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Abstract. The thermal infrared nadir spectra of IASI (Infrared Atmospheric Sounding Interferometer) are successfully used

for retrievals of different atmospheric trace gas profiles. However, these retrievals offer generally reduced information about

the lowermost tropospheric layer due to the lack of thermal contrast close to the surface. Spectra of scattered solar radiation ob-

served in the near and/or short wave infrared, for instance by TROPOMI (TROPOspheric Monitoring Instrument) offer higher
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sensitivity near ground and are used for the retrieval of total column averaged mixing ratios of a variety of atmospheric trace5

gases. Here we present a method for the synergetic use of IASI profile and TROPOMI total column level 2 retrieval products.

Our method uses the output of the individual retrievals and consists of linear algebra a posteriori calculations (i.e. calculation

after the individual retrievals). We show that this approach has strong theoretical similarities to applying the spectra of the dif-

ferent sensors together in a single retrieval procedure, but with the substantial advantage of being applicable to data generated

with different individual retrieval processors, of being very time efficient, and of directly benefiting from the high quality and10

most recent improvements of the individual retrieval processors.

We demonstrate the method exemplarily for atmospheric methane (CH4). We perform a theoretical evaluation and show that

the a posteriori combination method yields a total column averaged CH4 product (XCH4) that conserves the good sensitivity

of the corresponding TROPOMI product while merging it with the high quality upper tropospheric and lower stratospheric

(UTLS) CH4 partial column information of the corresponding IASI product. As consequence, the combined product offers15

additional sensitivity for the tropospheric CH4 partial column, which is not provided by the individual TROPOMI nor the

individual IASI product. The theoretically predicted synergetic effect is verified by comparisons to CH4 reference data obtained

from collocated XCH4 measurements at 14 globally distributed TCCON (Total Carbon Column Observing Network) stations,

CH4 profile measurements made by 36 individual AirCore soundings, and tropospheric CH4 data derived from continuous

ground-based in-situ observations made at two nearby Global Atmospheric Watch (GAW) mountain stations. The comparisons20

clearly demonstrate that the combined product can reliably detect the actual variations of atmospheric XCH4, CH4 in the

UTLS, and CH4 in the troposphere. A similar good reliability for the latter is not achievable by the individual TROPOMI and

IASI products.

1 Introduction

Measurements from different ground- or satellite-based sensors target at the observations of the same atmospheric parameters25

(e.g. the same trace gases), but with different characteristics (e.g. sensitivities for different vertical regions). Often the different

sensors use different observation geometries (limb scanning, nadir, solar light reflected at the Earth’s surface) and/or different

spectral regions (e.g. UV/vis, near infrared, thermal infrared, microwave). Dedicated experts and efforts are needed to develop

retrieval techniques that are specifically optimized for an individual sensor. An algorithm that uses coincident measurements

of all the different sensors for a multispectral approach (synergetic use of level 1 data) for the optimal estimation of the30

atmospheric state would well exploit the synergies of the different observation geometries and spectral regions and thus allows

for detecting the atmospheric state in more detail than achievable by individual optimal estimation retrievals.

There is a variety of studies investigating the multispectral synergism when retrieving atmospheric trace gases from space.

Examples of theoretical studies using synthetic thermal infrared and UV spectra for a simulated synergistic retrieval of atmo-

spheric ozone (O3) are Landgraf and Hasekamp (2007); Worden et al. (2007); Cuesta et al. (2013); Costantino et al. (2017).35

These studies considered the thermal infrared spectra of TES (Tropospheric Emission Spectrometer) and IASI (as well as

its succesor IASI - New Generation), and UV spectra of OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone
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Monitoring Experiment - 2 as well as its succesor UVNS – Ultraviolet Visible Near-infrared Shortwave-infrared) and are com-

plemented by studies with real spectra (e.g. Cuesta et al., 2013; Fu et al., 2013). Another example of a study with real spectra

is Luo et al. (2013), who examine the combination of the TES thermal nadir spectra with the MLS (Microwave Limb Sounder)40

microwave limb spectra for a synergetic retrieval of atmospheric carbon monoxide (CO) profiles. All the different studies

clearly show that the synergetic use of the measured spectra results in an inceased sensitivity with respect to the targeted trace

gases.

However, the development of these multispectral retrievals requires experts in different remote sensing techniques to work

closely together. Furthermore, as soon as measurements from a new sensor become available (or as soon as sensors are mod-45

ified/improved) such multispectral processors have to be adapted accordingly, i.e. continuous collaborative retrieval develop-

ments are required. While this is certainly possible, it might be not the most efficient way, in particularly considering the

steadily increasing amount of available satellite data products (level 2 retrieval products). The optimal synergetic exploita-

tion of the already available level 2 retrieval products would be much less computationally expensive than running dedicated

multispectral retrievals. Such synergetic combination of level 2 products is the topic of this paper.50

There are already several examples of a level 2 product fusion discussed in literature (the following list is not intented to

be complete): Worden et al. (2015) combine the thermal and near infrared level 2 products of methane (CH4) of TES and

GOSAT (Greenhouse gas mOnitoring SATellite), respectively, by performing approximative calculations and with a focus on

monthly mean data. Data aggregation is necessary due to the reduced temporal and horizonal coverage of TES and GOSAT

and their imperfect collocation. Cortesi et al. (2016) combine the thermal infrared MIPAS-STR (Michelson Interferometer for55

Passive Atmospheric Sounding - STRatospheric aircraft) and microwave MARSCHALS (Millimetre-wave Airborne Receivers

for Spectroscopic Characterisation in Atmospheric Limb Sounding) aircraft-based remote sensing products of O3, nitric acid

(HNO3), water vapour (H2O), and atmospheric temperature (applying the so-called Measurement-Space-Solution data fusion

method of Ceccherini et al., 2009). Another example is Warner et al. (2014), who use a Kalman filter for combining the CO

data products of AIRS (Atmospheric Infrared Sounder) – available for a large horizontal area, but with weak vertical details –60

and TES (and MLS) – available with detailed vertical information, but only for very localised areas.

Here, we present a method for fusing the available level 2 CH4 profile product of IASI and the XCH4 (total column averaged

methane) product of TROPOMI (Tropospheric Monitoring Instrument) by means of a Kalman filter approach. Our objective

is a data product with improved vertical profile information (determine tropospheric CH4 independently from CH4 at higher

altitudes, which is not possible by IASI or TROPOMI data alone) by synergetically exploiting the different vertical sensitivities65

of the two products. The method allows a computationally very efficient generation of global daily maps of the combined data

product and only needs the individually retrieved states, averaging kernels and noise covariances provided by the respective

remote sensing experts in the context of their standard retrieval work. The proposed method can be used flexibly for combining

measurement information of different satellite sensors and is in particularly interesting for combining a profile product with a

total column product. The method has strong theoretical similarities to a dedicated combined optimal estimation retrieval that70

uses the combined IASI and TROPOMI spectra as input (synergetic use of level 1 data).
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The reliable and global detection of tropospheric CH4 independently from CH4 at higher altitudes can lead to an improved

understanding of the CH4 cycle. Respective data allow a more direct investigation of the CH4 boundary layer source and sink

signals than total column averaged mixing ratios (XCH4) provided globally for instance by GOSAT (e.g. Parker et al., 2020)

or TROPOMI (Lorente et al., 2021). This is because XCH4 signals are strongly affected by vertical shifts of the tropopause75

altitude, i.e. their use for investigating CH4 absorption and release at ground depends on the correct consideration of the

tropopause altitude by model simulations (Pandey et al., 2016).

This manuscript is organised as follows. Section 2 briefly presents the used IASI and TROPOMI products (generated by two

individual retrievals). Section 3 presents the equations for the optimal a posteriori combination of the two independent retrieval

outputs (level 2 product combination), and performs a theoretical evaluation of the individual and combined products. Section80

4 validates the total column and tropospheric and UTLS (upper tropospheric/lower stratospheric) partial column products

obtained by the individual IASI and TROPOMI retrievals and by the a posteriori combination by an inter-comparison to

reference data from TCCON, AirCore, and GAW. Section 5 discusses the global consistency of the products and shows global

maps. Section 6 resumes the results of our study and briefly discusses upcoming possibilities. Furthermore, in Appendix A

we give a brief overview on retrieval theory and in Appendix B we discuss the theory of our a posteriori combination method85

and show that the method has strong similarities to performing a full multispectral optimal estimation retrieval. Appendix C

introduces the operator for transferring logarithmic scale differentials into linear scale differentials. Appendix D presents the

operators used for converting vertical profile data into total and partial column data. Appendix E examines the dislocation

error, i.e. to what extent the temporal and spatial dislocation of the IASI and TROPOMI observations (the two sensors are on

two different satellites having different orbits) impacts the combined data product. Appendix F explains how we assess the90

comparability of the satellite products with the reference data and reveals the reasonable agreement between the characteristics

of the satellite products and the results of the validation study.

2 Satellite data

In this section we briefly present the satellite data products that are use for the combination procedure. These are the XCH4

data obtained from the analysis of the near and short wave infrared (SWIR and NIR) spectra measured by TROPOMI and the95

CH4 profiles derived from IASI thermal nadir (TIR) spectra. In addition, we explain the criteria used for collocating the two

satellite observations.

2.1 RemoTeC TROPOMI XCH4

The TROPOMI XCH4 data used in this study are generated by the RemoTeC algorithm (Butz et al., 2011), which is used for

the operational processing of Sentinel 5 Precursor/TROPOMI XCH4 data (Hu et al., 2016; Hasekamp et al., 2019; Landgraf100

et al., 2019). Here we work with data of the operational processing algorithm version 2.2.0 (which has been presented and

validated in Lorente et al., 2021). The TROPOMI output files provide the XCH4 data together with the used a priori data

(constructed from simulations of the global chemistry-transport model TM5, Krol et al., 2005), the column averaging kernels,
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and the error values. Here we work with all TROPOMI data that pass the standard quality filtering (TROPOMI output variable

qa_value must be equal to 1.0, which means a filtering according to Table A1 of Lorente et al., 2021). In addition, we105

remove observations over ground covered by snow (which show a high bias as discussed in Lorente et al., 2021) by requiring

a blended albedo (Ab, calculated from the NIR, ANIR, and SWIR, ASWIR, albedos according to Wunch et al., 2011b, as

Ab = 2.4ANIR− 1.13ASWIR) of smaller than 0.85.

2.2 MUSICA IASI CH4 profiles

As IASI CH4 data product we use the data generated by the retrieval processor MUSICA (MUlti-platform remote Sensing of110

Isotopologues for investigating the Cycle of Atmospheric water, a European Research Council project between 2011 and 2016).

The MUSICA IASI data full retrieval product encompasses trace gas profiles of H2O, the HDO/H2O ratio, N2O, CH4, and

HNO3. The data have been validated in several previous studies (Schneider et al., 2016; Borger et al., 2018; García et al., 2018),

and it has been shown that the CH4 product can detect the CH4 signals originating in the upper troposphere/lower stratosphere

particularly well. MUSICA IASI data using processor versions 3.2.1 and 3.3.0/1 are currently available for the 2014 to 2021115

period and are presented in Schneider et al. (2022). This MUSICA IASI data set is best suited for a posteriori data reusage (e.g.

Diekmann et al., 2021), because in addition to the retrieved trace gas profiles it contains full information on retrieval settings (a

priori states and constraints) and on averaging kernel and error covariance matrices. In order to ensure highest MUSICA IASI

data quality, here we require the flag variable musica_fit_quality_flag to be set to 3 (the spectral fit of the MUSICA

IASI retrieval has a good quality and the spectral residuals are close to the instrumental noise level). Furthermore, we only use120

MUSICA IASI data for which the flag variable eumetsat_cloud_summary_flag is set to 1, which guarantees that the

IASI instrumental field of view is cloud-free.

A particularity of the MUSICA IASI processor is that the trace gas inversions are performed on a logarithmic scale. In

Appendix B of Schneider et al. (2022) it is shown that the MUSICA IASI retrieval can be considered as a moderately non-

linear problem, in particular if the differentials (averaging kernels and covariances) are used on the logarithmic scale. In the125

following equations we take special care on the correct usage of the corresponding logarithmic scale differentials. Nevertheless,

all equations are also applicable for retrievals made on linear scale by replacing in the following the operator L (which is

introduced in Appendix C) by the identity operator.

