
A tracer
::::::::::::::::
Controlled

:
release experiment to investigate uncertainties

in drone-based
::::::::::::::::
UAV-based

:
emission quantification for methane

point sources
Randulph Morales1,2, Jonas Ravelid1, Katarina Vinkovic3, Piotr Korbeń5, Béla Tuzson1,
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Abstract. Mapping trace gas emission plumes using in-situ measurements from unmanned aerial vehicles (UAV) is an emerg-

ing and attractive possibility to quantify emissions from localized sources. Here, we present the results of an extensive

tracer-release
:::::::::::::::
controlled-release experiment in Dübendorf, Switzerland, which was conducted to develop an optimal quantifi-

cation method and to determine the related uncertainties under various environmental and sampling conditions. Atmospheric

methane mole fractions were simultaneously measured using a miniaturized fast-response Quantum Cascade Laser Absorption5

Spectrometer (QCLAS) and an Active AirCore system mounted on a commercial drone
::::
UAV. Emission fluxes were estimated

using a mass-balance method by flying the drone-based
:::::::::
UAV-based system through a vertical cross-section downwind of the

point-source perpendicular to the main wind direction at multiple altitudes. A refined kriging framework, called cluster-based

kriging, was developed to spatially map individual methane measurement points into the whole measurement plane, while

taking into account the different spatial scales between background and enhanced methane values in the plume. We found that10

the new kriging framework resulted in better quantification compared to ordinary kriging. The average bias of the estimated

emissions was−1 % and the average residual of individual errors was 54 %.
::
A Direct comparison of QCLAS and AirCore mea-

surements shows that AirCore measurements are smoothened
::::::::
smoothed

:
by 20 s and temporally shifted and stretched by

:::
had

:::
an

::::::
average

::::
time

:::
lag

::
of

:
7 sand 0.06 seconds

:
.
:::::::
AirCore

::::::::::::
measurements

:::
also

::::::
stretch

:::::::
linearly

::::
with

::::
time

::
at

::
an

:::::::
average

::::
rate

::
of 0.06 s for

every second of QCLAS measurement, respectively. Applying these corrections to the AirCore measurements and successively15

calculating an emission estimate shows an enhancement of the accuracy by 3 % as compared to its uncorrected counterpart.

Optimal plume sampling, including the downwind measurement distance, depends on wind-
::::
wind

:
and turbulence conditions

and it is furthermore limited by numerous parameters such as the maximum flight time , and the measurement accuracy. Under

favorable measurement conditions, emissions could be quantified with an uncertainty of 30 %. Uncertainties increase when

wind speeds are below 2.3 m s−1 and directional variability is above 33°, and when the downwind distance is above 75 m. In20
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addition, the flux estimates were also compared to estimates from the well-established OTM-33A method involving stationary

measurements. A good agreement was found, both approaches being close to the true-release and uncertainties of both methods

usually capturing the true-release.

1 Introduction

Methane emissions from localized sources such as oil and gas production facilities are often caused by leakage giving rise25

to highly uncertain emission fluxes with high spatial and temporal variability (Kemp et al., 2016; Fox et al., 2019). A sig-

nificant disparity was observed, for example, between facility-observed bottom-up emission inventories and a more tradi-

tional component-based emission inventory (Brandt et al., 2014; Alvarez et al., 2018). Observation-based estimates from

the US indicate that emissions from oil and gas are underestimated in official emission inventories (Gurney et al., 2021)

::::::::::::::::::::::::::::::::::::::::::::::::
(Alvarez et al., 2018; Omara et al., 2018; Zhang et al., 2020). Further measurements of leakage rates from oil- and gas-production30

facilities in other regions of the world such as those conducted during the ROMEO measurement campaign in Romania (Röck-

mann and team, 2020), are therefore essential to validate and improve current estimates.

A broad range of methods of methane emission quantification for facility-scale sources has been developed, which includes

ground-based thermal imaging (Gålfalk et al., 2016), aircraft remote sensing (Frankenberg et al., 2016; Kuai et al., 2016;

Thorpe et al., 2016), chamber sampling (Kang et al., 2014; Yver Kwok et al., 2015), ground-based tracer-release correlation35

(Lamb et al., 2015, 2016; Omara et al., 2016; Roscioli et al., 2017; Feitz et al., 2018; Fjelsted et al., 2020) and Gaussian plume

matching (Ars et al., 2017; Bakkaloglu et al., 2021). Some of these methods, e.g., tracer-release correlation, are quite accurate

but expensive, intrusive, and time-consuming, while other methods suffer from large, poorly quantifiable uncertainties.

An emerging and attractive approach to quantify emissions from point sources, or more generally from spatially localized

sources, involves deploying integrated unmanned-aerial-vehicle (UAV) systems capable of measuring atmospheric trace gas40

concentrations. The most common ways of measuring methane from UAVs include: 1) collection of ambient air samples using

on-board storage equipment and subsequent analysis of the samples with instrumentation on the ground (Chang et al., 2016;

Greatwood et al., 2017; Andersen et al., 2018), 2) live analysis of air samples pumping air into a long tube connected to a ground

based analyzer (Brosy et al., 2017; Shah et al., 2019), and 3) in-situ reporting of measurements using an analyzer mounted on

the drone
::::
UAV (Berman et al., 2012; Nathan et al., 2015; Golston et al., 2017; Martinez et al., 2020; Tuzson et al., 2020). Small45

UAVs with payloads of a few kilograms are affordable, versatile, and much more easy to deploy compared to larger drones

:::::
UAVs or aircraft. UAVs allow transecting the plume over its entire vertical and horizontal extent, which reduces the dependence

on assumptions on horizontal and vertical dispersion compared to ground-based mobile or stationary measurements that only

capture a small portion of the plume.

Although UAV-based methane measurements are gaining popularity, systematic studies on testing and comparing different50

quantification methods and analyzing the different sources of uncertainty are still sparse (Golston et al., 2018; Yang et al., 2018; Shah et al., 2019)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Golston et al., 2018; Yang et al., 2018; Shah et al., 2019; Hollenbeck et al., 2021; Shaw et al., 2021). The main goal of this study

is to develop an improved strategy to quantify local methane sources using UAV measurements, and to test this strategy on
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UAV measurements obtained downwind from sources with known fluxes. It is crucial to test a new quantification technique

with a set of sources with a known release before applying the technique to sources with unknown emissions (Feitz et al.,55

2018; Shah et al., 2020). To this end, we designed the MethAne Tracer
:::::::::
MeThAne Release EXperiment (MATRIX), where

a series of controlled and partly blind methane releases were performed from 09 February to 14 March 2020 in Dübendorf,

Switzerland. Methane mole fractions were measured using a drone-based
:::::::::
UAV-based sensor (Tuzson et al., 2020) and an active

AirCore system (Andersen et al., 2018). Adopting the mass-balance approach, the UAV was flown downwind of the source

perpendicular to the main wind direction at different vertical levels to derive emission fluxes. In this study, we describe a novel60

quantification approach and report on its capability to reproduce known emissions. Furthermore, we investigate this approach

and its sensitivity to different measurement configurations, and provide recommendations for an optimal sampling.

The new drone-based
:::::::::
UAV-based quantification approach presented here was developed to support the ROmanian MEthane

Emissions from Oil and gas (ROMEO) campaign that was taking place in September and October 2019. With 415.60 ktCH4 per

year, Romania has one of the highest per-capita methane emissions from the energy sector in the European Union, according65

to the latest UNFCCC 2018 Report. This emission estimate was mainly derived using prescribed Tier-1 emission factors

following the IPCC guidelines for national reporting, which are both non-country specific and quite uncertain. The ROMEO

campaign was, thus, put into action to investigate the accuracy of this estimate. Eight ground measurement teams, including

our drone-system
::::::::::
UAV-system, were deployed to quantify methane emissions from over 1000 oil- and gas-production facilities

(Röckmann and team, 2020). Reported emissions from drone-based
:::::::::
UAV-based measurements collected in the western region70

of Wallachia, Romania during the ROMEO campaign were generated using the quantification approach developed in this study.

In this paper, we give first an overview of the instruments used in the tracer release
::::::::::::::
controlled-release

:
experiment (Sect. 2),

followed by the details regarding the setup of the experiments and the mass-balance approach in Sect. 3. The data treatment and

interpolation schemes applied to the measurements of both methane and wind are discussed in Sect. 4. Quantification results

from the tracer release
:::::::::::::::
controlled-release experiments are presented in Sect. 5.75

2 Instruments

The in-situ measurements of atmospheric CH4 mole fractions were performed by using two different techniques: i) a lightweight

laser absorption spectrometer and ii) an active AirCore system. These devices were mounted beneath a commercial hexacopter

(Matrice 600, DJI), equipped with a RTK-GPS receiver (NEO-M8P-2, SparkFun) for accurate positioning of the drone
::::
UAV

in all three dimensions. The integrated system, illustrated in Fig. 1, weighs about 13 kg, of which the payload is around 3 kg80

and can have a maximum flight time of 20 min.

2.1 Quantum Cascade Laser Spectrometer (QCLAS)

The in-situ airborne analyzer, developed at Empa, is a compact and lightweight mid-IR laser absorption spectrometer (Graf

et al., 2018; Tuzson et al., 2020) capable of measuring atmospheric methane mole fractions at 1 s time resolution. The instru-
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QCLAS

72 cm

RTK-GPS

AirCore

10 cm

Figure 1. The embedded UAV system used for CH4 detection: the QCLAS analyzer and the active AirCore sampling system are mounted

below a Matrice 600 DJI hexacopter equipped with a RTK-GPS system.

ment achieves a precision (1σ) of 1.1 ppb at 1 s and 0.1 ppb at 100 s averaging time. This performance is mainly preserved also85

under flight conditions. The analyzer has a compact footprint (15× 45× 25 cm3) and weighs only 2.1 kg, including batteries.

The analyzer uses a distributed feedback (DFB) quantum cascade laser (QCL) emitting in the mid-infrared at 7.83 µ m.

During the flight, air flows passively through an open circular absorption cell of 77 mm radius. Multiple reflections of the laser

beam on the segmented inner surface results in an effective optical path of about 10 m. The compact design of the multipass cell

combines the advantage of a long optical path with mechanical stability allowing efficient and interference-free beam folding90

(Graf et al., 2018).

