} sim.) and NO_2 dSCDs (L_{NO2} sim) as a function of wavelength for different AOD scenarios.