2.3 Collocation of TROPOMI and IASI observations

As temporal collocation criterion we use 6 hours, for a valid horizontal collocation the centres of the TROPOMI and IASI130

ground pixels must be closer than 50 km, and the difference between the ground pressure at the TROPOMI and IASI ground

pixels must be within 50 hPa. Generally multiple TROPOMI/IASI ground pixel pairs fulfill the aforementioned criteria. In

such case we use the pair with the smallest distance metric. This metric is defined as the Euclidean distance that considers a

norm of 12 hours for the temporal distance, a norm of 50 km for the horizontal distance, and a norm of 5 hPa for the vertical

distance. The possible small difference in the TROPOMI and IASI ground pixel pressures is taken into account by correcting135

the TROPOMI XCH4 values according to Appendix B of Sha et al. (2021).
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3 Presentation and characterisation of the combination method

3.1 Calculation of the combined state vector

For this study we use the CH4 a priori profile as provided by the TROPOMI product as the common a priori for all prod-

ucts (these are simulations of the global chemistry-transport model TM5, Krol et al., 2005). For this purpose we modify the140

MUSICA IASI product and bring it in line with the TROPOMI a priori profile choice by applying Eq. (B13).

For updating the IASI CH4 profile product using the TROPOMI XCH4 observation we apply a Kalman filter and obtain the

combined CH4 state as:

x̂l
C = x̂l

I + L−1m[x̂∗T −a∗T
T x̂I ]−L−1m(w∗T −a∗T

T )xa. (1)

Here the vector x̂I and scalar x̂∗T are the MUSICA IASI CH4 profile and the TROPOMI XCH4 column averaged products.145

The row vector a∗T
T is the total column averaged mixing ratio kernel of the TROPOMI product interpolated to the vertical

grid used by the MUSICA IASI processor and the row vector w∗T is the operator for converting mixing ratio vertical profiles

into total column averaged mixing ratios (for details on the interpolation see Appendix D). The state vector x̂l
C represents

the logarithmic scale combined CH4 profile product (i.e. the MUSICA IASI CH4 data updated with the TROPOMI XCH4

observation). The superscript ’l’ used with x̂l
C and x̂l

I indicates the use of the logarithmic scale. Here and in the following we150

will mark scalars, vectors or matrix operators that are in logarithmic scale by the superscript ’l’. The matrix L is the operator for

the transformation of differentials or small changes (as given by averaging kernels or error covariances) from the logarithmic

to the linear scale (for more details see Appendix C).

The column vector m is the Kalman gain operator and it is given by:

m = LSl
x̂I

LTa∗T (a∗T
TLSl

x̂I
LTa∗T +S∗x̂T ,n)−1, (2)155

with the matrix Sl
x̂I

and the scalar S∗x̂T ,n being the logarithmic scale a posteriori covariance of the MUSICA IASI CH4

product and the noise error variance of the TROPOMI XCH4 product, respectively. The vector operator a∗T is the transpose of

the TROPOMI column averaging kernel, i.e. a∗T = (a∗T
T )T .

Except for the logarithmic scale transformation, the Eqs. (1) and (2) are analogous to Eqs. (B9) and (B10). As demonstrated

in Appendix B this kind of Kalman filter application has a strong similarity to an optimal estimation retrieval that uses a160

combined IASI and TROPOMI measurement vector (synergetic use of level 1 data). The application of this Kalman filter is

possible because the MUSICA IASI data are provided with full information on a priori states, constraints, error covariances,

and averaging kernels (Schneider et al., 2022), and because the TROPOMI data are provided together with their a priori state,

averaging kernel, and retrieval noise error (Lorente et al., 2021).

The Kalman Gain according to Eq. (2) describes how differences between the MUSICA IASI and TROPOMI XCH4 product165

are used to update the MUSICA IASI CH4 profile. An example for a Kalman Gain operator is depicted in Fig. 1. It shows that

a positive difference of +1 ppb of [x̂∗T −a∗T
T x̂I ] will lead to a combined CH4 profile product that has been modified with

respect to the MUSICA IASI CH4 product by almost +3 ppb in the lowermost troposphere, by about −0.5 ppb at 10 km, and

by about +1.5 ppb above 20 km.
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Figure 1. Visualisation of a Kalman Gain operator for optimally combining TROPOMI XCH4 data with MUSICA IASI CH4 profile data.

This is the column vector m according to Eq. (2). The example shown is for a late summer atmosphere (27 September 2018) over Central

Europe.

3.2 Vertical resolution and representativeness170

In this section we compare the vertical resolution and representativeness of the individual retrieval products with those achieved

when combining the two retrieval products. According to Eq. 1 the averaging kernels for the combined data product can be

calculated as:

Al
C = Al

I + L−1m(a∗T
T −a∗T

TLAl
IL
−1)L. (3)

Here Al
I and Al

C are the logarithmic scale averaging kernels of the MUSICA IASI CH4 product and of the combined product175

(the MUSICA IASI CH4 product after being updated with the information provided by the TROPOMI XCH4 product), re-

spectively. These are the kernels for the profile products represented in nal (nal: number of atmospheric levels) levels, i.e. they

are matrices of dimension nal×nal. Logarithmic scale kernels are also called fractional or relative averaging kernels (e.g.

Keppens et al., 2015).

Figure 2 depicts the rows of typical averaging kernels for the MUSICA IASI product (Fig. 2a) and the combined data180

product (Fig. 2b). Adding the information provided by TROPOMI clearly improves the sensitivity in the lower troposphere:

for the MUSICA IASI product the lower tropospheric kernels generally peak at the upper limit of the lower troposphere (at

about 5 km a.s.l.). For the combined product these peak values are obtained at significantly lower altitudes (at about 2 km a.s.l.).

In the UTLS we see no significant difference between the kernels.

In this work we focus on the total column and the partial columns between the surface and 6 km a.s.l. (the tropospheric185

partial column) and between 6 km a.s.l. and 20 km a.s.l. (the UTLS partial column). The total and partial column kernels are

calculated from Al
I and Al

C by their transformation on linear scale (see Appendix C) and the vertical resampling as explained

in Appendix D. Figure 3 depicts the total and partial column kernels corresponding to the row kernels of Fig. 2.
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Figure 2. Logarithmic scale row kernels for (a) the MUSICA IASI and (b) the combined product for the same late summer observations as

used in the context of Figs. 1 and 3. The symbols mark the kernel values at the nominal altitude.

Figure 3. Total column amount and partial column amount kernels corresponding to the TROPOMI, MUSICA IASI, and combined product

for the same late summer observation as used in Figs. 1 and 2: (a) total column amount kernels; (b) lower tropospheric partial column amount

kernels, surface - 6 km a.s.l.; (c) upper tropospheric/lower stratospheric (UTLS) partial column amount kernels, 6 - 20 km a.s.l.

Total column amount kernels are available for all three products (see Fig. 3a): the TROPOMI, the MUSICA IASI, and the

combined product. The TROPOMI kernel is close to unity for all altitudes, documenting the good sensitivity for CH4 at all190

altitudes. The combined total column amount kernel is even closer to unity than the respective TROPOMI kernel, which means

that the combined retrieval product does also well reflect the actual atmospheric total column amounts. The MUSICA IASI
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Figure 4. Time series of the degree of freedom for signal (DOFS, example for Central Europe). Black squares: TROPOMI (please note that

only the total column data are made available); Red dots: MUSICA IASI; blue crosses: combined product.

kernel has relatively low values in the lower troposphere and above 15 km, only in the UTLS region the kernel values are

between 0.75 and 1.25. This means that MUSICA IASI can actually not well detect total column amounts, because it lacks

sensitivity in the lower troposphere. The altitude regions where the MUSICA IASI product has reduced sensitivities are the195

regions where TROPOMI’s total column information has the strongest impact on the combined product (see Fig. 1).

Partial column amount kernels are only available for profile products, i.e. the MUSICA IASI and the combined product

(MUSICA IASI updated with information from TROPOMI). Figure 3b shows tropospheric partial column amount kernels. For

the MUSICA IASI product we observe values that are generally lower than 0.5. The highest values are achieved around 6 km

a.s.l., i.e. at the upper boundary of the vertical layer we defined as the tropospheric partial column. The kernel of the combined200

product shows a good sensitivity with peak values of almost 0.95 at 2.5 km a.s.l. and values above 0.75 for almost all altitudes

between the surface and 6 km a.s.l.

UTLS partial column amount kernels are depicted in Fig. 3c. The values are closest to unity for the altitudes that we attributed

to the UTLS layer (altitudes between 6 km and 20 km a.s.l.). There is almost no difference between the MUSICA IASI and

the combined kernels, meaning that the information provided by TROPOMI has almost no effect on the UTLS partial column,205

which is because the MUSICA IASI product is already very sensitive to this altitude region.

The example kernels document that the combined product allows for detecting tropospheric CH4 largely independent from

CH4 in the UTLS, which is not possible by the IASI product alone. Figure 4 shows a time series of the degree of freedom

for signal (DOFS: it is calculated as the trace of the averaging kernels and is a measure for the profiling capability, Rodgers,

2000). It documents that the combination of TROPOMI with IASI improves the profiling capability of IASI rather consistently210

throughout all seasons. Here we also show the DOFS values of the TROPOMI retrieval, but please note that only the total

column data are made available, i.e. there is no profile information in the provided TROPOMI CH4 data product.

An optimal estimation retrieval updates the a priori knowledge with information provided by a measurement. The a posteriori

uncertainty is the uncertainty achieved by optimally combing the a priori knowledge (captured by the inverse of the a priori

covariance matrix, i.e. Sa
−1) with the measurement. As shown in Appendix A the a posteriori uncertainty covariance is the215
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Figure 5. Time series of the representativeness error (example for Central Europe). Black squares: TROPOMI; red dots: MUSICA IASI;

blue crosses: combined product. (a) Total column; (b) tropospheric partial column; (c) UTLS partial column.

sum of the noise covariance and the representativeness error covariance (called "smoothing error" covariance in Rodgers,

2000). According to Eq. (A7) the representativeness error matrix is calculated from the averaging kernel (A) and the a priori

covariance (Sa) as

Sl
x̂,r = (Al− I)Sl

a(Al− I)T , (4)

with I being the identity operator. By using the kernels Al
I and Al

C we can calulate the representativeness error for the220

MUSICA IASI and the combined product, respectively. The resampling of Sl
x̂,r on total and partial columns is made according

to Eq. (D7). For the TROPOMI total column averaged mixing ratios we can calculate the representativeness error by (w∗T −
a∗T

T )Sa(w∗T −a∗T
T )T . For more details see Appendix D.

Figure 5 depicts the representativeness error relative to the retrieved values for the total column, the tropospheric and UTLS

partial columns. Shown are time series for measurements over Central Europe, which confirm the observations made in the225

context of the example kernels of Fig. 3: for the total column (Fig. 5a) the representativeness error on the TROPOMI and

the combined products are rather small and can be neglected, i.e. both products can detect total column signals. In contrast

the MUSICA IASI representativeness error is much larger and the respective data do not well represent the total column,

i.e. provide no independent observations of the total column. Concerning partial column products (Fig. 5b and c) we can

compare the MUSICA IASI and the combined product (the TROPOMI product has no information on the vertical distribution).230

The tropospheric MUSICA IASI partial column has a significant representativeness error (and a seasonal cycle with highest

values of about 3% in winter). In the combined product this error is throughout all seasons generally smaller than 1%. In the

UTLS both the MUSICA IASI and combined products are well representative for the actual atmospheric methane concentration

signals (representativeness error is generally between 0.5 and 1%). In summary, TROPOMI only provides total column data.

With IASI alone we can well detect signals in the UTLS, but not in the lower troposphere. The detection of signals in both235

altitude regions independently from the a priori information is only possible by using the combined product.
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Figure 6. Time series of estimated relative noise error for the retrieved products (example for Central Europe). Colours are as in Fig. 5. (a)

Total column; (b) tropospheric partial column; (c) UTLS partial column.

3.3 Retrieval noise error

After documenting the representativeness error in the previous subsection, here we investigate the retrieval noise error. We

compare the retrieval noise errors of the individual retrieval products with those achieved when combining the two retrieval

products. According to Eq. (1) we can calculate the retrieval noise covariance matrix for the combined data product by240

Sl
x̂C,n = (I−L−1ma∗T

T )LSl
x̂I,nLT (I−L−1ma∗T

T )T + (L−1m)Sx̂∗
T ,n(L−1m)T . (5)

Here Sl
x̂I,n

is the retrieval noise covariance matrix of the MUSICA IASI retrieval. The error covariances resampled to the total

and partial columns are then determined according to Appendix D. Figure 6 shows the retrieval noise errors (which are the

square root values of the error variances) relative to the retrieved values for the total column and the tropospheric and UTLS

partial columns.245

The errors for the total columns (Fig. 6a) are generally below 0.2% for the TROPOMI product. For the MUSICA IASI

product they are rather stable at about 0.6%. Concerning the combined product the retrieval noise error is very similar to the

retrieval noise error of the TROPOMI data.