The energy consumption of the spectrometer has been minimized using a customized System-on-Chip (SoC) FPGA-based

hardware control and data acquisition as well as a custom-made laser driving electronics (Liu et al., 2018). The instrument’s

precision, linearity, and its dependence on various environmental parameters
:::::::::
calibration were characterized and consequently

validated under field conditions (Tuzson et al., 2020).95

::::::
Briefly,

:::
the

:::::::::
instrument

:::
was

:::::::::
calibrated

::
by

::::::::
inserting

:
it
::::
into

:
a
:::::::::::
custom-built

::::
small

:::::::
volume

:
(60 L)

:::::::
climate

:::::::
chamber.

::::
This

::::::::
chamber

:::
was

::::
then

:::::::::::
hermetically

:::::
sealed

::::
and

::::::::::
continuously

::::::
purged

:::::
with

:
a
:::::::
certified

:::::::::
calibration

:::
gas

::::
with

:::::
high

::::
CH4

:::::::::::
concentration

::
(200 ppm

::
±

:::
1%;

::::::::
PanGas,

:::::::::::
Switzerland).

::::::::::::
Furtheremore,

:::
the

::::
gas

::::
was

::::::::::
dynamically

::::::
diluted

:::::
with

:::
dry

:::::::
nitrogen

::
(N2:

)
::
in

::
a

:::::::
stepwise

:::::::
fashion

::::
using

:::::::::
calibrated

::::
mass

::::
flow

::::::::::
controllers.

::::
The

::::::
overall

:::::::::
uncertainty

::::
was

::::::::
estimated

::
to
:::
be

:::::
±2%.

::::::::
Repeated

:::::::::::
experiments

::::::
showed

::::
that

::
the

::::::::::
instrument

::::::::
preserves

::
its

:::::::
linearity

::::
and

::::
only

:
a
::::::::
marginal

::::
drift

::::
may

::::::
appear

::
in

:::
the

:::::
offset.

:::::
This,

::::::::
however,

:
is
:::::

fully
::::::::
accounted

::::
for,100

::::
when

::::::::
applying

:::
the

::::::::::
background

:
CH4 :::::::::

subtraction
::::
step

::::
(see

::::
Sect.

::::
4.4).

:
Real-time data synchronization between the instrument
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and a computer on the ground is made possible by a wireless bi-directional data link (SkyHopper PRO). This allows real-time

access to the raw spectra and all hardware parameters during the flights, which enables the operator to do real-time spectral

fitting and logging. Thus, the operator is provided with full control of the hardware, continuous monitoring of the instrument’s

status, as well as in-situ monitoring of the ambient CH4 values during the flights.105

2.2 Active AirCore

The active AirCore, designed for atmospheric sampling on a UAV, consists of 50 m thin-wall stainless-steel tubing, a dryer, a

micro-pump, and a data-logger (Andersen et al., 2018). The whole system is enclosed in a carbon fiber box with a compact

footprint (1.1 kg, 34× 19.5× 12.0 cm3) making it suitable for drone-based
:::::::::
UAV-based

:
measurements.

Prior to each quantification flight, the active AirCore is flushed with a calibrated fill gas, spiked with about 10 ppm CO,110

in order to identify the starting point of ambient air sampling. Shortly before the integrated drone
::::
UAV

:
system takes off,

the micro-pump is turned on to sample ambient air and immediately after the quantification flight, it is turned off to stop

sampling ambient air. The active AirCore samples are then consequently analyzed on site with a trace gas analyzer (CRDS

G2401-m, Picarro, Inc., CA, USA).
:::
The

::::::::
precision

:::::::::::
(1σ,0.25 Hz)

:::
of

:::
the

::::::
CRDS

:::
was

::::::::::
determined

::
to

:::
be

:::::
better

::::
than

:
0.7 ppb

:
.
::
A

::::::::::
single-point

:::::::::
calibration

:::
was

:::::
used

::
to

::::::
correct

:::
the

::::::::
potential

::::
drift

::
of

:::
the

::::::
CRDS

::::::::::::
measurements.

:::::::::
Measured

:::::::
methane

:::::
mole

:::::::
fraction115

:::::::
obtained

:::::
using

:::
the

:::::::
AirCore

::::::
system

::::
was

::::::
linked

::
to

:
a
:::::::

known
:::::::::
calibration

:::::::
standard

::::
that

::
is

::::::::
traceable

::
to

:::
the

::::::
WMO

:::::::
X2004A

:
CH4

::::
scale

:::::::::::::::::::::::
(Vinkovic et al., in review )

2.3 RTK-GPS System

Readily available commercial drones
::::
UAV, including the Matrice 600 DJI, rely on simple global positioning systems (GPS),

similar to systems found in other utilities such as mobile phones and smart watches. GPS readings combined with ambient120

pressure measurements are used to obtain the spatial coordinates, specifically the altitude, of the drone
::::
UAV

:
at the time of

flight. Manufacturer specification reports vertical accuracy of this type of drones
::::
UAVs

:
to be ±0.50 m. However, this level

of accuracy is not sufficient for our purpose that requires a precise spatial mapping of the plumes, especially with respect to

height.

Alternatively, real-time kinematic (RTK) positioning can be employed to enhance positioning accuracy. Nowadays, accuracy125

at the level of cm are possible even with low-cost receivers (such as the NEO-M8P) by capturing raw streams
::::::::::::
measurements

::
of

:::::
carrier

::::::
phase

::::::
signals from the GPS satellites and then post processing the logs with open source programs (e.g. RTKLIB).

For our purpose, we deployed two RTK-GPS boards from Spark-Fun. The rover was integrated with the data acquisition of the

drone-based
:::::::::
UAV-based

:
QCLAS system, while the second board was deployed as a stand-alone, battery-powered base station.

Post-processing of raw-data was done using RTKLIB, which returns corrected coordinates.130

A direct comparison of an altitude time-series between the UAV-GPS and the RTK-GPS data in one of our flights is presented

in Fig. 2. Quantified average drift of the UAV-GPS for the entire duration of the controlled-release experiment was found to

be 0.1 cm s−1, equivalent to 0.6 m of altitude drift for a 10 min duration measurement flight. Details on how this altitude drift

affects our quantification estimate are discussed in Sect. 5
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Figure 2. Recorded altitude during the flight with code 314_03. Color coded lines represent the altitude measured using three different

systems. The black dashed line and blue line corresponds to the altitude recorded by RTK and UAV-GPS, respectively. The orange line refers

to the altitude derived using the pressure sensor.
::::::
Dashed

:::
blue

::::
and

:::::
orange

::::
lines

:::
are

::
fits

::::::::::
representing

:
a
:::::
linear

:::::::
regression

::::
with

:::
the

:::::::
subscript

::
m

::::::
referring

::
to

:::
the

::::
slope

::
of

:::
the

:::
line.

3 Tracer
:::::::
Control Release Experiment135

The release experiment was performed over a managed agricultural field (Agrar Hauser) near the city of Dübendorf, Switzer-

land. The field is a seasonal cropland with an access road mainly used by pedestrians and bikers. The location is relatively

flat, but is shielded by a forested hill about 250 m in the south. The release experiment was performed from 23 February to

14 March 2020 with a total of 9 days of active measurements. There is no livestock or other significant methane source in the

vicinity of the field, making it an ideal location for the experiment. The selection of active days was mainly based on favorable140

weather conditions, i.e. days with no precipitation and with sufficient but not too strong winds
:
a
::::::::::
sufficiently

::::
large

:::::
wind

:::::
speed

:::
but

::::::
smaller

::::
than

:
8 m s−1

::::
which

::
is
:::

the
:::::::::

maximum
:::::
value

:::::
given

:::
by

:::
the

::::
UAV

:::::
flight

::::::::::::
specifications. Local wind speeds during the

selected days ranged from 1− 7 m s−1. A total of 35 measurement flights were performed during the whole campaign, out

of which 18 are suitable for quantification. The rest had to be discarded mainly due to technical problems with either the

drone
::::
UAV, the analyzers, the tracer release

::::::::::::::
controlled-release, or the GPS device. A sample measurement flight is presented in145

Fig. 3, which also provides an aerial view of the site.
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Alongside the drone
::::
UAV

:
flights, a second quantification method based on stationary measurements with an independent

methane analyzer was applied on the first three days of the campaign for comparison. The method, called OTM-33A (Thoma

et al., 2012), is presented in more detail in Sect. 4.2. In order to avoid any possible bias in the data processing towards the real

tracer release
::::::::::::::
controlled-release, two of the releases were conduced as blind experiments, where a third party person released150

methane at a rate not known to the team.

An artificial methane source, in the form of natural gas of which 92.2% is CH4, was released from a 50 L high-pressure

cylinder. The gas was directed through a 100 m long 1.2 cm inner-diameter tubing to the release point. The end of the tubing

was placed at about 1.5 m above surface. A mass flow controller (MFC, red-y series, Vögtlin Instruments) calibrated for

methane up to 100 L min−1 at normal conditions was used to regulate the gas release. A summary of the release rates during the155

experiment is given in Table 1.
:::
The

::::::
release

::::
rates

::::
used

::
in

:::
this

:::::
study

:::
are

:
a
::::
good

::::::::::::
representation

::
of

::::::::
emissions

:::::
from

::::::
normal

::::::::
operating

::::
(i.e.,

::::::::
excluding

:::::::::::::
super-emitters)

::::::
natural

:::
gas

:::::::::
production

::::
sites

::
in

:::
the

:::
US

:::::
which

::::::::
produces

::::::::
0.13–0.58 g s−1

::::::::::::::::
(Omara et al., 2018).

:
At

the start of each measurement day, a suitable location of the release was determined based on prevailing winds. Meteorological

conditions were measured using 3D
::::::::
(uSonic-3

:::::::::
Scientific,

::::::::
METEK) and/or 2.5D

::::::::
(TriSonica

:::::
Mini,

:::::::::::
Anemoment)

:
anemometers,

which were usually placed next to the release point of the source.160

:::::::
Stability

::::::
classes

:::::
listed

::
in

:::::
Table

::
1
::::
were

::::::::::
determined

:::
by

:::::::::
calculating

::
a

::::::::::::
dimensionless

::::::
height,

::::::::
ζ = z/L,

:::::
where

::
z
::
is

:::
the

::::::
height

::
of

::::
wind

::::::::::::
measurement

:::
and

::
L
::
is
:::
the

::::::::
Obukhov

:::::::
length.

