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Abstract. The thermal infrared nadir spectra of IASI (Infrared Atmospheric Sounding Interferometer) are successfully used

for retrievals of different atmospheric trace gas profiles. However, these retrievals offer generally reduced information about

the lowermost tropospheric layer due to the lack of thermal contrast close to the surface. Spectra of scattered solar radiation

observed in the near and/or short wave infrared, for instance by TROPOMI (TROPOspheric Monitoring Instrument) offer

higher sensitivity near ground and are used for the retrieval of total column averaged mixing ratios of a variety of atmospheric5

trace gases. Here we present a method for the synergetic use of IASI profile and TROPOMI total column data. Our method uses

the output of the individual retrievals and consists of linear algebra a posteriori calculations (i.e. calculation after the individual

retrievals). We show that this approach is largely equivalent to applying the spectra of the different sensors together in a single

retrieval procedure, but with the substantial advantage of being applicable to data generated with different individual retrieval

processors, of being very time efficient, and of directly benefiting from the high quality and most recent improvements of the10

individual retrieval processors.

We demonstrate the method exemplarily for atmospheric methane (CH4). We perform a theoretical evaluation and show that

the a posteriori combination method yields a total column averaged CH4 product (XCH4) that conserves the good sensitivity of
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the corresponding TROPOMI product while merging it with the upper tropospheric and lower stratospheric (UTLS) CH4 partial

column information of the corresponding IASI product. As consequence, the combined product offers in addition sensitivity15

for the tropospheric CH4 partial column, which is not provided by the individual TROPOMI nor the individual IASI product.

The theoretically predicted synergetic effects are verified by comparisons to CH4 reference data obtained from collocated

XCH4 measurements at five globally distributed TCCON (Total Carbon Column Observing Network) stations, CH4 profile

measurements made by 24 individual AirCore soundings, and lower tropospheric CH4 data derived from continuous ground-

based in-situ observations made at two nearby Global Atmospheric Watch (GAW) mountain stations. The comparisons clearly20

demonstrate that the combined product can reliably detect XCH4 signals and allows to distinguish between tropospheric and

UTLS CH4 partial column averaged mixing ratios, which is not possible by the individual TROPOMI and IASI products. We

find indications of a weak positive bias of +1.7±1.2% of the combined lower tropospheric data product with respect to the

references. For the UTLS CH4 partial columns we find no significant bias and a scatter with respect to the reference data sets

of below 1%.25

1 Introduction

Measurements from different ground- or satellite-based sensors target at the observations of the same atmospheric parameters

(e.g. the same trace gases), but with different characteristics (e.g. sensitivities for different vertical regions). Often the different

sensors use different observation geometries (limb scanning, nadir, solar light reflected at the Earth’s surface) and/or different

spectral regions (e.g. UV/vis, near infrared, thermal infrared, microwave). Dedicated experts and efforts are needed to develop30

retrieval techniques that are specifically optimized for an individual sensor. An algorithm that uses coincident measurements

of all the different sensors for a multispectral approach for the optimal estimation of the atmospheric state would well exploit

the synergies of the different observation geometries and spectral regions and thus allows for detecting the atmospheric state

in more detail than achievable by individual optimal estimation retrievals.

Cuesta et al. (2013) present such ’super retrieval’, which performs an optimal estimation of atmospheric ozone (O3) applying35

the spectra measured by the thermal nadir sensor IASI (Infrared Atmospheric Sounding Interferometer) and the UV/vis sensor

GOME (Global Ozone Monitoring Experiment). Their publication shows that using the multispectral approach allows the

detection of lower tropospheric O3, which is not possible by an individual usage of the IASI and GOME spectra. Costantino

et al. (2017) showed that the quality of this multispectral lower tropospheric O3 product can be further improved with improved

thermal nadir and UV/vis sensors.40

The development of these ’super retrievals’ requires experts in different remote sensing techniques to work closely together.

Furthermore, as soon as measurements from a new sensor become available (or as soon as sensors are modified/improved) such

super retrieval processors have to be adapted accordingly, i.e. continuous collaborative retrieval developments are required.

While this is certainly possible, it might be not the most efficient way. The optimal exploitation of the already available

individual retrieval results would be much less computationally expensive than running dedicated combined retrievals.45

2

2-1



Efficient a posteriori combination methods of individual retrieval products are currently of high interest, because the steadily

increasing amount of available satellite data offers more and more possibilities for synergetic use. Worden et al. (2015) com-

bines the thermal and near infrared observations of methane (CH4) made by TES (Thermal Emission Spectrometer) and

GOSAT (Greenhouse gas mOnitoring SATellite), respectively, by performing approximative calculations and with a focus on

monthly mean data. Data aggregation is necessary due to the reduced temporal and horizonal coverage of TES and GOSAT50

and their imperfect collocation. The method of Ceccherini et al. (2009) focuses on avoiding uncertainties in the combined

product due to constraints and vertical interpolation, which might be a problem when combining two vertically resolved profile

products generated applying different constraints. However, this method needs the Jacobians (changes in the spectra caused by

changes in the atmospheric state) of the retrieved products, which are large matrices that are generally not stored in operational

retrieval output files. Cortesi et al. (2016) applied this approach for combining the thermal infrared MIPAS-STR (Michelson55

Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and microwave MARSCHALS (Millimetre-wave

Airborne Receivers for Spectroscopic Characterisation in Atmospheric Limb Sounding) aircraft-based remote sensing products

of O3, nitric acid (HNO3), water vapour (H2O), and atmospheric temperature.

Here, we propose to generate a multi-sensor optimal estimation CH4 profile product by simple a posteriori calculations using

available outputs of IASI and TROPOMI (Tropospheric Monitoring Instrument) retrievals. The method allows a computation-60

ally very efficient generation of global daily maps of the combined data product and only needs the individually retrieved states,

averaging kernels and noise covariances provided by the respective remote sensing experts in the context of their standard re-

trieval work. The proposed method can be used flexibly for combining measurement information of different satellite sensors.

For most cases the method approximates closely a dedicated combined optimal estimation retrieval that uses the combined

IASI and TROPOMI spectra as input.65

The reliable and global detection of tropospheric CH4 independently from CH4 at higher altitudes can lead to an improved

understanding of the CH4 cycle. Respective data allow a more direct investigation of the CH4 boundary layer source and sink

signals than total column averaged mixing ratios (XCH4) provided globally for instance by GOSAT (e.g. Parker et al., 2020)

or TROPOMI (Lorente et al., 2020). This is because XCH4 signals are strongly affected by vertical shifts of the tropopause

altitude, i.e. their use for investigating CH4 absorption and release at ground depends on the correct consideration of the70

tropopause altitude by model simulations (Pandey et al., 2016).

This manuscript is organised as follows. Section 2 briefly discusses the used IASI and TROPOMI products (generated by

two individual retrievals), presents the equations for the optimal a posteriori combination of the two independent retrieval

outputs, and performs a theoretical evaluation of the individual and combined products. Section 3 validates the total column

and tropospheric and UTLS (upper tropospheric/lower stratospheric) partial column products obtained by the individual IASI75

and TROPOMI retrievals and by the a posteriori combination. Section 4 resumes the results of our study and briefly discusses

upcoming possibilities. Furthermore, in Appendix A we provide extensive background information on the theory of our a

posteriori combination method and we show that the method is equivalent to performing a full multispectral optimal estimation

retrieval. Appendix B introduces the operator for transferring logarithmic scale differentials into linear scale differentials.

Appendix C presents the operators used for converting vertical profile data into total and partial column data.80
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2 A posteriori combination of MUSICA IASI CH4 and TROPOMI XCH4 products

In this section we present the method for combining CH4 profiles derived from IASI thermal nadir spectra and XCH4 data

obtained from the analysis of the near and short wave infrared spectra measured by TROPOMI.

The TROPOMI XCH4 data used in this study are generated by the RemoTeC algorithm (Butz et al., 2011), which is used for

the operational processing of Sentinel 5 Precursor/TROPOMI XCH4 data (Hu et al., 2016; Hasekamp et al., 2019; Landgraf85

et al., 2019). The current operational processing algorithm version is 1.2.0. Here we use data from version 1.3.0 with the

improvements as presented and validated in Lorente et al. (2020). It is foreseen to become the operational processing version

with the operational processor update in April 2021. The TROPOMI output files provide the XCH4 data together with the

used a priori data (constructed from simulations of the global chemistry-transport model TM5, Krol et al., 2005), the column

averaging kernels, and the error values. In order to filter out data with reduced quality, here we only use TROPOMI data, for90

which the variable qa_value has values larger than 0.5. This filter is consistent to the filtering as suggested in Table A1 of

Lorente et al. (2020).

As IASI CH4 data product we use the data generated by the retrieval processor MUSICA (MUlti-platform remote Sensing of

Isotopologues for investigating the Cycle of Atmospheric water, a European Research Council project between 2011 and 2016).