For the tropospheric partial columns (Fig. 6b) the error is in general above 1% for the MUSICA IASI product and below

1% for the combined product. For the UTLS partial columns (Fig. 6c) we observe an error of generally below 1% and no250

significant difference between the MUSICA IASI and the combined data products. This suggests that the error in the combined

product is dominated by the error in the MUSICA IASI data, which reveals the very limited impact of the TROPOMI data on

the combined UTLS data product.
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Figure 7. Time series of estimated relative dislocation error for the combined product due to temporal and spatial dislocation of the

TROPOMI and IASI satellite ground pixels (example for Central Europe). (a) Total column; (b) tropospheric partial column; (c) UTLS

partial column.

3.4 Dislocation error

As mentioned in Sect. 2.3 we allow for small dislocations between the TROPOMI and IASI observations of up to 6 hours and255

50 km. As derived in Appendix E the dislocation error covariance matrix is calculated by

Sl
x̂C,dl = Al

C,dlS
l
∆dl

Al
C,dl

T
, (6)

where Al
C,dl is the dislocation kernel and Sl

∆dl
is the covariance matrix for the CH4 dislocation uncertainty, whose main

characetristics are visualised in Figs. E1 and E2. The low entries of the dislocation kernel at low altitudes (typical example see

Fig. E4), reduces the impact of the spatial and temporal dislocation on the total and tropospheric partial columms of combined260

product.

Over Central Europe we estimate an error in the combined product due to the dislocations between IASI and TROPOMI

as shown in Fig. 7. For the total column the error is below 0.1% and for the tropospheric and UTLS partial columns it is

generally below 0.8%. If compared to the noise error (see Fig. 6), the dislocation error is of secondary importance. Details on

the estimation of these dislocation errors and examples for other locations are given in Appendix E.265

4 Validation

In this section we empirically evaluate the quality of the TROPOMI, MUSICA IASI, and combined products by their inter-

comparison to different reference data products. As reference for the total column averaged mixing ratio (XCH4) we use

TCCON (Total Carbon Column Observing Network, Wunch et al., 2011a) ground-based remote sensing data from 14 sites

located in different climate zones. As reference for the total and the partial columns we use in-situ profiles measured by the270

AirCore system (Karion et al., 2010) at two geophysically different European locations. Furthermore, we use in-situ data

measured at two nearby Central European Global Atmospheric Watch (GAW) mountain stations.
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Figure 8. Maps showing the location of the reference measurements used for the validation. (a) Global map with the 14 TCCON stations

(more detailed information on these sites is given in Table 1). (b) Map indicating the areas accepted for valid horizontal collocations in the

sourroundings of the European reference stations: TCCON sites and the 100 km collocation radius (red crosses and circles), AirCore sites

and the spatial collocation circles with 500 km radius (blue stars and circles), and GAW sites and the collocation circle with 150 km radius

(grey dots and circle).

Figure 8 depicts the geographical location of the reference observations. Figure 8a shows that the considered TCCON

stations are distributed around the globe (more detailed information on these sites is given in Table 1). Figure 8b gives details

on the different European reference sites and the areas accepted for a valid collocation. For collocation with TCCON the275

satellite ground pixels should fall within a circle around the stations with a radius of 100 km (red crosses and circles). For the

comparison to the GAW data the collocation circle has a radius of 150 km (grey circle) and is centred in the middle of the two

GAW stations (Jungfraujoch in Switzerland and Schauinsland in South-western Germany indicated by the grey dots). For the

comparison with AirCore we relax the radius of the collocation circle to 500 km in order to achieve a sufficient high number of

coincidences between AirCore and satellite observations. The two AirCore sites (Trainou in France and Sodankylä in Finnland)280

and the collocation circles are indicated by the blue stars and circles.

Appendix F reveals that the following validation results are in reasonable agreement with sensitivities and errors of the

different satellite data products as shown in Sects. 3.2 - 3.4.

4.1 TCCON XCH4

We use TCCON ground-based remote sensing data from 14 sites located in different climate zones representative for high,285

mid and low latitudes. Details on the locations of these sites, the respective data amounts, and references are given in Table 1.

We use the TROPOMI a priori setting for the comparison between the ground-based TCCON and the satellite-based remote

sensing products. For this purpose the TCCON product is adjusted to the TROPOMI a priori settings according to Eq. (B13),

which ensures the usage of the same a priori data for all the remote sensing products. As spatial collocation criteria we

require the TROPOMI and IASI ground pixels to be located within 100 km of the TCCON station (where we consider the290

viewing direction of the TCCON spectrometer by using as location, the TCCON’s line of sight {latitude,longitude} at 5 km

altitude). Differences in the satellite and TCCON ground pressures are taken into account by correcting the TCCON XCH4
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Table 1. Locations of TCCON sites, amount of the satellite data compared to TCCON, and references. "Number" gives the total number of

single satellite footprint collocations and "Days" the number of days with collocations.

Station (ID) Location Period Number Days References

Eureka (EUR) 80.1◦N; 86.4◦W; 610 m a.s.l. 06/2020 - 06/2020 271 5 Strong et al. (2019)

Sodankylä (SOD) 67.4◦N; 26.6◦E; 190 m a.s.l. 05/2018 - 09/2020 17453 107 Kivi et al. (2014),

Kivi and Heikkinen (2016)

East Trout Lake (ETL) 54.4◦N; 105.0◦W; 500 m a.s.l. 02/2018 - 08/2020 8549 122 Wunch et al. (2018)

Karlsruhe (KAR) 49.1◦N; 8.4◦E; 120 m a.s.l. 02/2018 - 11/2020 21208 167 Hase et al. (2015)

Orleans (ORL) 48.0◦N; 2.1◦E; 130 m a.s.l. 02/2018 - 09/2020 16094 128 Warneke et al. (2019)

Park Falls (PAR) 46.0◦N; 90.3◦W; 440 m a.s.l. 11/2017 - 12/2020 7808 87 Wennberg et al. (2017)

Rikubetsu (RIK) 43.5◦N; 143.8◦E; 380 m a.s.l. 11/2017 - 09/2019 730 25 Morino et al. (2018)

Lamont (LAM) 36.6◦N; 97.5◦W; 320 m a.s.l. 12/2017 - 12/2020 21548 171 Wennberg et al. (2016)

Edwards (EDW) 35.0◦N; 118.9◦W; 700 m a.s.l. 06/2018 - 12/2020 36821 438 Iraci et al. (2016)

Saga (SAG) 33.2◦N; 130.3◦E; 10 m a.s.l. 11/2017 - 12/2020 916 67 Kawakami et al. (2014)

Burgos (BUR) 18.5◦N; 120.7◦E; 40 m a.s.l. 11/2018 - 03/2020 37 11 Velazco et al. (2017)

Darwin (DAR) 12.5◦S; 130.9◦E; 40 m a.s.l. 06/2018 - 04/2020 2841 59 Griffith et al. (2014a)

Wollongong (WOL) 34.4◦S; 150.9◦E; 30 m a.s.l. 03/2018 - 06/2020 1657 86 Griffith et al. (2014b)

Lauder (LAU) 45.0◦S; 169.7◦E; 610 m a.s.l. 11/2017 - 12/2020 1437 115 Sherlock et al. (2014),

Pollard et al. (2019)

values according to Appendix B of Sha et al. (2021). For collocation with respect to time, we use as TCCON reference the

median XCH4 value calculated from all TCCON data measured within 2 hours of the TROPOMI observation. Furthermore,

we require stable conditions for atmospheric CH4. This is achieved by performing the comparisons only, if there are at least295

3 individual TCCON observations that fullfil the collocation criterion and if the timestamps of these observations have a 1σ

standard deviation of 1 hour and the 1σ standard deviation of the respective XCH4 data is smaller than 0.5%.

In Fig. 9 the TROPOMI, MUSICA IASI, and combined XCH4 products are compared to the TCCON XCH4 data. The

crosses represent the daily mean data and the filled symbols in the background show all data corresponding to all individual

valid collocations (between all single pixel satellite observations and individual TCCON observations). Figure 9a-c show time300

series of the differences with respect to the TCCON references. The daily mean data have error bars, which is the 1σ standard

deviation of the data used for calculating the daily mean.

Statistics in form of the median of the difference and the scatter around the median difference are given in each panel (for

statistics using daily mean data in black fonts and for statistics using all individual valid collocations in grey fonts). We use here

the median in order to be less affected by outliers. For the same reason we use as metric for the scatter the half inter-percentile305

range between the 15.9 and 84.1 percentiles (hIPR68.2, which is analogous to the 1σ standard deviation in case of a pure
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Figure 9. Comparison of the different XCH4 satellite products with TCCON XCH4 data from 14 globally representative stations (the different

colours correspond to the stations as shown in Fig.8a). Data for all individual coincidences are plotted in the background as squares and daily

mean data are depicted as crosses with error bars representing the 1σ standard deviation (daily means are only calculated if there are at least

3 observations per day): (a)-(c) time series of the differences. (d)-(f) Correlations between TCCON and satellite data (the black line is the

one-to-one diagonal). (g)-(i) Correlations between the a priori free TCCON data (∆aTCCON = XCH4(TCCON)−XCH4(apriori)) and

the a priori free satellite data (∆aSatellite = XCH4(Satellite)−XCH4(apriori)). The inserted text reports median and scatter (hIPR68.2,

a-c) and the coefficients of determination, the slope, and the intercept of the robust linear regression model (R2, m, and b, d-i). Black and

grey fonts represent the values for the daily mean data and for data from all individual collocations, respectively.

Gaussian distribution). Concerning TROPOMI (Fig. 9a) we observe a good agreement. For daily mean data as well as for the

statistics based on all individual differences, the median difference is within 0.1% and the scatter lies below 0.7%.
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A similar good agreement and low values for median difference and scatter is also achieved for the combined product

(Fig. 9c). For the MUSICA IASI product (Fig. 9b) we have reduced sensitivity in the lower troposphere (see Figs. 3 and 5).310

Because of uncertainties in the a priori assumptions the agreement with the TCCON XCH4 data is weaker (uncertainties in the a

priori assuption are less well detected, see Fig. F2). We observe no significant systematic negative or positive difference for the

satellite versus TCCON comparisons, i.e. the satellite data sets seem to be in good absolute agreement with TCCON. In general

the observed scatter values are within the range that can be expected from the data uncertainties and the data comparability (for

more details see Appendix F).315

Figure 9d-f depicts the correlation plots. In order to reduce the effect of outliers, we apply a robust linear regression model

(the iteratively reweighted least-squares algorithm with Tukey’s bisquare weight function and the respective tuning parameter

set to the commonly used value of 4.685). For daily mean data the obtained coefficients of determination (R2) are larger than

80% for the TROPOMI and the combined product. The slope of the obtained linear regression line is very close to unity.

When considering all individual coincidences the R2 values are about 70%. The error bars on the daily mean data are the 1σ320

standard deviations of the data used for calculating the daily mean. For the MUSICA IASI product, we observe a similar good

correlation as for the TROPOMI and the combined products. However, concerning the MUSICA IASI data, part of the common

signal might be due to the a priori on which the MUSICA IASI total column product is not independent (the MUSICA IASI

data have a reduced sensitivity, i.e. an increased representativeness error, see Fig. 5a).

Figure 9g-i reveals the information gained by the satellite data with respect to the a priori data. It depicts the correlation325

between the collocated a priori free TCCON data (∆aTCCON = XCH4(TCCON)−XCH4(apriori)) and the a priori free

satellite data (∆aSatellite = XCH4(Satellite)−XCH4(apriori)). It shows the same data as in 9d-f but with the a priori

knowledge removed. We find that the TROPOMI and the combined data product adds a significant amount of information to

the a priori knowledge (R2 values for the respective linear correlations of above 32%). This information gain is much smaller

in the case of the MUSICA IASI data, which confirms that the good correlation as observed in Fig. 9e is to a large extent due330

to the good quality of the a priori data.