:::
The

::::::::::::
dimensionless

::::::
height

::
is

::::
used

:::
as

:
a
:::::::
stability

:::::::::
parameter

::::::
where

:::::
ζ < 0

:::::::
indicates

::::::::
unstable,

:::::
ζ > 0

:::::::
unstable,

::::
and

:::::
ζ = 0

:::
for

::::::
neutral

:::::::::
conditions.

4 Method

4.1 Mass-Balance165

Mass-balance methods have been applied extensively to aircraft-based measurements for quantifying emissions from facility

scale (e.g. Ryerson et al., 2001; Karion et al., 2013; Gordon et al., 2015; Lavoie et al., 2015; Tadić et al., 2017) up to urban

and regional scale (e.g. Cambaliza et al., 2015; Pitt et al., 2019; Fiehn et al., 2020; Klausner et al., 2020). The quantification

involves flying downwind and/or around a region of interest at a single vertical height or multiple heights. Emission rates are

quantified by taking the net difference between fluxes into and out of a volume containing the source. Subtracting a large-scale170

background, the inflow is usually assumed to be zero and the outflow is determined from the enhancements above background

inside the plume downwind of the source together with measurements or model assumptions of wind speed. With the advent

of UAVs, estimating emissions using the cross-sectional mass-balance method originally used for aircraft may be adapted to

smaller scale and more localized sources. Emission quantification is best performed by flying the UAV downwind of a given

source perpendicular to the main wind direction at multiple altitudes above ground up to an altitude, zmax, where no discernible175

change in methane mixing ratio is observed. Background mole fractions can be determined from measurements outside of the

plume or from measurements upwind of the source.
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Table 1. Overview of MethAne Tracer
:::::::
MeThane

:
Release EXperiment (MATRIX).

Date Flight Time Release rate Downwind dist. WS WD Stab. Instruments

Code [UTC] [gs−1] [m] [ms−1] [deg. from N] Present

23-Feb 223_01 13:26:03 - 13:43:05 0.48 ± 0.04 42 4.98 ± 1.41 277 ± 18 N O, Q

24-Feb 224_01 15:40:50 - 15:48:01 0.29 ± 0.03 94 5.21 ± 1.61 283 ± 15 N O, Q

25-Feb 225_01 10:30:00 - 10:40:41 0.29 ± 0.03 50 4.53 ± 1.25 304 ± 11 N A, O, Q

225_02 10:50:17 - 11:01:45 0.29 ± 0.03 48 5.68 ± 1.18 304 ± 14 N A, O, Q

225_03 11:16:50 - 11:24:23 0.29 ± 0.03 45 6.08 ± 1.49 304 ± 12 N A, O, Q

08-Mar 308_02 13:17:37 - 13:28:26 0.26 ± 0.02 40 1.69 ± 0.76 271 ± 19 U A, Q, R

09-Mar 309_01 09:19:02 - 09:28:54 0.29 ± 0.03 18 2.61 ± 1.31 284 ± 28 N A, Q

309_02 09:52:08 - 10:03:28 0.29 ± 0.03 31 2.65 ± 1.06 284 ± 28 N A, Q, R

12-Mar 312_01 14:11:00 - 14:21:07 0.31 ± 0.03 46 3.49 ± 0.83 312 ± 11 N A, Q, R

312_03 14:58:47 - 15:09:39 0.39 ± 0.03 77 3.55 ± 0.71 306 ± 13 N A, Q, R

13-Mar 313_01 11:36:05 - 11:44:02 blind 51 3.29 ± 0.97 284 ± 18 U A, Q, R

313_02 11:57:58 - 12:07:15 blind 50 2.88 ± 1.03 282 ± 16 U A, Q, R

313_03 13:33:14 - 13:40:44 0.46 ± 0.04 129 2.34 ± 1.07 257 ± 32 U A, Q, R

313_04 13:51:32 - 14:02:45 0.48 ± 0.04 136 2.63 ± 0.82 282 ± 46 U A, Q, R

313_05 14:16:07 - 14:27:06 0.52 ± 0.05 102 2.15 ± 0.71 280 ± 46 U Q, R

14-Mar 314_01 12:40:41 - 12:49:17 0.26 ± 0.02 40 0.72 ± 0.33 111 ± 39 U A, Q, R

314_02 13:01:25 - 13:13:49 0.44 ± 0.04 40 0.51 ± 0.22 180 ± 44 U A, Q, R

314_03 14:06:00 - 14:13:49 0.68 ± 0.03 44 0.63 ± 0.27 154 ± 37 U A, Q, R

Instruments - A: AirCore, Q: QCLAS, O: OTM-33A, R: RTK | Meteorological stability - N: Neutral, U: Unstable, S: Stable

Applying mass conservation for a chemically non-reactive gas within a control volume, the emission flux downwind of a

given source can be quantified as:

Qc =

ymax∫
ymin

zmax∫
0

c(y,z)u(y,z) · n̂dzdy (1)180

whereQc is the sum of methane emission fluxes within the area of interest. The y-axis is aligned with the vertical cross-section

in which the UAV is flown. The integral over this two-dimensional plane is approximated in the observations as a discrete

summation of the product of the mass concentration of methane above background c(y,z) and the component of the horizontal

wind vector u(y,z) normal to the vertical cross-section, i.e. parallel to the unit vector n̂. In doing so, it is assumed that there

are no other significant sources of methane emissions upwind besides the controlled release
:::::::::::::::
controlled-release.185

8



30 m
source-transect
distance: 77 m

© 2020 Maxar Technologies, Kartendaten © Schweiz

Figure 3. Measured methane mole fraction
::::
above

::::::::::
background during MATRIX with flight code 314

::
312_02.

::
03

:::
and

:::
its

:::::::::::
corresponding

:::::::
windrose. The red cross indicates the location of the artificial source. The source-transect distance

:
,
:::::
shown

::
as

:::::
orange

::::
line, is computed as the

perpendicular distance between the source and the measurement plane. The flight trajectories are illustrated as colored dots indicating the

measured local CH4 concentrations. Wind and turbulence conditions are measured with a 3D sonic anemometer located next to the source.

4.2 OTM-33A

Other test methods (OTM) 33A was introduced by Thoma et al. (2012) to quantify emissions from natural oil and gas sites

emitting at near ground level without having the need to access the site. This approach heavily relies on the assumption that

plume dispersion is governed by point source Gaussian (PSG), and thus requires certain conditions to be met for effective

quantification. In particular, the target source must come from a single point and no nearby sources should contribute to the190

measurement. Furthermore, no obstacle should be present between the source and the measurement point. Lastly, measurements

of methane and meteorological parameters should be collected at 1− 2 Hz and should be taken under rather steady wind

conditions with a wind speed of at least 1 m s−1 blowing consistently from the source to the measurement point over a period

of at least 15− 20 minutes.

The emission rate, Qc, of the point source is then estimated using the following equation that is based on spatial integration195

over a Gaussian shaped plume of horizontal width σy and vertical width σz

Qc = 2 ·π ·σy ·σz ·U · Cpeak (2)

The horizontal and vertical dispersion coefficients σy and σz are parameterized as a function of distance from the source

using a lookup table developed by (Thoma et al., 2012) based on Pasquill stability classes. The average wind speed during the

measurements is U , and the Cpeak is obtained by taking the peak of a Gaussian fit of methane enhancements with respect to200

wind directions, binned into 10°.

The method was characterized using controlled-release experiments (Brantley et al., 2014; Robertson et al., 2017; Edie et al.,

2020), which suggested that the method has a 2σ error of ±70 % with a slight negative bias of about 5 % (Heltzel et al., 2020).

It was eventually used to quantify emissions from oil and gas plants in the US (Brantley et al., 2014; Robertson et al., 2017) and

9



results were compared to direct measurements simultaneously performed on site (Bell et al., 2017). Quantification estimates205

from Robertson et al. (2017) were slightly lower as compared to direct measurements, but most emissions were captured

within the 2σ uncertainty. A further analysis of controlled-release data by Edie et al. (2020) suggested that the error caused

by variations in wind speed, number of sources, and release height is small compared to the method’s uncertainty, and has no

significant effect on the accuracy of the emission estimates. This implies that the method is also applicable under conditions

outside of the strict bounds of the original formulation by Thoma et al. (2012).210

The OTM-33A method was applied alongside measurement flights on the first three days of the MATRIX campaign. Prior

to quantification, the dominant wind direction was chosen following screening recommendations of Thoma et al. (2012). Once

determined, a portable CH4 analyzer (LI-7810, LI-COR, Inc.) and a 3D sonic anemometer (uSonic-3 Scientific, METEK)

were placed in a stationary position, 35− 70m downwind of the source, to measure continuous methane mole fractions and

meteorological parameters at 1 Hz with an inlet height set at 2.5 m above ground.
::::
The CH4 ::::::

analyzer
::::
has

:
a
:::::::
portable

::::::::
footprint215

:
(12 kg

:
,
:::::::::::
51× 33× 18 cm3

:
)
::::
and

:::
can

:::::::
measure

::::::::
methane

:::::
mole

:::::::
fractions

:::
up

::
to

:
50.0 ppm

:
.
::
It

:::::::
operates

::::::::
between

:::
-25

:::
and

:::::
45°C

::::
and

:::
can

:::::
reach

:
a
::::::::
precision

::::
(1σ)

::
of
:
0.6 ppb

:
at
:
1 s

::
and

:
0.25 ppb

:
at
:
5 s

:::::::
averaging

:::::
time.

::::
The

:::::::
analyzer

::::
was

::::::::
calibrated

::::::
before

:::
and

:::::
after

::::
each

:::::::::::
measurement

::
on

:::
the

::::
field

::::
and

:::
can

::
be

::::::
linked

::
to

::
at

::::
least

:::
two

:::::::
certified

:::::::::
standards:

:::
the

::::::::::
atmospheric CH4 ::::

value
:
(2 ppm

:
±
:::::
5%),

5 ppm
::::::
standard

::
(5.05 ppm

:
±
:::::
5%),

:::
and

::
a

::
25

::::
ppm

::::
tank

:
(24.98 ppm

:
±

::::
5%).

