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Abstract. In David et al (2021), we introduced a neural network (NN) approach for estimating the 10 
column-averaged dry air mole fraction of CO2 (XCO2) and the surface pressure from the reflected 
solar spectra acquired by the OCO-2 instrument.  The results indicated great potential for the 
technique as the comparison against both model estimates and independent TCCON measurements 
showed an accuracy and precision similar or better than that of the operational ACOS (NASA’s 
Atmospheric CO2 Observations from Space retrievals – ACOS) algorithm.  Yet, subsequent 15 
analysis showed that the neural network estimate often mimics the training dataset and is unable to 
retrieve small scale features such as CO2 plumes from industrial sites.  Importantly, we found that, 
with the same inputs as those used to estimate XCO2 and surface pressure, the NN technique is able 
to estimate latitude and date with unexpected skill, i.e. with an error whose standard deviation is 
only 7° and 61 days, respectively. The information about the date mainly comes from the weak CO2 20 
band, that is influenced by the well-mixed and increasing concentrations of CO2 in the stratosphere. 
The availability of such information in the measured spectrum may therefore allow the NN to 
exploit it rather than the direct CO2 imprint in the spectrum, to estimate XCO2. Thus, our first 
version of the NN performed well mostly because the XCO2 fields used for the training were 
remarkably accurate, but it did not bring any added value. 25 
Further to this analysis, we designed a second version of the NN, excluding the weak CO2 band 
from the input. This new version has a different behaviour as it does retrieve XCO2 enhancements 
downwind of emission hotspots, i.e. a feature that is not in the training dataset.  The comparison 
against the reference Total Carbon Column Observing Network (TCCON) and the surface-air-
sample-driven inversion of the Copernicus Atmosphere Monitoring Service (CAMS) remains very 30 
good, as in the first version of the NN.  In addition, the difference with the CAMS model (also 
called innovation in a data assimilation context) for NASA Atmospheric CO2 Observations from 
Space (ACOS) and the NN estimates are correlated. 
These results confirm the potential of the NN approach for an operational processing of satellite 
observations aiming at the monitoring of CO2 concentrations and fluxes.  The true information 35 
content of the neural network product remains to be properly evaluated, in particular regarding the 
respective input of the measured spectrum and the training dataset. 

1. Introduction 
There is a growing interest for the monitoring of CO2 from space.  The aim is not so much the 
atmospheric concentration, which is already known with high accuracy, but rather the CO2 fluxes.  40 
Indeed, there is a need to monitor natural fluxes of CO2 to better understand their driving factors 
and to improve land and ocean models.  There is also a strong societal requirement to monitor the 
CO2 anthropogenic emissions at national and more detailed scales.  For these objectives, a series of 
dedicated instruments have been put in orbit since the Greenhouse Gases Observing Satellite 
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(GOSAT, Yokota et al., 2009) and the second Orbiting Carbon Observatory (OCO-2 Eldering et al., 
2017), launched in 2009 and 2014, respectively, and still operated at the time of writing. This new 
and evolving constellation is directly supported by Japanese, US, Chinese and European space 
agencies (CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team, 2018).  
The OCO-3 instrument was launched in 2019 and is flying attached to the International Space 50 
Station (ISS) with a focus on the imagery of cities and industrial sites (Taylor et al., 2020).  These 
targets are also the main focus of the CO2M mission under development at ESA. 
These missions all use the same general principal to estimate the CO2 concentration in the 
atmosphere.  They measure the reflected solar light at high spectral resolution, which allows 
identifying absorption lines whose depth is related to the total amount of gas along the atmospheric 55 
path.  Atmospheric CO2 shows a number of such lines close to 1.61 and 2.06 µm so that these 
spectral regions are targeted.  Because the absorption is more intense at 2.06 µm, this measurement 
channel is often referred to as the strong-CO2 (or sCO2) band, whereas the 1.61 µm is the weak-
CO2 (wCO2) band.   The line depth is also affected by the surface pressure and the amount of 
scattering particles in the atmosphere.  To identify and account for their contribution, an additional 60 
measurement is made around the oxygen absorption band at 0.76 µm (O2 band).  The combination 
of these measurements makes it possible to estimate the column-averaged dry air mole fraction of 
CO2, referred to as XCO2 (Crisp et al., 2004).  Note that the MicroCarb instrument, to be launched 
by CNES in 2022, will have a fourth band at 1.27 µm.  This band serves the same purpose as the O2 
band; it has the advantage of being spectrally closer to the CO2 bands and the disadvantage of being 65 
affected by airglow (Bertaux et al., 2020). 
 
The interpretation of measured spectra in terms of XCO2 is achieved through full physics 
algorithms that explicitly account for the absorption by CO2, O2 and water vapor, for scattering in 
the atmosphere and for non-lambertian reflection on the Earth surface.  The modeling must also 70 
account for the instrument line shape function and doppler effects.  The inversion process is 
iterative and starts from a prior estimate of all atmospheric parameters.  It is very computer-time 
consuming.  The processing of OCO-2 data has shown systematic differences between the 
measured spectra and those modeled after inversion which led to the development of empirical 
corrections to the measured spectra (Crisp et al., 2012; O’Dell et al., 2018).  In addition, raw XCO2 75 
retrievals show significant biases against reference ground-based retrievals (Wunch et al., 2011b, 
2017).  These biases, together with the comparison against modelling results, led to the 
development of empirical corrections to the retrieved XCO2. 
The need for empirical corrections to the full-physics algorithms and the considerable computer 
load motivated us to develop an alternative approach described in David et al. (2021).  We used an 80 
artificial network technique (NN) which is purely empirical, without the use of any radiative 
transfer model.  Our hypothesis was that the CAMS (Copernicus Atmosphere Monitoring Service) 
model constrained by surface air-sample measurements provides a fairly accurate estimate of the 
atmospheric CO2 concentration, including the growth rate over multiple years (Chevalier et al., 
2019; see also Figure 8).  Indeed, the seasonal cycle of CO2 together with the growth rate generate a 85 
set of XCO2 samples with a well-known variability.  The uncertainties on the modeling (≈1 ppm) 
are small with respect to the range of XCO2 samples that is available in the multi-year dataset (20 
ppm).  As a consequence, although CAMS is not the truth, it may be used for supervised learning.  
Note that other 4D description of the atmospheric composition could have been used for our work.  
We chose CAMS mostly for practical reasons; the same procedure may be attempted with another 90 
modeling dataset. 
In practice, we used a series of OCO-2 spectra from a 5 year-dataset for the NN training.  We then 
applied the NN to the observations that were not used in the training and compared their estimates 
to both the same CAMS model used for the training and also the fully-independent set of Total 
Carbon Column Observing Network (TCCON, Wunch et al., 2011a) observations.  The results 95 
indicated an accuracy and precision that were similar, if not better, to that of the ACOS algorithm. 
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More recent results challenged our interpretation of the NN skill. In particular, the XCO2 estimates 
of the NN did not show significant enhancement downwind of large power plants, unlike the 
product of the NASA Atmospheric CO2 Observations from Space (ACOS) full-physics algorithm.  100 
This is shown in the following together with our interpretation.  A new version of the NN resulted 
from this interpretation, that retains the high accuracy of the first version, while being much more 
independent from the training dataset. 
In the following, Section 2 describes the main characteristic of the NN approach and the training 
procedure.  Section 3 presents the limitation of the first version of the NN, as it shows no 105 
innovation with respect to the training dataset. Section 4 describes and justifies a new version of the 
NN approach.  Section 5 discusses the results, suggests directions for improvements, and concludes. 

