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Abstract. Aerosol hygroscopic growth plays an important role in atmospheric particle chemistry and the effects of aerosol on 10 

radiation and hence climate. The hygroscopic growth is often characterized by a growth factor probability density function 

(GF-PDF), where the growth factor is defined as the ratio of the particle size at a specified relative humidity to its dry size. 

Parametric, least-square methods are the most widely used algorithms for inverting the GF-PDF from measurements of 

humidified tandem differential mobility analyzers (HTDMA) and have been recently applied to the GF-PDF inversion from 

measurements of the humidity-controlled fast integrated mobility spectrometer (HFIMS). However, these least square methods 15 

suffer from noise amplification due to the lack of regularization in solving the ill-posed problem, resulting in significant 

fluctuations in the retrieved GF-PDF and even occasional failures of convergence. In this study, we introduce nonparametric, 

regularized methods to invert aerosol GF-PDF and apply them to HFIMS measurements. Based on the HFIMS kernel function, 

the forward convolution is transformed into a matrix-based form, which facilitates the application of the nonparametric 

inversion methods with regularizations, including Tikhonov regularization and Twomey’s iterative regularization. Inversions 20 

of the GF-PDF using the nonparameteric methods with regularization are demonstrated using HFIMS measurements simulated 

from representative GF-PDFs of ambient aerosols. The characteristics of reconstructed GF-PDFs resulting from different 

inversion methods, including previously developed least-square methods, are quantitively compared. The result shows that 

Twomey’s method generally outperforms other inversion methods. The capabilities of Twomey’s method in reconstructing 

the pre-defined GF-PDFs and recovering the mode parameters are validated.  25 

1 Introduction 

The hygroscopic growth of aerosol particles influences heterogeneous reactions, light extinction, and visibility, whereby 

aerosol water is most relevant for the direct radiative forcing of Earth’s climate (Tang and Munkelwitz, 1994; Pilinis et al., 

1995; Swietlicki et al., 2008). The ability of aerosols to absorb water depends mainly on their compositions, hence the 

hygroscopic properties reflect the variability of the key chemical components (Gysel et al., 2007; Zheng et al., 2020). Therefore, 30 
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the variation of aerosol hygroscopic growth can be used to infer the potential chemical composition, especially for small 

aerosols that are beyond the size range of the aerosol mass spectrometer. Aerosol hygroscopic growth under atmospheric 

relative humidity (RH) is commonly measured by a humidified tandem differential mobility analyzer system (HTDMA) (Liu 

et al., 1978; Rader and McMurry, 1986; Swietlicki et al., 2008). In an HTDMA system, monodisperse particles classified by 

the 1st DMA are exposed to an elevated RH in a humidity conditioner, and the size distribution of humidified particles is then 35 

measured by a 2nd DMA and a particle detector using scanning mobility technique. The particle hygroscopic growth is then 

derived from the size distribution of the humidified particles. Recently, a humidity-controlled fast integrated mobility 

spectrometer (HFIMS) was developed. The HFIMS replaces the 2nd DMA and particle detector within the HTDMA system 

with a water-based fast integrated mobility spectrometer (WFIMS), which captures the size distribution of humidified particles 

instantly (Pinterich et al., 2017a). As a result, the HFIMS drastically accelerates aerosol hygroscopic growth measurements 40 

(Pinterich et al., 2017b; Wang et al., 2019; Zhang et al., 2021), making it feasible to characterize ambient aerosol hygroscopic 

growth at a wide range of sizes and RH levels under ~ 25 min.  

The HTDMA measurement, i.e., the mobility-concentration distribution of humidified particles, is a convolution of the aerosol 

hygroscopic growth factor probability density function (GF-PDF) and the transfer functions of both DMAs. Similarly, the 

HFIMS measurement represents a convolution of the aerosol GF-PDF together with the transfer functions of the DMA and the 45 

WFIMS (Wang et al., 2019). Two inversion algorithms, TDMAfit (Stolzenburg and McMurry (1988)) and TDMAinv (Gysel 

et al. (2009)) were developed and widely used to retrieve the GF-PDF from HTDMA measurements. In both algorithms, the 

GF-PDF is represented with a specific functional form, and the function parameters were derived by least-squares fitting. For 

example, the TDMAfit algorithm assumes the GF-PDF as a superposition of multiple Gaussian distribution functions 

(Stolzenburg and McMurry, 1988) or a summation of multiple lognormal (ML) distribution functions (Stolzenburg and 50 

McMurry, 2008). Likewise, TDMAinv describes the GF-PDF as a piecewise linear (PL) function at predefined growth factor 

values (Gysel et al., 2009). The function parameters are derived using least-squares fitting that minimizes the residual between 

the measured and reconstructed size distributions of humidified particles. Similar methods have been applied to invert GF-

PDFs from HFIMS measurements by Wang et al. (2019).  

