
well with reference data, but we find indications of a weak positive bias). The continuous GAW CH4 reference data cover

seasonal cycle signals and have a larger amplitude than the AirCore data. We demonstrate that the lower tropospheric partial

column averaged mixing ratio generated from the combined data product is able to capture these signals much better than the525

respective IASI product or the TROPOMI total column averaged product.

There might be a chance to further improve the quality of the combined data product by performing detailed investigations

on the inconsistency between the TROPOMI and the MUSICA IASI XCH4 data. The availability of additional CH4 profile

reference data for low latitudes (e.g. obtained by the AirCore system) would be very beneficial for such purpose.

The proposed method takes benefit from the outputs generated by the dedicated individual TROPOMI and IASI retrievals,530

it needs no extra retrievals, and is thus computationally very efficient. This makes it ideal for an application at large scale, and

allows the combination of operational IASI and TROPOMI products in an efficient and sustained manner. This has a particular

attraction, because IASI and TROPOMI successor instruments will be jointly aboard the upcoming Metop (Meteorologi-

cal operational) Second Generation satellites (guaranteeing observations from the 2020s to the 2040s). IASI and TROPOMI

successor instruments will have globally-distributed and perfectly-collocated observations (over land) in the order of several535

hundred thousand per day, for which a combined product can be generated in a computationally very efficient way.

Data availability. Access to the MUSICA IASI data is provided via http://www.imk-asf.kit.edu/english/musica-data.php. The TROPOMI

XCH4 data used in this study are available for download at ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/14_14_Lorente_et_

al_2020_AMTD/. TCCON data are made available via the TCCON Data Archive, hosted by CaltechDATA, California Institute of Technol-

ogy, California (USA), http://tccondata.org. For Trainou AirCore data please contact Michel Ramonet (michel.ramonet@lsce.ipsl.fr) and for540

Sodankylä AirCore data please contact Huilin Chen (huilin.chen@rug.nl). The GAW surface in-situ data are available via the World Data

Centre for Greenhouse Gases (WDCGG), https://gaw.kishou.go.jp/search/.

Appendix A: Theoretical considerations

In this appendix, we give a brief overview on the theory of optimal estimation remote sensing methods and follow the notation

as recommended by the TUNER activity (von Clarmann et al., 2020), which is closely in line with the notation used by545

Rodgers (2000). The overview focuses on the equations that are important for our work, i.e. the a posteriori combination of

two independently retrieved optimal estimation remote sensing products. For a more detailed and general insight into the theory

of optimal estimation remote sensing methods we refer to Rodgers (2000) and for a general introduction on vector and matrix

algebra dedicated textbooks are recommended.

A1 Basics on retrieval theory550

Atmospheric remote sensing instruments measure radiance spectra (written as state vector y), which can be well simulated by

models (F ) whenever the actual atmospheric state (the vector x) is known. Using the a priori atmospheric state vector xa we
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can linearise and write:

F (x)−F (xa)=∆y =K(x−xa). (A1)

Here, K is the Jacobian matrix, i.e. derivatives that capture how the measurement vector (the measured radiances) will change555

for changes of the atmospheric state (the atmospheric state vector x). A remote sensing retrieval inverts Eq. (A1) and provides

an estimation of the difference between the atmospheric state and the a priori atmospheric state. For a moderately non-linear

problem (according to Chapter 5 of Rodgers, 2000), the retrieved optimal estimation product (x̂) can be written as:

x̂−xa =G∆y =G[K(x−xa)]. (A2)

G is the gain matrix and realises the inversion from the measurement domain (radiances) to the domain of the atmospheric560

states. It consists of derivatives that capture how the retrieved atmospheric state vector will change for changes in the measure-

ment vector:

G = (KTSy,n
−1K+Sa

−1)−1KTSy,n
−1

= SaK
T (KSaK

T +Sy,n)
−1, (A3)

with Sy,n andR= Sa
−1 being the retrieval’s noise covariance and the constraint matrices (in a strict optimal estimation sense,565

the constraint matrix is the inverse of the a priori covariance matrix Sa), respectively. The equivalence of both lines in Eq. (A3)

is demonstarted in Chapter 4.1 of Rodgers (2000), where the first line is called the n-form and the second line the m-form.