The MUSICA IASI data full retrieval product encompasses trace gas profiles of H2O, the HDO/H2O ratio, N2O, CH4, and95

HNO3. The data have been validated in several previous studies (Schneider et al., 2016; Borger et al., 2018; García et al., 2018),

and it has been shown that the CH4 product can very well detect the CH4 signals originating in the upper troposphere/lower

stratosphere. MUSICA IASI data using processor versions 3.2.1 and 3.3.0 are currently available for the 2014 to 2020 time

period and are presented in Schneider et al. (2021). This MUSICA IASI data set is best suited for a posteriori data reusage (e.g.

Diekmann et al., 2021), because in addition to the retrieved trace gas profiles it contains full information on retrieval settings (a100

priori states and constraints) and on averaging kernel and error covariance matrices. In oder to ensure highest MUSICA IASI

data quality, here we require the flag variable musica_fit_quality_flag to be set to 3 (the spectral fit of the MUSICA

IASI retrieval has a good quality and the spectral rediduals are close to the instrumental noise level). Furthermore, we only use

MUSICA IASI data for which the flag variable eumetsat_cloud_summary_flag is set to 1, which guarantees that the

IASI instrumental field of view is cloud-free.105

A particularity of the MUSICA IASI processor is that the trace gas inversions are performed on a logarithmic scale. In

Appendix B of Schneider et al. (2021) it is shown that the MUSICA IASI retrieval can be considered as a moderately non-

linear problem, in particular if the differentials (averaging kernels and covariances) are used on the logarithmic scale. In the

following equations we take special care on the correct usage of the corresponding logarithmic scale differentials. Nevertheless,

all equations are also applicable for retrievals made on linear scale by replacing in the following the operator L by the identity110

operator.
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2.1 Calculation of the combined state vector

For this study we use the CH4 a priori profile as provided by the TROPOMI product as the common a priori for all prod-

ucts (these are simulations of the global chemistry-transport model TM5, Krol et al., 2005). For this purpose we modify the

MUSICA IASI product and bring it in line with the TROPOMI a priori profile choice by applying Eq. (A16).115

For updating the IASI CH4 profile product using the TROPOMI XCH4 observation we apply a Kalman filter and obtain the

combined CH4 state as :

x̂l
C = x̂l

I +L−1m[x̂T −a∗T
T x̂I ]. (1)

Here the vector x̂I and scalar x̂T are the MUSICA IASI CH4 profile and the TROPOMI XCH4 column averaged products.

The row vector a∗T
T is the total column averaged mixing ratio kernel of the TROPOMI product interpolated to the vertical120

grid used by the MUSICA IASI processor (for details on the interpolation see Appendix C). The state vector x̂l
C represents

the combined CH4 profile product in logarithmic scale (i.e. the MUSICA IASI CH4 data updated with the TROPOMI XCH4

observation). The superscript ’l’ used with x̂l
C and x̂l

I indicates the use of the logarithmic scale. Here and in the following we

will mark scalars, vectors or matrix operators that are in logarithmic scale by the superscript ’l’. The matrix L is the operator for

the transformation of differentials or small changes (as given by averaging kernels or error covariances) from the logarithmic125

to the linear scale (for more details see Appendix B).

The column vector m is the Kalman gain operator and it is given by:

m = LSl
x̂I
LTa∗T (a∗T

TLSl
x̂I
LTa∗T +Sx̂T ,n)−1, (2)

with the matrix Sl
x̂I

and the scalar Sx̂T ,n being the logarithmic scale retrieval noise error covariance of the MUSICA IASI CH4

product and the noise error variance of the TROPOMI XCH4 product, respectively. The vector operator a∗T is the transpose of130

the TROPOMI column averaging kernel, i.e. a∗T = (a∗T
T )T .

Except for the logarithmic scale transformation, the Eqs. (1) and (2) are analogous to Eqs. (A9) and (A10). As demonstrated

in Appendix A2 this kind of Kalman filter application is equivalent to an optimal estimation retrieval that uses a combined

IASI and TROPOMI measurement vector. The application of this Kalman filter is possible because the MUSICA IASI data

are provided with full information on a priori states, constraints, error covariances, and averaging kernels (Schneider et al.,135

2021), and because the TROPOMI data are provided together with their a priori state, averaging kernel, and retrieval noise

error (Lorente et al., 2020).

The Kalman Gain according to Eq. (2) describes how differences between the MUSICA IASI and TROPOMI XCH4 product

are used to update the MUSICA IASI CH4 profile. An example for a Kalman Gain operator is depicted in Fig. 1. It shows that

a positive difference of +1 ppb of [x̂T −a∗T
T x̂I ] will lead to a combined CH4 profile product that has been modified with140

respect to the MUSICA IASI CH4 product by almost +3 ppb in the lowermost troposphere, by about −0.5 ppb at 10 km, and

by about +1 ppb above 20 km.
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Figure 1. Visualisation of a Kalman Gain operator for optimally combining TROPOMI XCH4 data with MUSICA IASI CH4 profile data.

This is the column vector m according to Eq. (2). The example shown is for a late summer atmosphere (26 September 2018) over Central

Europe.

2.2 Collocation of TROPOMI and IASI observations

As temporal collocation criterion we use four hours, for a valid horizontal collocation the centres of the TROPOMI and IASI

ground pixels must be closer than 50 km, and the difference between the ground pressure at the TROPOMI and IASI ground145

pixels must be within 25 hPa. Generally multiple TROPOMI/IASI ground pixel pairs fulfill the aforementioned criteria. In such

case we use the pair with the smallest spatial distance, which we define as the Euclidean distance that considers a norm of 40 km

for the horizontal distance and a norm of 5 hPa for the vertical distance. TROPOMI and IASI observations already belonging to

a valid collocation pair are disregarded for further collocations. This ensures that an individual IASI or TROPOMI observation

can only belong to a single collocation pair. The possible small difference in the TROPOMI and IASI ground pixel pressures150

is taken into account by using the TROPOMI ground pixel pressure during the interpolation of a∗T
T , i.e. the interpolation is

made according to the TROPOMI ground pixel pressure, but according to IASI grid levels for all other altitudes.

2.3 Sensitivity and vertical resolution

In this section we compare the vertical representativeness of the individual retrieval products with those achieved when com-

bining the two retrieval products. According to Eq. 1 the averaging kernels for the combined data product can be calculated155

as:

Al
C = Al

I +L−1m(a∗T
T −a∗T

TLAl
IL
−1)L. (3)

Here Al
I and Al

C are the logarithmic scale averaging kernels of the MUSICA IASI CH4 product and of the combined product

(the MUSICA IASI CH4 product after being updated with the information provided by the TROPOMI XCH4 data product),
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Figure 2. Logarithmic scale row kernels for (a) the MUSICA IASI and (b) the combined product for the same late summer observations as

used in the context of Figs. 1 and 3.

respectively. These are the kernels for the profile products represented in nal (nal: number of atmospheric levels) levels,160

i.e. they are matrices of dimension nal×nal. Logarithmic scale kernels are also called fractional or relative averaging kernels

(e.g. Keppens et al., 2015).

Figure 2 depicts the rows of typical averaging kernels for the MUSICA IASI product (panel a) and the combined data product

(panel b). Adding the information provided by TROPOMI clearly improves the sensitivity in the lower troposphere: for the

MUSICA IASI product the lower tropospheric kernels generally peak at the upper limit of the lower troposphere (at about 5 km165

a.s.l.). For the combined product these peak values are obtained at significantly lower altitudes (at about 2.5 km a.s.l.). In the

upper troposphere/lower stratosphere (UTLS) we see no significant difference between the kernels.

In this work we focus on the total column and the partial columns between the surface and 6 km a.s.l. (the tropospheric

partial column) and between 6 km a.s.l. and 20 km a.s.l. (the UTLS partial column). The total and partial column kernels are

calculated from Al
I and Al

C by their transformation on linear scale (see Appendix B) and the vertical resampling as explained170

in Appendix C. Figure 3 depicts the total and partial column kernels corresponding to the row kernels of Fig. 2.

Total column amount kernels are available for all three products (see Fig. 3a): the TROPOMI, the MUSICA IASI, and the

combined product. The TROPOMI kernel is close to unity for all altitudes, documenting the good sensitivity for CH4 at all

altitudes. The combined total column amount kernel is very similar to the respective TROPOMI kernel (even correcting the

overshoot at 4-6 km) and means that the combined retrieval product does also well reflect the actual atmospheric total column175

amounts. The MUSICA IASI kernel has relatively low values in the lower troposphere and above 15 km, only in the UTLS

region the kernel values are between 0.75 and 1.25. This means that MUSICA IASI can actually not well detect total column

amounts, because it lacks sensitivity in the lower troposphere. The altitude regions where the MUSICA IASI product has

7



Figure 3. Total column amount and partial column amount kernels corresponding to the TROPOMI, MUSICA IASI, and combined product

for the same late summer observation as used in Figs. 1 and 2: (a) total column amount kernels; (b) lower tropospheric partial column amount

kernels, surface - 6 km a.s.l.; (c) upper tropospheric/lower stratospheric (UTLS) partial column amount kernels, 6 - 20 km a.s.l.

