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Abstract. Small Unmanned Aerial Systems (UAS) are becoming a good candidate technology for solving the observational
gap in the planetary boundary layer (PBL). Additionally, the rapid miniaturization of thermodynamic sensors over the past
years allowed for more seamless integration with small UASs and more simple system characterization procedures. However,
given that the UAS alters its immediate surrounding air to stay aloft by nature, such integration can introduce several sources
of bias and uncertainties to the measurements if not properly accounted for. If weather forecast models were to use UAS
measurements, then these errors could significantly impact numerical predictions and, hence, influence the weather forecasters’
situational awareness and their ability to issue warnings. Therefore, some considerations for sensor placement are presented in
this study as well as flight patterns and strategies to minimize the effects of UAS on the weather sensors. Moreover, advanced
modeling techniques and signal processing algorithms are investigated to compensate for slow sensor dynamics. For this study,
dynamic models were developed to characterize and assess the transient response of commonly used temperature and humidity
sensors. Consequently, an inverse dynamic model processing (IDMP) algorithm that enhances signal restoration is presented
and demonstrated on simulated data. This study also provides contributions on model stability analysis necessary for proper
parameter tuning of the sensor measurement correction method. A few real case studies are discussed where the application
and results of the IDMP through strong thermodynamic gradients of the PBL are shown. The conclusions of this study provide
information regarding the effectiveness of the overall process of mitigating undesired distortions in the data sampled with a

UAS to help increase the data quality and reliability.

1 Introduction

Technological development with respect to instrumentation systems for weather sampling increasingly demands the means to
provide greater reliability of the data collected. Furthermore, Lorenz (1972) showed that the results from numerical weather

models tend to diverge with long periods of time and differ from reality even with small errors in the initial conditions estimated
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from measurements. Researchers have been looking for ways to increase the reliability and accuracy of weather measurements,
like Mahesh et al. (1997) who successfully implemented a simple method to correct thermal lags from measurements taken
with a radiosonde in strong inversions. Radiosondes have the advantage that their sensors are exposed to the medium they are
sampling without much disturbances, as opposed to their Unmanned Aerial Systems (UAS) counterparts which produce an
inherent turbulent micro-environment around its body (Greene et al., 2018). This issue is particularly more severe for multi-
rotor UAS compared to fixed-wing UAS.

Recent technological advancements have enabled the use of UAS as tools to perform controlled and targeted atmospheric
measurements. UAS have paved the way for the development of new strategies for sampling the atmosphere in the past few
years. The National Academies of Sciences and Medicine (2018), the National Research Council (2009) and other studies
(Hardesty and Hoff, 2012; Geerts et al., 2017) have stressed the importance of the contributions that UAS have made in modern
meteorological studies. It is well known that the planetary boundary layer (PBL) is quite under-sampled and that observational
gaps limit the ability to accurately estimate the state of the atmosphere; hence, UAS are seen as new opportunities to fill the
gap (Bell et al., 2020). In other words, UAS are able to sample regions of the atmosphere that were either not feasible or not
possible with other conventional meteorological instruments.

Despite presenting attractive and unique features, the UAS must still undergo several studies and evaluations before its data
can be fully integrated and assimilated into the weather forecast models. Several recent collaborative field experiments, like
those described in Barbieri et al. (2019); Koch et al. (2018); Kral et al. (2018) and Jacob et al. (2018) just to cite some of
them, have encouraged researchers and engineers to start characterizing and assessing UAS for measuring weather parameters,
and identify the challenges for improving weather measurements using UAS. This initiative led to the development of many
innovative UAS designs for weather sampling such as shown in Segales et al. (2020); Wildmann et al. (2014a); Reuder et al.
(2009), and even envisioning future concepts of operations (Chilson et al., 2019) and research communities (de Boer et al.,
2020).

The acquisition of weather data using UAS is a newly established challenge in modern meteorology research, which is
slowly showing its potential to create new advanced sampling strategies and signal processing capabilities. The mitigation
of slow sensor dynamics and the removal of sensor noise using low cost weather sensors are challenging, but the impacts
can be reduced by using the right tools. The inverse dynamic model processing (IDMP) techniques have traditionally been
used in control theory for the design of controllers to influence the system’s behavior. This modern technique makes use of
known physical properties of the sensor to restore the original signal given a sensor reading. To ensure a reliable and proper
functioning of the weather sensors, it is important to mitigate sources of error around the UAS by applying strategies discussed
in this study, in particular for temperature and humidity sensors. Slow transient response in sensors are commonly associated
with amplitude attenuation and phase delay of the output signal (measured weather signal) with respect to the input signal
(actual weather signal). While the impact of sensor dynamics can largely be neglected when considering static scenarios,
measurements should not be considered instantaneous in space and time when the sensor moves through strong gradients
(Houston and Keeler, 2018). Several studies have proposed ways to reduce the impact of the sensor transient response for

temperature (Dantzig, 1985; Fatoorehchi et al., 2019) and humidity (Wildmann et al., 2014b) sensors.
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Figure 1. Kolmogorov’s energy cascade illustration.

Considering the above context and problem definition, the following study presents considerations for the sensor character-
ization and placement on UAS. It also shows a framework for measurement correction of temperature and humidity sensors
with data collected using multi-rotor UAS. The goal of this project is to improve the quality of the weather data by following a
framework designed around the IDMP method. This will result in a more accurate weather parameter estimates that could, in
a near future, improve data assimilation into weather forecast models and, hence, issue accurate weather warnings. It is critical

to provide forecasters with reliable data in a timely manner to support them in their mission of protecting lives and properties.