4.2 Air-Core in-situ CH4 profiles

We use the AirCore balloon borne in-situ measurements (Karion et al., 2010) as the reference for CH4 total columns as well

as for the CH4 vertical distribution. The AirCore system samples the vertical distribution of CH4 with a much better vertical

resolution than the satellite remote sensing systems. For this reason we can generate an AirCore profile (x̂AC) that has the same335

vertical sensitivity and resolution characteristics as the remote sensing data. According to Eqs. (A2) and (A4) for the MUSICA

IASI and the combined retrieval data we can write:

x̂l
AC = xl

a + Al(xl
AC−xl

a). (7)

Here Al and xl
a are the logarithmic scale averaging kernels and the logarithmic scale a priori state of the satellite retrieval,

respectively, xl
AC is the measured logarithmic scale AirCore profile regridded to the atmospheric model grid used for the340

satellite retrievals. The resampling of these data on total and partial columns is made with the linear scale data according to
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Table 2. Locations of AirCore sites and amount of satellite data compared to AirCore. "Number" gives the total number of single satellite

footprint collocations, "Days" the number of days with collocations, and "AC number" the number of collocated AirCore profiles.

Station Location Period Number Days AC number

Sodankylä 67.4◦N; 26.6◦E 04/2018 - 08/2020 16326 14 14

Trainou 48.0◦N; 2.1◦E 01/2018 - 11/2020 18458 17 22

Eq. (D5). For the TROPOMI total column averaged mixing ratios we calcuate the adjusted AirCore total column averaged

mixing ratio (a scalar) by x̂∗AC = w∗Txa +a∗T
T (xAC−xa). For more details see Appendix D.

As spatial collocation criteria we require that the ground pixels of the TROPOMI and IASI measurement fall within a

circle with a radius of 500 km around the mean horizontal location of the AirCore system when sampling between the 450345

and 550 hPa pressure levels. The temporal collocation requirements for both satellite observations is 6 hours. AirCore data are

typically not available close to the ground and above the burst altitude of the balloon (approximately 25 hPa). At low altitudes

we extend the profile with the concentrations closest to the ground. At high altitudes we extend the profile with the TM5 model

data, with a smooth transition between the measured values and the modelled data.

Table 2 gives an overview of the satellite data amount compared to the AirCore profiles measured at Trainou (France, 48.0◦N,350

2.1◦E) and Sodankylä (Finland, 67.4◦N, 26.6◦E). In total we have 36 individual AirCore profiles measured on 31 different days

for which collocated satellite observations exist. The total number of collocated single pixel satellite observations is 34784. We

estimate that the AirCore data can serve as reliable references for the validation of the total column as well as for the validation

of the tropospheric and UTLS partial columns (see Appendix F).

The comparison between the satellite and the AirCore XCH4 data is shown in Fig. 10. The differences of collocated mea-355

surements are shown in Figs. 10a-c. The agreement between the different satellite products and AirCore is good: the scatter

around the median difference is low and similar to the comparison with TCCON. Furthermore, we observe no significant bias

in none of the satellite data, which demonstrates the good consistency between the RemoTeC TROPOMI and MUSICA IASI

XCH4 data.

Figure 10d-f depicts the correlation between the satellite and the adjusted AirCore data. Here we apply the same iteratively360

reweighted least-squares as in Sect. 4.1. The obtained R2 values are high (for all products above 60% for daily mean data),

although a bit lower than the R2 value achieved for the correlation with TCCON data; however, we have to consider that the

amplitude in the analysed total column signals is much smaller in the AirCore data set (data from two northern hemispheric

sites only) if compared to the TCCON data set (data from 14 globally distributed sites). As for the comparison to TCCON we

examine the correlation between the a priori free reference data (∆aAirCore = XCH4(AirCore)−XCH4(apriori)) and the365

a priori free satellite data (∆aSatellite = XCH4(Satellite)−XCH4(apriori)). These correlations are visualised in Fig. 10g-i.

We find reasonable correlation for the daily mean TROPOMI and combined data products, but no significant correlation for

the daily mean IASI product. This indicates that the correlation as observed between the IASI and the adjusted AirCore data in
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Figure 10. Comparison of the different satellite XCH4 products with adjusted AirCore XCH4 measured at Trainou (black) and Sodankylä

(blue). Data for all individual coincidences are shown in the background as pale crosses and daily averages are depicted as crosses with error

bars (daily means are only calculated if there are at least 3 observations per day, which is the case on 29 days of the total 31 days with AirCore

observations). (a)-(c) Time series of the differences (error bars represent the daily 1σ standard deviation of the difference). (d)-(f) Correlation

between AirCore and satellite data (the black line is the one-to-one diagonal, x-axis error bars represent the mean uncertainty estimated for

the AirCore data – according to Eq. (F3) – and y-axis error bars the daily 1σ standard deviation of the satellite data, respectively). (g)-(i)

Correlation between the a priori free AirCore and satellite data (error bars as in d-f). The inserted text reports median and scatter (hIPR68.2,

a-c) and the coefficients of determination, the slope, and the intercept of the robust linear regression model (R2, m, and b, d-i). Black and

grey fonts represent the values for the daily mean data and for data from all individual collocations, respectively.

Fig. 10e is mainly due to the a priori data, i.e. IASI adds almost no information with respect to XCH4 to what is already known

by the a priori model. These findings are in line with the vertical resolution and representativeness analyses of Sect. 3.2.370
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Figure 11. Same as Fig. 10, but for the comparisons of tropospheric partial column averaged CH4 AirCore and satellite products (IASI and

combined).

Figure 11 presents the comparison between the AirCore and satellite tropospheric partial column CH4 data. The differences

between the satallite and the AirCore data are depicted in Fig. 11a and b. If compared to the total column data the agreement

worsens a bit (increased median difference and scatter). Nevertheless, the agreement is still good and close to what can be

expected from the uncertainty and the comparability of the different data (see Appendix F). Concerning the daily mean data

the combined product has a median difference and hIPR68.2 scatter of below about 0.9%. These values increase to about375

1.25% for the IASI product. These results might indicate a weak systematic bias in the MUSICA IASI lower tropospheric

partial columns.
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Figure 12. Same as Fig. 11, but for comparisons of UTLS partial column averaged CH4 data.

Figure 11c and d show the correlation plots. In particular for the combined product we observe a reasonable correlation (R2

of about 26% for daily mean data obtained by using the robust linear regression model). For the IASI product the correlation

strength is reduced (R2 of about 18% for daily mean data). Furthermore, we have to consider that the IASI product has a380

rather limited tropospheric sensitivity (see Sect. 3.2), which means that a large part of the observed correlation is due to the a

priori data: according to Eq. (7) for low entries in Al the variability in the satellite data as well as in the adjusted AirCore data

is determined by the variability in the a priori (xl
a). This is confirmed by Figs. 11e and f, which show the correlations after

removing the a priori data. We observe still a good correlation for the combined product (R2 of about 44% and regression line

slope of 0.93 for daily mean data), but only a weak correlation for the IASI daily mean data (R2 of about 11%). This clearly385
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documents the importance of combining IASI and TROPOMI in order to be sensitive to and reliably detect tropospheric CH4

variations.

Concerning the UTLS partial column we find a very good agreement between the adjusted AirCore data and the IASI and

combined satellite data products (see Fig. 12a and b): median difference calculated from the daily mean data are about −0.3%

and the scatter values are within about 0.5%. We find no indication of a bias in the satellite data product. The scatter observed390

between the AirCore and satellite data is even better than what we estimate from the data uncertainty and the data comparability

analysis (see Appendix F). Figure 12c and d show that in the UTLS the AirCore and satellite data are strongly correlated (for

daily mean data and when using the robust linear regression model, we get R2 values of up to about 82% and regression line

slopes of very close to unity). In this altitude region the MUSICA IASI and the combined products have a very good sensitivity

(see Sect. 3.2). This means that the entries in Al of Eq. (7) are large and any deviation between the a priori and the actual CH4395

concentrations in the UTLS are well captured by the adjusted AirCore and satellite data products. Nevertheless, the correlation

strength observed for the a priori free data (Fig. 12e and f) is relatively weak (R2 values of 20%-23% for daily mean data).

This indicates that the a priori model does generally capture well the actual variation of the CH4 concentration in the UTLS

above France and northern Scandinavia.

4.3 GAW surface in-situ CH4 measurements400

At many globally distributed sites atmospheric trace gas in-situ measurements are made continuously within the Global At-

mospheric Watch (GAW, https://community.wmo.int/activity-areas/gaw) programme. Appendix A of Sepúlveda et al. (2014)

presents a method for filtering common signals in night time CH4 data of the two nearby mountain GAW stations Jungfraujoch

(46.5◦N, 8.0◦E, 3580 m a.s.l.) and Schauinsland (47.9◦N, 7.9◦E, 1205 m a.s.l.). Data were retained as common signals when

deviations of observations (after correction for vertical gradient, i.e. application of an offset, and a temporal shift in the annual405

cycles) at both sites were below a certain threshold. Sepúlveda et al. (2014) showed that the common signals are well represen-

tative for a broader layer in the lower free troposphere. Here we follow this approach and use the mean of the Jungfraujoch and

Schauinsland CH4 mixing ratio – whenever identified as a common signal – as a validation reference for the remote sensing

data in South-western Germany and Northern Switzerland (indicated by the grey circle in Fig. 8b). We assume that the signals

obtained from this GAW data filtering are well representative for the tropospheric partial column averaged mixing ratios (sur-410

face - 6 km a.s.l.) and compare these data directly to different satellite products as a fully independent data set: we do not adjust

the data to a common a priori data usage as in Sects. 4.1, because the in-situ data represent absolute measurements and do not

depend on any a priori information. Furthermore, we do not adjust sensitivities as in Sect. 4.2 (see Eq. (7)), which means that

we validate here also the sensitivities of the products.

In order to be able to compare TROPOMI data to the GAW data, we calculate from the TROPOMI XCH4 data a proxy415

(fT(TROPOMI)) that represents the tropospheric column averaged mixing ratios:

troXCH4(TROPOMI) ≈ fT(TROPOMI)

=
Xair

troXair

[
XCH4(TROPOMI)−XCH4(apriori)

]
+ troXCH4(apriori). (8)
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Figure 13. Comparison of GAW measurements made at Jungfraujoch and Schauinsland with the TROPOMI tropospheric CH4 proxy prod-

uct according to Eq. 8 and the IASI and the combined tropospheric CH4 products. Data for all individual coincidences are shown in the

background as squares and daily averages are depicted as crosses with error bars representing the daily 1σ standard deviations (daily means

are only calculated if there are at least 3 observations per day). (a)-(c) Time series of differences. (d)-(f) Correlation between GAW and

satellite data (the black line is the one-to-one diagonal). (g)-(i) Correlations between the difference of GAW and a priori data (∆aGAW =

troXCH4(GAW)−troXCH4(apriori)) and the a priori free satellite data (∆aSatellite = troXCH4(Satellite)−troXCH4(apriori)). The

inserted text reports median and scatter (hIPR68.2, a-c) and the coefficients of determination, the slope, and the intercept of the robust lin-

ear regression model (R2, m, and b, d-i). Dark and pale coloured fonts represent the values for the daily mean data and for data from all

individual collocations, respectively.

In Eq. (8) Xair and troXair are the dry air total and tropospheric partial columns, respectively, and troXCH4(apriori) is the

tropospheric column averaged CH4 a priori. In the case that the CH4 a priori in the UTLS is of very good quality, this proxy is420

well representative for the tropospheric CH4 variations.
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Figure 13 shows the comparison with the different satellite products. For the tropospheric proxy product calculated from the

XCH4 product of TROPOMI we observe no systematic difference and a scatter of the daily mean differences of within 1.3%

(Fig. 13a). However, the correlation is rather weak (from the robust linear regression model we get R2 values of about 10%

and regression line slopem of below 0.5, see Fig. 13d), which might suggest that this proxy is affected by signals in the UTLS,425

where CH4 values are dominated by shifts of the tropopause height.

For the MUSICA IASI tropospheric partial column averaged mixing ratio product (Fig. 13b and e) we observe a smaller

median difference than for the comparison with the TROPOMI tropospheric proxy CH4 data, but at the same time an increased

scatter. The R2 values are larger than for the correlation of TROPOMI proxy data; however, we have to be careful, because in

the lower troposphere the MUSICA IASI CH4 data have a limited sensitivity (see Fig. 5b). This means that the respective data430

are significantly affected by the a priori assumptions and the observed correlation might actually be due to a correlation with

the tropospheric a priori data. This is confirmed by Fig. 13h, which shows the correlation after removing the a priori data. Then

the correlation strength is weaker if compared to the data that include the a priori information (R2 decreases from about 25%

to 20% and from about 20% to 10% for correlations with daily mean and all individual data, respectively).