Figure 4. Relative contribution of the a priori data to the retrieved products (black squares: TROPOMI, red dots: MUSICA IASI, blue

crosses: Combined product): (a) total column; (b) tropospheric partial column; (c) UTLS partial column.

reduced sensitivities are the regions where TROPOMI’s total column information has the strongest impact on the combined

product (see Fig. 1).180

Partial column amount kernels are only available for profile products, i.e. the MUSICA IASI and the combined product

(MUSICA IASI updated with information from TROPOMI). Figure 3b shows tropospheric partial column amount kernels. For

the MUSICA IASI product we observe values that are generally lower than 0.5. The highest values are achieved around 6 km

a.s.l., i.e. at the upper boundary of vertical layer we defined as the tropospheric partial column. The kernel of the combined

8
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product shows a good sensitivity with peak values of almost 0.95 at 2.5 km a.s.l. and values above 0.75 for almost all altitudes185

between the surface and 6 km a.s.l.

UTLS partial column amount kernels are depicted in Figure 3c. The values are close to unity for most of the altitudes that

we attributed to the UTLS layer (altitudes between 6 km and 20 km a.s.l.). There is almost no difference between the MUSICA

IASI and the combined kernels, meaning that the information provided by TROPOMI has almost no effect on the UTLS partial

column, which is because the MUSICA IASI product is already very sensitive to this altitude region.190

According to Eqs. (A1) and (A3) for the MUSICA IASI and combined retrieval data we can write

x̂l = Alxl + (I−Al)xl
a, (4)

with I being the identity operator and xl the actual atmospheric state in logarithmnic scale. Equation (4) reveals that the term

(I−Al)xl
a captures the relative contribution of the a priori to the retrieved product. The resampling of this term on total and

partial columns is made according to Eq. (C6). For the TROPOMI total column averaged mixing ratios we can calculate the195

apriori contribution by (w∗T −a∗T
T )xa. For more details see Appendix C.

Figure 4 depicts the a priori contribution relative to the retrieved values for the total column, the tropospheric and UTLS

partial columns. Shown are time series for measurements over Central Europe, which confirm the observations made in the

context of the example kernels of Fig. 3: for the total column (Fig. 4a) the a priori contribution on the TROPOMI and the

combined products are rather small and can be neglected, i.e. both products can detect total column signals. In contrast the200

MUSICA IASI total column product is significantly affected by the a priori data, i.e. provides no independent observation of

the total column. Concerning partial column products (Fig. 4b and c) we can compare the MUSICA IASI and the combined

product (the TROPOMI product has no information on the vertical distribution). The tropospheric MUSICA IASI partial

column is significantly affected by the a priori, but the combined product is largely independent on the a priori data. In the

UTLS both the MUSICA IASI and combined products are largely independent on the apriori data. In summary, with IASI205

alone we can well detect signals in the UTLS, but not in the lower troposphere. The detection of signals in both altitude regions

independently from the a priori information is only possible by using the combined product.

2.4 Retrieval noise error

In this section we compare the retrieval noise errors of the individual retrieval products with those achieved when combining

the two retrieval products. According to Eq. (1) we can calculate the retrieval noise covariance matrix for the combined data210

product by

Sl
x̂C,n = (I−L−1ma∗T

T )LSl
x̂I,nL

T (I−L−1ma∗T
T )T + (L−1m)Sx̂T ,n(L−1m)T . (5)

Here Sl
x̂I,n

is the retrieval noise covariance matrix of the MUSICA IASI retrieval. The error covariances resampled to the total

and partial columns are then determined according to Appendix C. Figure 5 shows the retrieval noise errors (which are the

square root values of the error variances) relative to the retrieved values for the total column and the tropospheric and UTLS215

partial columns.
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Figure 5. Estimated relative noise error for the retrieved products (colours like in Fig. 4): (a) total column; (b) tropospheric partial column;

(c) UTLS partial column.

The errors for the total columns (Fig. 5a) are generally below 0.2% for the TROPOMI product. For the MUSICA IASI

product they are rather stable at about 0.6%. Concerning the combined product the retrieval noise error is very similar to the

retrieval noise error of the TROPOMI data.

For the tropospheric partial columns (Fig. 5b) the error is in general above 1% for the MUSICA IASI product and below220

1% for the combined product. For the UTLS partial columns (Fig. 5c) we observe an error of generally below 1% and no

significant difference between the MUSICA IASI and the combined data products. This suggests that the error in the combined

product is dominated by the error in the MUSICA IASI data, which reveals the very limited impact of the TROPOMI data on

the combined UTLS data product.

3 Validation225

In this section we compare the TROPOMI, MUSICA IASI, and combined products to different reference data products. As

reference for the total column averaged mixing ratio (XCH4) we use TCCON (Total Carbon Column Observing Network,

Wunch et al., 2011) ground-based remote sensing data from five sites located in different climate zones. As reference for the

total and the partial columns we use in-situ profiles measured by the AirCore system (Karion et al., 2010) at two geophysically

different European locations. Furthermore, we use in-situ data measured at two nearby Central European Global Atmospheric230

Watch (GAW) mountain stations.

Figure 6 depicts the geographical location of the European reference observations. We consider the European TCCON

stations at Sodankylä (Finland) and Karlsruhe (Germany). They are indicated as red crosses together with a circle around

the stations with a radius of 150 km indicating the spatial collocation criteria: only satellite observations with ground pixels

inside this circle are compared to the TCCON data. Blue crosses and circles represent the locations of AirCore measurements235

(at Trainou, France, and Sodankylä, Finland) and their spatial collocation criteria, respectively. Here we relax the radius of

the collocation circle to 500 km in order to achieve a sufficient high number of coincidences between AirCore and satellite

10



Figure 6. Map showing the location of the European reference measurements and the areas accepted for valid horizontal collocation. Blue

crosses and circles: sites with AirCore measurements and circles with 500 km radius. Red crosses and grey dots: sites with TCCON and

GAW measurements, respectively, and circles with 150 km radius.

observations. The two grey dots indicate the locations of the two GAW stations (Jungfraujoch in Switzerland and Schauinsland

in South-western Germany) and the respective grey spatial collocations circle around the middle distance point of the two

stations has a radius of 150 km.240

3.1 TCCON XCH4

We use TCCON ground-based remote sensing data from six exemplary sites located in different climate zones representative

for high, mid and low latitudes. The Sodankylä site is located at high latitudes, Karlsruhe and Lauder are located in the northern

and southern hemispheric mid-latitudes, Wollongong is located in the subtropics, and Burgos and Darwin are located in the

tropics. More details on locations of these sites and references for the used data sets are given in Table 1.245

We use the TROPOMI a priori setting for the comparison between the ground-based TCCON and the satellite-based remote

sensing products. For this purpose the TCCON product is adjusted to the TROPOMI a priori settings according to Eq. (A16),

which ensures the usage of the same a priori data for all the remote sensing products. As spatial collocation criteria we require

that the ground pixels of the TROPOMI and the IASI measurement fall within a circle with a radius of 150 km around the

TCCON sites. For collocation with respect to time, TCCON, TROPOMI, and IASI observations have to be made within at250

least 6 hours. Furthermore, we require that the altitude differences between the TCCON stations and the satellite ground pixels

are within 250 m.

We estimate the reliability of the TCCON data as reference for the satellite observations. For this estimation we consider the

TCCON retrieval noise errors, the incomparableness of TCCON and satellite data caused by their different averaging kernels,

11
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Table 1. Locations of TCCON sites used in this study and references for the used TCCON data sets.