The averaging kernel

A=GK, (A4)

is an important component of a remote sensing retrieval, because according to Eq. (A2) it reveals how changes of the actual570

atmospheric state vector x affect the retrieved atmospheric state vector x̂.

A valuable diagnostic quantity is the a posteriori covariance matrix, which can be calculated as follows:

Sx̂ = (KTSy,n
−1K+Sa

−1)−1. (A5)

The linearised formulation of the retrieval solution according to (A2) is very useful for the analytic characterisation of the

product. The retrieval state’s noise error covariance matrix for noise can be analytically calculated as:575

Sx̂,n =GSy,nG
T , (A6)

where Sy,n is the covariance matrix for noise on the measured radiances y.

Further very helpful equations are the relations between the a posteriori covariance, the averaging kernel, the constraint (or

the a priori covariance), and the retrieval’s state noise error covariance matrices:

Sx̂ = (I−A)Sa, (A7)580

and

Sx̂,n = Sx̂K
TSy,n

−1KSx̂ =ASx̂, (A8)

with I being the identity matrix. Equations (A7) and (A8) follow from Eqs. (A3) - (A6).
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A2 Optimal combination of retrieval data products

In this section, we discuss an optimal estimation retrieval that uses a combined measurement vector (two measurements from585

different instruments). First we show that the retrieval output of two profile retrievals performed on the same vertical grid can

be used in way that yields to the same results as performing a retrieval with the combined measurement vector. Then we present

an approach for combining the outputs of a retrieval that provides profiles and another retrieval that provides column data. We

show that the combination of profile and column data can be realised in a computationally efficient manner via a Kalman filter.

Finally, we discuss the validity of the methods and the requirements on the individual retrieval products.590

A2.1 Inversion of a combined measurement vector

According to Eqs. (A2), (A3), and (A5) the retrieval product obtained from measurement y can be written as:

x̂−xa = (KTSy,n
−1K+Sa

−1)−1KTSy,n
−1K(x−xa). (A9)

In the case of two individual measurements (measurement 1 and 2), we obtain from using a combined measurement vector

{y1,y2}:595

x̂−xa = (K1
TSy1,n

−1K1 +K2
TSy2,n

−1K2 +Sa
−1)−1(K1

TSy1,n
−1K1 +K2

TSy2,n
−1K2)(x−xa)

= (Sx̂1

−1 +Sx̂2

−1−Sa
−1)−1(K1

TSy1,n
−1K1 +K2

TSy2,n
−1K2)(x−xa), (A10)

where Sy1,n and Sy2,n are the respective measurement noise covariances, K1 and K2 the respective Jacobians and Sx̂1
and

Sx̂2
the respective a posteriori covariances. The second line follows from Eq. (A5). According to Eqs. (A3) - (A5) we can

substitute KTSy,n
−1K(x−xa) by Sx̂

−1(x̂−xa) and write Eq. (A10) as600

x̂−xa = (Sx̂1

−1 +Sx̂2

−1−Sa
−1)−1[Sx̂1

−1(x̂1−xa)+Sx̂2

−1(x̂2−xa)]. (A11)

Using Eq. (A11) we can realise an optimal combination of the two retrieval products that only needs the a priori covariance,

the a posteriori covariances, and the two retrieval products. The Jacobians are not needed. This combination is mathematically

equivalent to using the Jacobians of a combined measurement vector {y1,y2}.

A2.2 Combining profile and column data products605

Equation (A11) requires two retrieval results on the same vertical grid and can be used to combine two profile products. Here

we will develop a method for combining a profile and a column data product. For a column retrieval we can write in analogy

to Eq. (A1)

∆x∗ = a∗T (x−xa), (A12)

where a∗T is the column averaged mixing ratio according to Appendix C2. Equation (A12) poses an inverse problem of the610

same kind as Eq. (A1) and in order to optimally estimate a profile from an available column product we can apply the same

solution approach as in Eqs. (A2) and (A3). A similar application of this approach is also presented in Sect. 4.2 of Rodgers
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and Connor (2003). For the application here we substitute in Eq. (A3) K by a∗T and Sy,n by the scalar S∗x̂,n (the noise error

variance of the column data product) and get the profile

x̂−xa = (a∗S∗x̂,n
−1

a∗T +Sa
−1)−1a∗S∗x̂,n

−1
a∗T (x−xa)615

= (a∗S∗x̂,n
−1

a∗T +Sa
−1)−1a∗S∗x̂,n

−1
w∗TSx̂K

TSy,n
−1K(x−xa). (A13)