2. Data and method 
The NN described in this paper estimates XCO2 from spectra measured by the OCO-2 satellite over 
land.  Most of the analysis is made with the spectra acquired in nadir mode, but we have also 110 
developed a version for glint acquisition that is described and commented at the end of section 4.  
Conversely to the analysis in David et al. (2021) we now use all cross-track footprints.  A single 
NN is used to process all footprints even though the spectral elements of different footprints 
correspond to different sampled wavelength. 
We use spectral samples in the three bands of the instrument (around 0.76, 1.61 and 2.06 µm). They 115 
have footprints of ~ 3 km2 on the ground. In principle, each band is described by 1016 samples but 
some are marked as bad either because some of the corresponding detectors died at some stage or 
because of known temporary or permanent issues. We systematically remove 15 spectral samples 
that are flagged in about 80% of the spectra and 478 pixels in the band edges. Conversely, we do 
not remove the samples that are affected by the deep solar lines, and we let the NN handle these 120 
specific features.  Because the information in the spectrum is mostly in the relative depth of the 
absorption lines, and not in their overall amplitude, we normalize each spectrum by a radiance that 
is representative of the offline values (i.e. the mean of the 90-95% range for each spectrum).  This 
essentially removes the impact of the variations in the surface albedo and in the solar irradiance 
linked to the sun zenith angle.   125 
 
Figure 1 offers a graphical representation of the NN.  As input, we use the three band spectra (or a 
subset, see below), the observation geometry (Sun and view zenith angle: SZA and VZA, and 
relative Azimuth: AZI). Some versions also use the surface pressure (Psurf) as input.  No explicit 
information is provided to the NN regarding the location or date of the observation.  The inputs feed 130 
all the neurons of a first “hidden” layer.  We use a fully connected neural network, which means 
that all the neurons are connected to the neurons of the previous and next layer.  We have attempted 
NN versions with a variable number of hidden layers (a single one was used in David et al. (2021)).  
Each neuron computes a weighted sum of the inputs and derives a single output on the basis of 
either a sigmoid function or a “rectified linear unit”.  The loss is derived from the Mean Absolute 135 
Error.  The weights of the input variables to the neurons are adjusted iteratively with the standard 
Keras library (Keras Team, 2015) for an optimal agreement between the NN output and a reference. 
 
The NN training is based on OCO-2 radiance measurements (v10r) acquired between February 
2015 and December 2019. We make use of XCO2 estimates and the quality control filters of the 140 
ACOS L2Lite v9r products: only observations with xco2_quality_flag=0 are used.  For the 
validation of the NN estimates, we also use observations with relaxed quality requirements.  For 
versions of the NN that use the surface pressure as input, we use the estimate that is provided 
together with the OCO-2 data and that is derived from the Goddard Earth Observing System, 
Version 5, Forward Processing for Instrument Teams (GEOS5-FP-IT) created at Goddard Space 145 
Flight Center Global Modeling and Assimilation Office (Suarez et al. 2008 and Lucchesi et al. 
2013).  The weather model pressures have been adjusted to the sounding surface height. 
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Our analysis makes use of the CAMS CO2 atmospheric inversion (Chevallier et al., 2010; version 
19r1). This product was released in July 2020 and contributed, e.g., to the Global Carbon Budget 150 
2020 (Friedlingstein et al., 2020). It results from the assimilation of CO2 surface air-sample 
measurements in a global atmospheric transport model run at spatial resolution 1.90° in latitude and 
3.75° in longitude over the period 1979-2019 and using the adjoint of this transport model.  Neither 
satellite retrievals nor TCCON observations were used for this modelling.  For each OCO-2 
observation, XCO2 is computed from the collocated concentration vertical profile, through a simple 155 
integration weighted by the pressure width of the model layers.  Note that the model layers use 
“dry” pressure coordinates so that there is no need for a water vapor correction in the vertical 
integration.  The XCO2 from CAMS is used both for the training and the evaluation, although using 
independent datasets: The “training” dataset is a 3% random sample of the full dataset.  The 
observations that are used for the training are earmarked and not used for further evaluation. 160 