Inversion of the GF-PDF from the HTDMA or HFIMS measurements is an ill-posed problem (Gysel et al., 2009). Least-55 

squares methods such as TDMAfit and TDMAinv provide simple and effective ways to solve this ill-posed problem by 

representing the GF-PDF in a specific functional form (Kandlikar and Ramachandran, 1999). However, the GF-PDF inverted 

by the TDMAfit algorithm often relies on the initial guess of the parameters, resulting in occasional failures of convergence 

(Gysel et al., 2009). For example, it was reported that the TDMAfit algorithm may not be robust in cases of closely multiple 

overlapped modes and the successful convergence depends on the initial guess (Swietlicki et al., 2008). Moreover, it is well-60 

known that the unregularized least-squares method amplifies the measurement noise (Kandlikar and Ramachandran, 1999; 

Sipkens et al., 2020), resulting in significant fluctuations in the retrieved GF-PDF. It has been shown that the derived GF-PDF 

using the TDMAinv algorithm may oscillate strongly when a higher bin resolution is chosen, while a too low resolution may 

not be adequate to reproduce complex shapes of true GF-PDF (Gysel et al., 2009). This may lead to incorrect interpretation of 
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the aerosol mixing state (Wang et al., 2019). The approach to overcoming noise amplification is to regularize the problem by 65 

including additional information, such as smoothness (Kandlikar and Ramachandran, 1999). Tikhonov regularization is among 

the most common regularization methods and has been applied to inversions of the aerosol size distribution (Talukdar and 

Swihart, 2003) and mass-mobility distribution (Sipkens et al., 2020). Recently, a software package was developed to invert 

HTDMA data using Tikhonov regularization (Petters, 2021). Twomey’s method (Twomey, 1975), one of the most common 

iterative regularization methods, has been widely used to invert aerosol size distributions (Collins et al., 2002; Olfert et al., 70 

2008; Wang et al., 2018) and two-dimensional mass-mobility distributions (Rawat et al., 2016; Sipkens et al., 2020). However, 

to our best knowledge, Twomey’s method has not been applied to invert GF-PDF from HTDMA or HFIMS measurements.  

In this study, we present nonparametric, regularized inversions of the GF-PDF from HFIMS measurements. These inversion 

methods can be adapted to HTDMA measurements straightforwardly. The forward model (i.e., the convolution of the GF-PDF, 

the transfer function of DMA, and the transfer function of WFIMS) is derived analytically and cast into a matrix form such 75 

that nonparametric inversion methods can be conveniently applied. The nonparametric inversions are demonstrated by 

retrieving GF-PDF from HFIMS measurements of ambient aerosols. The dependence of retrieved GF-PDF on GF bin 

resolutions is investigated, and an optimal GF bin resolution is identified. Synthetic data are generated using representative 

GF-PDFs of ambient aerosols and are applied to evaluate different inversion methods, including (1) parametric, least-squares 

fittings, (2) nonparametric, unregularized least-squares, (3) Twomey’s method, and (4) Tikhonov regularization. The 80 

performances of the different inversion methods including reconstruction accuracy, GF-PDF fidelity, smoothness, and 

computation time are presented and discussed.   

2 Methods 

This section presents the GF-PDF inversion routine from the HFIMS measurement, which includes the mathematical derivation 

of the matrix-based inverse problem, the description of different inversion algorithms, and the generation of synthetic data for 85 

evaluating the inversion algorithms. 

2.1 A matrix form for the forward model  

The integrated response of HFIMS is determined by the aerosol size distribution, the DMA transfer function, the GF-PDF, and 

the WFIMS transfer function (Wang et al., 2019). The number concentration of particles with diameters between 𝐷𝑝1 and 

𝐷𝑝1 + d𝐷𝑝1 downstream of the DMA inside the HFIMS is given by:  90 

d𝑁DMA =
𝑄a,DMA

𝑄s,DMA
𝜂chg(𝐷p1)𝜂p,DMA(𝐷p1)Ω(𝑉DMA , 𝑍p1)d𝑁                                                 (1) 

where 𝑄a,DMA and 𝑄s,DMA are the DMA aerosol and sample (i.e., monodispersed) flow rates, respectively, 𝜂chg(𝐷p1) is the 

aerosol charging efficiency, 𝜂p,DMA(𝐷p1) is the particle penetration efficiency through the DMA, and Ω(𝑉DMA, 𝑍p1) is the 