We write the second line of Eq. (A13) to discuss similarities with Eq. (A9). The comparison of both reveals that for a retrieval

providing only a column product, the Jacobian information provided by K is vertically aggregated according to the operator

a∗S∗x̂,n
−1

w∗TSx̂. The term Sx̂ is the vertically resolved a posteriori covariance, which exist for a retrieval that internally

inverts profiles, but only distributes the column products; however, it is only an internal measure of the retrieval, and actually620

not available.

Instead of the term of Eq. (A12) we now invert the term ∆x∗ = a∗

2
T (x− x̂1), i.e. we replace xa by the profile product x̂1

of a first retrieval (retrieval 1) on the right side of (A12) and use a∗

2
T and S∗x̂2,n

for the column averaging kernel and the noise

error variance of a second retrieval (retrieval 2), respectively. Here and in the following, retrieval 1 is the profile retrieval and

retrieval 2 the retrieval that provides only column products. The solution can easily be achieved by substituting in (A13) Sa by625

Sx̂1
, which is the a posteriori covariance of retrieval 1:

x̂− x̂1 = (a∗

2S
∗

x̂2,n
−1

a∗

2
T +Sx̂1

−1)−1a∗

2S
∗

x̂2,n
−1

a∗

2
T (x− x̂1). (A14)

We modify Eq. (A14) by using x̂1 =A1(x−xa)+xa:

x̂−xa = A1(x−xa)+ (Sx̂1

−1 +a∗

2S
∗

x̂,n
−1

a∗

2
T )−1a∗

2Sx̂2,n
−1a∗

2
T (I−A1)(x−xa)

= (Sx̂1

−1 +a∗

2S
∗

x̂,n
−1

a∗

2
T )−1[Sx̂1

−1A1 +a∗

2S
∗

x̂,n
−1

a∗

2
T ](x−xa)630

= (Sx̂1

−1 +a∗

2S
∗

x̂,n
−1

a∗

2
T )−1[Sx̂1

−1(x̂1−xa)+a∗

2S
∗

x̂,n
−1(x̂∗2−w∗Txa)]. (A15)

In the third line of Eq. (A15) we use the column product x̂∗2 = a∗

2
T (x−xa)+w∗Txa. Similarly to Eq. (A11) we can generate

a combined product without the need of the Jacobian matrices. The combination is possible by using the profile and the

column product (x̂1 and x̂∗2, respectively) together with the a posteriori covariance of the profile product and the noise error

and averaging kernel of the column product.635

A2.3 Linear Kalman filter

Here we show that the approach developed in Appendix A2.2 is equivalent to a Kalman filter. An important application of a

Kalman filter (Kalman, 1960; Rodgers, 2000) is data assimilation in the context of atmospheric modelling. There, the filter

operates sequentially in different time steps. Kalman filter data assimilation methods determine the analysis state (x̂a) by

optimally combining the background (or forecast) state (x̂b) with the information as provided by a new observation (x̂o):640

x̂a = x̂b +M[x̂o−Hx̂b] (A16)
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Optimal means here that the uncertainties of both, the background state and the observation, are correctly taken into account

by the Kalman gain matrix (M):

M = Sx̂bHT (HSx̂bHT +Sx̂o,n)
−1, (A17)

with Sx̂b and Sx̂o,n being the uncertainty covariances of background state and the new measurement, respectively. The matrix645

H is the measurement forward operator, which maps the background domain into the measurement domain.