The combined product has a good sensitivity in the troposphere (see Fig. 5b), i.e. the respective partial column averaged435

mixing ratio product is practically independent from the a priori assumptions. We find a good agreement and correlation

between the GAW data and the combined products as illustrated in Fig. 13c and f: for instance, for daily mean data the

difference and scatter is +0.28%±1.05%, the R2 value is about 37%, and the regression line slope very close to 1.0. This

demonstrates that the combined product can reliably capture actual tropospheric CH4 variations independently from the UTLS

CH4 variations and from the a priori assumption. The latter is confirmed by Fig. 13i, which shows the correlation after removing440

the tropospheric a priori information. We observe that the good correlation remains even after removing the a priori information

(for daily mean data the R2 value is about 39% and the regression line slope close to 1.0). A similar good correlation is not

achieved by the TROPOMI tropospheric proxy and the IASI product.

5 Global data

5.1 Discussion on global data consistency445

The TCCON and AirCore comparisons of Sects. 4.1 and 4.2 suggest that the combined total column and UTLS partial column

products have no significant bias with respect to reference data. However, there might be a weak bias in the troposphere (see

discussions in the context of Fig. 11). In general we have to consider that the study on biases in the profile data is limited to the

two sites where AirCore references are available: Sodankylä in northern Scandinavia and Trainou in France. In this section, we

argue that it is reasonable to assume similar insignificant or low biases also for other locations.450

According to Eq. (A2) a varying error in the a priori state together with a poor sensitivity (i.e. an averaging kernel being

very different from an identity matrix) can cause a varying bias. If the error in the a priori state is latitudinally dependent

the bias will also be latitudinally dependent. Similarly, a systematic error source (like an error in a spectroscopic parameter)

can have a variable impact on the remote sensing product, if the sensitivity is variable. If the sensitivity has a dependency on
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Figure 14. Latitudinal dependency of the overall mean values obtained at the 14 TCCON and two AirCore observation sites. Grey colour

represents the TCCON and AirCore reference data and black, red and blue colours the TROPOMI, MUSICA IASI, and combined satellite

data, respectively: (a) for total columns (XCH4) and (b) for tropospheric and UTLS partial columns. The error bars on the AirCore data

describe the variability range due to the AirCore data treatment – according to Eq. (7) – with the different averaging kernels of the TROPOMI,

MUSICA IASI and combined data product.

latitude, a systematic error source can thus also cause a latitudinally dependent bias. In this context, variabilities (e.g. latitudinal455

dependencies) of biases are likely for a low or variable sensitivity. In contrast, inconsistencies in the bias are unlikely in case

of a high and constant sensitivity (as observed in Fig. 5 for the total column and tropospheric and UTLS partial columns of the

combined data product).

Figure 14 depicts the overall mean total and partial column values obtained at the 14 TCCON and and two AirCore ob-

servation sites. For total column data (Fig. 14a) we achieve a good latitudinal coverage by the TCCON observation sites and460

can investigate possible latitudinal inconsitencies in the satellite data products. We find that the TROPOMI and the combined

satellite data product capture a latitudinal dependency that is similar to the dependency as seen in the TCCON data.

Figures 3a and 5a reveal that for the TROPOMI and the combined XCH4 products the sensitivities are very high and stable,

in contrast to the MUSICA IASI data product, which has a relatively weak and seasonally (and supposed latitudinally) varying

sensitivity. This explains that in Fig. 14a the latitudinal dependency of the MUSICA IASI XCH4 data is different from the465

TCCON data. Table 3 resumes the statistics made with the overall mean XCH4 values obtained for the 14 TCCON observation

sites. For the TROPOMI and the combined data product the 1σ standard deviation calculated from the mean difference of the 14

stations is about 0.4%. A standrad linear least squares fit results in R2 values of almost 100% and regression line slope values

of close to unity, which confirms the very good latitudinal data consistency of the TROPOMI and combined data products. The

MUSICA IASI XCH4 product shows poorer performance with regard to the values of standard deviation and R2, which is in470

line with its weak and varying sensitivity.

A similar study of the latitudinal consistency of the partial column data products is compromised by the lack of profile

references for low latitudes and southern hemispheric sites (Fig. 14b). Nevertheless, because the combined product has a rather

high and constant sensitivity for the tropospheric as well as the UTLS partial column (see Figs. 3 and 5), we expect – as for

XCH4 – a good latitudinal consistency, i.e. a bias at low and/or southern latitudes that is similarly insignificant or low as the475

biases observed at for two AirCore station in the middle and high northern latitudes.
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Table 3. Statistics based on the comparisons between satellite and TCCON data of the overall mean XCH4 values obtained for the 14 TCCON

sites of Table 1.

Product Difference (mean±std) R2 Slope (m) Intercept (b)

TROPOMI -0.04%±0.41% 94.2% 1.09 −174 ppb

MUSICA IASI +0.71%±0.67% 79.2% 0.88 +237 ppb

Combined +0.02%±0.41% 94.2% 1.09 −173 ppb

5.2 Example of global maps

The proposed synergetic use method needs no extra retrievals, and is thus computationally very efficient. This makes it ideal

for combining the large TROPOMI and IASI data sets on global scale. Figure 15 shows monthly mean global maps (1◦× 1◦

resolution) of TROPOMI XCH4 data and the tropospheric and UTLS partial column CH4 data of the combined product. The480

maps are generated from about 1.62 million and 3.77 million individual data points in January and July 2020, respectively.

These are the data that remain after requiring collocation of the quality filtered IASI and TROPOMI data according to Sect. 2.

TROPOMI alone only reports the XCH4 data (Fig. 15a and b). We observe low XCH4 values at high latitudes. The lowest

values are encountered in the sumertime southern hemisphere. The highest XCH4 values are present between northern low and

middle latitudes. Here Fig. 15a and b shows the TROPOMI data, the XCH4 data of the combined product are very similar.485

The combined product offers the most reliable tropospheric partial columns. Respective maps are shown in Fig. 15c and

d. We observe partial column averaged CH4 mixing ratios that are almost monotonically increasing from south to north. In

norther hemispheric winter (January 2020) this gradient is significantly stronger than in northern hemispheric summer (July

2020). The latitudinal patterns of tropospheric CH4 is significantly different from the respective patterns of XCH4, which might

indicate to an extra potential of this tropospheric CH4 data when investigating the CH4 sources and sinks.490

Figure 15e and f shows the respective maps of the UTLS partial columns (here we depict the combined data product, the

respective MUSICA IASI data are very similar). We observe highest partial column averaged mixing ratios at low latitudes (in

January 2020 around the equator and in July 2020 in the northern subtropics). The mixing ratios are lowest in high latitudes.

This latitudinal pattern is in line with the tropopause hight, which increases from high to low latitudes.

6 Summary and outlook495

We present a method for a synergetic combination of the IASI vertical profile and TROPOMI total column level 2 retrieval

products. It is computationally very efficient, because it is based on simple linear algebra calculations that works with the

output already available from individual IASI and TROPOMI retrievals. Nevertheless, theoretically it approximates closely to

a computationally expensive multispectral retrieval, that use the TROPOMI and IASI level 1 data (see Appendix B). We apply
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Figure 15. Global maps with 1◦ × 1◦ (longitude × latitude) resolution of monthly mean data for January and July 2020. (a)+(b) XCH4 as

observed by TROPOMI. (c)+(d) Tropospheric partial columns of CH4 as obtained by the combined product. (e)+(f) UTLS partial columns

of CH4 as obtained by the combined product.

the method to CH4 level 2 products. By providing a compilation with all important equations we support its application to500

other data products.

We theoretically examine the sensitivity, vertical resolution, and errors of the individual TROPOMI and IASI products and

of the combined product. The TROPOMI product consists of reliable total column CH4 data, but does not offer information

on the vertical distribution. The IASI product offers some information on the vertical distribution and has best sensitivity in

the UTLS region, but lacks sensitivity in the lower troposphere and in consequence to the total column. We show that the505

combined product combines both strengths: it is a reliable reference for the total column and also for the UTLS partial column.
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In addition, we found as a clear synergetic effect that the combined product is theoretically able to distinguish variations of

CH4 that take place in the troposphere from variations at higher altitudes (it is a reliable reference for the tropospheric partial

columns). We empirically demonstrate the functionality of the synergetic use method by comparing the different satellite CH4

products to reference data of TCCON, AirCore and GAW.510

The TCCON data offer good references for XCH4. In this study we use data from 14 stations covering different climate

regions in the northern and southern hemisphere. For the TROPOMI and the combined data products, which are well sensitive

for XCH4, we get an agreement with the TCCON data within about 0.7% (the agreement is slightly poorer with the IASI

satellite product due its reduced sensitivity).

AirCore offers XCH4 references as well as references for the vertical distribution of CH4. For this study 36 individual515

AirCore profiles measured at two sites in the northern hemispheric high and middle latitudes are available. Concerning XCH4,

the comparisons to AirCore data confirm the results obtained by the comparison to TCCON data, and in addition demonstrate

a very good consistency between the TROPOMI and the IASI product. Concerning CH4 in the UTLS – where the MUSICA

IASI and the combined data product are well sensitive – we find that both products agree well with the respective AirCore

references (agreement within 0.7%).520

The validation study with the TCCON and AirCore references shows that the total column and the UTLS partial column

of the combined product has almost the same good quality as the respective products of TROPOMI and MUSICA IASI. This

allows two conclusions: firstly, the assumption of the moderate non-linearity – required for a reliable functionality of the level

2 product combination according to Eq. (1) – is valid and secondly, the combined product’s tropospheric data are also of good

quality (good total column and UTLS data quality is an indirect proof of a good tropopsheric data quality).525

The good quality of the combined product in the troposphere is in addition directly proven by the comparison to tropospheric

reference data. We find an agreement of the daily mean tropospheric AirCore and combined product data within 1%. This

validation result is confirmed by the statistically very robust comparison with CH4 data observed continuously at two nearby

GAW stations (the collocated GAW reference data cover all seasons for more than 3 years and represent more than 186 different

days). The GAW and the combined product’s data capture very similar tropospheric CH4 short term variabilities and seasonal530

cycles. Similar good agreements are not achieved by comparisons to the individual MUSICA IASI or TROPOMI data products,

i.e. we empirically and directly prove the synergetic effect of the level 2 product combination.

The proposed method takes benefit from the outputs generated by the dedicated individual TROPOMI and IASI retrievals,

it needs no extra retrievals, and is thus computationally very efficient. This is ideal for an operational combination of IASI

and TROPOMI products in an efficient and sustained manner. This has a particular attraction, because IASI and TROPOMI535

successor instruments will be jointly aboard the upcoming Metop (Meteorological operational) Second Generation satellites

(guaranteeing observations from the 2020s to the 2040s). IASI and TROPOMI successor instruments will have globally-

distributed and perfectly-collocated observations (over land) in the order of several hundred thousands per day, for which a

combined product can be generated in a computationally very efficient way.
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Data availability. Access to the MUSICA IASI data is provided via http://www.imk-asf.kit.edu/english/musica-data.php. The TROPOMI540

XCH4 data used in this study are available for download at ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/14_14_Lorente_et_

al_2020_AMTD/. TCCON data are made available via the TCCON Data Archive, hosted by CaltechDATA, California Institute of Technol-

ogy, California (USA), http://tccondata.org. For Trainou AirCore data please contact Michel Ramonet (michel.ramonet@lsce.ipsl.fr) and for

Sodankylä AirCore data please contact Huilin Chen (huilin.chen@rug.nl). The GAW surface in-situ data are available via the World Data

Centre for Greenhouse Gases (WDCGG), https://gaw.kishou.go.jp/search/.545

Appendix A: Basics on retrieval theory

In this appendix, we give a brief overview on the theory of optimal estimation remote sensing methods and follow the notation

as recommended by the TUNER activity (von Clarmann et al., 2020), which is closely in line with the notation used by

Rodgers (2000). The overview focuses on the equations that are important for our work, i.e. the a posteriori combination of

two independently retrieved optimal estimation remote sensing products. For a more detailed and general insight into the theory550

of optimal estimation remote sensing methods we refer to Rodgers (2000).