3. Initial results and interpretation 
David et al (2021) described a first version of the NN approach to estimate XCO2.  In this first 
version, the surface pressure was not used as input, and the training was made on observations 
acquired during even months, while the validation used observations of the odd months.  The results 
were surprisingly good in that the statistical difference to both the CAMS modeling and the 165 
independent TCCON observations indicated an accuracy similar or better than that of the CAMS 
product.  Further analysis posterior to the publication were worrisome, however.   
First, we found that well-documented local enhancements of XCO2 in the ACOS product (e.g., 
Nassar et al., 2017; Reuter et al., 2019), also referred to as plumes, did not show up in the NN 
product.  We analyzed in particular a case over South Africa acquired on August, 31st, 2016 an 170 
illustration of which is provided on Figure A1.  Over a distance of ≈100 km, the ACOS product 
shows several well identified enhancements of ≈5 ppm, whereas the NN product does not show any 
significant pattern.  The presence of large coal power plants upwind of the OCO-2 observations 
makes the enhancements trustworthy.  We found many similar cases where the NN did not display 
an XCO2 plume where ACOS did.  We concluded that the NN did reproduce the seasonal variation 175 
of XCO2 together with the growth rate but was unable to identify small-scale features.  Since all 
observations are processed independently, we could not interpret this apparent incoherence. 
Second, we made an experiment where the training dataset is biased by 1 ppm for the observations 
acquired during a single month (within the full period of 50+ months).  When applied to the 
validation dataset, the differences to CAMS show a bias of ≈0.5 ppm but only for the observations 180 
that are within a few weeks of the biased period.  This is rather surprising as the observation date is 
not an input of the NN.  Still, these results provide a clear indication that this version of the NN is 
somehow sensitive to the observation date. 
To investigate the issue, we developed and trained a new NN with the same inputs, but aiming at 
estimating the date, latitude and longitude.  For the training, we used the true values of these 185 
parameters and we analyzed how the NN was able to make an estimate based on the inputs (the 
spectra and the observation geometry).  Figure 2 shows the histograms of the errors when applied to 
the independent dataset. 
 
The results indicate that the NN approach is able to make a reasonable estimate of the location and 190 
date of the observation based on the spectra and the observation geometry.  The standard deviation 
of the latitude error is on the order of 7° and there is no significant difference with the footprint.  
One may expect that this information is largely derived from the observation geometry that changes 
with the latitude (both the SZA and the azimuth do).  One argument in favor of this hypothesis is 
that the precision of the longitude estimate is much worse, with a standard deviation on the order of 195 
58°.  Indeed, for a given day, the observation geometry is nearly the same for all successive orbits; 
thus, there is no information in the observation geometry to estimate the longitude, while there is 
such information for the latitude.  As for the date, the standard deviation is ≈ 61 days, or 2 months.  
Clearly then, in the input data of the NN, there is indirect information about the observation date 
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and latitude and this was a surprise to us.  Indeed, when describing the NN approach in David et al 
(2021), we argued that the NN had no information on the measurement date, as successive 
observations from the same day-of-year and location, but different years, were made with the exact 
same observation geometry. 
The various histograms of Figure 1 were made using a single (O2) band, a combination of the O2 210 
band with either CO2 band, and all three bands.  The most striking difference between the various 
histograms is for the date estimate.  Indeed, the accuracy strongly degrades when the wCO2 band is 
not included.  The combination of O2+wCO2 bands leads to a much better accuracy (a factor of 
more than 3 on the standard deviation) than that obtained with O2+sCO2.  The other differences on 
the histograms are not as large. 215 
How does the NN gets an indirect information on the observation date, and why is this information 
somehow contained in the wCO2 band?  Our best interpretation is that the weak CO2 spectrum is 
sensitive to the upper atmosphere CO2 concentration that is rather well mixed while increasing 
regularly in time.  The absorption lines in the sCO2 band are much stronger so that their centers are 
saturated in the spectra.  As a consequence, the CO2 signal is more in the line wings which are more 220 
sensitive to the higher pressure (lower altitude) levels.  The wCO2 lines are not saturated and the 
spectrum shape may provide the information for an estimate of the high-altitude CO2 concentration.  
We investigated another hypothesis that the wCO2 detector shows an evolution in time, that could 
be used by the NN to infer the observation date.  However, we did not find any indication of such 
behavior. Thus, at this point, the stratospheric CO2 hypothesis is physically plausible and is our best 225 
hypothesis because of no other.  Note however that we have investigated the correlation between 
the longitudinal anomalies of stratospheric CO2 in the CAMS model and the error on the date 
estimate by the NN approach.  No such correlation was found.  Thus, either our hypothesis is wrong 
or the description of the longitudinal variations of stratospheric CO2 in CAMS offer a poor 
representation of the reality.  Both hypotheses are plausible. 230 
 
These results clearly demonstrate that the input data to the NN provides indirect information on the 
date and latitude.  Atmospheric simulations such as those of CAMS indicate that XCO2 variations 
are mostly a function of time and latitude.  Indeed, on average, the deviations of XCO2 along the 
longitudes are on the order of 0.5 ppm (standard deviation).  They are however larger (≈1 ppm) 235 
over the Northern hemisphere where most of the observations analyzed here are acquired. We 
hypothesize that our first version of the NN, as published in David et al. (2021) obtains a proxy of 
the latitude and date, and outputs the corresponding CAMS value.  Based on the CAMS simulation, 
we found that the typical uncertainty on the position and date (slat=7°, slon=58° and sdate= 60 days) 
leads to a 1-sigma error of 0.91 ppm on XCO2 (difference between the values at the true and 240 
perturbated location/date).  This value appears consistent with the precision obtained with our first 
version of the NN.  Note however that this statistical difference gets larger when considering 
locations consistent with the OCO-2 observations that are used here.  The important point is that the 
error increases considerably (a factor of 2) for degraded precisions on the location and date with a 
different version of the NN that is discussed below. 245 