:

4.3 Estimation of wind speeds along the drone
::::
UAV flight220

Local meteorological conditions were measured using the 3D sonic anemometer placed next to the artificial point source

sampling at an altitude of 2 m above ground. The anemometer has a sampling rate of 20 Hz, and measurements were averaged

every second. Wind speeds were then decomposed into components normal and parallel to the measurement plane. Turbulence

parameters such as friction velocity u∗
::
u∗:and Obukhov length L were computed for each measurement flight. In this study,

three different ways of computing the normal wind component along the drone
::::
UAV transects were tested. The first and most225

simple approach
:
,
:::::::
referred

::
to

::
as

:::::
scalar

:::::
wind

:::::
(SW),

:
was to apply the mean normal component of the wind vector u measured

during the whole flight uniformly to all points in the vertical cross-section. Eq. (1) can then be simplified to

Qc = U

ymax∫
ymin

zmax∫
0

c(y,z)dzdy (3)

where U is the mean of the normal component of the wind.

A second approach involved the construction of a theoretical logarithmic wind
:::::
(LW) profile to vertically extrapolate the230

measurements at 2 m to the whole altitude range covered by the drone
::::
UAV. The stability condition of the atmospheric surface

layer was determined using the Obukhov length. Depending on whether the surface layer was neutral, stable, or unstable, the

roughness length, z0, was derived using the logarithmic profile

uz =
u∗
κ

[
ln

(
z

z0

)
−Ψm

( z
L

)]
(4)
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where uz is the normal component of the wind vector at the height of the actual measurement z and Ψm is a profile function235

depending on the stability of the atmosphere. Following Högström (1988), we applied the following structure functions

Ψm =


0 neutral

−6 zL stable

2ln
(
1+x
2

)
+ ln

(
1+x2

2

)
− 2arctanx+ π

2 unstable

with x= (1−15z/L)0.25. Instead of using a constant wind at all levels as in the first approach, the wind speed thus varied with

altitude.

The third approach
:
,
:::::::
referred

::
to

::
as

::::::::
projected

:::::
wind

:::::
(PW),

:
involved taking the 1 s-average normal wind component and pro-240

jecting it onto the measurement plane by matching the timestamp of the anemometer to the to GPS location of the UAV during

the time of measurement. This allows accounting for changes in wind conditions over the period of a drone
::::
UAV flight. The

measurement plane is assumed to be sufficiently close to the anemometer that the wind measurements are representative for the

conditions encountered by the drone
::::
UAV. With a typical downwind distance of about 40 m and a wind speed of 4 m s−1 (see

Table 1), a wind gust measured at the anemometer would arrive at the measurement plane after only 10 s. After projecting each245

normal wind component to the location of the drone
::::
UAV, a wind field is constructed by ordinary kriging using the projected

wind data.

4.4 Post-processing of drone
::::
UAV measurements

Timestamps of the CH4 data reported by the QCLAS and positional coordinates from the RTK-GPS system were synchronized

by performing a cross-correlation between the longitude and latitude reading of the built-in GPS of the QCLAS and the RTK-250

GPS system. After determining the delay between clocks, timestamps from the QCLAS were shifted to match the RTK-GPS

system, which is considered to be the real time that all other clocks in the system follow.

Background CH4 mole fractions were removed from the data set
:::::::::
determined

::::
from

::::::::::::
measurements

:::::::
outside

::
of

:::
the

::::::::
emission

::::::
plume.

:::::
Each

:::::::
sampled

:::::::
vertical

::::::
height

::::
was

:::::::
extended

:::
to

::::
pass

::::
both

:::::
sides

::
of

:::
the

::::::
plume

::
to

::::::
ensure

::::::::
sampling

::
of

:::::
local

::::::::::
background

::::::
values.

:::::
Local

:::::::
variation

::
of

::::::::
measured

::::::::::
background

::::::
values

::::
were

::::::::
corrected by using the Robust Extraction Baseline Signal (REBS)255

algorithm developed by Ruckstuhl et al. (2012).
::::::
Average

:
CH4::::::::::

background
::::
mole

:::::::
fraction

::::::
during

:::
the

:::::
whole

::::::
release

::::::::::
experiment

:::
was

::::::::::
determined

::
at

::::
2.09

::
± 0.19 ppm

:
. Take-off and landing times of the UAV are

::::
were

:
noted and all data before and after the

flight are
::::
were removed.

4.4.1 Processing of Active AirCore measurements

In contrast to the CH4 mole fractions measured by the fast-response QCLAS analyzer, characterized by sharp and instantaneous260

elevations, the measurements by the AirCore resulted in a rather smooth signal, as presented in Fig. 4. Instantaneous methane

plumes usually did not have a Gaussian shape, but rather showed complex structures with small patches of elevated concen-

trations due
::
to the chaotic nature of turbulence. These sharp concentration gradients were fully captured by the fast-response
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QCLAS, but were smeared out by the AirCore system, which has a much slower response due to mixing in the sampling tube

and later in the CRDS analyzer.265

To determine the magnitude of smoothing present in the AirCore measurements, we flew the two instruments simultaneously

with the drone
::::
UAV, while measuring the same point source downwind, as shown in Fig. 1. We then transformed the fast-

response QCLAS measurements to mimic the smooth and smeared out AirCore data . Adapting
::
for

::::
each

::::::::::::
quantification

:::::
flight

:::::
where

::::
both

::::::::::
instruments

::::
were

:::::::
present.

:::::
Using

:
the in-flight spectral calibration algorithm of imaging spectrometers developed by

Kuhlmann et al. (2016)into a ,
:::
we

:::::::
obtained

:::
the

:
smoothing, shifting, and stretching (3S) algorithm, we obtained the parameters270

applied
:::::::::
parameters

::::::
needed

:
in transforming the QCLAS measurements to match the measurements from the AirCore.

This implied convoluting the QCLAS data with a non-linear fit function, and subsequently shifting and stretching the

convoluted QCLAS measurements. The smoothing of the AirCore measurements is dominated by the response of the CRDS an-

alyzer, i.e. air mixing in the analyzer cavity (Andersen et al., in review; Vinkovich et al., in prep),
::::::::::::::::::::::::::::::::::::::
(Andersen et al., 2022, Vinkovic et al., in prep)

:
, but also influenced by molecular diffusion during sample storage as well as Taylor diffusion during sampling and analysis275

(Karion et al., 2010). Analogous to Kuhlmann et al. (2016), we
:::
We

:
approximate the active AirCore measurement asa vector

:
,

ydefined as ,
:::::::
defined

::
as

y = Ff(x,b) + e (5)

where F is a function with a Gaussian form that depends on the state vector x and parameter vector b. The state vector f
::
is
::
a

:::::
model

:::::::
function

::::
that

:::
fits

:::
the

::::::::::::
high-resolution

::::::::
QCLAS

:::
and

:::::::
projects

::
it

::::
onto

:::
the

::::::::::::
low-resolution

:::::::
AirCore

::::::::::::
measurement.

:::
The

::::::
model280

:::::::
function

:::::::
consists

::
of

:
x contains three elements, where the first two are the control points

:::::
which

::
is

:::
the

:::::::::::
independent

:::::::
variable

:::::
where

:::
the

:::::::
QCLAS

::
is
:::::::::

measured
::::
(i.e.,

:::::::::
timescale)

::::
and

:::
the

::
fit

::::::::::
parameters

::
b

:::::::::
containing

:::::
three

:::::::
elements

:
describing the shiftand

stretchparameter and the third as the smoothing parameter.The error vector ,
:::::::

stretch,
:::
and

:::::::::
smoothing

:::::
(i.e.,

:::
3S)

::
of

:::
the

::::::::
AirCore.

:::
The

::::
error

:
e represents the instrument’s error as well as the error from the Gaussian fit.

Given a measurement vector y, the goal is to find an optimal state vector x̂ that minimizes the merit function:285

χ2(x) = (y−F(x))>S−1ε (y−F(x))

where Sε is the measurement covariance matrix. The optimal state vector x̂ is calculated
:::::
model

:::::::
function.

:::
We

:::::
used

:
a
::::::::
1st-order

::::::::
Lagrange

:::::::::
polynomial

:::::::::::
interpolation

::::
and

::::::
applied

::
a
::::::::
Gaussian

:::::
filter

::::
with

::
an

::::::
initial

:::::
width

::::
(1σ)

:::
of 10 s

::
to

::::::::::
parametrize

:::
the

:::::
shift,

::::::
stretch,

:::
and

:::::::::
smoothing

::
of

:::
the

::::::::
AirCore.

:::::::
Starting

::::
with

::
an

::::::::
arbitrary

:::::
initial

:::::
guess,

:::
the

:::::::
optimal

:::::::::
parameters

::
b̂

:::
was

::::::::::
determined

:::::
using

:
a
::::::::
nonlinear

::::
least

:::::::
squares

::
fit

:::::
solved

:
iteratively using the Gauss-Newton method:290

xi+1 = xi + Ŝi(K
>
i S
−1
ε (y−F(xi,b))

The Ŝi is the a posteriori error covariance matrix

Ŝi =
(
K>i S

−1
ε Ki

)−1
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Figure 4. Methane mole fraction time-series obtained by simultaneously flying the active AirCore system (orange line) and the in-situ

QCLAS analyzer (blue line). Black dashed line represents the corrected AirCore measurements by using the shifting and stretching parameter

obtained from the 3S algorithm.

where Ki is a Jacobian matrix whose elements are the partial derivatives of the forward model with respect to the state vector,

and the iteration stops if:295

(xi−xi+1)
>
Ŝ−1i (xi−xi+1)< n

where n= 3 is the number of state vector elements.

4.5 Cluster based kriging

In order to compute the flux through the vertical cross-section, the spatially discrete samples were interpolated to fill all gaps

in the plane. Kriging is a popular method of stochastic interpolation in which the produced interpolated surface is modelled300

by a Gaussian process governed by prior covariance kernels, which is a realization of many possible outcomes that could have

produced the known data points.