Name and Country Latitude Longitude Altitude Reference

Sodankylä, Finland 67.4◦N 26.6◦E 190 m a.s.l . Kivi et al. (2014); Kivi and Heikkinen (2016)

Karlsruhe, Germany 49.1◦N 8.4◦E 120 m a.s.l. Hase et al. (2015)

Burgos, Philippines 18.5◦N 120.7◦E 40 m a.s.l. Velazco et al. (2017)

Darwin, Australia 12.5◦S 130.9◦E 40 m a.s.l. Griffith et al. (2014a)

Wollongong, Australia 34.4◦S 150.9◦E 30 m a.s.l. Griffith et al. (2014b)

Lauder, New Zealand 45.0◦S 169.7◦E 610 m a.s.l. Sherlock et al. (2014); Pollard et al. (2019)

and the collocation mismatch. The total column uncertainty variance (the scalar Sref ) for using the TCCON data as reference255

for the satellite data can be estimated by:

Sref = S∆TC + (a∗T −a∗TC
T )S∆a(a∗T −a∗TC

T )T +a∗TC
T (S∆t +S∆h)a∗TC, (6)

The first term (the scalar S∆TC) is the TCCON retrieval error covariance (the TCCON error is provided with the TCCON

data is typically 1‰). The second term accounts for the different averaging kernels. The row vectors a∗T and a∗TC
T are the

total column averaged mixing ratio kernels of the satellite and the TCCON retrievals, respectively (calculated according to260

Appendix C). The matrix S∆a describes the uncertainty covariances of the used a priori data. We determine these uncertainty

covariances from the TM5 CH4 simulations (Krol et al., 2005), which are provided in the TROPOMI data set as the a priori

data. For this purpose we assume a hypothetical out-of-phase of the model of 24 hours and in addition a horizontal mismatch of

the modeled CH4 fields of 500 km. The covariances obtained for the differences between the original TM5 model fields and the

TM5 fields with the hypothetical model deficits are then used as the uncertainty covariances. We found an a priori uncertainty265

covariance S∆a having largest values close to the surface but even there, the uncertainty variance is smaller than (4‰)2. Due

to this good a priori knowledge the effect of the different averaging kernels on the comparison is less than 0.5‰ (even for

the comprison between the TCCON and the MUSICA IASI products, where the difference in the averaging kernels is most

significant). The third term takes into account that TCCON and the satellites might detect different air masses. The respective

uncertainty covariances are again estimated with the TM5 CH4 simulations. We determine the covariances between out-of-270

phase model fields and the correct model fields for different out-of-phase time intervals. Similarly we calculate the covariances

between model fields that have a horizontal mismatch and the correct model fields for different horizontal mismatch intervals.

The temporal collocation uncertainty covariance (S∆t) and the horizontal collocation uncertainty covariance (S∆h) are then

the covariances interpolated to the actual temporal and horizontal mismatch of the satellite and the TCCON measurements. The

effect of this collocation mismatch on the comparison of the total columns is estimated to be smaller than 0.5‰. In summary,275

we estimate the reliability of the TCCON data as reference for the satellite total column observations to be within 2‰.

In Fig. 7 the TROPOMI, MUSICA IASI, and combined XCH4 products are compared to the TCCON XCH4 data. The

crosses represent the daily mean data and the filled symbols in the background show all data corresponding to all individual
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Figure 7. Comparison of the different XCH4 satellite products with TCCON XCH4 data from five globally representative stations (the

different colours correspond to the stations as given in the legend). Data for all individual coincidences are plotted in the background as

squares and daily mean data are depicted as crosses with error bars representing the 1σ standard deviation: (a)-(c) shows time series of

the differences, text in dark and pale fonts report mean and 1σ standard deviation (scatter) determined from daily mean data and from all

individual collocations, respectively; (d)-(f) visualises the correlations (the black line is the one-to-one diagonal), text in dark and pale fonts

report coefficients of determination (R2) and the slope of the linear regression line (m) obtained for a linear least squares fit on daily mean

data and on data from all individual collocations, respectively.

valid collocations. Figure 7a-c show time series of the differences with respect to the TCCON references. The daily mean data

have error bars, which is the 1σ standard deviation of the data used for calculating the daily mean.280

Statistics in form of mean difference and 1σ 1σ standard devation (scatter) around the mean difference are given in each

panel (for statistics using daily mean data in black fonts and for statistics using all individual valid collocations in grey fonts).

Concerning TROPOMI (Fig. 7a) we observe – in line with Lorente et al. (2020) – a very good agreement. For daily mean

data as well as for the statistics based on all individual differences, the mean difference is within 0.55% and the scatter lies

below 1%. A very good agreement and low values for mean difference and scatter are also achieved for the combined product285

(Fig. 7c). For the MUSICA IASI product (Fig. 7b) we have reduced sensitivity in the lower troposphere (see Figs. 3 and 4) and

the observed good agreement with the TCCON XCH4 data can be partly explained by the reliable a priori data.
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Figure 7d-f depicts correlation plots. For daily mean data the coefficients of determination (R2) are about 58% for the

TROPOMI product and about 55% for the combined product. When considering all individual coincidences the R2 values

are almost 30%. The error bars on the daily mean data are the 1σ standard deviations of the data used for calculating the290

daily mean. For the MUSICA IASI product, we observe a similar good correlation than for the TROPOMI and the combined

products. However, concerning the MUSICA IASI data part of the common signal might be due to the a priori on which the

MUSICA IASI total column product is not independent (see Fig. 4a).

The satellite XCH4 data show a very good agreemet with the TCCON data. Considering the estimated reference reliability

of the TCCON data of about 2‰ we are not able to identify any bias in the satellite data.295

3.2 Air-Core in-situ CH4 profiles

We use the AirCore balloon borne in-situ measurements (Karion et al., 2010) as the reference for CH4 total columns as well

as for the CH4 vertical distribution. The AirCore system samples the vertical distribution of CH4 with a much better vertical

resolution than the satellite remote sensing systems. For this reason we can generate an AirCore profile (x̂AC) that has the same

vertical sensitivity and resolution characteristics as the remote sensing data. According to Eqs. (A1) and (A3) for the MUSICA300

IASI and the combined retrieval data we can write:

x̂l
AC = xl

a +Al(xl
AC−xl

a). (7)

Here Al and xl
a are the logarithmic scale averaging kernels and the logarithmic scale a priori state of the satellite retrieval,

respectively, xl
AC is the measured logarithmic scale AirCore profile regridded to the atmospheric model grid used for the

satellite retrievals. The resampling of these data on total and partial columns is made with the linear scale data according to305

Eq. (C6). For the TROPOMI total column averaged mixing ratios we calcuated the adjusted AirCore total column averaged

mixing ratio (a scalar) by x̂AC = w∗Txa +a∗T
T (xAC−xa). For more details see Appendix C.

As spatial collocation criteria we require that the ground pixels of the TROPOMI and the IASI measurement fall within a

circle with a radius of 500 km around the mean horizontal location of the AirCore system when sampling between the 450 and

550 hPa pressure levels. The temporal collocation is 6 hours. AirCore data are typically not available close to the ground and310

above the burst altitude of the balloon (approximately 25 hPa). At low altitudes we extend the profile with the concentrations

closest to the ground. At high altitudes we extend the profile with the TM5 model data, with a smooth transition between the

measured values and the modelled data.

Similar to the TCCON data we estimate the reliability of the AirCore profile data as reference for the satellite observations.

For this estimation we consider an AirCore measurement noise covariance (S∆AC,n). It is calculated assuming an uncertainty315

for altitudes with AirCore CH4 data of 0.3% (Karion et al., 2010) and the uncertainty according to S∆a from Sect.3.1 for

all other altitudes. The outer diagonal elements are determined by assuming the same vertical correlation as derived for S∆a.

In addition, we consider uncertainties in the height attribution, which is according to Wagenhäuser et al. (2021) below 10 m

close to ground, about 200 m at 20 km a.s.l. and about 1 km at 27 km a.s.l. For some AirCore soundings there was a problem

with the electronic board. For those measurements information on pressure, altitude and temperature had to be reconstructed320
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from the radiosonde data and we use for all altitude levels an additional height attribution uncertainty value of 500 m. We

construct a respective height attribution uncertainty covariance (S∆AC,v) by assuming a very strong correlation of the height

attribution uncertainties between different altitude levels. The temporal and spatial collocation uncertainty covariance between

the AirCore and the satellite observations (S∆t and S∆h, respectively) are calculated as described in Sect. 3.1.

All the aforementioned uncertainties are independent and we can calculate the total uncertainty as:325

S∆AC = S∆AC,n +S∆AC,v +S∆t +S∆h. (8)

The reliability of the AirCore data – after its adjustment according to Eq. (7) – as reference for the MUSICA IASI and combined

satellite data can then be estimated by:

Sl
ref = AlSl

∆ACA
lT . (9)

Here and in Eq. (8) the covariances are determined for the full vertical profile. Respective covariances for total or partial330

columns can be derived according to Appendix C. The reliability for the TROPOMI total column averaged mixing ratio data

can be calculated by Sref = a∗T
TS∆ACa

∗
T .

Table 2 gives an overview on the AirCore profiles measured at Trainou (France, 48.0◦N, 2.1◦E) and Sodankylä (Finland,

67.4◦N, 26.6◦E). In total we have 24 individual AirCore profiles with collocated satellite observations. The total number of

collocated satellite observations is 5308. We estimate that the AirCore data can serve as reliable references for the satellite335

data validation. The three columns on the right report the uncertainties determined according to Eq. (8). For the reliability

– according to Eq. (9) – we get very similar values (exept for the total column and the partial tropospheric column of the

MUSICA IASI product, because of the limited sensitivity). It is 3-6‰, 3-5‰, and 3-7‰, for the total column, the tropospheric

partial column and the UTLS partial column, respectively. In the troposphere the reliability depends mainly on the availability

of AirCore data close to the ground and in the UTLS uncertainties of the altitude attribution have a dominating influence.340

The comparison between the TROPOMI and the AirCore XCH4 data is shown in Fig. 8. The differences of collocated

measurements are shown in Fig. 8a. The agreement between TROPOMI and AirCore is very good and the mean difference

and the 1σ sigma standard deviation (scatter) around the mean difference is similar to the comparison between TROPOMI and

TCCON. Considering the mean values for all coincidences corresponding to the same AirCore flight, we observe a coefficient

of determinarion (R2) of about 31%. This is lower than the R2 value achieved for the correlation with TCCON data; however,345

we have to consider that the amplitude in the analysed total column signals is much smaller in the AirCore data set if compared

to the TCCON data set.