2 Preliminary concepts of the Planetary Boundary Layer

The atmosphere is in a perpetual state of horizontal and vertical motions while constantly evolving day and night. This constant
motion in the atmosphere produces natural weather signals that usually have a high degree of complexity in time and space
(Petty, 2008; Davidson, 2015). Additionally, UASs typically fly in regions of the atmosphere that are hardly accessible to other
conventional weather instruments, and collocated intercomparisons are hard to achieve. Therefore, the authors have resorted
and adopted other ways of validation, such as the spectrum analysis, which requires particular atmospheric conditions and some
theoretical background. For the purpose of the demonstrations in this study, the selection of PBL conditions were narrowed to
two particular cases: a well-mixed convective boundary layer (CBL) in windy conditions, and a PBL with strong temperature
and humidity gradients; such as frontal and thermal inversions (FTI) caused by displacement of air masses. These two PBL
states are attractive atmospheric conditions to consider when evaluating weather sensors on UAS because of several theoretical
assumptions that can be made when running simulations.

The CBL condition is ideal to study the small scale turbulence and the high frequency response of the sensors by means
of power spectrum and structure function analysis. The energy cascade theory formulated by Kolmogorov is a well proven
(Kolmogorov, 1941) that can be used to estimate the turbulence energy distribution over a range of spatial scales under locally

isotropic conditions. In one of the largest experiments conducted by Saddoughi and Veeravalli (1994), it was shown that in a
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turbulent atmosphere with a high Reynolds number the energy cascade decreases with a -5/3 slope in a logarithmic scale and
then tails off downwards in the viscous dissipation region (Figure 1). The approximate relation between the turbulence energy

® of temperature and the spatial wavenumber k of the temperature signal is given by Tatarskiy (1988):
Dr(ky) ~0.25C2E=5/3, (1)

where Cr is the structure function parameter for temperature. The humidity also has a similar expression as Equation (1)
but with a different proportionality constant. Assuming the volume of air sampled by the UAS is locally isotropic, then the
thermo-hygrometer sensors should observe a pattern similar to the -5/3 slope line. Assuming that the frequency content of
the atmospheric eddies are larger than the frequency range that the sensor can capture, then any deviation in the sensor-data
spectrum was assumed to be influenced by undesired sensor dynamics or noise.

Moreover, the Reynolds number Re of the PBL is typically on the order of 10°, and the ratio between large and small spatial
scales is given by [/n = Re3/*. The large separation of scales allows for the inertial subrange (ISR) of turbulent fluctuations
to extend for hundreds of meters in length, which would be quite difficult to cover with a UAS within a reasonable time. A
workaround to this is to consider horizontally homogeneous CBL conditions. Consequently, the turbulence can be assumed
to be “frozen” as it travels across a stationary UAS with mean wind speed relative to the UAS. This assumption is the so
called Taylor’s hypothesis of the frozen-field, and it is of great use in calculating structure functions by converting temporal
measurements into spatial measurements.

The definition of the structure function can be found in a vast literature (Gibbs et al., 2016; Kaimal et al., 1976; Kohsiek,
1982). The physical interpretation of structure function is the distribution of turbulent energy over different spatial lags and it

is mathematically defined as a two point spatial correlation as follows:

D3(r)=(T(z) — T(z+7r))2 = Ciri, )

where the overbar represents ensemble averaging, x is the position vector in meters, and 7 is the separation distance between
two samples in space, also called distance lag. If the distance lag r is within the ISR, then the structure function is reduced
to the rightmost expression of Equation (2). In the ISR region, the structure function follows a 2/3 slope line in a logarithmic
scale. The computation of the structure function is straightforward and has relatively less theoretical assumptions than the
conventional spectral analysis (Gibbs et al., 2016). Therefore, the structure function was considered as an extra step in the
validation of the thermo-hygrometer observations and dynamical analysis.

For the case of FTIs, the PBL undergoes a quick evolution with strong gradients over a short time period where large scale
changes of temperature and humidity are dominant over small scales. This is a good scenario for studying the low frequency
response of the sensors when flown across the air mass boundaries. Therefore, for this project, the main focus was to create
artificial weather signals with strong gradients similar to that of FTIs without much importance on small amplitude and high
frequency features. Temperature and humidity changes across a frontal or thermal inversion can be approximated to a ramp

function with rounded corners.
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3 Weather Sensors Principle and Modelling

The performance optimization of the sensor starts with the available manufacturing technologies according to Farahani et al.
(2014). Nowadays, the fabrication of sensors are driven by low-cost circuits, new sensing materials, advances in miniatur-
ization techniques, and modern simulations. Despite that great part of the performance of the sensor can be optimized at a
hardware level, they still come with limitations. Post-processing algorithms can partially overcome these limitations in perfor-
mance, modelling techniques and digital signal processing being the most popular. Dantzig (1985) showed encouraging first
results using a simple first order differential equation to restore signals from a thermocouple, and even describing calibration
procedures. Fatoorehchi et al. (2019) used non-linear differential equations based on the Steinhart and Hart (1968) equation
for negative temperature coefficients (NTC) thermistors. Their equations comprised of a lumped formulation for temperature
which also included other factors like thermal radiation and power dissipation. Despite its high accuracy, the high complexity
of the model and solution makes it unpractical for real-time implementation. Moreover, Greene et al. (2019) has shown us that
a good shielding around the sensors and an adequate sensor placement on the UAS can greatly prevent solar radiation and heat
conduction from contaminating the sampled volume of air. Therefore, for this study, the external sources of contamination are
considered negligible compared to the errors introduced by the internal sensor dynamics.