Kriging models have been widely used in atmospheric science and air quality as a tool for data analysis and prediction

(e.g. Wong et al., 2004; Tadić et al., 2015; Michael et al., 2019; Tadić et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Wong et al., 2004; Tadić et al., 2015, 2017; Michael et al., 2019)

. However, applying kriging to airborne measurements is faced with several challenges. Standard ordinary kriging assumes spa-305

tial stationarity of the geophysical field (Tadić et al., 2015) and all data points are assumed to be taken from a unimodal single

probability distribution. Both assumptions are not necessarily true when a temporally varying plume is sampled sequentially

over the duration of a flight. Furthermore, the scales of spatial variability of methane inside the plume and in the background

are largely different, which violates the assumption of a unimodal distribution.
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In order to overcome these issues, a cluster-based kriging (van Stein et al., 2020) was adapted. The process may be summa-310

rized into three main steps: i) Partitioning the data-set into smaller clusters; ii) Training an adequate kriging model for each

cluster; iii) Combining all kriging models to predict values (i.e., methane mole fractions) at unknown locations.

4.5.1 Data clustering

Cluster analysis or clustering is a process of grouping data into subsets according to a degree of similarity found inherently

within the data. Clustering can be performed in many ways and can generally be divided into two basic types, hard- and315

soft-clustering.

Hard clustering is achieved when the data is split into smaller disjoint data-sets, and the resulting label of a data-point

belongs to one and only cluster. The most common example of an algorithm that implements hard clustering is K-means. On

the other hand, soft clustering splits the data into smaller data-sets with small overlaps, and returns a probability of how much a

data-point is associated with a specific cluster. A soft clustering approach is favored in this study as this approach increases the320

final model accuracy (van Stein et al., 2020). One of the widely used models to perform soft clustering is a Gaussian Mixture

Model (GMM) (Reynolds, 2015). GMM is the type of model that will be used here.

Given a setX =
{

(x1,y1), . . . ,(xn,yn)
}

of methane mole fractions yi acquired at locations xi for i= {1, . . . ,n}, where n is

the number of data points collected, the goal is to split the input data X into a set S composed of several Gaussian components

k, such that:325

S = {X1, . . . ,Xk}, where
k⋃
j=1

Xj = X . (6)

Each cluster Xj in the set S is assumed to have a Gaussian shape in three dimensions, namely the 2D spatial location x and

methane mole fraction y. The shape of each Xj being determined by a set of parameters θj = {πj ,µj ,Σj} where πj is the

mixing probability, µj is the mean, and Σj is the covariance (i.e., spread) of the Gaussian. Each cluster Xj is acting together to

model the overall density of X . The probability distribution of X given a global mixture model parameter θ = {θ1, . . . ,θk} is330

defined as:

p(X | θ) =

k∑
j=1

πjN (Xj | µj ,Σj), where
k∑
j=1

πj = 1 (7)

N is the normal distribution with mean µj and width Σj . The global mixture model parameter θ that best describes the data

must be learned. The most established method to learn this parameter is through the use of an expectation-maximization (EM)

algorithm. Given an initial parameter θ, the EM algorithm aims to estimate a new θ, such that p(X | θ)≥ p(X | θ). The new335

parameter then becomes the old parameter for the next iteration, and this process is repeated until a convergence threshold is

satisfied. The a posteriori probability of a data point (xi,yi) belonging to cluster Xj with parameters θj is then given by:

Pr((xi,yi) ∈ Xj | θj) =
πjN (Xj | µj ,Σj)∑k
j=1πjN (Xj | µj ,Σj)

for j = 1, . . . ,k (8)
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Once the model parameter θ and the membership probability of a data point belonging to a cluster is learned, the clustered

data points are expanded to the whole domain and the membership probability of an unobserved location point xtj belonging340

to cluster Xj is computed as well.

For typical trace gas distribution modelling, Stachniss et al. (2009) suggested to use a mixture of only two clusters. The first

cluster corresponds to measured background mole fractions, whereas the second cluster corresponds to elevated measurements.

This choice is motivated by the fact that the spatial scales of variability are largely different between the two clusters. Tests

with larger mixtures applied to our data-set showed that a two-cluster mixture is indeed sufficient to achieve good results.345

4.5.2 Kriging estimate

Once the data-set has been clustered and the membership probability of each data-point belonging to a cluster has been com-

puted, ordinary kriging models are trained for each cluster separately to spatially interpolate the field of interest. Since data

points for ordinary kriging can only belong to one of the two clusters, the kriging model for each cluster is learned using hard

clustered data-points, either belonging to the background or the elevated cluster.
::::
Hard

::::::::
clustered

:::::::::
data-points

::::
are

:::::::
obtained

:::
by350

:::::::
rounding

:::
the

:::::::::
probability

::::::::
obtained

::::
from

:::
the

::::::
GMM

::
to

:::::
either

::::::
belong

::
to

:::
the

::::::::::
background

::
or

:::
the

:::::::
elevated

::::::
cluster.

:
Interpolation of a

geophysical field from a spatially sparse data-set is highly dependent on a chosen covariance kernel K, which statistically de-

scribes the relationship between two spatial points using a set of hyper-parameters λ= {l,σ}, where l refers to the length-scale

and σ2 is the overall variance (i.e., noise) coming from the data. There are several ways to define the covariance kernel. In this

study, the Matèrn 5/2 covariance kernel is chosen as it performs better compared to other frequently used kernels, such as a355

squared exponential function as shown by Stachniss et al. (2009). In their study, they established that the Matèrn covariance

kernel has a lesser degree of smoothing compared to other kernels, which resembles more closely the nature of gas distributions

in the vicinity of a localized source. Optimizing the hyper-parameters of the covariance kernel K for each cluster is done by

evaluating a log-marginal-likelihood (LML) using a set of initial parameters, which are increased or decreased incrementally

until a maximum value is obtained. The whole process of clustering the data-set into two clusters followed by optimizing the360

hyper-parameters of each cluster was implemented using the scikit-learn package of python.

Optimized hyper-parameters λj = {lj ,σj} for each cluster Xj are used to perform ordinary kriging to predict a data-point

(xtj ,y
t
j) of unmeasured methane mole fraction ytj at an unobserved location xtj . The resulting interpolated field from kriging

is a Gaussian distribution N expressed as

ytj | Xj ∼N
(
mj(x

t),s2j (x
t)
)

(9)365

with mean mj and variance s2j .

The final predicted value (xt,yt) of methane mole fractions yt at each point (xt,yt) is obtained by combining the results of

all the kriging models together (xtj ,y
t
j) with the respective membership probability of each spatial point xt used as weights

wj , denoted as

wj = Pr
(
C = j | X ,xt

)
, for j = 1, . . . ,k (10)370
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where C is the cluster indicator ranging from 1 to k.

Thus, the expected value of methane mole fraction yt at each spatial point xt is

E
[
yt | X ,y,xt

]
=

k∑
j=1

wjmj(x
t) (11)

and the variance of the expected value is (van Stein et al., 2020)

Var
[
yt | X ,y,xt

]
375

=

k∑
j=1

wj
(
s2j
(
xt
)

+m2
j

(
xt
))
−

 k∑
j=1

wjmj(x
t)

2

(12)

5 Results and Discussion

::::::::
Although

::::
other

::::::
kriging

::::::
option

:::::::
modules

:::
are

::::::::
available

::::
such

::
as

:
a
:::::::
moving

:::::::::::
neighborhood

::::::::
approach

:::::
where

::::
only

::::::::::
data-points

:::::
within

::
a

:::::
certain

::::::
radius

:::
are

:::::::::
considered

::
in

:::
the

::::::
kriging

:::::::
process

:::::::::::::::::::::::::::::::::::::::::::::
(Mays et al., 2009; O’Shea et al., 2014; Pitt et al., 2019)

:
,
:::
the

:::::::::::
cluster-based

::::::
kriging

::::::::
approach

:::::
offers

:::
the

::::::::
advantage

::
of

:::::::::
removing

::::
many

::::::::
arbitrary

::::::::
subjective

::::::::::
parameters

::::::
present

::
in

:::::
other

::::::::::
approaches.380

4.1 Example of quantification procedure

An illustration of the clustering and kriging approach used to map a discrete set of data points onto the whole measurement

plane is presented in Fig.
:
5
:::
and

::::
Fig.

:
6 for flight 312_03 on 12 Mar 2020.

:::::
2020,

::::::::::
respectively.

:
The time-series presented in the

upper left in panel (a)
::::
panel

:::
of

:::
Fig.

::
5
:
was first mapped onto the 2D measurement plane composed of horizontal distance and

vertical altitude. The time-series, composed as a set of ordered spatial and methane concentration points (x,y), was then fed385

into a GMM to partition the data-set into two clusters, namely, the background and the elevated cluster. The GMM returns

the membership probability of a data point belonging to one cluster or the other. The membership probability of each data

point was then expanded to the whole domain to unobserved locations as shown in Fig. 6b
::
A. In a next step, ordinary kriging

was applied to each cluster separately to produce a background and an elevated CH4 distribution, respectively (Fig. 6b
::
A left

panels). Finally, the kriging results for each cluster were combined with their respective membership probability. The resulting390

kriging field is illustrated in Fig. 6c
:
B
:

with the expected value computed according to Eq. (11) and prediction uncertainty,

i.e., the square root of variance according to Eq. (12). A reconstructed time-series of predicted methane mole fraction was

compared to the original time-series of measured methane is shown in Fig. S1. The peaks of predicted methane mole fraction

are lower but broader compared to the original methane time-series as expected as kriging applies smoothing in the data.