Figure 9 presents the comparison between the MUSICA IASI and AirCore total column and tropospheric and UTLS partial

column data. The differences between both data sets are depicted in Fig. 9a-c. We find a very good agreement for the UTLS

partial column data (mean difference of about 0.6% and a scatter of 1%). Because at this altitude region the MUSICA IASI350

product is almost independent from the a priori assumption (see Sect. 2.3), the a priori effect on x̂AC from Eq. 7 can also

be neglected and we compare here two independent data sets. For the total column we also see a good agreement (Fig. 9a).

However according to Sect. 2.3 the MUSICA IASI total column products are significantly affected by the a priori data and so

is x̂AC from Eq. 7, i.e. here we actually do not compare two independent data sets and a significant part of the good agreement

15

15-1

15-2



Table 2. List with information about the AirCore flights. [Pmin,Pmax] is the pressure range covered by the AirCore measurements. N

is the number of collocated satellite observations (one collocation of IASI and TROPOMI counts as one). Pmax = P Sat.
GND −Pmax is the

mean difference between AirCore maximum pressure value and the pressure values for the collocated satellite ground pixels. ∆h is the

mean horizontal distance between the AirCore system (location for AirCore system at 450-550 hPa) and the locations of the satellite ground

pixels. ∆t= tSat. − t is the mean time difference between the AirCore observations (time for AirCore system at 450-550 hPa) and the

satellite observations. ∆ACtot, ∆ACtro, and ∆ACutls are the square roots of the variances (determined according to Eq. (8) and the column

calculations according to Appendix C). These are the estimated uncertainties for using the adjusted AirCore data as reference for the satellite

data: for the total column (index: ’tot’) and the tropospheric and UTLS partial columns (indices ’tro’ and ’utls’, respectively).

ID Location Date Pmin Pmax N ∆Pmax ∆h ∆t ∆ACtot ∆ACtro ∆ACutls

[YYYYMMDD] [hPa] [hPa] [hPa] [km] [min] [%] [%] [%]

0-1 Trainou 20180523 29.0 962.3 68 +43.4 409 -41 0.4 0.4 0.4

1-2 20180525 26.4 972.2 21 -0.4 361 -47 0.3 0.4 0.3

2-3 20190220 21.9 983.4 241 +14.3 302 -76 0.6 0.5 0.7

3-4 20190220 19.2 940.5 184 +58.5 304 -138 0.3 0.4 0.3

4-5 20190221 19.8 902.7 410 +93.4 279 -76 0.6 0.5 0.7

5-6 20190221 19.4 986.3 327 +11.6 273 -117 0.3 0.4 0.4

6-7 20190617 20.5 910.9 375 +64.8 355 -227 0.5 0.4 0.6

7-8 20190618 23.8 972.8 31 +66.8 375 -104 0.6 0.5 0.7

8-9 20190621 44.6 869.1 2 +141.6 216 -47 0.6 0.5 0.6

9-10 20191011 38.1 914.8 282 +64.8 314 -81 0.5 0.5 0.6

10-11 Sodankylä 20180417 19.8 963.9 13 +17.9 249 -140 0.3 0.3 0.4

11-12 20180528 36.3 959.1 167 +43.3 401 +9 0.3 0.3 0.4

12-13 20180618 32.9 937.5 12 +57.2 411 -39 0.3 0.3 0.4

13-14 20180620 19.7 929.7 5 +66.4 316 -106 0.3 0.3 0.4

14-15 20180625 24.3 935.1 59 +66.8 357 -98 0.3 0.3 0.4

15-16 20180702 78.2 952.0 1166 +34.0 279 -127 0.3 0.3 0.3

16-17 20180801 15.8 962.6 454 +31.7 304 -203 0.5 0.4 0.6

17-18 20181003 13.0 916.5 1 +64.9 433 +61 0.3 0.3 0.4

18-19 20190410 15.1 975.7 51 +24.3 282 +39 0.3 0.3 0.4

19-20 20190628 16.6 952.8 18 +53.5 343 -9 0.3 0.3 0.4

20-21 20190724 16.8 961.1 206 +34.7 323 -13 0.5 0.4 0.6

21-22 20190801 16.3 957.8 10 +28.1 313 -14 0.3 0.3 0.3

22-23 20190828 13.8 966.1 679 +22.4 258 +9 0.3 0.3 0.3

23-24 20190909 24.0 968.0 161 +28.9 226 -43 0.3 0.3 0.3

16



Figure 8. Comparison of AirCore measurements made at Trainou (black) and Sodankylä (blue) with the TROPOMI XCH4 product. Data for

all individual coincidences are shown in the background as squares and averages per flight are depicted as crosses with error bars representing

the estimated uncertainty: (a) shows the series of differences ordered by flight number, text in dark and pale fonts report mean and 1σ standard

deviation (scatter) determined from the averages per flight and from all individual collocations, respectively; (b) visualises the correlation

(the black line is the one-to-one diagonal), text in dark and pale fonts report coefficients of determination (R2) and the slope of the linear

regression line (m) obtained for a linear least squares fit on the averages per flight and on all individual collocations, respectively. Details

about the corresponding AirCore flights are provided in Table 2.

might be due to the common a priori effect. For the tropospheric partial columns (Fig. 9b) the agreement worsens a bit. We get355

a mean difference of about 2.4% and a scatter around the mean differences of about 1.3%. The increased mean difference might

indicate a systematic bias in the MUSICA IASI lower tropospheric partial columns, which might also explain the increased

scatter: the bias will depend on the actual sensitivity of the MUSICA IASI product, which in turn varies with the conditions

present during the observation (mainly the surface temperature and the vertical temperature and humidity profiles).

Figure 9d-f shows respective correlation plots. We get very high R2 values for the UTLS partial column, where the two360

data sets are largly independent (almost not affected by the a priori data). This demonstrates that the MUSICA IASI product
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Figure 9. Same as Fig. 8, but for comparisons with the MUSICA IASI XCH4, tropospheric CH4, and UTLS CH4 products: (a)-(c) shows

the series of differences order by flight number; (d)-(f) visualises the correlation.

reliably captures the actual atmospheric CH4 signals in the UTLS. Concerning the total column and the tropospheric partial

column the MUSICA IASI and the adjusted AirCore data are not independent, neverthless the R2 values are lower than for the

UTLS partial coloumns. This is due to a low amplitude of the respective signals (total column) and due to varying MUSICA

IASI sensitivities, which causes a varying impact of a possible systematic bias (tropospheric partial column).365

All combined products (total column and tropospheric and UTLS partial columns) are practically independent from the a

priori assumptions (see Fig. 4). Figure 10a-c illustrates the differences between AirCore data and the combined products. For

the total column we achieve values for the scatter that are similar to the comparison of the respective TROPOMI product.

However, we observe a mean difference that is outside the 1σ scatter and also outside the uncertainty estimated for the AirCore

references (see Table 2), which might indicate to a positive bias in the total columns of the combined data product. For the370

tropospheric partial column we observe a low scatter, but also mean difference of about 1.7% that is outside the 1σ scatter and

outside the AirCore data uncertainty. For the UTLS partial column the mean difference and scatter values are similar to the

comparison of the respective MUSICA IASI product.

The correlation plots (Fig. 10d-f) allow similar conclusions: the combined product can capture total column signals as

reliable as the TROPOMI product (apart from a possible weak bias) and UTLS partial columns signals as reliable as the375
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Figure 10. Same as Fig. 9, but for comparisons with the combined data products.