Wildmann et al. (2014b) used a similar approach and showed an example of the modeling of a capacitive humidity sensor
using the diffusion equation and effectively applying an inverse model to correct the measurements. We were able to reproduce
their modeling methods and validate the results with similar simulation experiments. Given the simplicity of this method, ideas
from Wildmann et al. (2014b) studies were borrowed to develop the IDMP proposed in this study and it also served as a
guidance to develop an IDMP variant for the bead thermistor. We also realized that a stability analysis with parameter tuning
of the models, shown in Section 6.2, would be a great complement to their studies, and a necessary tool for correct application
of the IDMP.

3.1 Basics of temperature and humidity sensors

Commonly used temperature and humidity sensors for UAS are mainly variants of the bead thermistor type and capacitive
type sensors, respectively (Barbieri et al., 2019; Kral et al., 2018). These type of sensors are considered payload friendly for
small UAS given their compact size and lightweight characteristics. Both of these temperature and humidity sensors work
under very similar principles. Basically, the heat flux (diffusion) inside the sensor’s material will lead to a thermal (water vapor
concentration) equilibrium with the surrounding medium after a finite time. In fact, the differential equation that describes the

majority of their behavior has the exact same form for both sensors which is given by Pletcher et al. (2013):

= 3)

ou  (9*U . 0*U . 0*U
ot dr2 oy 022 )
This is called the heat equation for the case of temperature and diffusion equation for the case of water vapor concentration.
Farahani et al. (2014) explains that numerous parameters have an influence on the response time of a sensor, such as the

geometry of the sensing element, the inherent thermal/water diffusivity of the sensing element, the thickness of the protective



145

150

155

160

Glass o

Baked electrode
Thermistor chip

( Unit : mm )

Figure 2. Closeup of the iMet-XF bead thermistor with dimensions and composition. Image provided by International Met (InterMet)

Systems.

layers, and even the ambient temperature and humidity itself. Equation (3) encompasses most of these characteristics and
factors and; hence, can be effectively used as a model to compensate for errors.

In particular, the selected sensors for this study are the iMet-XF bead thermistor from InterMet Systems and the HYT-
271 capacitive humidity sensor from Innovative Sensor Technology (IST). This is for the sake of providing an example case
with known sensor characteristics and specifications, the overall modelling and method description does not lose its general-
ity. Additionally, it is assumed the sensors are sufficiently aspirated (airflow of > 5 m s~!) as per recommendation of the

manufacturers so that self-heating effects are diminished.
3.2 Sensor dynamic modelling

In control theory, the method of finite difference is a commonly used numerical solution for differential equations and it is the
main foundation of the IDMP method. Finite difference equations are powerful tools that can be used to create mathematical
models to describe the behaviour of physical systems. The method is an approximation to the derivative which is represented
by the derivative taken over a finite interval around a given point. Additionally, assumptions must be made to reduce the
complexity of the model and work within a linear regime. The dynamics of the sensor can be further studied after deriving the
mathematical model. It can be used to trace back and restore the original signal that produced the sensor measurements as long

as the inverse of the model exists and is stable.
3.2.1 Forward model of temperature sensor

The iMet-XF bead thermistor shape and dimensions are shown in Figure 2, the probe tip can be approximated to the shape
of a sphere with radius R = 0.4 mm. Given that heat fluxes can propagate anywhere around the sensor, the problem becomes
three-dimensional in space. The spherical symmetry helps to significantly reduce the degree of complexity of the model to a
one-dimensional case along the radius (Momoh et al., 2013). It was assumed that the heat propagates radially from the surface
of the spherical glass in contact with the air all the way down to the core where the sensing element is located. Therefore, the

problem can be seen as a heat transfer problem with spatial temperature gradients inside the bead thermistor. Accordingly, the
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differential equation for the bead thermistor is given by Equation (3) in spherical coordinates:

aTé:’t)a@jf igf);()grgR,tZO, )
where the internal temperature 7" is a function of time ¢ and space r which is the radial distance from the center to a given point
within the sphere, and « is the thermal diffusivity of the material. The boundary conditions are T'(R,t) = T,;, and T'(0,%) is
mirrored. The sphere was then divided into N layers with thickness Ar = R/N. A finite difference method was applied to the
spatial derivatives of Equation (4) and the singularity at » = 0 was solved by using L’Hopital rule. The following system of

finite difference equations in space was obtained,

oT - N+1

C _g(-2r Tn— EA _ R,

5 ( N+ N 1)+5 N r=R

T 1 1

%tﬁ(zfﬂﬂmﬂ, T,;_l) 0<iAr<R,i=2,..,N—1
1 2

oT

E _38(Th-T -

5 36(T> —Th) r=0,

where 3 = o/ Ar?. A more detailed derivation of these equations can be found in Momoh et al. (2013). As a result, the system

of equations is a linear time invariant (LTI) system that can be transformed to state-space representation of the form:

ox
E—Am—&—Bu
y=Cx+ Du,

where x is the state variables each one representing the temperature at each layer, u is the surface temperature input signal, and
y is the sensor’s output signal (sensor reading or measurement at the core). The matrices A and B can be easily obtained by
inspection from the finite difference equations.