The measured average ambient air temperature T [K] and pressure p [Pa] during the flight was used to convert the obtained395

kriging field of methane mole fraction χCH4
[ppm] into concentrations ρCH4

[g m−3]:

ρCH4
= χCH4

pMCH4

RT
(13)
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where R is the gas constant (8.3144 J K−1 mol−1) and MCH4
is the molar mass of methane (16.04 g mol−1). The influence of

humidity, which introduces an error of no more than 1 %, was ignored in this equation. As we are only interested in methane

elevations above the background, this uncertainty is considered small.400

The concentration field was combined with wind fields using three different wind treatments as discussed in Sect. 4. Finally,

an emission rateQc was estimated as a scalar (dot) product of the concentration field C and the wind field U written as vectors:

Qc =
(
C> ·U

)
∆y∆z (14)

where ∆y and ∆z are the regularly spaced intervals in the horizontal and vertical direction.405

The emission rate QC (C,U) is a function of two variables C and U and the overall error propagation of the function is:

∆Q2
c =

(
∂Qc
∂C

∆U

)2

+

(
∂Qc
∂U

∆C

)2

∆y2∆z2 (15)

The concentration field C and wind field U come with their respective covariance matrix KC and KU provided by kriging, and

the above equation becomes:

∆Q2
c =

(
U> ·KC ·U+C> ·KU ·C

)
∆y2∆z2 (16)410

In cases where U is a scalar constant or logarithmic profile, the uncertainty of the wind is estimated by computing the standard

deviation (1σ) of the mean wind speed normal to the measurement plane during the flight.

Cluster-based kriging produces the concentration field C as a linear combination of two distinct concentration fields Celev

and Cbg with weights welev and wbg

C = welevCelev +wbgCbg (17)415

where welev and wbg are vectors of the same length as Celev and Cbg. Both concentration fields come with a covariance matrix

KCelev and KCbg as determined by kriging. The weights welev and wbg are constants without uncertainties.

The concentration field C(Celev,Cbg) is a function of two variables Celev and Cbg and the error propagation of the function

is:

∆C2 =

(
∂C

∂Celev
∆Celev

)2

+

(
∂C

∂Cbg
∆Cbg

)2

(18)420

written in matrix notation as:

KC = ∆C2 = welev ·w>elev ·KCelev +wbg ·w>bg ·KCbg (19)

5
::::::
Results

::::
and

:::::::::
Discussion

5.1 Emission estimates

Measurements from 18 flights were analyzed to characterize the accuracy of the quantification method. A summary of the
::::
total425

::
of

:::
six

:::::::::::
quantification

::::::::::
approaches

::::
were

::::::
applied

:::
to

::
all

::::::
flights

:::
and

::::::::
evaluated

:::
for

::::
their

::::::
ability

::
to

::::::::
reproduce

:::
the

::::
true

:::::::
releases.

::::::
These
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Figure 5.
:::::::

Clustering
:::::
result

::
for

:::::
flight

::::::
312_03

::
on

::
12

:::::
March

:::::
2020

::::::
obtained

::::
from

:::
the

:::::
in-situ

:::::::
QCLAS

::::
after

:::::::
applying

:::::
GMM

:::
with

::::
two

::::::
mixture

:::::::::
components.

:::
The

::::::::::
background

:::
and

::::::
elevated

:::::
cluster

::::::::::
complement

::::
each

::::
other;

:::
the

::::
total

::::::::
probability

::
of
::::
each

::::::::
data-point

:::::
shared

:::::::
between

:::
the

:::
two

:::::
clusters

::
is
::::
equal

::
to
::::
one.

:::::::::
approaches

::::
arise

:::::
from

:::
the

:::::::::::
combination

::
of

::::
two

:::::::
different

:::::::::
treatments

:::
of

:::::::
methane

::::::::::::
measurements

::::
and

::::
three

::::::::
different

:::::::::
treatments

::
of

::::
wind

:::::::::::::
measurements.

::::
The

:::::::::
treatments

::::::::
involved

::
in

::::::::
mapping

:::
the

:::::::
discrete

::::::::
methane

::::::
points

::::
into

:::
the

:::::::::::
measurement

:::::
plane

::::
are

::
the

::::::::
standard

:::::::
ordinary

:::::::
kriging

:::::
(OK)

::::
and

:::
the

:::::::::::
cluster-based

:::::::
kriging

::::
(CK)

:::::::::::
interpolation

::::::::
schemes.

::::
The

:::::
three

:::::::
different

:::::
ways

:::
of

::::::::
estimating

:::::::::::
wind-speeds

::::::
during

::::
each

:::::::::::
quantification

:::::
flight

:::::::
involves

:::
the

:::::
scalar

:::::
wind

:::::
(SW),

::::::::::
logarithmic

::::
wind

:::::
(LW),

::::
and

::::::::
projected430

::::
wind

::::::
(PW)

::
as

::::::::
discussed

::
in

:::::
Sect.

::
4.

:::
The

::::::
overall

:::::::::::
performance

:::
of

::::
each

::::::::::::
quantification

::::::::
approach

::
is

:::::::::
presented

::
in

:::::
Table

::
2
::::
and estimated emission rates together

with the true release rates is
::
for

:::::
every

:::::::::
individual

:::::
flight

:::
are presented in Table 2

::
S1. Estimates are presented for six different

quantification methods, which correspond to three different wind treatments applied to two different kriging methods, standard

ordinary kriging and cluster-kriging as described above. Among all the methods, the best performing approach, characterized435

by the lowest RMSE, was obtained by applying Cluster-Kriging Projected-Wind (CKPW), where methane measurements were

clustered before kriging, and where the normal components of the instantaneous wind measurements were projected onto the

positions of the drone
::::
UAV.
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Table 2. Summary of emission estimates
::::::::::
performance

:
of
::::

each
::::::::::
quantifaction

:::::::
approach

Date Flight Rel. rate Cluster Kriging Cluster Kriging Ordinary Kriging Ordinary Kriging

Code gs−1 Proj. wind Sca. wind Log. wind Proj. wind Sca. wind Log. wind

23-Feb 223_01* 0.48 ± 0.04 0.64 ± 0.56
:::::::
(CKPW) 0.66 ± 0.41

:::::::
(CKSW) 0.56 ± 0.40

:::::::
(CKLW) 1.29 ± 0.98

:::::::
(OKPW) 1.26 ± 0.69

::::::
(OKSW)

:
0.85 ± 0.70

:::::::
(OKLW)

24-Feb 224_01 0.29 ± 0.03 0.79 ± 0.66 0.76 ± 0.49 0.82 ± 0.51 0.60 ± 0.48 0.61 ± 0.30 0.61 ± 0.31 25-Feb 225_01* 0.29 ± 0.03 0.28 ± 0.48 0.31 ± 0.41 0.29 ± 0.42 0.30 ± 0.24 0.30 ± 0.11 0.29 ± 0.11 225_02* 0.29 ± 0.03 0.41 ± 0.46 0.45 ± 0.34 0.42 ± 0.36 0.44 ± 0.33 0.45 ± 0.14 0.44 ± 0.15225_03* 0.29 ± 0.03 0.30 ± 0.50 0.32 ± 0.46 0.38 ± 0.56 0.48 ± 0.39 0.54 ± 0.18 0.65 ± 0.1808-Mar 308_02 0.26 ± 0.02 0.22 ± 0.31 0.23 ± 0.30 0.27 ± 0.35 0.33 ± 0.27 0.33 ± 0.22 0.40 ± 0.2309-Mar 309_01 0.29 ± 0.03 0.62 ± 0.37 0.77 ± 0.72 0.76 ± 0.74 0.76 ± 0.33 0.89 ± 0.76 0.97 ± 0.79309_02 0.29 ± 0.03 0.39 ± 0.28 0.44 ± 0.39 0.49 ± 0.42 0.42 ± 0.37 0.47 ± 0.30 0.51 ± 0.3112-Mar 312_01* 0.31 ± 0.03 0.32 ± 0.34 0.31 ± 0.28 0.32 ± 0.31 0.31 ± 0.20 0.30 ± 0.09 0.32 ± 0.10312_03* 0.39 ± 0.03 0.32 ± 0.53 0.32 ± 0.49 0.33 ± 0.54 0.39 ± 0.26 0.39 ± 0.11 0.42 ± 0.1213-Mar 313_01* 0.28 ± 0.02 0.15 ± 0.20 0.13 ± 0.19 0.13 ± 0.18 0.22 ± 0.15 0.20 ± 0.09 0.20 ± 0.09313_02* 0.41 ± 0.04 0.74 ± 0.63 0.80 ± 0.60 0.91 ± 0.66 0.84 ± 0.60 0.83 ± 0.36 0.97 ± 0.37313_03 0.47 ± 0.04 0.08 ± 0.16 0.09 ± 0.18 0.09 ± 0.18 0.06 ± 0.06 0.08 ± 0.08 0.07 ± 0.08313_04 0.48 ± 0.04 0.13 ± 0.12 0.14 ± 0.08 0.13 ± 0.09 0.14 ± 0.11 0.14 ± 0.08 0.13 ± 0.08313_05 0.52 ± 0.05 0.24 ± 0.34 0.24 ± 0.32 0.20 ± 0.28 0.28 ± 0.21 0.29 ± 0.15 0.25 ± 0.1614-Mar 314_01 0.26 ± 0.03 0.09 ± 0.08 0.09 ± 0.08 0.18 ± 0.12 0.10 ± 0.07 0.10 ± 0.07 0.17 ± 0.09314_02 0.45 ± 0.05 0.02 ± 0.03 0.03 ± 0.03 0.04 ± 0.02 0.05 ± 0.02 0.02 ± 0.03 0.02 ± 0.04314_03 0.68 ± 0.03 0.40 ± 0.43 0.46 ± 0.48 0.26 ± 0.51 0.40 ± 0.35 0.47 ± 0.36 0.24 ± 0.45height *NMAE [%] 53.86 57.16 58.20 64.59 68.29 71.48

Bias [%] −1.06 3.68 5.63 17.56 21.69 23.27

RMSE [%] 68.60 73.07 75.71 81.14 86.48 89.35

Optimal NMAE [%] 28.56 30.41 29.63 53.68 55.26 51.73

measurement Bias [%] 11.44 12.05 11.90 48.34 47.53 44.35

condition RMSE [%] 38.66 38.40 37.88 79.55 77.95 70.48

Non optimal
:::::::::
Non-optimal NMAE [%] 74.11 78.55 81.05 73.31 78.70 87.27

measurement Bias [%] −11.06 −3.02 0.61 −7.06 1.02 6.41

conditions RMSE [%] 85.29 91.83 95.76 82.40 92.74 101.97

*Normalize mean absolute error. Optimal and non-optimal measurement conditions are defined in Sect. 5.1.2

:
A
:::::::
residual

::::
plot

:::::::
showing

:::
the

::::::::
accuracy

::
of

::::
each

::::::::::::
quantification

::::::::
approach

::::::
relative

::
to

:::
the

::::
true

::::::
release

::
is

::::::::
presented

::
in

::::
Fig.