4. A new version of the neural network 
As shown above, the NN appears to use the wCO2 band to derive a proxy of the observation date 
which makes it possible, together with the proxies of the location, to estimate XCO2 based on the 
statistical distribution of the CAMS XCO2.  To avoid this feature, an option is to not use the 
information from the wCO2 band.  We therefore developed a similar version of the NN but without 250 
this band (i.e. only the O2 and sCO2, together with the observation geometry).  With this version, 
the behavior of the NN changes markedly.  The most important feature is that the NN now 
reproduces the XCO2 plumes that are shown by the output of the ACOS algorithm.  Two 
representative examples are shown in Figure 3.  These cases demonstrate that the NN does produce 
XCO2 features that are not in the training database, as we expected.  The NN is trained on the 255 
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variations of XCO2 caused by the atmospheric growth rate and the surface flux seasonal cycle.  It 260 
identifies signatures in the spectra that relate to the CO2 atmospheric content.  These signatures can 
then be used for an estimate of XCO2, even for situations that are poorly reproduced in the training 
dataset. 
In addition to the change in the band selection, and posterior to the result shown in Figure 3, we 
made several other modifications to the NN algorithm: 265 
First, we decided to use the surface pressure from the weather forecast model as an additional input 
to the NN.  In David et al. (2021), the surface pressure was an output of the NN model.  It was used 
to demonstrate the capability of the NN approach to interpret the spectral shapes in terms of 
atmospheric parameters. Indeed, the estimate of the surface pressure could be compared to an 
independent estimate from numerical weather analyses which are known to be precise within ≈1 ‰.  270 
However, the surface pressure may alternatively provide useful information to the NN for the 
interpretation of the spectra, as it does in the full-physics algorithms in the form of a prior estimate 
and also for the derivation of the bias-corrected product. 
Second, we decided to increase the number of NN hidden layers to 5 (instead of 1 in David et al. 
2021).  Our experience indicates that, with a larger number of layers, there is less over-fitting of the 275 
training spectra, i.e. there is a better agreement between the loss of the training and that of the test 
dataset.  An increased number of hidden layers also leads to slightly better performance, in 
particular for the NN that was designed for the land-glint observations (see below). 
Third, we developed a similar approach for the glint cases (still over land). Our initial fear was that 
it would be more difficult for the NN to handle glint observations because of (i) larger variations in 280 
the optical path than for the nadir mode and (ii) the doppler effect that may affect the absorption 
line positions on the input spectra.  This is why our first attempts focused on the nadir cases, but 
there is a need to also exploit the many observations acquired in glint mode. 
 
Figure 4 shows the inter-comparison of the XCO2 estimated from CAMS, ACOS and NN.  All 285 
three datasets are highly consistent, with a statistical difference around 1 ppm and little bias.  Let us 
recall that there is no satellite data input to the version of CAMS that is used here, so that it is fully 
independent from ACOS. The 1.06 ppm standard deviation of their differences demonstrates that 
both product precisions are better than this number.  CAMS and the NN are not as independent 
because the latter is trained with the former (but using different space-time locations).  Let us stress 290 
that any bias in CAMS may be transferred to the NN product.  Thus, a high agreement between 
CAMS and the NN product is not a demonstration of the latter accuracy.  Still, it has been shown 
that the NN retrieves features that are not in CAMS which indicates some independence between 
the satellite product and the model.  The standard deviation of their differences is 0.85 ppm.  The 
quadratic difference between NN and ACOS is a strong function of the sCO2 albedo as shown in 295 
Figure 5: it decreases from ≈1.5 to ≈0.75 ppm as the sCO2 band albedo increases from 0.10 to 0.45.  
A better accuracy of the satellite product with stronger surface albedo is expected as (i) the 
measurement signal to noise gets higher and (ii) the relative contribution of atmospheric scattering 
to the signal decreases.  The estimate precision is also a function of the O2 band albedo, but this 
effect is not as strong and the O2 band albedo shows less variability than that of the sCO2 band. 300 
Figure 4 also shows that the slope of the best fit of the satellite products against CAMS are small 
but of opposite side with respect to 1. As a consequence, there is a more significant slope deviation 
from 1 (0.97) between the two satellite products. 
Figure 6 provides further information on the differences between the remotely-sensed products and 
the CAMS estimate.  The histograms are close to Gaussian and confirm that NN is closer to CAMS 305 
than the ACOS counterpart.  An interesting feature is that both the NN-CAMS and ACOS-CAMS 
differences depend on the cloud flag (cloud_flag_idp), which indicates that this flag has some 
value.  The difference between the cloud contamination histogram remains small however, and does 
not deserve to disqualify the observations with a cloud flag of 2. Here, we only use the “definitely 
clear” and “probably clear” cases (flags of 3 and 2).  The population of the lower value cases 310 
(“definitely cloudy” and “probably cloudy”) is much smaller and the histogram for these cases are 
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not shown, while they show further degradation.  It is difficult to elaborate further as the true nature 
of the cloud contamination in the cases classified as “probably clear” is unknown. 315 
 
Figure 7 is based on the satellite product innovation, i.e. the difference to the model estimates.  
Indeed, one may consider that the model provides current knowledge on the XCO2 distribution, 
constrained by surface air-sample measurements and atmospheric transport.  The satellite product 
has the potential to improve this knowledge, but only as much as the difference with the model 320 
estimate.  Typical values are around 1 ppm.  The interesting result brought by Figure 7 is that the 
two satellite estimates are significantly correlated.  This provides further evidence that the NN 
estimate is not only a reconstruction of the training dataset (CAMS) with some noise.  Indeed, when 
NN differs from the model, ACOS, the independent satellite product, tends to agree. 
 325 
Finally, Figure 8 shows a comparison of the model and remotely-sensed estimates of XCO2 against 
the reference retrievals of the TCCON network. Although the OCO-2 satellite platform can be 
oriented so that the instrument field of view is close to the surface station, we only use here nadir 
data.  Indeed, the NN was not trained on the target data and can only be used to process 
measurements that have been acquired in observation configurations that are similar to those of the 330 
training.  We thus have to rely on nadir or glint measurements acquired in the vicinity of TCCON 
sites. In the following, we use nadir measurements that are within 5 degrees in longitude and 1.5 
degrees in latitude to the TCCON site.  For the reference, we average the TCCON estimates of 
XCO2 within 30 minutes of the satellite overpass.  No attempt was made to correct for the different 
weighting functions of the surface and spaceborne remote sensing estimates.  Statistics per station 335 
are provided in Table 1.  The biases vary significantly among stations, although they are generally 
less than 1 ppm (in amplitude).  Two stations, Pasadena and Zugspitze, show a large negative bias 
for both satellite estimates as well as the model. For Pasadena, it may be interpreted as the impact 
of the city on the atmosphere sampled by the TCCON measurement, while the atmosphere at the 
location of the satellite observation (which may be several hundred km away) is less affected. 340 
Zugspitze is a high-altitude site (2960 m), so that the atmospheric column sampled by the 
sunphotometer does not have the same vertical representativeness as that of the satellite observation 
(in addition to the spatial distance, that is common with other sites).  A large negative bias is also 
found at Eureka (80.05oN). The fact that the difference with the CAMS model at this site is much 
larger than for other sites could hint at an issue in the sunphotometer product there.  Conversely, 345 
there are large positive biases at Burgos and Ny-Ålesund (78.9oN, very close to the latitude of 
Eureka).  Since the model and satellite estimates somewhat agree, one may also question the 
TCCON calibration at these sites.  For other stations, which forms the large majority, the biases are 
smaller than 1 ppm and there is a fair consistency between the satellite products in the sense that the 
sign of their bias is the same in most cases.  The range of the difference with TCCON varies among 350 
stations.  The best satellite-TCCON agreement is found at the Lamont station which, interestingly, 
is also the one with the most coincidences.  Excellent agreement is also seen at Darwin, Edwards, 
Park Falls and Bremen.  The comparison with TCCON does not allow favoring one satellite 
estimate versus the other.  Focusing on the stations with a large number of observation (25 
overpasses or more), the NN estimates appears slightly better than ACOS at Darwin, Edwards, 355 
Garmisch, Orléans and Bialystok, while it is the opposite at Saga, Park Falls, and Sodankylä.  The 
figure (and table) also clearly shows that the CAMS product offers a better agreement with the 
TCCON data than any of the satellite estimates in most cases.  The high quality of the CAMS 
modelling used in this paper, at least over the TCCON site, provides further justification of its use 
as a training dataset. 360 
 