MUSICA IASI product. Concerning the tropospheric partial column we observe higher R2 values than for the respective

correlation with MUSICA IASI data; however, only when correlating the mean values for all coincidences corresponding to

the same AirCore flight. When correlating all individual coincidences the R2 values are even lower than the already low R2

values achieved for the respective correlation with MUSICA IASI data (compare Fig. 9e with Fig. 10e). The low values for R2

are explained by the low CH4 variability encountered during the 24 individual AirCore profiles.380

3.3 GAW surface in-situ CH4 measurements

At many globally distributed sites atmospheric trace gas in-situ measurements are made continuously with the Global At-

mospheric Watch (GAW, https://community.wmo.int/activity-areas/gaw) programme. Appendix A of Sepúlveda et al. (2014)

presents a method for filtering common signals in night time CH4 data of the two nearby mountain GAW stations Jungfrau-

joch (46.5◦N, 8.0◦E, 3580 m a.s.l.) and Schauinsland (47.9◦N, 7.9◦E, 1205 m a.s.l.). Data were retained as common signals385

when deviations of observations (after correction for vertical gradient, i.e. application of an offset, and a temporal shift in

the annual cycles) at both sites were below a certain threshold. Sepúlveda et al. (2014) showed that the common signals are

well representative for a broader layer in the lower free troposphere. Here we follow this approach and use the mean of the
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Figure 11. Comparison of GAW measurements made at Jungfraujoch and Schauinsland with the TROPOMI XCH4, the IASI tropospheric

CH4, and the Combined tropospheric CH4 product. Data for all individual coincidences are shown in the background as squares and daily

averages are depicted as crosses with error bars representing the estimated uncertainty: (a)-(c) shows the time series of differences, text

in dark and pale coloured fonts report mean and 1σ standard deviation (scatter) determined from daily mean data and from all individual

collocations, respectively; (d)-(f) visualises the correlation (the black line is the one-to-one diagonal), text in normal and bright coloured

fonts report coefficients of determination (R2) and the slope of the linear regression line (m) obtained for a linear least squares fit on daily

mean data and on data from all individual collocations, respectively.

Jungfraujoch and Schauinsland CH4 mixing ratio – whenever identified as a common signal – as a validation reference for the

remote sensing data in South-western Germany and Northern Switzerland (indicated by the grey circle in Fig. 6). We assume390

that the signals obtained from this GAW data filtering are well representative for the tropospheric partial column averaged

mixing ratios (surface - 6 km a.s.l.).

Figure 11 shows the comparison with the different satellite products. Concerning the comparison with TROPOMI XCH4

data we observe a very large systematic difference and very low values for R2 (Fig. 11a and d). This indicates that the total

column (XCH4) signals are not a good proxy for lower tropospheric CH4 signals, instead the former are strongly affected by395

signals in the UTLS, where CH4 values are strongly affected by shifts of the tropopause height.
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For the MUSICA IASI tropospheric partial column averaged mixing ratio product (Fig. 11b and e) we observe a reduced

mean difference than for the TROPOMI XCH4 comparison, but at the same time an increased 1σ standard deviation (scatter)

around the mean. The R2 values are larger than for the correlation of TROPOMI data; however, we have to be careful, because

the lower tropospheric MUSICA IASI CH4 data are significantly affected by the a priori assumptions (see Fig. 4b). This means400

that the observed correlation might actually be due to a correlation with the a priori data.

The combined tropospheric partial column averaged mixing ratio product is practically independent from the a priori as-

sumptions (see Fig. 4b). The good agreement and correlation between the GAW data and the combined products as illustrated

in Fig. 11c and f demonstrates that the combined product can reliably capture actual tropospheric CH4 signals independently

from the UTLS CH4 signals. For daily mean data we find a mean difference of about 1.7%, a 1σ scatter of about 1.2%, and an405

R2 value of almost 30%.

4 Summary and outlook

We present a method for a synergetic use of TROPOMI total column and IASI vertical profile retrieval products. The method

is based on simple linear algebra calculations, i.e. the execution of computationally expensive dedicated combined retrievals

is not needed. Nevertheless, it approximates closely to a dedicated combined optimal estimation retrieval using the combined410

TROPOMI and IASI measurements (see Appendix A2). We apply the method to CH4 data. By providing a compilation with

all important equations we support the application of this method to other data products.

We theoretically examine the sensitivity, vertical resolution, and errors of the individual TROPOMI and IASI products and

of the combined product. The TROPOMI product consists of reliable total column CH4 data, but does not offer information on

the vertical distribution. The IASI product offers some information on the vertical distribution and has best sensitivity in the415

UTLS region, but lacks sensitivity in the lower troposphere, i.e. it is not well sensitive to the total column. We show that the

combined product combines both strengths: it is a reliable reference for the total column and also for the UTLS partial column.

In addition, we found as a clear synergetic effect that the combined product is also a reliable reference for the tropospheric

partial column.

We generate the combined CH4 product for the time period between November 2017 and December 2019 and compare420

the individual and combined products to reference data of TCCON, AirCore and GAW. TCCON offers good references for

XCH4 and we get an agreement of all satellite XCH4 products with the TCCON data within 1%. This comparison reveals a

good reliability of the TROPOMI and the combined XCH4 products, because of their independency on the a priori data (the

comparison of the IASI data is affected by the a priori data and thus cannot be directly interpreted). We found that the AirCore

data are a very good reference for the consistent validation of the CH4 total column amounts and the CH4 vertical distribution.425

Concerning total column comparison we get a very low 1σ scatter between the satellite products and the reference data (within

1%, which is similar to the comparison with TCCON). For the UTLS partial columns the scatter is also within 1% and for the

tropospheric partial columns it is only slightly larger than 1%. While the comparison to TCCON shows no significant bias, here

we find a positive bias in the combined total column averaged mixing ratios with respect to the AirCore references (significant
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in the sense that the systematic difference is outside the 1σ scatter and that it can also be not explained by the uncertainty of430

the AirCore references). A significant bias is also found for the tropospheric partial column averaged mixing ratios. However,

all these biases are rather low. For the combined product it is +1.1%±0.7% for the total column and +1.7%±1.2% for the

tropospheric partial column.

We have only 24 AirCore profiles measured in collocation to satellite observations. A statistically more robust validation

of the tropospheric partial column products can be achieved by using continuous CH4 observations from two nearby GAW435

stations. The CH4 signals that are common at both stations are a good validation reference for the troposphere. We get collo-

cations between the GAW data and satellite observations for 95 individual days and the comparison to the tropospheric partial

column averaged mixing ratios generated from the combined data product confirms and widens the conclusions based on the

comparison with the AirCore data: for the comparison of the daily mean data we get a mean difference and 1σ scatter of

+1.7%±1.2%, which is exactly the same as for the comparison with the AirCore data (i.e. the combined product agrees very440

well with reference data, but we find indications of a weak positive bias). The continuous GAW CH4 reference data cover

seasonal cycle signals and have a larger amplitude than the AirCore data. We demonstrate that the lower tropospheric partial

column averaged mixing ratio generated from the combined data product is able to capture these signals much better than the

respective IASI product or the TROPOMI total column averaged product.

The proposed method takes benefit from the outputs generated by the dedicated individual TROPOMI and IASI retrievals,445

it needs no extra retrievals, and is thus computationally very efficient. This makes it ideal for an application at large scale, and

allows the combination of operational IASI and TROPOMI products in an efficient and sustained manner. This has a particular

attraction, because IASI and TROPOMI successor instruments will be jointly aboard the upcoming Metop (Meteorological

operational) Second Generation satellites (guaranteeing observations from the 2020s to the 2040s). There will be several

100,000 globally distributed and perfectly collocated observations (over land) of IASI and TROPOMI successor instruments450

per day, for which a combined product can be generated in a computationally very efficient way.

Data availability. Access to the MUSICA IASI data will soon be provided via http://www.imk-asf.kit.edu/english/musica-data.php (data

access will become available during the second half of February 2021, for an earlier data provision please contact Matthias Schneider). The

TROPOMI XCH4 data used in this study are available for download at ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/14_14_

Lorente_et_al_2020_AMTD/. TCCON data are made available via the TCCON Data Archive, hosted by CaltechDATA, California Institute of455

Technology, California (USA), http://tccondata.org. For Trainou AirCore data please contact Michel Ramonet (michel.ramonet@lsce.ipsl.fr)

and for Sodankylä AirCore data please contact Huilin Chen (huilin.chen@rug.nl). The GAW surface in-situ data are available via the World

Data Centre for Greenhouse Gases (WDCGG), https://gaw.kishou.go.jp/search/.

Appendix A: Theoretical considerations

In this appendix we give a brief overview on the theory of optimal estimation remote sensing methods. The focus is on the460

equations that are important for our work, i.e. the optimal a posteriori combination of two independently retrieved optimal
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estimation remote sensing products. We show analytically that our method of combining two individually retrieved optimal

estimation products by means of a posteriori calculations, is equivalent to a combined optimal estimation retrieval that uses a

combined measurement vector.

For a more detailed and general insight into the theory of optimal estimation remote sensing methods we refer to Rodgers465

(2000) and for a general introduction on vector and matrix algebra dedicated textbooks are recommended.

A1 Basics on retrieval theory

If we assume a moderately non-linear problem (according to Chapter 5 of Rodgers, 2000), the retrieved optimal estimation

product (the retrieved atmospheric state vector x̂) can be written as:

x̂ = xa +G[K(x−xa)]. (A1)470

Here x and xa are the actual atmospheric state vector and the a priori atmospheric state vector, respectively. K is the Jacobian

matrix, i,e, derivatives that capture how the measurement vector (the measured radiances) will change for changes of the

atmospheric state (the atmospheric state vector x). G is the gain matrix, i.e. derivatives that capture how the retrieved state

vector will change for changes in the measurement vector:

G = (KTSy,n
−1K+Sa

−1)−1KTSy,n
−1, (A2)475

with Sy,n and Sa
−1 being the retrieval’s noise covariance and the constraint matrices, respectively. In a strict optimal estimation

sense, the constraint matrix is the inverse of the a priori covariance matrix Sa.