::
7.

::::
The

:::
plot

:::::::::
illustrates

:::
the

::::::
amount

:::
by

::::::
which

:::
we

::::::::::::
underestimated

::::::::
(negative

:::::::::
numbers)

::
or

::::::::::::
overestimated

:::::::
(positive

:::::::::
numbers)

:::
the

::::::
known440

::::::
release

::
for

:::::
each

:::::::::::
measurement

:::::
flight.

A residual plot showing the accuracy of each quantification approach relative to the true release is presented in Fig. 7. The

plot illustrates the amount by which we underestimated (negative numbers) or overestimated (positive numbers) the known

release for each measurement flight.

In general, a good agreement between computed estimates using the CKPW approach and true releases was observed as the445

uncertainty range managed to capture the known release for most measurement flights. A slight overestimation was observed

for most of the earlier flights, but release rates were captured well within the uncertainty range provided by the CKPW ap-

proach. We have observed a systemic underestimation for the last six flights on 13 and 14 March where we did not manage to

capture the true release for four flights (i.e., 313_03, 313_04, 314_01, and 314_02). In order to investigate the reasons for this

underestimation, we compared the predicted kriging fields with a theoretical Gaussian plume dispersion model (see. Fig. S2450

and S3) to test whether the vertical and horizontal distance flown by the drone
::::
UAV was sufficient to capture the whole plume.

The Gaussian plume model using a Pasquill-Gifford stability class dispersion parameterization scheme provides an analytical

solution for the horizontal and vertical width as a function of downwind distance depending on wind speed and atmospheric

stability. The comparison with the size of the theoretical Gaussian plume suggests that although we managed to detect methane

elevations, we were most likely not able to capture the whole extent of the plume during these flights. The reason is that some455

of these flights were conducted at a rather large distance from the source and under low wind conditions, during which the
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plume spreads more quickly with downwind distance. For flights 313_03–05, for example, the horizontal and vertical width of

the Gaussian plume computed for the meteorological conditions and downwind distance of the flight were on average 75 m and

20 m, respectively. However, the typical cross-sectional plane covered by the drone
::::
UAV

:
was of the order of 100 m× 12 m,

which is insufficient to fully capture a spread of the calculated plume, especially with respect to the vertical extent.460

The average horizontal and vertical spread of the plume with respect to wind speed and downwind distance computed with

the Gaussian plume model is illustrated in Fig. 8. The spread does not vary smoothly with wind speed, but shows step-wise

changes because the model uses different (but fixed) dispersion parameters for different wind speed and stability classes.

Overlaid on top are dots colored from white to red representing the performance of each measurement flight with lighter

colors showing smaller relative errors. It can be seen that flights with the highest accuracy are the ones that fall within the465

blueish region characterized by wind speeds greater than 2 m s−1 and a sampling downwind distance ranging from 10 to 75 m.

Measurement flights within this region had a higher accuracy mainly because the vertical spread of the plume was below 10 m,

which is a realistic range for the drone
::::
UAV to completely map the plume. For optimal measurement conditions, we found a

slight positive bias of 11 % using the CKPW method and an RMSE of 39 %. Measurements under sub-optimal conditions had

a smaller average bias (about −11 %), but a much larger spread with a significant overestimation and underestimation with an470

RMSE of 85 %.

All measurement flights were also analyzed using an ordinary-kriging (OK) algorithm, where methane measurements were

not clustered before kriging. By doing so, each measurement flight was fed directly into an
:
a GMM to determine the hyper-

parameters for kriging. Likewise, Matèrn 5/2 covariance kernel was used to quantify the correlation between the measured

data. Ordinary kriging produces a single methane field with expected value and variance because a single correlation length475

scale is assumed for both the background and the plume data. The assumption of a single correlation length leads to a strong

smoothing of the plume (Stachniss et al., 2009), as illustrated in Fig. 6d
::
C. Obtained methane fields were combined with the

same three different wind treatments to compute the release rates. A summary of emission rates computed using ordinary

kriging is presented in Table 2, and the range of the residuals for each quantification approach is illustrated in Fig. 9. It shows

that cluster-based kriging, in general, outperforms ordinary kriging as evidenced by lower RMSE and lower relative absolute480

errors. On average, all data treatments tend to overestimate the true release, but the lowest overestimation was obtained using

the CKPW approach. Generally, a larger variability of residuals (wider inter-quartile band) was obtained for the approaches

using OK as compared to the respective CK counterpart. A concrete example to see the difference between the reconstructed

methane plume using cluster kriging and ordinary kriging is presented for flight 312_03 in Fig. 6c
:
C
:
and Fig. 6d

:
D. CK proves

to better preserve the shape of the plumes, which results in a better accuracy of the estimates.485

5.1.1 Impact of altitude uncertainties on emission estimates

Initially, the altitude measurements of the drone-based
:::::::::
UAV-based system were relying exclusively on the on-board internal

GPS, but later it became evident that this has some impact on our capability of emission estimates. The RTK-GPS system

was implemented a few days after the start of the MATRIX campaign, and 11 out of 18 measurement flights contain both

UAV altitude and RTK altitude. We observed an average drift of the UAV-GPS of 0.10 cm s−1 which translates to an altitude490
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error of about 0.6 m for a 10-minute flight duration. This drift is consistent with the uncertainty reported by the drone
::::
UAV

manufacturer, though sometimes error were larger of up to 0.20 cm s−1 (see Table S1
::
S2). An erroneous altitude retrieval on

certain flight levels may lead to a distortion of the emission plume, which ultimately affects the estimated emissions (see

Fig. S4). A summary of the percentage difference between the emission estimates derived using two different altitudes is

presented in Fig. 10. Differences are in the range of −8 to 18 % with an absolute average difference of 4 %, suggesting that495

the errors introduced by inaccurate vertical positioning are relatively small compared to the overall uncertainty of the CKPW

quantification method. The highest differences occurred on flights 313_02 and 313_05, during which the drift of the UAV-GPS

was particularly large (about 0.17 cm s−1, see Table S1
:::
S2). These findings are important aspects also in the context of the

ROMEO campaign, during which the high-accuracy RTK-GPS system was not yet implemented. Now, it can be stated that the

emissions reported for the ROMEO campaign should have a similar accuracy as presented here, at least for those cases, where500

meteorological conditions were favorable.

5.1.2 Impact of wind speed and direction on emission estimates

Similar to our study, Yang et al. (2018) performed a rasterized mass-balance approach to quantify emissions from individual

gas wells in Texas, USA using UAVs. Based on their results, they proposed a minimum threshold of wind-speed of 2.3 m s−1

and wind direction variability not greater than 33.1° in order to quantify emissions with an accuracy of better than 50 %.505

Applying the same threshold criteria and additionally restricting the measurements to a maximum downwind distance of 75 m,

we have identified 8 out of 18 flights from our campaign that satisfy these criteria (see Fig. S5). As illustrated in Fig. 9,

these flights indeed exhibit a lower RMSE and absolute mean error. RMSE and absolute error were reduced to 39 % and 29 %

respectively as compared to 69 % RMSE and 54 % absolute error for all flights. Computed emission rates were on average

slightly overestimated by 11 %. In contrast, a lower average accuracy was observed when measurement flights were performed510

under less favorable wind conditions. Computed emission rates under these conditions were generally underestimated by 11 %

with a higher corresponding RMSE and absolute mean error of 85 % and 74 %. Underestimation of true releases during highly

variable weather conditions may be attributed to incomplete sampling of methane plumes as discussed above. Variability of

residuals (width of inter-quartile band) among all approaches is significantly lower for measurement flights under optimal

conditions as compared to measurements performed in sub-optimal conditions.515

5.2 Comparison of AirCore and QCLAS emission estimates

Having simultaneous samples of methane plumes using the QCLAS and AirCore systems, we have found that the AirCore

measurements were smoothed by an average of 20 s (1σ) using a Gaussian smoothing function when compared with mea-

surements using the QCLAS. We also observed that AirCore measurements are temporally shifted by an average of 7 s and

stretches linearly with time at an average rate of 0.06 s for every second of QCLAS measurement. The smoothing, stretching,520

and shifting parameters obtained for each individual flights are presented in Table 3. Corrected and original AirCore methane

measurement flights were subjected to CKPW quantification approach to compare how the stretched and shifted AirCore mea-

surements affect the quantifications. Emissions are compared to emission estimates using QCLAS measurements to see the
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Table 3. Correction parameters and calculated emission rates for AirCore measurements

Flight Correction Parameters Release CKPW Estimates

Code Shift Stretch Smoooth Rates QCLAS Corr. AirCore Orig. AirCore

[s] [AirCore(s)/QCLAS(s)] [s] [gs−1] [gs−1] [gs−1] [gs−1]

312_01 1.79 0.03 20.77 0.31 ± 0.03 0.32 ± 0.34 0.31 ± 0.40 0.30 ± 0.42

312_03 6.32 0.04 27.29 0.39 ± 0.03 0.32 ± 0.53 0.25 ± 0.26 0.20 ± 0.60

313_02 10.27 0.10 19.03 0.41 ± 0.04 0.74 ± 0.63 0.58 ± 0.85 0.65 ± 0.92

313_04 7.22 0.05 19.61 0.48 ± 0.04 0.13 ± 0.12 0.15 ± 0.25 0.17 ± 0.31

314_01 12.81 0.06 17.90 0.26 ± 0.03 0.09 ± 0.08 0.12 ± 0.18 0.13 ± 0.20

314_02 2.01 0.05 18.11 0.45 ± 0.05 0.02 ± 0.03 0.02 ± 0.04 0.04 ± 0.04

6.73 ± 4.41 0.06 ± 0.02 20.45 ± 3.51 NMAE [%] 55.92 49.75 52.45

Bias [%] −28.02 −35.34 −32.77

RMSE [%] 65.24 57.54 58.61

degree of agreement between the two systems. A summary comparing the differences in emission estimates is presented in Ta-

ble 3. We have observed that the emission estimate computed using the corrected time-series is 3 % more accurate compared to525

its original counterpart. Nevertheless, the uncertainty bounds of most quantification flights manage to capture the true release.