Atmospheric remote sensing instruments measure radiance spectra (written as state vector y), which can be well simulated

by models (F ) whenever the actual atmospheric state (the vector x) is known. Using the a priori atmospheric state vector xa

we can linearise and write:

F (x)−F (xa) = ∆y = K(x−xa). (A1)555

Here, K is the Jacobian matrix, i.e. derivatives that capture how the measurement vector (the measured radiances) will change

for changes of the atmospheric state (the atmospheric state vector x). A remote sensing retrieval inverts Eq. (A1) and provides

an estimation of the difference between the atmospheric state and the a priori atmospheric state. For a moderately non-linear

problem (according to Chapter 5 of Rodgers, 2000), the retrieved optimal estimation product (x̂) can be written as:

x̂−xa = G∆y = G[K(x−xa)]. (A2)560

G is the gain matrix and realises the inversion from the measurement domain (radiances) to the domain of the atmospheric

states. It consists of derivatives that capture how the retrieved atmospheric state vector will change for changes in the measure-

ment vector:

G = (KTSy,n
−1K + Sa

−1)−1KTSy,n
−1

= SaKT (KSaKT + Sy,n)−1, (A3)565

with Sy,n and R = Sa
−1 being the retrieval’s noise covariance and the constraint matrices (in a strict optimal estimation sense,

the constraint matrix is the inverse of the a priori covariance matrix Sa), respectively. The equivalence of both lines in Eq. (A3)

is demonstarted in Chapter 4.1 of Rodgers (2000), where the first line is called the n-form and the second line the m-form.

The averaging kernel

A = GK, (A4)570
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is an important component of a remote sensing retrieval, because according to Eq. (A2) it reveals how changes of the actual

atmospheric state vector x affect the retrieved atmospheric state vector x̂.

A valuable diagnostic quantity is the a posteriori covariance matrix, which can be calculated as follows:

Sx̂ = (KTSy,n
−1K + Sa

−1)−1. (A5)

The linearised formulation of the retrieval solution according to (A2) is very useful for the analytic characterisation of the575

product. The retrieval state’s noise error covariance matrix for noise can be analytically calculated as:

Sx̂,n = GSy,nGT

= Sx̂KTSy,n
−1KSx̂, (A6)

where Sy,n is the covariance matrix for noise on the measured radiances y. The second line of Eq. (A6) is obtained by

substituting G by Sx̂KTSy,n
−1 according to Eqs. (A3) and (A5). The representativeness error reveals the deficit of the580

retrieval product in representing the actual variations of the state vector x. In Chapter 3 of Rodgers (2000) it is called the

smoothing error and can be calculated as (with I being the identity matrix):

Sx̂,r = (A− I)Sa(A− I)T

= Sx̂Sa
−1Sx̂. (A7)

The second line of Eq. (A7) is obtained using:585

Sx̂ = (I−A)Sa, (A8)

which in turn follows from Eqs. (A3) - (A6).

Using Eqs. (A5) - (A7) reveals that the a posteriori covariance is the sum of the noise error covariance and the representa-

tiveness error covariance:

Sx̂ = Sx̂,n + Sx̂,r. (A9)590

Appendix B: Theory on the optimal combination of retrieval data products

In this section, we discuss an optimal estimation retrieval that uses a combined measurement vector (two measurements from

different instruments). First we show that the retrieval output of two profile retrievals performed on the same vertical grid can

be used in a way that yields to the same results as performing a retrieval with the combined measurement vector. Then we

present an approach for combining the outputs of a retrieval that provides profiles and another retrieval that provides column595

data. We show that the combination of profile and column data can be realised in a computationally efficient manner via a

Kalman filter. Finally, we discuss the validity of the methods and the requirements on the individual retrieval products.
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B1 Inversion of a combined measurement vector

According to Eqs. (A2), (A3), and (A5) the retrieval product obtained from measurement y can be written as:

x̂−xa = (KTSy,n
−1K + Sa

−1)−1KTSy,n
−1K(x−xa). (B1)600

In the case of two individual measurements (measurement 1 and 2), we obtain from using a combined measurement vector

{y1,y2}:

x̂−xa = (K1
TSy1,n

−1K1 + K2
TSy2,n

−1K2 + Sa
−1)−1(K1

TSy1,n
−1K1 + K2

TSy2,n
−1K2)(x−xa)

= (Sx̂1

−1 + Sx̂2

−1−Sa
−1)−1(K1

TSy1,n
−1K1 + K2

TSy2,n
−1K2)(x−xa), (B2)

where Sy1,n and Sy2,n are the respective measurement noise covariances, K1 and K2 the respective Jacobians and Sx̂1 and605

Sx̂2 the respective a posteriori covariances. The second line follows from Eq. (A5). According to Eqs. (A3) - (A5) we can

substitute KTSy,n
−1K(x−xa) by Sx̂

−1(x̂−xa) and write Eq. (B2) as

x̂−xa = (Sx̂1

−1 + Sx̂2

−1−Sa
−1)−1[Sx̂1

−1(x̂1−xa) + Sx̂2

−1(x̂2−xa)]. (B3)

Using Eq. (B3) we can realise an optimal combination of the two retrieval products that only needs the a priori covariance,

the a posteriori covariances, and the two retrieval products. The Jacobians are not needed. This combination is mathematically610

equivalent to using the Jacobians of a combined measurement vector {y1,y2}, i.e. within a linear subspace (validity of mod-

erate non-linearity according to Chapter 5 of Rodgers, 2000) it is equivalent to a synergetic use of level 1 data in form of a

multispectral retrieval.

B2 Combining profile and column data products

Equation (B3) requires two retrieval results on the same vertical grid and can be used to combine two profile products. Here615

we will develop a method for combining a profile and a column data product. For a column retrieval we can write in analogy

to Eq. (A1)

∆x∗ = a∗T (x−xa), (B4)

where a∗T is the column averaged mixing ratio according to Appendix D2. Equation (B4) poses an inverse problem of the

same kind as Eq. (A1) and in order to optimally estimate a profile from an available column product we can apply the same620

solution approach as in Eqs. (A2) and (A3). A similar application of this approach is also presented in Sect. 4.2 of Rodgers

and Connor (2003). For the application here we substitute in Eq. (A3) K by a∗T and Sy,n by the scalar S∗x̂,n (the noise error

variance of the column data product) and get the profile

x̂−xa = (a∗S∗x̂,n
−1a∗T + Sa

−1)−1a∗S∗x̂,n
−1a∗T (x−xa)

= (a∗S∗x̂,n
−1w∗TSx̂KTSy,n

−1K + Sa
−1)−1a∗S∗x̂,n

−1w∗TSx̂KTSy,n
−1K(x−xa). (B5)625

For the second line of Eq. (B5) we use a∗T = w∗TA – according to Eq. (D6) – and A = Sx̂KTSy,n
−1K – according to

Eqs. (A3) - (A5). We write this second line to discuss similarities with Eq. (B1). The comparison of Eq. (B5) with Eq. (B1)
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reveals that for a retrieval providing only a column product, the Jacobian information provided by K is vertically aggregated

according to the operator a∗S∗x̂,n
−1w∗TSx̂. The term Sx̂ is the vertically resolved a posteriori covariance, which exist for a

retrieval that internally inverts profiles, but only distributes the column products; however, it is only an internal measure of the630

retrieval, and actually not available.

Instead of the term of Eq. (B4) we now invert the term ∆x∗ = a∗2
T (x− x̂1), i.e. we replace xa by the profile product x̂1

of a first retrieval (retrieval 1) on the right side of (B4) and use a∗2
T and S∗x̂2,n

for the column averaging kernel and the noise

error variance of a second retrieval (retrieval 2), respectively. Here and in the following, retrieval 1 is the profile retrieval and

retrieval 2 the retrieval that provides only column products. The solution can easily be achieved by substituting in (B5) Sa by635

Sx̂1 , which is the a posteriori covariance of retrieval 1:

x̂− x̂1 = (a∗2S
∗
x̂2,n

−1a∗2
T + Sx̂1

−1)−1a∗2S
∗
x̂2,n

−1a∗2
T (x− x̂1). (B6)

We modify Eq. (B6) by using x̂1 = A1(x−xa) +xa:

x̂−xa = A1(x−xa) + (Sx̂1

−1 +a∗2S
∗
x̂2,n

−1a∗2
T )−1a∗2Sx̂2,n

−1a∗2
T (I−A1)(x−xa)

= (Sx̂1

−1 +a∗2S
∗
x̂2,n

−1a∗2
T )−1[Sx̂1

−1A1 +a∗2S
∗
x̂2,n

−1a∗2
T ](x−xa)640

= (Sx̂1

−1 +a∗2S
∗
x̂2,n

−1a∗2
T )−1[Sx̂1

−1(x̂1−xa) +a∗2S
∗
x̂2,n

−1(x̂∗2−w∗Txa)]. (B7)

In the third line of Eq. (B7) we use the column product x̂∗2 = a∗2
T (x−xa)+w∗Txa. Similarly to Eq. (B3) we can generate a

combined product without the need of the Jacobian matrices. The combination is possible by using the profile and the column

product (x̂1 and x̂∗2, respectively) together with the a posteriori covariance of the profile product and the noise error and

averaging kernel of the column product.645

If we substitute in the second line of Eq. (B7) Sx̂1

−1 by K1
TSy1,n

−1K1 +Sa
−1 – according to Eq. (A5), a∗2

T by w∗TA2

– according to Eq. (D6), and then A2 by Sx̂2K2
TSy2,n

−1K2 – according to Eqs. (A3) - (A5), we get:

x̂−xa = (K1
TSy1,n

−1K1 +a∗2S
∗
x̂2,n

−1w∗TSx̂2K2
TSy2,n

−1K2 + Sa
−1)−1

[K1
TSy1,n

−1K1 +a∗2S
∗
x̂2,n

−1w∗TSx̂2K2
TSy2,n

−1K2](x−xa). (B8)

This equation has strong similarities to the first line of Eq. (B2), i.e. the retrieval product obtained when using the combined650

measurement vector {y1,y2}. The only difference is that in Eq.(B8) the information provided by Jacobian K2 is vertically

aggregated according to the operator a∗2S
∗
x̂2,n

−1w∗TSx̂2 .

B3 Linear Kalman filter

Here we show that the approach developed in Appendix B2 is equivalent to a Kalman filter. An important application of a

Kalman filter (Kalman, 1960; Rodgers, 2000) is data assimilation in the context of atmospheric modelling. There, the filter655

operates sequentially in different time steps. Kalman filter data assimilation methods determine the analysis state (x̂a) by

optimally combining the background (or forecast) state (x̂b) with the information as provided by a new observation (x̂o):

x̂a = x̂b + M[x̂o−Hx̂b] (B9)
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Optimal means here that the uncertainties of both, the background state and the observation, are correctly taken into account

by the Kalman gain matrix (M):660

M = Sx̂bHT (HSx̂bHT + Sx̂o,n)−1, (B10)

with Sx̂b and Sx̂o,n being the uncertainty covariances of background state and the new measurement, respectively. The matrix

H is the measurement forward operator, which maps the background domain into the measurement domain.

By rearranging the n-form of (B6) as the m-form – in analogy to Eq. (A3) – and by using again x̂1 = A1(x−xa)+xa and

x̂∗2 = a∗T (x−xa) +w∗Txa we get665

x̂ = x̂1 + Sx̂1a
∗
2(a∗2

TSx̂1a
∗
2 +S∗x̂2,n)−1a∗2

T (x− x̂1)

= x̂1 + Sx̂1a
∗
2(a∗2

TSx̂1a
∗
2 +S∗x̂2,n)−1[x̂∗2−a∗2

T x̂1− (w∗Txa−a∗2
Txa)]

= x̂1 +m(x̂∗2−a∗2
T x̂1)−m(w∗Txa−a∗2

Txa) (B11)

with

m = Sx̂1a
∗
2(a∗2

TSx̂1a
∗
2 +S∗x̂2,n)−1. (B12)670

Disregarding the term that accounts for the a priori information (m(w∗Txa−a∗2
Txa)), the Eqs. (B11) and (B12) are the

same as the Kalman filter Eqs. (B9) and (B10): retrieval 1 provides the background state and retrieval 2 the new observation.

Compared to Eqs. (B7) and (B8) the form of Eq. (B11) has the advantage that no matrices have to be inverted only the scalar

(a∗2
TSx̂1a

∗
2 +S∗x̂2,n

).