By rearranging the n-form of (A14) as them-form – in analogy to to Eq. (A3) – and by using again x̂1 =A1(x−xa)+xa

and x̂∗2 = a∗T (x−xa)+w∗Txa we get

x̂ = x̂1 +Sx̂1
a∗

2(a
∗

2
TSx̂1

a∗

2 +S∗x̂2,n
)−1a∗

2
T (x− x̂1)

= x̂1 +Sx̂1
a∗

2(a
∗

2
TSx̂1

a∗

2 +S∗x̂2,n
)−1[x̂∗2−a∗

2
T x̂1− (w∗

2
Txa−a∗

2
Txa)]650

= x̂1 +m(x̂∗2−a∗

2
T x̂1)−m(w∗

2
Txa−a∗

2
Txa) (A18)

with

m= Sx̂1
a∗

2(a
∗

2
TSx̂1

a∗

2 +S∗x̂2,n
)−1. (A19)

Disregarding the term that accounts for the a priori information (m(w∗

2
Txa−a∗

2
Txa)), the Eqs. (A18) and (A19) are the same

as Kalman filter Eqs. (A16) and (A17): retrieval 1 provides the background state and retrieval 2 the new observation. Compared655

to Eq. (A15) the form of Eq. (A18) has the advantage that no matrices have to be inverted only the scalar (a∗

2
TSx̂1

a∗

2+S∗x̂2,n
).

A2.4 Discussion and requirements

In the Appendices A2.2 and A2.3, we assume the usage of the same a priori for the two individual retrievals. Since generally

two individually performed retrievals use two different a priori settings we have to perform an a priori adjustment. Using the

a priori of retrieval 2 as the reference (x2,a = xa), we can adjust the output of retrieval 1 by (see Eq. (10) of Rodgers and660

Connor, 2003):

x̂1
′ = x̂1 +(A1− I)(x1,a−x2,a), (A20)

where x1,a is the a priori used by retrieval 1.

For a combination according to Eq. (A11) we need retrieval 1 and 2 outputs obtained by using the same constraint (the

inverse of the a priori covariance Sa). This has to be accounted for before applying Eq. (A11), by adusting the contraint665

according to the formalism as presented in Chapter 10.4 of Rodgers (2000) or Sect. 4.2 of Rodgers and Connor (2003). By

applying Eq. (A15) or the Kalman filter according to Eq. (A18) the common constraint is automatically set to the constraint of

the retrieval 1 product and no extra modification is necesarry.

The synergetic combination of remote sensing profile and column products according to Eq. (A15) or (A18) is possible,

whenever: (1) the two remote sensing observations are made at the same time and detect the same location, (2) the problems is670

moderately non-linear (according to Chapter 5 of Rodgers, 2000), and (3) the individual retrieval output as listed by Eq. (A15)
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or (A18) is made available. This is for the profile retrieval the a posteriori covariances (Sx̂, which might also be reconstracted

from A and R= Sa
−1 according to Eq. (A7)), the averaging kernels (A), and the retrieved and a priori state vectors (x̂ and

xa, respectively). For the column retrieval we need the noise variances (the scalar Sx̂,n), the column averaging kernels (the

row vector a∗T ), the column product (x̂∗2), and the a priori column data (w∗Txa), respectively.675

Appendix B: Operator for transformation between linear and logarithmic scales

Linear scale differentials and logarithmic scale differentials are related by ∂x= x∂ lnx. For transforming differentials or

covariances of a state vector with dimension nal (nal: number of atmospheric levels) from logarithmic to linear scale we

define the nal×nal diagonal matrix L:

L=















x̂1 0 · · · 0

0 x̂2 · · · 0
...

...
. . .

...

0 0 · · · x̂nal















. (B1)680

Here x̂i is the value of the ith element of the retrieved state vector (i.e. in case of an atmospheric CH4 state vector the CH4

mixing ratios retrieved at the ith model level).

Approximatively, a logarithmic scale averaging kernel matrix Al can then be expressed in the linear scale as:

A≈ LAlL−1. (B2)

This is here an approximation, because on the right side the operator L should contain the actualy instead of the retrieved685

mixing ratios. It is a valid approximation as long as the a priori is reasonable and there is no large bias in the retrieval data.

Similarly a logarithmnic scale covariance matrix Sl can be approximately expressed in the linear scale as:

S≈ LSlLT . (B3)

Here the approximation is because ∆x≈ x∆lnx.