The goal is to determine the actual temperature of the medium based on temperature readings at the core. By computing the
inverse model it is possible to trace back the temperature at each layer from the core to the surface of the sensor in a stable
manner. In order to do so, the C vector must be a weighted average skewed towards the core. The D matrix was chosen in a

way so that the DC gain (K) of the system is equal toone; K = D —CA™1B =1.
3.2.2 Forward model of humidity sensor

In the case of the HYT-271 capacitive humidity sensor, the dynamics are mainly produced by the diffusion of water vapor
concentration from the surface in contact with the air into the polymer. Figure 3 shows the sensing element configuration and
the boundary conditions around it. In contrast to the bead thermistor, the capacitive sensor can be treated as a one-dimensional
problem since the water vapor only exists just above the sensing element surface and it propagates along the normal to the
surface.

Horizontal concentration gradients were considered to be negligible given that the thickness of the polymer is small enough

to prevent horizontal propagation (Wildmann et al., 2014b). As a result, the differential equation for the capacitive humidity



195

200

205

5.1lmm

Polymer-based capacitive
sensing element

‘Water Vapor
in air

w1

e=m= Boundaries

Figure 3. Closeup of the IST HYT-271 capacitive sensor with dimensions (left) and sensing element configuration (right). Left image taken
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sensor is given by Equation (3) in 1-D Cartesian coordinates:

Oc(z,t) 0?c
=D—:0<2< >
5 D3x2’0—x—L’t—O’ ®)

where c is the water vapor concentration in parts per million volume (ppmv), D is the diffusivity coefficient of the water vapor
in the polymer, and L is the thickness of the polymer. The boundary conditions were defined as ¢(L,t) = cqq while ¢(0,1) is
mirrored. The polymer film was then divided into N layers with thickness Az = L /N . Following a similar reasoning and steps

as applied with the bead thermistor model, the system of finite difference equations is as follows:

@:(*QCN“FCN—l)*'“)\Cair :TJ:L,
ot

dc . .
a:)\(CiH*QCﬁLCi—l) O<iAzx<L,i=2,...N—1
%:)\(02701) =0,

where A = D/Ax. A more detailed derivation of the above equations can be found in Wildmann et al. (2014b). Again, the
resulting system of equations is an LTI system that can be transformed to state-space representation. The matrices A and B can
be determined by inspection from the finite difference equations. The output y of the system is equal to the average of all the
water vapor concentrations in each layer. This is because the capacitance is measured across the entire polymer film and not
just one particular spot as compared to the bead thermistor. Therefore, the parameter C is a length-N row vector with elements
equal to 1/NN and it maps the state variables to the output resulting in the sensor measurement.

The HYT-271 humidity sensor comes hard-coded to output relative humidity values. The model only works with water vapor
concentration in ppmv units. Therefore, the relative humidity input must be converted to water vapor concentration and then

back to relative humidity after applying the model. The following equations for the conversion were taken from McRae (1980)
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who states that the error involved in using these equations over a temperature range of -50° C and 50° C is less than 0.5%:
P,

=10"H—
c=10 P’
P, = P, exp(13.3185¢ — 1.9760t> — 0.6445t> — 0.1299t*),
iy 37315
— o

a
where H is relative humidity in percentage, P; is saturation vapor pressure in millibars, P, = 1013.25mb is the standard

atmospheric pressure, T}, is the ambient temperature in Kelvin.

4 Experimental Design for Sensor Characterization

The geometry and boundary conditions were defined in the forward sensor models presented in Section 3.2. The sampling
period of the sensor must also be known at this point, both iMet-XF and HYT-271 has sampling periods equal to At = 0.1 sec.
The remaining parameters to be defined in the models are the thermal (or water) diffusivity « (or D), the width of the sensing
material R (or L) and the thickness of the layers Ar (or Ax). Unfortunately, these parameters are usually not in the datasheet
and even kept as a trade secret by the manufacturer. However, these parameters are associated with the time response of the
model and they can be adjusted to approximate the time response of the real sensor (Wildmann et al., 2014b). Therefore, the
remaining parameters can be obtained empirically in the lab through experimentation. In addition, please note that the response
time is defined as the time required for the sensor output to change from its initial state to a final fixed value within a tolerance,
typically defined as 98% of the final value.

In an effort to establish guidance for the sensor characterization on UAS, Jacob et al. (2018) conducted experiments where
weather UASs were flown across a pseudo-step change in temperature and humidity from an air conditioned room to the
outdoor environment. Although their goal was to measure the sensor time response with the effects of the UAS on the sensors
altogether, a different approach was taken for the presented study where the problem was divided into two parts. First, the
sensors were isolated and characterized independently of the UAS body through experimentation. Second, sensor siting on the
UAS and sampling techniques were investigated to minimize the external disturbances on the measurements.

Ideally, the time response is measured by stimulating the sensor with an ideal step function. However, step functions of
temperature and humidity are not possible in real-world conditions. Instead, Li et al. (2018) used a ramp function to model the
thermodynamic shock and found that the error of assuming an ideal step function is less than 10% if the transition time from
the initial to the final state is less than the time response of the sensor. According to the iMet-XF bead thermistor datasheet,
the sensor response time can be less than 1sec. Therefore, it is a requirement to have a mechanism to quickly move the sensors
from one side of the shock to the other.

There are several external factors that influence the physical aspects of the sensor that must be taken into account for the ex-
periments. In particular, the capacitive humidity sensor is mainly affected by the ambient temperature as explained by Farahani
et al. (2014). This is because the porosity and thickness of the sensor’s polymer significantly changes with temperature. This

means that there is no universal water vapor diffusivity D that can be used for a wide range of ambient temperature. Therefore,
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Figure 4. Step response of the continuous and discrete models of the bead thermistor.

the shock experiments for the humidity sensor must be performed at different air temperature conditions to create a lookup
table of values. After a UAS flight, the mean temperature of the profile can be used to determine the diffusivity value from the
lookup table by interpolation. Conversely, the thermal diffusivity « of the bead thermistor does not significantly change with
humidity as measured by Tsilingiris (2008). Consequently, only one shock experiment would be enough to compute a universal
thermal diffusivity « for the bead thermistor.