We have shown that Eq. (B11) is mathematically the same as Eq. (B7) and Eq. (B8). The latter is in turn very similar to the675

synergetic use of level 1 data in form of a multispectral retrieval as discussed in the context of Eq. (B3).

B4 Discussion and requirements

In the Appendices B2 and B3, we assume the usage of the same a priori for the two individual retrievals. Since generally two

individually performed retrievals use two different a priori settings we have to perform an a priori adjustment. Using the a priori

of retrieval 2 as the reference (x2,a = xa), we can adjust the output of retrieval 1 by (see Eq. (10) of Rodgers and Connor,680

2003):

x̂1
′ = x̂1 + (A1− I)(x1,a−x2,a), (B13)

where x1,a is the a priori used by retrieval 1.

For a combination according to Eq. (B3) we need retrieval 1 and 2 outputs obtained by using the same constraint (the inverse

of the a priori covariance Sa). This has to be accounted for before applying Eq. (B3), by adusting the contraint according to the685

formalism as presented in Chapter 10.4 of Rodgers (2000) or Sect. 4.2 of Rodgers and Connor (2003). By applying Eq. (B7) or

the Kalman filter according to Eq. (B11) the common constraint is automatically set to the constraint of the retrieval 1 product

and no extra modification is necesarry.
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The synergetic combination of remote sensing profile and column products according to Eq. (B7) or Eq. (B11) is possible,

whenever: (1) the two remote sensing observations are made at the same time and detect the same location, (2) the problems is690

moderately non-linear (according to Chapter 5 of Rodgers, 2000), and (3) the individual retrieval output as listed by Eq. (B7)

or Eq. (B11) is made available: for the profile retrieval, we need the a posteriori covariances (Sx̂, which might also be recon-

stracted from A and R = Sa
−1 according to Eq. (A8)), the averaging kernels (A), and the retrieved and a priori state vectors

(x̂ and xa, respectively). For the column retrieval, we need the noise variances (the scalar S∗x̂,n), the column averaging kernels

(the row vector a∗T ), the column product (x̂∗2), and the a priori column data (w∗Txa), respectively.695

Appendix C: Operator for transformation between linear and logarithmic scales

Linear scale differentials and logarithmic scale differentials are related by ∂x= x∂ lnx. For transforming differentials or

covariances of a state vector with dimension nal (nal: number of atmospheric levels) from logarithmic to linear scale we

define the nal×nal diagonal matrix L:

L =


x̂1 0 · · · 0

0 x̂2 · · · 0
...

...
. . .

...

0 0 · · · x̂nal

 . (C1)700

Here x̂i is the value of the ith element of the retrieved state vector (i.e. in case of an atmospheric CH4 state vector the CH4

mixing ratios retrieved at the ith model level).

Approximatively, a logarithmic scale averaging kernel matrix Al can then be expressed in the linear scale as:

A≈ LAlL−1. (C2)

This is here an approximation, because on the right side the operator L should contain the actual instead of the retrieved mixing705

ratios. It is a valid approximation as long as the a priori is reasonable and there is no large bias in the retrieval data.

Similarly a logarithmnic scale covariance matrix Sl can be approximately expressed in the linear scale as:

S≈ LSlLT . (C3)

Here the approximation is because ∆x≈ x∆lnx.

Appendix D: Operators for column data710

This appendix explains the calculation of operators for partial (and total) column data. Although some sections are similar to

Appendix C of Schneider et al. (2022) we think it is a very useful reference here, because it facilitates the reproducibility of

our results.
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For converting mixing ratio profiles into amount profiles we set up a pressure weighting operator Z, as a diagonal matrix

with the following entries:715

Zi,i =
∆pi

gimair(1 +
mH2O

mair
x̂H2O
i )

. (D1)

Using the pressure pi at atmospheric grid level i we set ∆p1 = p2−p1

2 −p1, ∆pnal = pnal− pnal−pnal−1

2 , and ∆pi = pi+1−pi

2 −
pi−pi−1

2 for 1< i < nal. Furthermore, gi is the gravitational acceleration at level i, mair and mH2O the molecular mass of dry

air and water vapour, respectively, and x̂H2O
i the retrieved or modelled water vapour mixing ratio at level i.

We define an operator WT for resampling fine gridded atmospheric amount profiles into coarse gridded atmospheric partial720

column amount profiles. It has the dimension c×nal, where c is the number of the resampled coarse atmospheric grid levels

and nal, the number of atmospheric levels of the original fine atmospheric grid. Each line of the operator has the value ’1’ for

the levels that are resampled and ’0’ for all other levels:

WT =


1 · · · 1 0 · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1 0 · · · 0

0 · · · · · · · · · · · · 0 1 · · · 1

 . (D2)

In analogy we can define a row vector wT (with the dimension 1×nal) with all elements having the value ’1’, which allows725

the resampling for the total column amounts.

D1 Column amounts

The kernel that discribes how a change in the amount at a certain altitude affects the retrieved partial (or total) colunm amount

can be calculated as:

A′ = WTZAZ−1. (D3)730

For the total column, we replace WT by wT and get the row vector a′T (dimension 1×nal). This is the total column kernel

provided by the TROPOMI data and it is typically written as aT . Figure 3 shows examples of such total and partial column

amount kernels. The total column amount kernel can be interpolated to different altitude grids. For the applications in Sects. 3

and 4 we interpolate the TROPOMI total column amount kernel to the vertical grid used by the MUSICA IASI retrieval.

D2 Column averaged mixing ratios735

We can also combine the operators Z and WT for the calculation of a pressure weighted resampling operator by:

W∗T = (WTZW)−1WTZ. (D4)

This operator resamples linear scale mixing ratio profiles into linear scale partial column averaged mixing ratio profiles. The

respective total column operator w∗T can be calculated in analogy to Eq. (D4) by replacing WT by wT

34



With operator W∗T we can calculate a coarse gridded partial column averaged state x̂∗ from the fine gridded linear mixing740

ratio state x̂ by:

x̂∗ = W∗T x̂. (D5)

The kernels matrix of the partial column averaged mixing ratio state can then be calculated from the fine gridded linear scale

kernel matrix (A) by:

A∗ = W∗TA. (D6)745

This kernel discribes how a change in the mixing ratio at a certain altitude affects the retrieved partial column averaged mixing

ratio. Covariances of the partial column averaged mixing ratio state can be calculated from the corresponding covariance

matrices of the fine gridded linear scale (S) by:

S∗ = W∗TSW∗. (D7)

The respective calculations for total column averaged mixing ratios can be made by replacing W∗T by w∗T . For the total750

column avereraged mixing ratios the covariance is a simple variance (the scalar S∗) and the kernel has the dimension 1×nol,
i.e. it is a row vector a∗T .

The total column amount kernel (aT
T ) provided with the TROPOMI data set can be converted into a total column averaged

mixing ratio kernel a∗T
T by the following calculation (using Eqs. (D3), (D4), and (D6)):

a∗T
T = w∗TAT = (wTZw)−1aT

TZ. (D8)755

The total column averaged mixing ratio kernel a∗T
T used in Sects. 3 and 4 is valid for the vertical grid used by the MUSICA

IASI retrieval. It is calculated from the TROPOMI total column amount kernel (aT
T ) provided in the TROPOMI output files

according to Eq. (D8), after its interpolation onto the MUSICA IASI grid (see also Appendix D1).

Appendix E: Dislocation of TROPOMI and IASI

IASI is on an orbit with descending node equator crossing at 9:30 mean local solar time. TROPOMI is on an orbit with760

ascending node equator crossing at 13:30 mean local solar time. In this work we require a temporal collocation within at

least six hours. This requirement causes the following typical time difference (IASI - TROPOMI) for observing the same

location: at northern high latitudes −0.6 to +3.7 hours, at northern middle latitudes −3.3 to −2.2 hours, at the equator −4.5

to −3.5 hours, at southern middle latitudes −5.4 to −4.3 hours, and at southern high latitudes −5.9 to −4.5 hours. This means

that at all latitudes we find data that fullfil the temporal collocation requirements and that in the southern hemisphere the765

temporal collocation is typically larger than in the northern hemisphere. Furthermore, there are horizontal dislocations. In this

work we use a horizontal collocation threshold of 50 km. In this appendix we estimate the impact of these spatial and temporal

dislocations on the combined product.
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Figure E1. Square root values of the diagonal entries of different dislocation cavariance matrices (Sl
∆dl

). These values are the root-mean-

squares (RMS) of the difference between the reference methane profile (CAMS forecast for location 49.1◦N and 8.4◦E, corresponding

to the location of Karlsruhe) and other forcasted profiles dislocated with respect to the reference: (a) horizontal dislocations; (b) temporal

dislocations. The dashed black lines indicate the collocation threshold values used for valid combinations of IASI and TROPOMI.

E1 Uncertainty source

For investigating the spatial and temporal variability of the atmospheric CH4 fields, we use the CAMS (Copernicus Atmo-770

spheric Monitoring service, https://atmosphere.copernicus.eu/) CH4 forecast product at highest available resolution (≈ 9 km,

Barré et al., 2021). By analysing the profiles forcasted for the same location but different timestamps, we can determine the

temporal covariance of the vertical CH4 fields. Similarly by analysing the profiles forecasted for the same timestamp but dif-

ferent locations we get the spatial covariance of the vertical CH4 fields. The analyses are made with CAMS data between

November 2017 and December 2020 for Central Europe in an area around Karlsruhe. The results are depicted in Figs. E1 to775

E3.

Figure E1 shows the root-mean-squares (RMS) of the difference between the forecasted reference methane profile and

forecasted profiles that are dislocated with respect to the reference by different spatial distances and time differences. These

are the square root values of the diagonal entries of the respective dislocation cavariance matrices (Sl
∆dl

, we use here the

superscript ’l’ for logarithmic scale, because we work with relative covariances: ∆lnx≈∆x/x). The dashed black lines780

indicate our collocation threshold values used for the combination of TROPOMI and IASI (TROPOMI and IASI are only

combined as long as the horizontal distance of their ground pixels is within 50 km and the time difference is within 6 hours).

Naturally, the respective RMS values are increasing with increasing horizontal distance and time difference. The values are

largest in a small layer close to the surface and in the stratosphere, but relatively small in the free troposphere. For a horizontal

dislocation of 50 km the RMS value is about 2% very close to the surface, between 0.3 and 0.5% for the rest of the troposphere785

and then it increases again to about 2% above 25 km altitude. For a time difference of 6 hours the RMS value is about 2.5% in

a very small layer above ground, 0.6-0.8% in the free troposphere below 10 km, and it reaches about 1.5% at 15 km and 3.5%

at 30 km altitude.

Figure E2 reveals to what extend the dislocation uncertainties as shown in Fig. E1 are vertically correlated. Depicted are

the vertical correlations for the example of a spatial dislocation of 50 km (Fig. E2a) and a temporal dislocation of 6 hours790

(Fig. E2b). We observe that for both spatial and temporal dislocations the vertical behavior of the vertical correlation length

36

https://atmosphere.copernicus.eu/


Figure E2. Characteristics of the vertical dependencies covered by the matrices Sl
∆dl

. Shown are the vertical correlation matrices for the

difference between the reference CH4 profile (location 49.1◦N and 8.4◦E, corresponding to the location of Karlsruhe) and profiles dislocated

with respect to the reference: (a) horizontal dislocation of 50 km; (b) temporal dislocation of 6 hours.

Figure E3. Same as Fig. E1, but for column averaged data: total column, tropospheric partial column, and UTLS partial column.

(distance where correlation coefficient decays to 0.5) is similar. The vertical correlation lengths are rather short close to the

surface (only 100-200 m). They are larger for higher altitudes: in the middle/upper troposphere and in the stratosphere they

increase to about 1000 m and 6000 m, respectively.

The dislocation error for total and partial columns can be calculated by resampling the spatial and temporal dislocation795

covariance matrices according to Eq. (D7) (more details see Appendix D). The result of these resampling calculations are

shown for the spatial dislocation in Fig. E3a and for the temporal dislocation in Fig. E3b. Naturally the dislocation uncertainties

increase for increasing horizontal distance and time difference. For our horizontal collocation threshold values of 50 km the

uncertainty (RMS value is used as the metric) is about 0.2% for the total column data. For our time difference collocation

threshold of 6 hours it is about 0.3% for the total column data. For the tropospheric and upper tropospheric / lower stratospheric800

partial columns the respective relative uncertainties values are slightly larger.