Appendix C: Operators for column data690

This appendix explains the calculation of operators for partial (and total) column data. Although some sections are similar to

Appendix C of Schneider et al. (2021) we think it is a very useful reference here, because it facilitates the reproducibility of

our results.

For converting mixing ratio profiles into amount profiles we set up a pressure weighting operator Z, as a diagonal matrix

with the following entries:695

Zi,i =
∆pi

gimair(1+
mH2O

mair
x̂H2O

i )
. (C1)
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Using the pressure pi at atmospheric grid level i we set∆p1 =
p2−p1

2
−p1,∆pnal = pnal−

pnal−pnal−1

2
, and∆pi =

pi+1−pi

2
−

pi−pi−1

2
for 1< i < nal. Furthermore, gi is the gravitational acceleration at level i, mair and mH2O the molecular mass of dry

air and water vapour, respectively, and x̂H2O

i the retrieved or modelled water vapour mixing ratio at level i.

We define an operator WT for resampling fine gridded atmospheric amount profiles into coarse gridded atmospheric partial700

column amount profiles. It has the dimension c×nal, where c is the number of the resampled coarse atmospheric grid levels

and nal, the number of atmospheric levels of the original fine atmospheric grid. Each line of the operator has the value ’1’ for

the levels that are resampled and ’0’ for all other levels:

WT =









1 · · · 1 0 · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1 0 · · · 0

0 · · · · · · · · · · · · 0 1 · · · 1









. (C2)

In analogy we can define a row vector wT (with the dimension 1×nal) with all elements having the value ’1’, which allows705

the resampling for the total column amounts.

C1 Column amounts

The kernel that discribes how a change in the amount at a certain altitude affects the retrieved partial (or total) colunm amount

can be calculated as:

A′ =WTZAZ−1. (C3)710

For the total column, we replace WT by wT and get the row vector a′T (dimension 1×nal). This is the total column kernel

provided by the TROPOMI data and it is typically written as aT . Figure 3 shows examples of such total and partial column

amount kernels. The total column amount kernel can be interpolated to different altitude grids. For the applications in Sects. 2

and 3 we interpolate the TROPOMI total column amount kernel to the vertical grid used by the MUSICA IASI retrieval.

C2 Column averaged mixing ratios715

We can also combine the operators Z and WT for the calculation of a pressure weighted resampling operator by:

W∗T = (WTZW)−1WTZ. (C4)

This operator resamples linear scale mixing ratio profiles into linear scale partial column averaged mixing ratio profiles. The

respective total column operator w∗T can be calculated in analogy to Eq. (C4) by replacing WT by wT

With operator W∗T we can calculate a coarse gridded partial column averaged state x̂∗ from the fine gridded linear mixing720

ratio state x̂ by:

x̂∗ =W∗T x̂. (C5)

32



The kernels matrix of the partial column averaged mixing ratio state can then be calculated from the fine gridded linear scale

kernel matrix (A) by:

A∗ =W∗TA. (C6)725

This kernel discribes how a change in the mixing ratio at a certain altitude affects the retrieved partial colunm averaged mixing

ratio. Covariances of the partial column averaged mixing ratio state can be calculated from the corresponding covariance

matrices of the fine gridded linear scale (S) by:

S∗ =W∗TSW∗. (C7)

The respective calculations for total column averaged mixing ratios can be made by replacing W∗T by w∗T . For the total730

column avereraged mixing ratios the covariance is a simple variance (the scalar S∗) and the kernel has the dimension 1×nol,

i.e. it is a row vector a∗T .

The total column amount kernel (aT
T ) provided with the TROPOMI data set can be converted into a total column averaged

mixing ratio kernel a∗

T
T by the following calculation (using Eqs. (C3), (C4), and (C6)):

a∗

T
T =w∗TAT = (wTZw)−1aT

TZ. (C8)735

The total column averaged mixing ratio kernel a∗

T
T used in Sects. 2 and 3 is valid for the vertical grid used by the MUSICA

IASI retrieval. It is calculated from the TROPOMI total column amount kernel (aT
T ) provided in the TROPOMI output files

according to Eq. (C8), after its interpolation onto the MUSICA IASI grid (see also Appendix C1).
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