We have applied a very similar procedure to the OCO-2 observations acquired in glint mode over 
land.  An evaluation of the estimate performance is shown in Figure 6, 7, A3 and A4.  The 
conclusions are very similar to those obtained for nadir.  The agreement with CAMS is slightly 
degraded with respect to the nadir cases (0.92 ppm vs 0.85 for the “certainly clear” observations) 365 
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but somewhat closer than that of ACOS (Fig. 6 and S3).  The deviations from the model of the two 
satellite estimates are significantly correlated, and the correlation coefficient is even larger than that 
derived for nadir observations (0.45 vs 0.39, Figure 7). The comparison with the TCCON estimates 375 
leads to the same conclusions as those described above for the nadir cases. 

5. Discussion and Conclusion 
This paper follows on from David et al. (2021) in which we described a neural network-based 
technique to estimate XCO2 and the surface pressure from the OCO-2 spectral measurements.  An 
important message is that our interpretation of the results in that earlier study was incorrect.  The 380 
NN developed in that paper reproduced the statistical variations of the training dataset (CAMS) and 
was unable to generate features, such as plume from emission hot-spots.  Thus, contrary to our 
claims, the NN method, as presented in that paper, could not be used to process OCO-2 and 
generate XCO2 estimates with any real value.  We have shown here that a NN-based procedure is 
able to estimate the latitude and date of the observation with a reasonable accuracy.  This was 385 
unexpected to us as we wrote in David et al. (2021) “Let us recall that the NN input does not 
contain any information on the location or date of the observation.  This is a strong indication that 
the information is derived from the spectra as the NN does not “know” the CAMS value that 
corresponds to the observation location”.  Our interpretation was wrong.  In fact, the NN input can 
somehow be used by the NN for a fairly accurate estimate of the latitude and date.  Because most of 390 
XCO2 variations are a function of latitude and date, this information could be used by the NN to 
generate a reasonable estimate, i.e. one that mimics the main variations in the training dataset. 
A question remains on the indirect information that is used by the NN to estimate the observation 
date.  The fact that the precision on the date estimate is much better when using a combination of 
the O2+wCO2 rather than of the O2+sCO2 suggests that the information lies in the wCO2 band.  395 
Our best hypothesis is that the wCO2 spectra contains some information on the stratospheric CO2 
whose concentration is well-mixed while increasing regularly with time and implicitly contains, 
therefore, an information on the observation date.  Further testing this hypothesis would require, for 
instance, the identification of some anomaly in the stratospheric CO2 (linked to a specific 
atmospheric circulation) that would show up as a significant error on the date estimate made by the 400 
NN.  We have not been able to identify such feature. 
Despite this initial setback we have continued our analysis on the potential of the NN to process the 
OCO-2 spectra.  A strong motivation relied on the results obtained for the estimate of the surface 
pressure. Indeed, David et al. (2021) showed that the NN could estimate the surface pressure with 
an accuracy on the order of 3 hPa.  The spatial and temporal variations of the surface pressure, at 405 
the scale of the potential accuracies on the date and location, are very much larger than this number, 
so that the NN estimate cannot rely on this kind of indirect information.  This provided a strong 
indication that the NN method has the potential to extract meaningful information from the spectra 
itself. 
We have therefore developed a new version of the NN excluding the wCO2 band from the inputs.  410 
In this version, the behavior of the NN is very much different from the earlier version as it generates 
features that are not in the training dataset.  This clearly shows that the NN uses the signature of 
XCO2 contained in the sCO2 spectra to make an XCO2 estimate.  The accuracy of this estimate is 
similar to the one obtained with the first version of the NN, and similar to that of the ACOS 
products.  This is confirmed by the comparison of the XCO2 estimates against the TCCON 415 
retrievals.  Another strong argument that the NN XCO2 estimate contains true information and is 
not only a noisy copy of the training dataset is that the innovations of the two satellite estimates, i.e. 
the differences to the model data, are significantly correlated (Fig. 7). 
Note that we use here a single neural network for the eight footprints of the OCO-2instrument.  We 
analyzed whether the result performance, assessed as the standard deviation of the differences with 420 
CAMS, is a function of the footprint.  The statistics are very similar for all, except for footprint #2 
that shows slightly higher deviation for both the ACOS and the NN satellite products (a difference 
of ≈0.1 ppm to the mean of ≈1 ppm). 
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These results confirm that the NN technique has a strong potential to process the OCO-2 430 
observations, as well as those from forthcoming missions aiming at the observation of CO2 from 
space such as the forthcoming MicroCarb (Pascal et al. 2017) or the CO2M constellation (Sierk et 
al. 2019).  As discussed above, the current version does not use the wCO2 band at all and this may 
be seen as a loss of useful information.  There is therefore a need to select appropriate spectral 
samples in the wCO2 band rather than discarding them all.  It requires improved understanding of 435 
the indirect information that is used by the NN to estimate the observation date and location.   
 