In extreme cases, where the time shift and stretching is not sufficiently well known, the size and location of the plume might

not be captured accurately. As an example, a comparison of reconstructed plume with and without applying proper correction

for flight 312_03 is illustrated in Fig. S6. The figure shows that the uncorrected reconstructed plume tends to be cut on the

left side of the mapping plane. After applying the proper correction, the plume shifted to the right, putting the methane plume530

closer to the center of the mapping plane. This resulted in a 23 % increase in emission estimate, bringing it much closer to the

actual release. Thus, even though uncertainty bounds manage to capture most of the releases, accounting for the proper time

shift and stretching of the AirCore data is important when performing a mass-balance quantification approach, especially in

extreme cases.

5.3 Comparison with other methodologies535

A direct comparison with another method was performed for the OTM-33A method. Quantified releases using OTM-33A and

our mass-balance approach are summarized in Table 4. Although the number of simultaneous quantifications is limited, the

results show that both approaches are close to the true-release and that the uncertainty bounds of both methods usually capture

the true-release. This showcases that our drone-based
:::::::::
UAV-based

:
quantification technique has a great potential and is at par

in measuring CH4 emissions from oil and gas wells when compared with the OTM-33A method. Emission estimates using540

OTM-33A for flight 225_01–03 were identical because OTM-33A estimates are more robust if the input data lasts longer than
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Table 4. Emission rates from QCL-CKPW and OTM-33A in g s−1

Fl. Code Release CKPW OTM-33A

223_01 0.48 ± 0.04 0.64 ± 0.56 0.53 ± 0.17

224_01 0.29 ± 0.02 0.79 ± 0.66 0.26 ± 0.09

225_01 0.29 ± 0.03 0.28 ± 0.48 0.47 ± 0.17

225_02 0.29 ± 0.03 0.41 ± 0.46 0.47 ± 0.17

225_03 0.29 ± 0.03 0.30 ± 0.50 0.47 ± 0.17

::::::
NMAE [

:
%]

::::
50.80

: :::::
41.39

::::
Bias [

:
%]

::::
49.43

: :::::
37.26

:::::
RMSE

:
[
::
%]

::::
65.15

: :::::
23.55

20 minutes. Since the release rate during that day was constant and continuous, one emission estimate was used for the three

drone-flight
:::::::::
UAV-flight emission estimate for that day.

Table 5 compares the uncertainty of our UAV-based quantification method with other methods as previously summarized by

Caulton et al. (2018). With an accuracy ranging from 28 % to 75 %, our method is at par with existing quantification techniques,545

specifically with mass-balance approaches using aircrafts/UAVs. A major advantage of our UAV-based method is that it can

be applied to sources that are not easily accessible and where no road is present in a suitable distance perpendicular to wind

direction for ground-based mobile measurements. Another advantage is that it can be applied to quantify the total emissions of

a cluster of sources, provided that the UAV can map the full extent of all individual source plumes. Ideally, the emission from

an individual source should be quantified multiple times. The individual estimates provide an invaluable measure of uncertainty550

in addition to the method uncertainty estimated here for individual flights. This is even more important under highly unstable

and turbulent conditions, since an individual flight can only capture a snapshot of a turbulent plume.

6 Conclusions

A novel strategy of methane flux quantification with the use of unmanned aerial vehicles (UAVs) equipped with a methane

sensor has been developed and applied to an extensive tracer release
::::::::::::::
controlled-release

:
experiment. Real-time atmospheric555

methane mole fractions were measured in-situ using a Quantum Cascade Laser Spectrometer (QCLAS) and an Active AirCore

system. Both instruments are lightweight and have a compact footprint, allowing them to be mounted on commercially available

drones
:::::
UAVs. Emissions were quantified by applying a cross-sectional mass-balance approach. An extensive tracer release

::::::::::::::
controlled-release

:
experiment was conducted in Dübendorf, Switzerland from 23 February to 14 March 2020 to develop,

optimize, and evaluate the method. In addition, source quantification from the drone
::::
UAV

:
were compared for selected cases560

with results from stationary measurements applying the OTM-33A method.
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Table 5. Uncertainty of different CH4 emission quantification techniques.

Approach Uncertainty estimate Literature

Ground-based thermal imaging 3–15 % Gålfalk et al. (2016)

Chamber sampling 5–60 % Allen et al. (2013, 2015); Kang et al. (2014); Yver Kwok et al. (2015)

Tracer ratio technique 20–50 % Lamb et al. (2015, 2016); Roscioli et al. (2015)

Subramanian et al. (2015); Zimmerle et al. (2015); Omara et al. (2016)

Feitz et al. (2018); Fjelsted et al. (2020)

Airborne mass-balance 20–75 % Karion et al. (2013, 2015); Nathan et al. (2015); Caulton et al. (2018)

Shah et al. (2020)

Airborne CKPW mass-balance
::::::
Airborne

::::::
CKPW

::::::::::
mass-balance

::::
(This

:::::
study)

:
30–77 %

Golston et al. (2018); Yang et al. (2018); Shah et al. (2020)

Ground-based stationary dispersion 25–66 % Brantley et al. (2014); Robertson et al. (2017); Edie et al. (2020)

Ground-based mobile dispersion 50–350 % Ars et al. (2017); Weller et al. (2018)

Bakkaloglu et al. (2021); Defratyka et al. (2021)

The mass-balance approach was performed by flying the drone-integrated
::::::::::::
UAV-integrated

:
system at a cross-section down-

wind of the source at multiple vertical levels. Methane mole fraction measurements were subject to two different data-

treatments, while the wind measurements were treated in three different ways, thus giving us in total six methane-quantification

approaches. Each of these were applied to all flights and evaluated for their ability to reproduce the true releases.565

During the campaign, 18 flights suitable for emission quantification could be performed. Among the six quantification

approaches, the best results were obtained by using the CKPW (cluster-kriging with projected wind) approach. The true release

could be estimated with a normalized mean absolute percentage error of 54 %. The highest absolute percentage error of 71 %

was obtained using the OKLW (ordinary-kriging with logarithmic wind profile) approach. A consistent underestimation of

methane fluxes occurred in our quantification approach when the mass-balance method was performed at a downwind distance570

of more than 75 m. Simulations with a simple Gaussian plume model suggest that we were most likely not able to capture the

whole extent of the plume during these flights, especially with respect to its vertical extent. Comparison of QCLAS-CKPW

emission estimates with quantified emission rates using an independent ground-based quantification technique, OTM-33A,

shows that both methods captured the true release almost every time.

A
::
As

:
a
:
general guideline, when performing drone-based

:::::::::
performing

::::::::::
UAV-based emission quantification of emission sources575

, requires favorable wind conditions with a minimum wind speed of 2.3 m s−1 and a maximum wind direction variability of

33.1°. Under these conditions, measuring at a downwind distance of
:::
less

::::
than 75 m ensures the true emission can

::
to be fully

mapped both horizontally and vertically. In cases where an RTK-GPS is not present, a vertical spacing of at least 0.5 m is

recommended to properly account for the average drift of commercial UAV-GPS of about 0.11 cm s−1.
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Having a high-precision and fast CH4 analyzer, such as the QCLAS, offers the benefit of correctly mapping the methane580

plume both spatially and temporally as compared to other methods such as collecting air samples with subsequent analysis

on the ground. In extreme cases, poor mapping of the emission may ultimately lead to over- or underestimation of its value.

This is evidenced in one of the measurement flights, i.e., 312_03, where a reconstructed methane plume using the uncorrected

AirCore measurement resulted in a significant underestimation (about 48 %) of the true-release. Nevertheless, the uncertainty

bounds of the CKPW quantification approach usually manage to capture the true release.585

In conclusion, drone-based
:::::::::
UAV-based

:
emission quantification using the CKPW approach proved its capability to quantify

emission fluxes from methane point-sources. This approach can be easily scaled-up to confidently quantify total emissions

for a cluster of sources given that the drone-system
::::::::::
UAV-system

:
can map the full extent of all individual plumes. The use

of UAVs in quantifying localized methane sources offers an advantage of allowing additional freedom of sampling locations

where stationary monitors and ground-based mobile sensors cannot be deployed. It also allows rapid adjustment to changing590

wind conditions, which proved to be particularly beneficial during the ROMEO measurement campaign, where a large number

of oil- and gas wells had to be quantified in a short amount of time.
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Figure 6. (A) Kriging prediction and membership probabilities of each spatial point within the domain of interest for background and

elevated clusters. (B) Expected value and variance of methane mole fractions after combining kriging prediction of the two clusters and their

respective membership probabilities. (C) Expected value and variance of methane mole fractions using ordinary kriging.

18

Figure 6. (a) Clustering result for flight 312_03 on 12 Mar 2020 after applying GMM with two mixture components. The background and

elevated cluster complement each other; the total probability of each data-point shared between the two clusters is equal to one. (b)
:::
(A)

Kriging prediction and membership probabilities of each spatial point within the domain of interest for background and elevated clusters.

(c)
::
(B) Expected value and variance of methane mole fractions after combining kriging prediction of the two clusters and their respective

membership probabilities. (d)
::
(C) Expected value and variance of methane mole fractions using ordinary kriging.
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Figure 7. Residual plot. Color-coded solid bars represent the range of residuals using different quantification approach with the mean value

represented as black dots. Values to the right of the red line correspond to overestimations, values to the left correspond to underestimations.

CK and OK stands for Cluster-Kriging and Ordinary-Kriging, respectively. PW (projected wind), SW (scalar wind), and LW (logarithmic

wind) refer to the different wind data treatments.
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Figure 8. Theoretical horizontal and vertical spread of a plume with respect to wind speed and downwind distance. White to red dots refers

to the individual error of each quantification flight, lighter being more accurate than darker dots.
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Figure 9. Color coded box-plots represent the range of residuals
:
in
:::
flux

:::::::
estimates

:
of measurement flights grouped according to meteorological

and threshold conditions. Solid white lines represent the mean bias and the × mark represent the RMSE for each quantification approach.
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Figure 10. Difference in emission estimates using two different GPS altitudes. The green dashed line represents the absolute average differ-

ence between the two estimates.
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