After conducting the experiments for sensor characterization, the collected data is used to adjust the sensor models param-
eters by using a model parameter optimization technique called Differential Evolution (Das and Suganthan, 2011). Simulated
step functions with amplitudes equal to the real thermodynamic shocks from the experiments are fed to the digital models with
equal sampling rate as the real sensors. The model parameters can be initialized through a reasonable guess, and the subsequent
parameters are computed by iterative point-wise comparisons with the real data. Basically, this becomes a curve fitting problem

by minimizing the square root of the mean of the squared errors (RMSE) cost function across the data set:

_ 2
RMSE — \/ Z(Um“]lv Uovs)® _ . ©)

where U,,,,q is the predicted value of the model, U, is the real observation, N is the number of data points and ¢ is the desired
tolerance. The thermal (water vapor) diffusivity are slightly tweaked on every subsequent iteration until meeting the tolerance
criteria, and thus obtaining the final diffusivity coefficient for the given conditions.

Finally, the sensor time response can be assessed quantitatively by examining the final RMSE value. If the RMSE value
remains high after several iterations, it means that the sensor transient response is highly non-linear compared to the linear
model and; hence, a higher uncertainty in the measurement correction process is expected. Figure 4 shows an example of how
the step response of the continuous and discrete models of a bead thermistor should look like with a response time close to

Isec. Notice how important is to have a high sampling rate logger in order to accurately capture the dynamics of the sensor.

10
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5 Considerations for Sensor Placement on UAS

Acquiring precise measurements of the air temperature and humidity is particularly challenging due to disturbances arising
from multiple sources around the UAS. Insufficient radiation shielding, exposure to mixed turbulent air from the propellers,
and electronic self-heating are the main factors in contributing to temperature and humidity data contamination according to
Greene et al. (2018, 2019) and Islam et al. (2019). A quick logical solution is to make an extension arm from the main body
of the UAS and place the sensor package outside of the turbulent air created by the UAS. However, this approach comes
with major problems such as increased resistance to rotation (or inertia) and exposure to strong aerodynamic forces that could
produce flight instability. Therefore, the integrated design must be balanced in such a way that neither of the systems gets
compromised.

The multi-rotor UASs are the most vulnerable platforms since they usually remain stationary in the air or travel at very
low speeds (mainly vertical profiles), allowing for the turbulent air volume to wrap around the multi-rotor UAS. Greene et al.
(2018) searched for the best-possible location for the thermodynamic sensors within the turbulent air volume. They measured
variations in temperature right below a multi-rotor UAS propeller and found that disturbances were minimum at 1/3 from the
tip of the propeller. Despite the encouraging results, the study did not take into account the heat advection coming from the
UAS body. Islam et al. (2019) took a step further by mounting pipes with air inlets situated far apart from the main body while
still using the multi-rotor UAS rotors to produce mechanical aspiration. They reported good agreement between ascent and
descent profiles in no wind conditions, but also showed limitations with the flight stability and heat advecting into the pipes
downwind of the UAS. Segales et al. (2020) took an innovative approach by modifying the autopilot code to compute wind
direction estimates and command the multi-rotor UAS to turn into the wind. This way, the wind itself compresses the turbulent
envelope in front of the multi-rotor UAS making it shallow enough to place the sensors closer to the multi-rotor UAS’s body.
This was demonstrated using flow simulations by Segales et al. (2020) and also through observations in the field by Greene
et al. (2019) and Bell et al. (2020).

An important consideration that is common to both multi-rotor UAS and fixed-wing UAS is the material selection for the
radiation shield around the weather sensors. Greene et al. (2019) has shown that the sun radiation greatly affects the temperature
and humidity measurements. They noticed an unusual pattern in the readings during flights in a day with scattered clouds
despite that the multi-rotor UAS had a shield around the sensors. Basically, the sun radiation heats up the surface of the shield
and, consequently, increases the temperature of the surrounding air by heat conduction. The heated air is then aspirated across
the sensors. Waugh (2021) shows an example of a thorough radiation shield design as well as useful guide for sensor placement
and installation. Moreover, materials with low thermal conductivity can help reducing heat conduction to the air and; hence,
mitigate the contamination. For instance, aerogel can be a great candidate material that could almost completely isolate the
sensors from the sun radiation. Also, radiant-barrier paint can be used to coat the current shield designs and prevent surfaces

from loading with heat.
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6 Implementation of the IDMP

At this point, two models were introduced, one describing the bead thermistor sensor dynamics and another describing the
capacitive humidity sensor dynamics. An experimental design for sensor characterization and model validation were also
presented, and some of the limitations were reviewed. In an effort to reinforce the concepts just introduced, and to demonstrate
the actual implementation of the IDMP method, this section will fully describe the procedures of the IDMP for correcting

sensor measurements.
6.1 General procedures and limitations

In order to detail and formulate the IDMP restoration technique, it will be beneficial to start by summarizing a basic general

procedure, part of them taken from (Wildmann et al., 2014b):

1. Identify the sensor noise floor from the actual measurements by inspecting its power spectral density (PSD) and suppress

the noise using a zero-phase lowpass filter.