The averaging kernel

A = GK, (A3)

is an important component of a remote sensing retrieval, because according to Eq. (A1) it reveals how changes of the real480

atmospheric state vector x affect the retrieved atmospheric state vector x̂.

Very useful is also the a posteriori covariance matrix, which can be calculated as follows:

Sx̂ = (KTSy,n
−1K+Sa

−1)−1. (A4)

The linearised formulation of the retrieval solution according to (A1) is very useful for the analytic characterisation of the

product. The retrieval state’s noise error covariance matrix for noise can be analytically calculated as:485

Sx̂,n = GSy,nG
T , (A5)

where Sy,n is the covariance matrix for noise on the measured radiances y.

Further very helpful equations are the relations between the a posteriori covariance, the averaging kernel, the constraint (or

the a priori covariance), and the retrieval’s state noise error covariance matrices:

Sx̂ = (I−A)Sa, (A6)490
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and

Sx̂,n = ASx̂, (A7)

with I being the identity matrix.

A2 Optimal combination of retrieval data products

In this subsection we discuss an optimal estimation retrieval that uses a combined measurement vector (two measurements495

from different instruments). Then we briefly introduce the Kalman filter and show that the Kalman filter formalism enables us

to combine two individually retrieved remote sensing data products in equivalence to the optimal estimation retrieval using the

combined measurement vector.

A2.1 Optimal estimation using a combined measurement vector

According to Eqs. (A1), (A2), and (A4) the retrieval product obtained from a combined measurement vector {y1,y2} can be500

written as:

x̂−xa = (K1
TSy1,n

−1K1 +K2
TSy2,n

−1K2 +Sa
−1)−1(K1

TSy1,n
−1K1 +K2

TSy2,n
−1K2)(x−xa)

= (Sx̂1

−1 +Sx̂2

−1−Sa
−1)−1(K1

TSy1,n
−1K1 +K2

TSy2,n
−1K2)(x−xa), (A8)

where Sy1,n and Sy2,n are the respective measurement noise covariances, K1 and K2 the respective Jacobians and Sx̂1 and

Sx̂2 the respective a posteriori covariances.505

A2.2 Linear Kalman filter

An important application of a Kalman filter (Kalman, 1960; Rodgers, 2000) is data assimilation in the context of atmospheric

modelling. There the filter operates sequentially in different time steps. Kalman filter data assimilation methods determine the

analysis state (x̂a) by optimally combining the background (or forecast) state (x̂b) with the information as provided by a new

observation (x̂o):510

x̂a = x̂b +M[x̂o−Hx̂b]. (A9)

Optimal means here that the uncertainties of both, the background state and the observation, are correctly taken into account

by the Kalman gain matrix (M):

M = Sx̂bHT (HSx̂bHT +Sx̂o,n)−1

= (H+Sx̂o
n
H−TSx̂b

−1)−1, (A10)515

with Sx̂b and Sx̂o,n being the uncertainty covariances of background state and the new measurement, respectively. The matrix

H is the measurement forward operator, which maps the background domain into the measurement domain.

The similarity between Eqs. (A9) and (A10), on the one hand, and Eqs. (A1) and (A2), on the other hand, reveals that remote

sensing optimal estimation and Kalman filter data assimilation methods use the same mathematical formalism.
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A2.3 Optimal a posteriori combination of individually retrieved data products520

We have a first estimation of the atmospheric state (the first retrieval product x̂1) and we want to optimally improve this

estimation by using a second retrieval product (x̂2). This is a typical data assimilation problem and we can use the Kalman

filter formalism. We make the following settings:

Sx̂b = Sx̂1

= (K1
TSy1,n

−1K1 +Sa
−1)−1 (A11)525

Sx̂o,n = Sx̂2,n

= (K2
TSy2,n

−1K2 +Sa
−1)−1K2

TSy2,n
−1K2(K2

TSy2,n
−1K2 +Sa

−1)−1

= Sx̂2K2
TSy2,n

−1K2Sx̂2 (A12)
530

H = A2

= (K2
TSy2,n

−1K2 +Sa
−1)−1K2

TSy2,n
−1K2

= Sx̂2K2
TSy2,n

−1K2 (A13)

x̂b = x̂1−xa535

= (K1
TSy1,n

−1K1 +Sa
−1)−1K1

TSy1,n
−1K1(x−xa)

= Sx̂1K1
TSy1,n

−1K1(x−xa) (A14)

x̂o = x̂2−xa

= (K2
TSy2,n

−1K2 +Sa
−1)−1K2

TSy2,n
−1K2(x−xa)540

= Sx̂2K2
TSy2,n

−1K2(x−xa). (A15)

In Eqs. (A11) and (A12) we assume that the two individual retrievals use the same constraint (Sa
−1). This is generally

not the case and we can a posteriori modify a constraint and its effect on state vectors and covariances by the formalism

as presented in Chapter 10.4 of Rodgers (2000) or Sect. 4.2 of Rodgers and Connor (2003). For our problem here this is of

secondary importance, because we assume that TROPOMI total column data products are almost independent on the constraint545

(as long as the constraint is reasonable).

In Eqs. (A14) and (A15) we assume the usage of the same a priori for the two individual retrievals. Since generally two

indivudually performed retrievals use two different a priori settings we have to perform an a priori adjustment. Using the a

priori of retrieval 2 as the reference (x2,a = xa) we can adjust the output of retrieval 1 by (see Eq. (10) of Rodgers and

Connor, 2003):550

x̂1
′ = x̂1 + (A1− I)(x1,a−x2,a), (A16)
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where x1,a is the a priori used by retrieval 1.

Substitution of the settings from Eqs. (A11) - (A13) in Eq. (A10) gives:

M = (Sx̂1

−1 +Sx̂2

−1−Sa
−1)−1Sx̂2

−1, (A17)

where we use Eqs. (A6) and (A7).555

Substituting Eq. (A17) together with the settings from Eqs. (A14) and (A15) in Eq. (A9) finally yields:

x̂a−xa = (Sx̂1

−1 +Sx̂2

−1−Sa
−1)−1(K1

TSy1,n
−1K1 +K2

TSy2,n
−1K2)(x−xa), (A18)

i.e. the analysis state is the same as the output x̂ of a retrieval with a combined measurement vector from Eq. (A8). This

means that we can a posteriori calculate the result that would be obtained by an optimal estimation retrieval using a combined

measurement vector.560

A2.4 Requirements

The optimal a posteriori combination of two remote sensing products is possible, whenever: (1) the two remote sensing obser-

vations are made at the same time and detect the same location, (2) the problem is moderately non-linear (according to Chapter

5 of Rodgers, 2000), and (3) the individual retrieval output as listed by Eqs. (A11) to (A15) is made available. This is for the

first retrieval the aposteriori covariances (Sx̂, which might also be reconstracted from A and R according to Eq. (A6)), the565

averaging kernels (A), and the retrieved and a priori state vectors (x̂ and xa, respectively). For the second retrieval we need

the noise covariances (Sx̂,n), the averaging kernels (A), and the retrieved and a priori state vectors (x̂ and xa, respectively).

Appendix B: Operator for transformation between linear and logarithmic scales

Linear scale differentials and logarithmic scale differentials are related by ∆x= x∆lnx. For transforming differentials or

covariances of a state vector with dimension nal (nal: number of atmospheric levels) from logarithmic to linear scale we570

define the nal×nal diagonal matrix L:

L =


x̂1 0 · · · 0

0 x̂2 · · · 0
...

...
. . .

...

0 0 · · · x̂nal

 . (B1)

Here x̂i is the value of the ith element of the retrieved state vector (i.e. in case of an atmospheric CH4 state vector the CH4

mixing ratios retrieved at the ith model level).

A logarithmic scale averaging kernel matrix Al can then be expressed in the linear scale as:575

A = LAlL−1. (B2)

Similarly a logarithmnic scale covariance matrix Sl can then be expressed in the linear scale as:

S = LSlLT . (B3)
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Appendix C: Operators for column data

This appendix explains the calculation of operators for partial (and total) column data. Although some sections are similar to580

Appendix C of Schneider et al. (2021) we think it is here a very useful reference, because it facilitates the reproducibility of

our results.

For converting mixing ratio profiles into amount profiles we set up a pressure weighting operator Z, as a diagonal matrix

with the following entries:

Zi,i =
∆pi

gimair(1 +
mH2O

mair
x̂H2O
i )

. (C1)585

Using the pressure pi at atmospheric grid level i we set ∆p1 = p2−p1

2 −p1, ∆pnal = pnal− pnal−pnal−1

2 , and ∆pi = pi+1−pi

2 −
pi−pi−1

2 for 1< i < nal. Furthermore, gi is the gravitational acceleration at level i, mair and mH2O the molecular mass of dry

air and water vapour, respectively, and x̂H2O
i the retrieved or modelled water vapour mixing ratio at level i.