The NN technique has two obvious advantages compared to the physical methods that are used to 
process the OCO-2 observations as well as other instruments with similar objectives: (i) a much 
smaller computational burden and (ii) no need for a de-bias procedure (O’Dell et al 2018, Kiel et al. 440 
2019). Our implementation still faces remaining challenges, that we discussed in David et al. 
(2021). 
 
The first challenge is the cloud detection.  All the analysis described in this paper relies on the 
ACOS cloud detection and only the observations identified as “clear” are processed.  Our analysis 445 
demonstrates the potential of the NN approach but is currently not independent from ACOS.  We 
are currently evaluating independent approaches for the cloud detection.  Although the NN 
described here aims at an estimate of XCO2, we have shown earlier that the same tool can be used 
for an estimate of the surface pressure with a 1 sigma precision on the order of 3 hPa for clear-sky 
cases.  Numerical weather analyses are actually better than that.  Thus, one may use the comparison 450 
of the surface pressure estimate from the NN to the numerical weather data for an easy 
identification of perturbations to the spectra that are linked to cloud or large aerosol contamination.  
This would allow an easy and rapid quality indicator for the selection of observations that may be 
used for XCO2 estimates, either using a physics-based algorithm or a NN approach. This idea 
remains to be evaluated. 455 
 
The second challenge concerns the absence of a quantitative indication of the amount of 
information that the NN takes from its prior information (contained in the training database) vs. the 
amount of information that the NN takes from the measured spectra. For Bayesian full-physics 
retrievals, these weights are represented by the averaging kernel (Rodgers, 1990) that allows a 460 
clean comparison of each retrieval with 3D atmospheric models, at least in theory (see the 
discussion about the practical difficulties in Chevallier, 2015).  The NN training targets the CO2 
column with a homogeneous weighting along the vertical but this can hardly be achieved without 
some contribution from the prior information.  This challenge may be evaluated in the future on the 
basis of radiative transfer simulations.  465 
 
The third challenge concerns the absence of a quality indicator with the XCO2 estimate.  With the 
physical methods, the spectrum residuals provide an efficient mean to identify cases when no 
satisfactory agreement can be found between the measured and modelled spectra.  With the NN 
approach, there is no uncertainty associated to each retrieval. Our analysis has shown that the 470 
apparent precision (evaluated against CAMS) is a strong function of the surface albedo.  There may 
be other geophysical variables that pilot the uncertainty.  To provide precision estimates for each 
NN-based XCO2 estimate, ensembles of randomized trainings, where uncertain parameters or 
input/output variables are varied adequately (e.g., Chau et al. 2021), or analytical estimates (Aires et 
al., 2004) should be explored.  475 
 
The last challenge concerns the need for a high-quality training dataset, in the context of increasing 
XCO2.  The comparison against the TCCON observations (Figure 8) demonstrates that the CAMS 
inversion product meets this requirement.  In fact, there are strong indications that CAMS remains 
better than the satellite products, at the very least in terms of global precision.  However, because of 480 
the atmospheric growth rate of CO2, the training must be regularly updated.  Indeed, with a frozen 
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training dataset, the true real-time XCO2 progressively leaves the training range.  The NN approach 
requires a training dataset that is representative of the observation and would then lead to 
underestimates.  For quasi-near-real time data assimilation (e.g., Massart et al., 2016), the training 
dataset must therefore gradually integrate recent high-quality XCO2 data, but without sacrificing 
robustness. 495 
 
As a final remark, we call for caution.  We have been tricked by the NN ability to generate a 
consistent description of the atmospheric XCO2 in our first analysis.  It is difficult to ensure that we 
are not tricked again.  The source of the information that leads to a fairly accurate estimate of the 
date, when using the weak CO2 band, remains unclear.  As a consequence, although it is 500 
demonstrated that the new version of the NN generates structures that are not in the training dataset, 
there may be biases in the CAMS modeling that have a significant influence on the NN product. 
 

Acknowledgments 
This work was in part funded by CNES, the French space agency, in the context of the preparation 505 
for the MicroCarb mission, and, to a smaller extent, by the Copernicus Atmosphere Monitoring 
Service, implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on 
behalf of the European Commission.  
OCO-2 L1 and L2 data were produced by the OCO-2 project at the Jet Propulsion Laboratory, 
California Institute of Technology, and obtained from the ACOS/OCO-2 data archive maintained at 510 
the NASA Goddard Earth Science Data and Information Services Center. TCCON data were 
obtained from the TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis 
Center (CDIAC) - tccon.onrl.gov. We warmly thank those who made these data available. 

Code/Data availability 
The codes used in this paper and the CAMS model simulations are available, upon request, from the 515 
author.  The OCO-2 and TCCON data can be downloaded from the respective websites. 

Author contributions 
FMB designed the study.  PC and LD developed the codes and performed the computations.  All 
authors shared the result analysis. 

Competing interests 520 
The authors declare no competing interests. 

References 

Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., 
Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, 
V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.: Modelling CO2 525 
weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347–7376, 
doi:10.5194/acp-19-7347-2019, 2019. 
Aires, F., Prigent, C., and Rossow, W. B. (2004), Neural network uncertainty assessment using 
Bayesian statistics with application to remote sensing: 2. Output errors, J. Geophys. Res., 109, 
D10304, doi:10.1029/2003JD004174.  530 



 

 11 

Bertaux, JL, etal, 2020 : The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring 
from space and application to MicroCarb.  Atmos. Meas. Tech., 13, 3329–3374, 2020.  amt-13-
3329-2020 

Blumenstock, T., Hase, F., Schneider, M., Garcia, O. E., Sepulveda, E.: TCCON data from Izana 
(ES), Release GGG2014R1, TCCON data archive, CDIAC, 535 
https://doi.org/10.14291/tccon.ggg2014.izana01.R1, 2017. 
CEOS: A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space, 
Tech. Rep., University of Zurich, Department of Informatics, available at: 
http://ceos.org/document_management/Meetings/Plenary/32/documents/CEOS_AC-
VC_White_Paper_Version_1_20181009.pdf (last access: 18 October 2019), 2018. 540 
Chau, T. T. T., Gehlen, M., and Chevallier, F.: A seamless ensemble-based reconstruction of 
surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans, 
Biogeosciences. https://doi.org/10.5194/bg-19-1087-2022 