E2 Impact on the combined CH4 product

For calculating the error in the combined profile due to the horizontal and spatial dislocation between IASI and TROPOMI we

substitute x̂I in Eq. (1) by x̂I + AI∆dl, where ∆dl is the dislocation uncertainty of CH4 as shown in Figs. E1 and E2. This
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Figure E4. Example of dislocation kernel Al
C,dl – calculated according to Eq. (E3) – for the same late summer observation as used in the

context of Figs. 1 to 3.

results in a new term in Eq. (1) that gives the dislocation error in the combined profile:805

∆dlx̂
l
C = (I−L−1ma∗T

T )Al
I∆

l
dl. (E1)

The respective error covariance matrix is

Sl
x̂C,dl = Al

C,dlS
l
∆dl

Al
C,dl

T
, (E2)

where Sl
∆dl

is the covariance matrix for the CH4 dislocation uncertainty whose main characetristics are visualised in Figs. E1

and E2. Here810

Al
C,dl = (I−L−1ma∗T

T )Al
I (E3)

is the dislocation averaging kernel. Figure E4 shows an example of this dislocation averaging kernel. For the altitudes where

the dislocation uncertainty of CH4 are largest (close to ground and above 20 km, see Fig. E1) the dislocation kernel has rather

low values (i.e. there the combination procedure has only limited sensitivity to the dislocation uncertainty).

We calculate the dislocation error covariance matrices according to Eq. (E2) for different locations and then determine the815

corresponding total and partial column dislocation errors by summing up the temporal and spatial dislocation covariances and

performing an subsequent resampling of the covariance matrices according to Eq. (D7) (more details see Appendix D). Figure

E5 depicts this dislocation error in comparison to the noise error (respective resampling of the covariance matrices obtained

by Eq. (5), see also Fig. 6). We focus here on three different latitudinal locations: Sodankylä (northern high latitudes), Darwin

(low latitudes), and Lauder (southern middle latitudes). We find that for the northern high latitude site (where horizontal and820

temporal dislocation are of similar importance) but also for the tropical and southern hemispheric middle latitude sites (where

the temporal dislocation is dominating), the dislocation uncertainty is generally much smaller than the noise error.
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Figure E5. Comparison of the dislocation error (due to the CH4 dislocation uncertainty) and the noise error (an example of the typical

temporal dependencies of the noise error is shown in Fig. 6). The comparison is depicted for a northern high latitude location (Sodankylä,

violet crosses), a tropical location (Darwin, organge crosses), and a southern middle latitudinal location (Lauder, red crosses). (a) Total

column product; (b) Tropospheric partial column product; (c) UTLS partial column product.

Appendix F: Data comparability

The satellite data products are representative for broad vertical layers of the atmosphere (see averaging kernels as shown in

Figs. 2 and 3). Also the TCCON and AirCore reference data are sensitive to atmospheric CH4 at different vertical regions. If we825

furthermore assume that the TCCON and the AirCore data offer a stable absolute calibration reference, their inter-comparisons

with the satellite data as shown in Sect. 4 can in principle be used for empirically validating the characteristics (sensitivity and

error) of the satellite data products. The level of agreement that can be expected between the reference data and the satellite

products depends on the reliability of the references and the characteristics of the satellite data products. In the following

Appendices F1 and F2 we estimate the reliability of the TCCON and AirCore data, respectively, to serve as reference for the830

satellite data products. Then in Appendix F3 we show that the results of the inter-comparison as shown in the context of Figs. 9

to 12 are in a reasonable agreement with the reliability of the references and the characteristics of the different satellite data

products. This confirms the validity of the sensitivity of the satellite data products as shown in Sect. 3.2 and the validity of the

errors of the satellite data as documented in Sect. 3.3.

F1 TCCON versus satellite835

For estimating the reliability of the TCCON data as reference for the satellite data products we consider the TCCON retrieval

noise errors, the incomparableness of TCCON and satellite data caused by their different averaging kernels, and the collocation

mismatch between the TCCON and the satellite observations. The total column uncertainty variance (the scalar S∗ref ) for using

the TCCON data as reference for the satellite data can be estimated by:

S∗ref = S∗∆TC + (a∗T −a∗TC
T )S∆a(a∗T −a∗TC

T )T +a∗TC
T (S∆h + S∆t)a

∗
TC, (F1)840

39



Figure F1. Comparison of the CH4 state obtained from the TROPOMI a priori model TM5 (xTM5) and the collocated CAMS high resolution

forecasts (xCAMS). (a) RMS of the relative differences; (b) Matrix showing the correlations of TM5-CAMS differences at different altitudes.

The first term (the scalar S∗∆TC) is the TCCON retrieval error variance (the TCCON error is provided with the TCCON

data is typically 1‰). The second term accounts for the different averaging kernels. The row vectors a∗T and a∗TC
T are the

total column averaged mixing ratio kernels of the satellite and the TCCON retrievals, respectively (calculated according to

Appendix D). The matrix S∆a describes the uncertainty covariances of the used a priori data, and the matrices S∆h and S∆t

the covariances for horizontal and temporal collocation mismatches.845

For estimating S∆a we use the difference between the CH4 state as modelled by TM5 (xTM5) and provided by the high

resolution CAMS forecast (xCAMS, e.g., Barré et al., 2021). Figure F1 shows the results of these calculations for the sur-

roundings of Karlsruhe documented by the RMS values of the differences in the vertical profiles (Fig. F1a) and the vertical

correlation matrix of the differences (Fig. F1b). We estimate an uncertainty of the TM5 a priori model of about 6% close to the

surface, about 2% up througout the middle troposphere, a gradual increase to about 7.5% between the UTLS and about 23 km850

altitude, and a maximum value of about 27% in the stratosphere at about 30 km. The vertical correlation lengths (altitude range

where correlation coefficient decreases to about 0.5) is a few hundred metres close to the surface, about 5000 m in the middle

troposphere, about 2500 m in the UTLS, and about 7500 m in the stratosphere above 30 km altitude. We find that this relatively

large disagreement between the TM5 a priori data and the high resolution forecast of CAMS are significantly influenced by

inconsistencies between TM5 and CAMS in the years 2019 and 2020: after 2018 the TM5 model shows an increase of about855

1% per year, but the CAMS high resolution forecast shows no significant increase.

Figure F2 shows the value of the term (a∗T −a∗TC
T )(xTM5−xCAMS) for the different satellite data products, i.e. it

reveals the uncertainty in the comparison with TCCON data due to differences in the averaging kernels and the a priori model

uncertainty, which in Eq. (F1) is represented by the square root value of the term (a∗T−a∗TC
T )S∆a(a∗T−a∗TC

T )T . Because

the TROPOMI and the TCCON kernels have both a similar good column sensitivity throughout the troposphere, the respective860

uncertainty is generally within 0.1% (see black squares in Fig. F2). The same is true for the validation of the total column

of the combined product (see blue crosses in Fig. F2). For the validation of the total column of the MUSICA IASI product
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Figure F2. Error in the comparison of TCCON and satellite products due to the a priori model error and the different column sensitivities

of the TCCON product and the satellite products. These values are calculated as (a∗T −a∗
TC

T )(xTM5 −xCAMS) and are represented in

Eq. (F1) by the square root value of the term (a∗T −a∗
TC

T )S∆a(a∗T −a∗
TC

T )T .

this error is larger, because the total column sensitivity of IASI is significantly different from the respective sensitivity of the

TCCON product and the other satellite products (see Fig. 3a). For the comparison of the IASI and TCCON total column data

we estimate that the error due to the different sensitivities (of IASI and TCCON) can occasionally be even above 2% (see865

red dots in Fig. F2). This error is largest to the end of the time series, because then the TM5 a priori model error is largest

(increasing difference between the TM5 model and the CAMS high resolution forecast after 2018).

The collocation mismatch covariances S∆h and S∆t are the linear scale versions of the matrices Sl
∆dl

(characterised in

Figs. E1 and E2) interpolated to the actual temporal and horizontal mismatch of the satellite and the TCCON measurements.

The effect of this collocation mismatch on the comparison of the total columns (i.e. the term a∗TC
T (S∆h + S∆t)a

∗
TC) is870

estimated to be between 0.1% and 0.4%.

F2 AirCore versus satellite

Similar to the TCCON data we estimate the reliability of the AirCore profile data as reference for the satellite observations.

For this estimation we consider an AirCore measurement noise covariance (S∆AC,n). It is calculated assuming an uncertainty

for altitudes with AirCore CH4 data of 0.3% (Karion et al., 2010) and the uncertainty according to S∆a from Sect. F1 for all875

other altitudes. The outer diagonal elements are determined by assuming the same vertical correlation as derived for S∆a. In

addition, we consider uncertainties in the height attribution, which is according to Wagenhäuser et al. (2021) below 10 m close

to ground, about 200 m at 20 km a.s.l. and about 1 km at 27 km a.s.l. We construct a respective height attribution uncertainty

covariance (S∆AC,v) by assuming a very strong correlation of the height attribution uncertainties between different altitude

levels. The temporal and spatial collocation mismatch covariance between the AirCore and the satellite observations (S∆h and880

S∆t, respectively) are calculated as described in Sect. F1.

All the aforementioned uncertainties are independent and we can calculate the total uncertainty as:

S∆AC = S∆AC,n + S∆AC,v + S∆h + S∆t. (F2)
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The reliability of the AirCore data – after its adjustment according to Eq. (7) – as reference for the MUSICA IASI and combined

satellite data can then be estimated by:885

Sl
ref = AlSl

∆ACAlT . (F3)

Here and in Eq. (F2) the covariances are determined for the full vertical profile. Respective covariances for total or partial

columns can be derived according to Appendix D. The reliability for the TROPOMI total column averaged mixing ratio data

can be calculated by S∗ref = a∗T
TS∆ACa

∗
T .

In order to get a reasonable number of collocated AirCore data we relax the collocation criteria: we require a temporal collo-890

cation within 6 hours and a spatial collocation within 500 km (see Sect. 4.2). In particular loose spatial collocation requirement

results in theoretically large collocation mismatch uncertainties. For instance, Fig. E3 reveals that a spatial mismatch of 400 km

clearly dominates the temporal mismatch, whose threshold is set to 6 hours, but it is actually only in the southern hemisphere

typically greater than 3 hours. The spatial mismatch uncertaintly also dominates AirCore uncertainties due to measurement

noise and uncertain height attribution, i.e. it is the term that mostly affects the comparability of the AirCore and satellite mea-895

surements. We estimate a spatial mismatch error that has to be considered for the AirCore satellite inter-comparison of about

0.5% for the total column data and of about 0.6% for the tropospheric and UTLS partial column data.

F3 Summary

The sum of the uncertainty (co)variance of using TCCON or AirCore as the reference (S∗ref or Sl
ref , see Sects. F1 and F2,

respectively) and the noise and dislocation error (co)varainces of the satellite data products (see Sect. 3.3 and 3.4, respectively)900

gives the covariance that can be theoretically expected for the scatter between the TCCON or AirCore reference data and the

satellite data products.

Figure F3 shows the correlations between the theoretically expected scatter (mean value of the scatter expected for the

individual data points) and the actually observed scatter (the hIPR68.2 of the individual differences between the reference data

and the satellite data products). Shown is one data point for the XCH4 comparisons with the TCCON references, for the XCH4905

comparisons with the AirCore references, and further data points for the comparisons of the tropospheric and UTLS partial

columns with the AirCore references. A detailed contemplation suggests that the scatter observed for the total column data of

the TROPOMI and the combined data products as well as the scatter observed for the tropospheric partial column data of the

IASI and combined products are slightly larger than their theoretically expected counterparts. On the contrary, in the UTLS

the scatter observed in the IASI and combined data products seems to be a bit smaller than the theoretically expected scatter910

values. However, the data points group reasonably well around the one-to-one diagonal, i.e. there is overall a good agreement

between the theoretically expected scatter and the actually observed scatter. This means that the inter-comparison results as

shown in Sect. 4 confirm the satellite data quality characterisation of Sects. 3.2 - 3.4.
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Figure F3. Theoretically predicted and observed 1σ scatter for the comparison of single pixel satellite data with individual TCCON and

AirCore reference data. Black, red and blue colours represent TROPOMI, MUSICA IASI, and combined satellite data, respectively. The

squares and vertical crosses are for XCH4 comparisons with TCCON and AirCore references, respectively. The diagonal crosses and stars

are for tropospheric and UTLS partial column comparisons, respectively, with AirCore references.
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