We define an operator W for resampling fine gridded atmospheric amount profiles into coarse gridded atmospheric partial

column amount profiles. It has the dimension c×nal, where c is the number of the resampled coarse atmospheric grid levels590

and nal, the number of atmospheric levels of the original fine atmospheric grid. Each line of the operator has the value ’1’ for

the levels that are resampled and ’0’ for all other levels:

W =


1 · · · 1 0 · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1 0 · · · 0

0 · · · · · · · · · · · · 0 1 · · · 1

 . (C2)

In analogy we can define a row vector wT (with the dimension 1×nal) with all elements having the value ’1’, which allows

the resampling for the total column amounts.595

C1 Column amounts

The kernel that discribes how a change in the amount at a certain altitude affects the retrieved partial (or total) colunm amount

can be calculated as:

A′ = WZAZ−1. (C3)

For the total column we replace W by wT and get the row vector a′T (dimension 1×nal). This is the total column kernel600

provided by the TROPOMI data and it is typically written as aT . Figure 3 shows examples of such total and partial columns

amount kernels. The total column amount kernel can be interpolated to different altitude grids. For the applications in Sects. 2

and 3 we interpolate the TROPOMI total column amount kernel to the vertical grid used by the MUSICA IASI retrieval.

C2 Column averaged mixing ratios

We can also combine the operators Z and W for the calculation of a pressure weighted resampling operator by:605

W∗ = (WZWT )−1WZ. (C4)
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This operator resamples linear scale mixing ratio profiles into linear scale partial column averaged mixing ratio profiles. Its

inverse is calculated as:

W∗−1 = Z−1W−1(WZWT ), (C5)

with W−1 = (WTW)−1WT . The respective total column operators w∗T and (w∗T )−1 can be calculated in analogy by610

replacing W by wT .

With operator W∗ we can calculate a coarse gridded partial column averaged state x̂∗ from the fine gridded linear mixing

ratio state x̂ by:

x̂∗ = W∗x̂. (C6)

The kernels matrix of the partial column averaged mixing ratio state can then be calculated from the fine gridded linear scale615

kernel matrix (A) by:

A∗ = W∗A. (C7)

This kernel discribes how a change in the mixing ratio at a certain altitude affects the retrieved partial colunm averaged mixing

ratio. Covariances of the partial column averaged mixing ratio state can be calculated from the corresponding covariance

matrices of the fine gridded linear scale (S) by:620

S∗ = W∗SW∗T . (C8)

The respective calculations for total column averaged mixing ratios can be made by replacing W∗ by w∗T . For the total

column avereraged mixing ratios the covariance is a simple variance (the scalar S∗) and the kernel has the dimension 1×nol,
i.e. it is a row vector a∗T .

The total column amount kernel (aT
T ) provided with the TROPOMI data set can be converted into a total column averaged625

mixing ratio kernel a∗T
T by the following calculation:

a∗T
T = w∗TA = (wTZw)−1aT

TZ. (C9)

The total column averaged mixing ratio kernel a∗T
T used in Sects. 2 and 3 is valid for the vertical grid used by the MUSICA

IASI retrieval. It is calculated according to Eq. (C9), but using a TROPOMI total column amount kernel (aT ) that is interpolated

onto the MUSICA IASI grid (see also Appendix C1).630
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Notes i

2-1 May 11, 2021 at 9:11 PM, Reviewer

There are quite a few more examples in the literature than those mentioned. In particular they neglect 
Landgraf  and Hasekamp (2007), Worden et al, (2007), Fu et al, (2013), (2018), etc.  Authors need to do 
more diligence with their citations.  

3-1 May 11, 2021 at 9:11 PM, Reviewer

This approach was discussed in detail in Lou et al, 2013 with TES and MLS data.  

3-2 May 11, 2021 at 9:11 PM, Reviewer

The tropopause will be an issue for profile retrievals as well.  This argument needs to be more 
quantitative about how uncertainties in tropopause height will affect the xCH4 calculation.  

4-1 May 19, 2021 at 10:14 PM, Reviewer

Order

4-2 May 19, 2021 at 10:14 PM, Reviewer

I don’t think it’s appropriate to cite a paper in prep.  It at least needs to be in review. 

6-1 May 19, 2021 at 10:14 PM, Reviewer

These two instruments are in fundamentally different orbits and therefore different local solar times.  The 
difference in LST is already about 4 hours.  To the extent to which the variability in either is driven by 
dynamics, then this difference could be substantial. In particular, the PBL heights could be quite different.   
The criteria described here appear to be arbitrary.  In additional analysis motivating these choices needs 
to be included (these figure could be added in an appendix).   


The assumption that the vertical distribution between morning and afternoon is relatively unchanged is an 
important assumption.  This could be further tested by looking at CAMS CH4 output and showing in an 
OSSE framework that the sampling assumption here hold. 

8-1 May 19, 2021 at 10:14 PM, Reviewer

In Fig. 3, it looks like the a priori contribution for TROPOMI is negative. Can you explain why?

11-1 May 24, 2021 at 8:55 PM, Reviewer

These criteria appear to be driven primarily by pragmatic considerations rather minimization of error from 
two different locations.  The authors need to demonstrate what the theoretical considerations for this to 
work. 

12-1 May 24, 2021 at 8:55 PM, Reviewer

Under what basis is this assumption made?  Why should this be considered to reasonably capture the 
error? 

13-1 May 24, 2021 at 8:55 PM, Reviewer

Please include on the other axis the absolute differences ppb. 

13-2 May 24, 2021 at 8:55 PM, Reviewer

IASI has a positive bias relative to TCCON but TROPOMI has a negative bias.  The combined product is 
substantially closer to IASI than TROPOMI. Please explain. 

13-3 May 24, 2021 at 8:55 PM, Reviewer

Add a figure comparing the agreement between the a priori and TCCON.  Or at least, calculate it and 
provide the summary statistics for comparison with the retrievals .

13-4 May 24, 2021 at 8:55 PM, Reviewer

Please add the offset in addition to the slope. 
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Notes ii

14-1 May 24, 2021 at 8:55 PM, Reviewer

agreement 

14-2 May 24, 2021 at 8:55 PM, Reviewer

How do you justify that R^2=0.5 is good agreement?  The combined product is not appreciably better 
than the individual products.  Is the reason for the low correlation the time-space difference error?  
Explain. 

15-1 May 24, 2021 at 8:55 PM, Reviewer

An important difference is that in this case the bias is not positive relative to AirCore but negative relative 
to TCCON.  Please explain. 

15-2 May 24, 2021 at 8:55 PM, Reviewer

Not really clear. Please elaborate as to why the AirCore is substantially worse.  One particular point is that 
TCCON is a remote sensing measurement whereas AirCore is not.  The impact of vertical differences will 
be more pronounced. 

18-1 May 24, 2021 at 8:55 PM, Reviewer

That would satisfy a “do no harm” case, but how does this show that the combined product is better than 
the individual product(s)? 

21-1 May 24, 2021 at 8:55 PM, Reviewer

You can and should assess that by correlating GAW with the IASI prior. 

21-2 May 24, 2021 at 8:55 PM, Reviewer

That’s not been demonstrated.  In particular, the assumption is that the problem is linear, which the 
authors have not shown.  Rather, we know  that the problem is non-linear, which is not resolved by the 
derivation in the Appendix. 

21-3 May 24, 2021 at 8:55 PM, Reviewer

It’s not real clear what is being gained here.  The combined product suffers from errors due to dislocation 
that are not quantified.  Why do I need a combined product if I already have each product individually, 
which have the sensitivities to the UTLS and total column? 

21-4 May 24, 2021 at 8:55 PM, Reviewer

It would be good to capitulate those improvements here as they are still not clear.  

23-1 May 24, 2021 at 8:55 PM, Reviewer

For this derivation, the definition of moderate non-linearity is quite important as well as its limitations.  The 
assertions made earlier about equivalence with a radiance-based retrieval hinge on it.  Please elaborate 
and discuss relationship with radiance-based retrievals. 

24-1 May 24, 2021 at 8:55 PM, Reviewer

While this derivation is well-known, the important assumption is that the two measurement vectors are 
measuring the same atmosphere. However, for IASI and TROPOMI, that is not the case at all.  So, 
y1=F(x1)+n1 and y2=F(x2)+n2.  A more interesting and theoretically necessary question for this paper is 
the error introduced by x1 not-equal x2.  At what point is that error negligible?  What are the atmospheric 
conditions necessary for that to be the case?  That could be readily studied by sampling a model such as 
CAMS and building linear retrievals of both for IASI and TROPOMI in their respective orbit. 

28-1 May 24, 2021 at 8:55 PM, Reviewer
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