2. Apply the inverse sensor model to the filtered measurements after adjusting the model parameters based on the weather

conditions and sensor characterization.
3. Re-apply the filter from step 1 to the restored signal to filter out any amplified noise.

4. Quantify the improvement by inspecting the time series and spectral response of the signal before and after applying the

inverse sensor model.

5. Validate the correction by comparing the structure function with the theoretical 2/3 slope for locally isotropic turbulence
in the ISR.

Although the general procedure seems to be robust in the sense that it includes a validation step, the validation step only
works for CBL weather conditions as explained in Section 2. Furthermore, step 5 is feasible only if the atmosphere is assumed
to be horizontally homogeneous and locally isotropic without any rapid atmospheric evolution. Additionally, the flight patterns
are limited to steady hover in windy conditions and horizontal transects assuming Taylor’s hypothesis of frozen field holds
true. For the case of flights across FT1Is, only steps 1 to 3 are feasible and the results can be trusted based on prior testings and

calibrations.
6.2 System description and tuning

The signal conditioning of the raw sensor measurements is necessary to extract a more accurate representation of the atmo-
spheric parameters. The challenge is to remove the unwanted distortion and contamination caused by slow sensor dynamics
and sensor noise, respectively. If the considerations from Section 5 are correclty implemented, then the effects of the UAS and
its immediate surroundings on the sensor measurements are considered to be small and can be ignored. The type of lowpass

filter chosen for noise removal was a non-causal zero-phase finite impulse response (FIR) digital filter. This kind of filter has
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the advantage that it does not introduce phase delay to the output signal with respect to the input signal, which is only possible
in an offline processing.

An adaptive contamination removal algorithm was not developed for the IDMP method. Instead, the cut-off frequency of
the lowpass filter was manually tuned on a case by case basis. The PSD of the raw sensor measurement was used to assess the
dynamics of the sensor, identify the noise floor and define the cut-off frequency of the lowpass filter. Moreover, the logic used

to identify distortion and contamination in the measurements taken in CBL conditions is as follows:

— If the slope of the PSD is greater than -5/3 at high wavenumbers, then the region is considered to be contaminated by
sensor noise. This is because of the natural downward trend of the turbulence power spectrum that eventually encounters
the noise floor of the sensor. Therefore, it must be removed using the lowpass filter before going through the restoration

phase to prevent the noise from getting amplified.

— Otherwise, the measurement is considered to be attenuated and distorted by the the slow sensor dynamics which cannot
keep up with the turbulence dynamics. Consequently, the bad trend is corrected in the restoration phase and the new PSD

approximates the desired -5/3 slope line.

The next step is to run the conditioned signal through the core of the IDMP method, the inverse sensor model itself. The
transfer function H(z) of the sensor model was computed by taking the z-transform of the state-space system of the sensor
model. Figure 5 shows an example of the frequency response of the continuous and discrete transfer function I of a capacitive
humidity sensor with response time of about 4sec. The continuous system is the approximation to the analog behavior of the
sensor and can be used to simulate the “real” sensing element. The discrete system is a “sampled” version of the continuous
system with sampling rate equal to that of the real sensor, or the analog-to-digital converter (ADC) to be precise. The truncation
effect that comes with sampling a system is what produces the mismatch in the frequency response at high frequencies which
is seen in Figure 5. The only way to improve the frequency response of the discrete system is by increasing the sampling rate
of the ADC to better capture the dynamics of the sensing element.

The inverse system of H(z) exists and it is stable if and only if H(z) is minimum phase, meaning that all the poles and

zeros are within the unit circle of the z-plane. Subsequently, the transfer function of the inverse sensor model is obtained by
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Figure 6. Spatial temperature signal in CBL conditions after converting the time-series data given a constant wind speed of 10 ms~*.
simply taking the inverse of H (z) = G~!(z). Even though the process of finding the inverse sounds simple and straightforward,

special attention must be given to the poles of G(z). The resulting poles of G(z) might end up being too close to the unit circle

of the z-plane which could cause instability and oscillations with high frequency input signals. The stability parameter for the

presented models is defined by Pletcher et al. (2013) as ¢ = lﬁﬁ < 0.5 where + is an intrinsic parameter of the sensor, such as
the thermal and diffusivity coefficients. The equation shows how fast the sampling rate must be in order to precisely capture
the dynamics of the sensor within a small spatial interval. Given that the sampling rate of the sensors are fixed to At = 0.1 sec,
than the only way to adjust the poles is by varying Az. The model and; hence, its inverse G(z) are stable with large values of
Az at the expense of reducing the order of the model and, consequently, the overall accuracy and resolution of the method.
Moreover, notice that the degree of correction made on the sensor measurements is limited by the sensor’s sampling rate. If the
same sensors are enabled to sample at higher rates, then the IDMP will become more effective.

After tuning the parameters and creating a stable system, G(z) was then fed with the filtered sensor measurements to produce
the corrected sensor measurement. Finally, the same lowpass filter from the beginning was applied to the corrected signal to

remove any amplified noise that survived the process.