Chevallier, F.: On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column 
retrievals, Atmos. Chem. Phys., 15, 11133–11145, doi :10.5194/acp-15-11133-2015, 2015.  545 

Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, 
P.: Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS 
data, J. Geophys. Res., 110, D24309, doi:10.1029/2005JD006390, 2005.	   
Chevallier, F., Ciais, P., Conway, T. J., Aalto, T., Anderson, B. E., Bousquet, P., Brunke, E. G., 
Ciattaglia, L., Esaki, Y., Frohlich, M., Gomez, A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. 550 
B., Langenfelds, R. L., Leuenberger, M., Machida, T., Maignan, F., Matsueda, H., Morgu, J. A., 
Mukai, H., Nakazawa, T., Peylin, P., Ramonet, M., Rivier, L., Sawa, Y., Schmidt, M., Steele, L. P., 
Vay, S. A., Vermeulen, A. T., Wofsy, S., and Worthy, D.: CO2 surface fluxes at grid point scale 
estimated from a global 21 year reanalysis of atmospheric measurements, J. Geophys. Res.-Atmos., 
115, D21307, doi:10.1029/2010JD013887, 2010. 555 

Chevallier, F., M. Remaud, C.W. O’Dell, D. Baker Ph Peylin and A. Cozic: Objective evaluation of 
surface- and satellite-driven carbon dioxide atmospheric inversions.  Atmos. Chem. Phys., 19, 
14233–14251, 2019.  https://doi.org/10.5194/acp-19-14233-2019 
Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, B. J., Doney, 
S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O’Brien, D., Pawson, S., Randerson, J. T., Rayner, P., 560 
Salawitch, R. J., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., 
Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, B., Pollock, R., Kenyon, 
D., and Schroll, S.: The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700–
709, doi:10.1016/j.asr.2003.08.062, 2004. 
Crisp, D., Fisher, B. M., O’Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, 565 
R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., 
McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O’Brien, D. M., 
Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T. 
E., Thompson, D. R., Wennberg, P. O., Wunch, D., and Yung, Y. L.: The ACOS CO 2 retrieval 
algorithm – Part II: Global X CO 2 data characterization, Atmos. Meas. Tech., 5, 687–707, 570 
https://doi.org/10.5194/amt-5-687-2012, 2012. 

David, L., FM. Bréon, F. Chevallier : XCO2 estimates from the OCO-2 measurements using a 
neural network approach.  Atmos. Meas. Tech., 14, 117–132, 2021. https://doi.org/10.5194/amt-14-
117-2021 
De Maziere, M., Sha, M.K., Desmet, F., Hermans, C., Scolas, F., Kumps, N., Metzger, J.-M., 575 
Duflot, V., and Cammas, J.-P.: TCCON data from Reunion Island (RE), Release GGG2014R0, 
TCCON data archive, CDIAC, https://doi.org/10.14291/tccon.ggg2014.reunion01.R0, 2017. 

Deleted:  Discuss

Deleted: [preprint], 

Deleted: https://doi.org/10.5194/bg-2021-207, in review, 580 
2021.¶



 

 12 

Deutscher, N. M., Notholt, J., Messerschmidt, J., Weinzierl, C., Warneke, T., Petri, C., Grupe, P., 
and Katrynski, K.: TCCON data form Bialystok (PL), Release GGG2014R2, TCCON data archive, 
CDIAC, https://doi.org/10.14291/tccon.ggg2014.bialystok01.R2, 2017. 

Dubey, M., Henderson, B., Green, D., Butterfield, Z., Keppel- Aleks, G., Allen, N., Blavier, J.-F., 585 
Roehl, C., Wunch, D., and Lindenmaier, R.: TCCON data from Manaus (BR), Release 
GGG2014R0, TCCON data archive, CDIAC, 
https://doi.org/10.14291/tccon.ggg2014.manaus01.R0/1149274, 2017.  

Eldering, A., Pollock, R., Lee, R. A. M., Rosenberg, R., Oyafuso, F., Crisp, D., Chapsky, L., and 
Granat, R.: Orbiting Carbon Observatory (OCO) – 2 Level 1B Theoretical Basis Document, 590 
available at: http://disc.sci.gsfc.nasa.gov/OCO-2/ documentation/oco-2-
v7/OCO2_L1B_ATBD.V7.pdf (last access: 16 June 2016), 2015. 

Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D., Gunson, M. R., Chatterjee, A., Liu, J., 
Schwandner, F. M., Sun, Y., O’Dell, C. W., Frankenberg, C., Taylor, T., Fisher, B., Osterman, G. 
B., Wunch, D., Hakkarainen, J., Tamminen, J., and Weir, B.: The Orbiting Carbon Observatory-2 595 
early science investigations of regional carbon dioxide fluxes, Science, 358, 
doi:10.1126/science.aam5745, 2017. 
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., 
Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., 
Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. 600 
C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, 
P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., 
Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., 
Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., 
Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, 605 
Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., 
Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., 
Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., 
Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon 
Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 610 
2020.  
Goo, T.-Y., Oh, Y.-S., & Velazco, V. A. (2014). TCCON data from Anmeyondo (KR), Release 
GGG2014.R0 (Version GGG2014.R0) [Data set]. CaltechDATA. 
https://doi.org/10.14291/TCCON.GGG2014.ANMEYONDO01.R0/1149284 

 Griffith, D. W., Deutscher, N. M., Velazco, V. A., Wennberg, P. O., Yavin, Y., Aleks, G. K., 615 
Washenfelder, R. a., Toon, G. C., Blavier, J.-F., Murphy, C., Jones, N., Kettlewell, G., Connor, B. 
J., Macatangay, R., Roehl, C., Ryczek, M., Glowacki, J., Culgan, T., and Bryant, G.: TCCON data 
from Darwin (AU), Release GGG2014R0, TCCON data archive, CDIAC, 
https://doi.org/10.14291/tccon.ggg2014.darwin01.R0/1149290, 2017a.  
Griffith, D. W., Velazco, V. A., Deutscher, N. M., Murphy, C., Jones, N., Wilson, S., Macatangay, 620 
R., Kettlewell, G., Buchholz, R. R., and Riggenbach, M.: TCCON data from Wollongong (AU), 
Release GGG2014R0, TCCON data archive, CDIAC, 
https://doi.org/10.14291/tccon.ggg2014.wollongong01.R0/1149291, 2017b.  
Hadji-Lazaro, J., Clerbaux, C., and Thiria, S.: An inversion algorithm using neural networks to 
retrieve atmospheric CO total columns from high-resolution nadir radiances, J. Geophys. Res., 104, 625 
23841-23854, doi:10.1029/1999JD900431, 1999. 