7 Performance evaluation of the IDMP

The first step to investigate the potential of applying the IDMP for temperature and humidity measurements is to develop a
time-series weather signal generator that could be used as a benchmark to evaluate the performance of the proposed framework.
From this point, signals made by the generator will be referred as “actual” weather signals, whereas the output signals from
the sensor models will be referred as the “measured” signal, and the restored signals from the IDMP will be called “corrected”

signals.
7.1 Weather signal generation and sensor simulation

As described in Section 2, CBL weather signals from a horizontal transect tend to have a particular PSD with a -5/3 slope in the

logarithmic scale. Moreover, assuming horizontal CBL weather signals are produced by a wide-sense stationary (WSS) random
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process with Gaussian probability density function, then it is possible to generate the artificial weather signals by modifying
the PSD of a Gaussian white noise signal to look like Kolmogorov’s energy cascade power spectrum. This was achieved by
taking the Fourier transform of a white noise signal and dividing the magnitude by its frequency to the power of 5/6 while
keeping the phase unchanged. Figure 6 shows an example of an artificially generated CBL weather signal.

For the case of FTI conditions, the focus is mainly on the evaluation of the sensor response in strong gradients with less
importance on features with small amplitude and high frequency. Therefore, the FTI weather signals were constructed in a
piece-wise manner using straight lines. The horizontal transect of an FTI was modeled using a ramp function, whereas the
vertical transect follows a dry adiabatic lapse rate model with a temperature inversion in the middle. Both weather signals
were lowpass filtered to smooth out the corners so that it looks more realistic. The gradient (or inversion) strengths, length
and altitude scales of the weather signals were adjusted using the simulation results shown by Houston and Keeler (2018) as a
reference. Figure 7 shows examples of generated FT1 weather signals.

To simulate the sensor measurement process, the sensor model was divided into three parts: the analog sensing element,
the ADC discrete sampling and sensor noise generation. The sensing element was simulated using the forward models shown
in Section 3.2 with a much smaller sampling period At = 0.01 sec. This is because analog signals can not be generated in a
computer and, therefore, the best approximation is to increase the resolution of the discrete model. The actual weather signal
was run through the high resolution sensor model to add the effects of sensor dynamics. This signal then goes through the ADC
which down samples the signal to the actual sampling period of the sensor At = 0.1 sec. The down-sampling process may add
aliasing which makes it more realistic. Finally, the down-sampled signal gets its characteristic noise floor by adding additive
white Gaussian noise (AWGN) to it. The noise amplitude from each sensor was taken from previous steady-state calibrations

done in a controlled environment by the Center for Autonomous Sensing and Sampling (CASS) of the University of Oklahoma.

7.2 Validation of the IDMP method in simulated CBL conditions

The following measurement validation method for CBL conditions exploits the ISR of turbulent fluctuations theory, described

in Section 2, by using the PSD and structure function calculations. In real-world CBL conditions, the data are collected by
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conducting horizontal transects or stationary flights in windy conditions at a constant altitude with a multi-rotor UAS. In order
to keep this document short and because the correction results of temperature and humidity are very similar, results will be
shown in an alternated fashion between temperature and humidity.

Following the procedures of the IDMP from start to end, the PSD of the signals are computed and compared in Figure 8.
Notice that the cut-off frequency of the lowpass filter was selected near the constant and flat power level of the measured signal,
the sensor noise was effectively removed as a result. The effect of the slow sensor dynamics is noticeable as a downward trend
with respect to the -5/3 slope line. The IDMP successfully restores the power levels of the measured signal at high frequencies.
Next, Figure 9 shows a comparison of the time-series signals, the RMSE of the measured and corrected signals were computed
with respect to the actual weather signal using Equation (6). The time-series plot clearly shows an improvement in the time
response of the sensor which is confirmed by the lower RMSE value. Finally, Figure 10 shows results from the two point spatial
correlation calculation, namely, the structure function. Assuming locally isotropic turbulence conditions, the deviations of the
computed structure function from the theoretical 2/3 slope in the ISR region are indications of the effects of sensor dynamics
and sensor noise on the measurement. Moreover, the results can be used to slightly tune the IDMP until getting a best-possible
agreement with the theory. Additionally, all the presented results show that the IDMP method is effectively restoring the signal

without any signs of instability and oscillations.
7.3 Simulation of flights across strong gradients in FTI conditions

Similar to the CBL simulation, flights across FTIs also exhibits the expected lag in the measurement as a consequence of the
sensor time response. Additionally, the lag within this conditions becomes more apparent and sensitive to the relative wind
speed with respect to the UAS. Houston and Keeler (2018) explains that the errors are less when flying at low speeds; however,
the observation might not be representative because the weather phenomena might have evolved faster than the observation
period. Therefore, it is of significant importance to study the performance of the IDMP method with different speeds across the

thermodynamic boundary. For the case of frontal inversions, results from the simulated humidity sensor will be shown since
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it has a large time response and the correction is more noticeable compared to the faster temperature sensor. Whereas for the
thermal inversion, results from the simulation of the temperature sensor will be shown.

Frontal inversions, such as cold fronts, are usually sampled using fixed-wing UAS. The typical ground speed of a fixed-wing
UAS in flight is around 25 m s~!, while the wind can reach speeds of 20 m s~!. Assuming that the fixed-wing UAS is able to
fly in very windy conditions, then the relative wind across the fixed-wing UAS is 45m s~! when flying into headwinds. Figure
11a shows the comparison between the actual, measured and corrected humidity in a frontal inversion. Notice how far the
measured signal settles with respect to the air mass boundary, this agrees with the results seen in Houston and Keeler (2018).
The corrected signal shows a much better transient response, but some oscillations are present when the weather signal is
constant. This is because of some remaining sensor noise leaking into the IDMP where it gets slightly amplified. Additionally,
the IDMP can not fully recover the shape of the actual weather signal because of missing parts in the frequency content due to
noise filtering, low sampling rate, and poor capturing of the weather dynamics.

Vertical profiles are typically carried out using multi-rotor UAS and it is common to encounter thermal inversions aloft. The

1

vertical speed of the multi-rotor UAS was assumed to be equal to the radiosonde’s climbing speed of about 5m s™", much
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Figure 11. Comparison of weather signals in simulated a) frontal inversion conditions with relative wind speed of 45m s~*, and b) thermal

inversion conditions with climbing rate set to 5m s~ ! . Results from before and after applying the IDMP are illustrated.

slower compared with the horizontal speed of a fixed-wing UAS. Figure 11b illustrates a comparison between signals in the
simulated thermal inversions environment. It can be seen that the IDMP corrects for the constant offset produced by the sensor
dynamics not being able to keep up with the temperature change rate. Once the multi-rotor UAS encounters the inversion, the

result is almost identical to the frontal inversion case.
7.4 Case study using real data

The presented simulation results show the feasibility of the framework and the IDMP technique on measurements taken with
a UAS. However, several assumptions were made to produce the models and simulations which may not hold true for real
observations in the field. Therefore, to begin exploring the mitigation of slow sensor dynamics and sensor noise for realistic
UAS flights, the IDMP was applied on real data collected using the CopterSonde UAS (Segales et al., 2020) from the University
of Oklahoma (OU). Two flights were picked from the extensive database made in the past years throughout several field
campaigns. Although these two flights are not available in an open online repository, similar dataset can be found in Greene
et al. (2020) and described in Pillar-Little et al. (2021) which were collected with the same UAS in this study.

These flights were conducted in CBL and FTI weather conditions, respectively, at the Kessler Atmospheric and Ecological
Field Station (KAEFS) in Purcell, Oklahoma, USA, located 30 km southwest of the OU Norman campus. The Certificate
of Authorization (COA) with number 2020-CSA-6030-COA, issued by the Federal Aviation Administration (FAA), allowed
us to fly the CopterSonde above 400 ft with a flight ceiling of 5000 ft. It has to be mentioned that the sensors were not
properly characterized as described in the presented literature, instead the sensor models were tuned by trial and error and best
guessing the physical parameters of the sensing elements. Although the sensor characterization was poor, the implementation
still showed the potential benefits of using the IDMP.

In the CBL conditions, the CopterSonde was flown stationary at a constant altitude of 10 m for about 15 min with a mean
wind speed of 10.2 m s~!. Figure 12a shows a close up of a portion of the measured and corrected relative humidity time-
series, while Figure 12b illustrates the degree of correction made by the IDMP. This is noticeable by observing the amount of

deviation in the structure function.
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Figure 12. a) Comparison of the measured against corrected relative humidity signal. b) Structure function comparison.

In the FTI conditions, the CopterSonde was flown shortly after a cold front moved through KAEFS, leaving a shallow cold
pool behind. The climbing rate was set to 3.5 m s—1, whereas the descent rate was set to 5 m s~!. The CopterSonde was
sent to 1300 m above ground level, collecting temperature and humidity data in the ascent and descent legs. The flight took
about 10 min from take-off to landing. Figure 13a shows a comparison between the measured and corrected vertical profiles

455 of relative humidity. The correction is not very noticeable due to the large spatial scale and the slow vertical speed of the
UAS. However, 13b is a zoomed-in plot of the lower altitude region where the small correction is visible. Assuming that no

other environmental factors influenced the measurements, this may confirm that the separation shown by the arrow is in fact an

atmospheric evolution and not a result of sensor lag.
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Figure 13. a) Relative humidity vertical profile, measured against corrected values. b) Close up of the vertical profile in the lower altitude
region.

8 Conclusions

460 This document presented an overview of the general procedures for the mitigation of undesired sensor dynamics on temperature

and humidity measurements collected using a UAS. Important considerations about the effects of the UAS on the sensor

19



465

470

475

480

485

measurements were shown, in which it is encourage to find solutions that benefit both flight stability and weather sampling
accuracy.

Furthermore, sensor models were developed to investigate the sensor transient response and a collection of best practices for
sensor characterization and installation was presented to ensure reduced contamination of the air sample. This allowed for the
design and implementation of signal restoration techniques under adequate conditions, such as the IDMP shown in this study.
The authors also took a step further and studied the stability of the sensor models and the IDMP method. A system tuning
criteria was presented which helped determine the operating envelope of the IDMP and its limitations. This same analysis
could be used as leverage for finding improvements within the sensor model design and the sensor selection for the desired
application.

After a brief review of the PBL theory, it has been found ways to create a correction criteria based on the power spectrum
density calculation. As a result, the sensor measurements were corrected in a way that the resulting power spectrum was more
consistent and aligned to Kolmogorov’s power spectrum theory under locally isotropic assumptions. The structure function
was then used as a mean to corroborate the corrections which gave some degree of validation to the results. The simulation
results served as a good evidence for this criteria where the mitigation of undesired contamination, and signal restoration using
the IDMP was found to be significant to improve the reliability of the weather UAS deliverables when flying across strong
thermodynamic gradients.

Finally, the case study demonstrated the feasibility of using the IDMP outside of the ideal and simulated conditions. The
IDMP remained stable throughout both flights while also making small sensor response corrections in the time domain, which
is more noticeable in the frequency domain where it follows the 2/3 slope more consistently. Despite these achievements,
the case study is not enough material to fully support the use of the IDMP for sensor measurement correction. However,
the case study is considered to be a good trend towards producing weather signals with richer frequency content relative to

Kolmogorov’s theory that can lead to a better understanding of the atmosphere’s structure.
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