Hase, F., Blumenstock, T., Dohe, S., Gross, J., and Kiel, M.: TCCON data from Karlsruhe (DE), Re	
lease GGG2014R1, TCCON data archive, CDIAC, 
https://doi.org/10.14291/tccon.ggg2014.karlsruhe01.R1/1182416, 2017. 



 

 13 

Iraci, L. T., Podolske, J., Hillyard, P. W., Roehl, C., Wennberg, P. O., Blavier, J.-F., Landeros, J., 630 
Allen, N., Wunch, D., Zavaleta, J., Quigley, E., Osterman, G., Albertson, R., Dunwoody, K., and 
Boyden, H.: TCCON data from Edwards (US), Release GGG2014R1, TCCON data archive, 
CDIAC, https://doi.org/10.14291/tccon.ggg2014.edwards01.R1/1255068, 2017. 
Keras Team: Keras, available at: https://github.com/fchollet/keras, 2015. 
Connor, B. J., Siskind, D. E., Tsou, J. J., Parrish, A., and Remsberg, E. E.: Ground-based 635 
microwave observations of ozone in the upper stratosphere and mesosphere, J. Geophys. Res., 99, 
16757–16770, 1994. 
Kiel, M., O’Dell, C. W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C. G., and Wennberg, P. 
O.: How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure 
estimates, Atmos. Meas. Tech., 12, 2241–2259, https://doi.org/10.5194/amt-12-2241-2019, 2019. 640 
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Figures and Tables 
 785 

 
Figure 1: Graphical representation of the NN used in this paper.  The outputs from all neurons feed in all neurons of the 

next layer.  There is a variable number of hidden layers.  Similarly, there is a choice on the number of 
neurons in each layer.  Not all inputs are used for the various versions of the NN that are described in this 
paper. 790 

 
 

 
Figure 2: Analysis of the ability of the NN to estimate the date, location (latitude, longitude) and surface pressure from 

the input spectra and observation geometry.  The graphs show the histograms of the differences between 795 
the NN estimate and the true value.  Several versions of the NN were analyzed using either all three bands 
(red), only the wCO2 and O2 bands (orange), sCO2 and O2 (green) and only the O2 band (blue). 

 
 

   800 
Figure 3: Two examples of XCO2 plumes that are captured by the ACOS bias-corrected XCO2 estimates.  These were 

not shown by the first version of the NN algorithm (an example shown in Figure A1), but are well captured 
by the second version that does not use the wCO2 band (shown here).  The NN estimates are in blue 
whereas the ACOS estimates are in red.  The lines are simple polynomial fits on the XCO2 estimates and 
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do not aim at capturing the plume signature. These cases were identified and discussed in Reuter et al 
(2019) 

 

 810 
Figure 4: Inter-comparison of XCO2 estimated from CAMS, ACOS, and the NN.  The density histogram is based on 

nadir observations from February 2015 do December 2019.  A similar figure for the glint cases is shown in 
the supplementary figure A3. 

 
 815 

 
Figure 5: Standard deviation of the NN-CAMS difference as a function of the sCO2 band albedo (red, right scale).  The 

computation is made over 0.02 bins, the population of which is shown by the blue line (left scale). 
 
 820 

       
Figure 6: Histogram of the differences between either one of the two satellite datasets and the CAMS model.  We 

distinguish cases when the flag cloud_flag_idp is “certainly clear” and “probably clear”.  The left figure is 
for the nadir dataset, whereas the right figure is for the glint. 
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Figure 7: Density histogram of the innovation, i.e. the difference between the satellite product and the model estimates.  

differences between either one of the two satellite datasets and the CAMS model.  The red line shows the 
result of a linear fit through the datapoints aiming at a minimization of the distance to the best line.  The 
left figure is for the nadir dataset, whereas the right figure is for the glint. 830 

 
 

 
 
Figure 8: Statistics of the differences between the NN retrieval (red), the CAMS model (green) or the bias-corrected 835 

ACOS retrievals (blue) and the TCCON retrievals.  The boxes indicate the 25-75% percentiles and the 
median is shown by the horizontal line within the box.  The whiskers indicate the 5-95% percentiles. 
Stations are ordered by increasing latitudes. The numbers below the station name indicate the number of 
individual observations and coincidence days used for the statistics.  The references of the various TCCON 
observations are provided in table 1.  Figure A4 provide similar results for the Glint case 840 



  

 
atmosphere.copernicus.eu                    copernicus.eu                        ecmwf.int 

ECMWF - Shinfield Park, Reading RG2 9AX, UK 
 
Contact: info@copernicus-atmosphere.eu 

Table 1: TCCON stations used in this paper (Figures 8 and A4).  The data have been obtained from the 
tccondata.org web site on Feb 4th, 2021. 
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Appendix 
 845 

 

 
Figure A1: XCO2 estimated by the ACOS algorithm (Red) and the NN approach (Blue)  as a 
function of latitude using its initial version as published in David et al. (2021) (left) and the new 
version presented in this paper (right).  The ACOS product showed a number of XCO2 850 
enhancements that are not shown by the NN estimates.  The plumes are observed downwind of 
large coal power plants, which make these features trustworthy.  The date is August 31st, 2016. 
 
 

 855 
Figure A2: Mean difference, at daily scale, between the NN XCO2 estimate and the CAMS model.  
The blue dots show the results for the nominal training.  The orange dots show the results when the 
training was made with a dataset biased by 1 ppm but only the observations of June 2017, the center 
of which is indicated by the red vertical line. 
 860 
 

 
Figure A3: Same as Figure 4, but for the glint observations. 
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Figure A4: Same as Figure 8, but for the glint observations. 
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Figure A5 Exemples of anthropogenic CO2 plumes as seen by the OCO2 instrument processed with 
the ACOS algorithm (red) and the Neural Network described in this paper (blue).  The cases have 
been identified and described in Reuter et al. 2019 and Nassar et al, 2021. 890 
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