transfer function of the DMA operated with the classifying voltage of 𝑉DMA, 𝑍p1 is the particle mobility (𝑍p1) normalized by 
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the DMA centroid mobility corresponding to 𝑉DMA. d𝑁 = 𝑛(𝐷p1)d𝐷p1 represents the number concentration of particles with 95 

diameters between 𝐷p1 and 𝐷p1 + d𝐷p1. The number concentration of particles with diameters between 𝐷p2 and 𝐷p2 + d𝐷p2 

at the outlet of the conditioner is  

 d𝑁cond = d𝐷p2 ∫ 𝜂p,cond(𝐷p2)𝑐cond(𝐷p2, 𝐷p1)d𝑁DMA
𝐷p1=∞

𝐷p1=0
                                              (2) 

where the integration considers all possible values of 𝐷p1 . 𝜂p,cond(𝐷p2) is the penetration efficiency of the conditioned 

particles, assuming the particle growth from 𝐷p1  to 𝐷p2  is instantaneous. 𝑐cond(𝐷p2, 𝐷p1) is the growth factor probability 100 

density function (GF-PDF) for particles with a dry diameter of 𝐷p1  growing to a diameter of 𝐷p2  during the humidity 

conditioning process. The GF-PDF satisfies ∫ 𝑐cond(𝐷p2, 𝐷p1)d𝐷p2
𝐷p2=∞

𝐷p2=0
= 1.  

The WFIMS response to particles with diameters between 𝐷p2 and 𝐷p2 + d𝐷p2 in the 𝑖𝑡ℎ  𝐷p
∗ bin during any time interval (𝑡) 

is calculated by  

d𝑅𝑖 =
𝑄a,WFIMS𝑁𝐹

𝑁̇𝐹
𝜂p,WFIMS(𝐷p2)𝜂det(𝐷p2)ΩWFIMS,𝑖(𝑍p2)d𝑁cond                                      (3) 105 

𝑄a,WFIMS is the inlet flow rate through the WFIMS, 𝑁𝐹 is the number of frames being used to count d𝑅𝑖, 𝑁̇𝐹 is the frame 

rate. 𝑁𝐹/𝑁̇𝐹 represents the time interval (𝑡) of counting, 𝜂p,WFIMS is the penetration efficiency of particles going through the 

WFIMS separator, ΩWFIMS,𝑖(𝑍p2) is the transfer function of the 𝑖𝑡ℎ bin of the instrument response diameter (𝐷p
∗) of the WFIMS. 

Note that the detection efficiency for particles above 8 nm has been shown to be 1 (i.e., 𝜂det(𝐷p2) = 1, Pinterich et al., 2017a).  

The theoretical response of the 𝑖𝑡ℎ  𝐷p
∗ bin of the HFIMS, 𝑅𝑖, can be derived by combining the above equations as detailed in 110 

Wang et al. (2019): 

𝑅𝑖 =  𝐸 ∬
1

𝐷p1
𝑐cond(𝑔, 𝐷p1)Ω(𝑉DMA , 𝑍p1) ΩWFIMS,𝑖(𝑍p2)d𝐷p2d𝐷p1 + 𝜖𝑖                                     (4) 

Where 𝐸 = 𝑅tot
𝑏

𝑏view

𝑄𝑠ℎ,DMA

𝑄𝑎,DMA

𝑑𝑍p1

𝑑𝐷p1
|

𝐷p1
∗

. 𝑅tot is the total counts of particles detected within the WFIMS viewing window, i.e., 

𝑅tot = ∑ 𝑅i𝑖 , where 𝑅i is the response of the 𝑖𝑡ℎ  𝐷p
∗ bin of the WFIMS. 𝑏view and 𝑏 are the length of the viewing area of the 

CCD-captured image and the length of the WFIMS mobility separator. 𝜖𝑖 is the error in the measured response. In Eq. (4), the 115 

GF-PDF is written as a function of growth factor 𝑔 (i.e., 𝐷p2/𝐷p1), and it satisfies 𝑐cond,n(𝑔, 𝐷p1)𝑑𝑔 = 𝑐cond(𝐷p2, 𝐷p1)𝑑𝐷p2. 

Given the narrow particle size range classified by the DMA, we assume the GF-PDF is the same for all particles classified by 

the DMA at a given voltage, i.e., 𝑐cond(𝑔, 𝐷𝑝1) is independent of 𝐷p1 for the integration in Eq. (4). Rewriting the GF-PDF as 

𝑐cond(𝑔) and replacing 𝐷p2 with 𝑔𝐷p1 in Eq. (4) gives: 

𝑅𝑖 = 𝐸 ∫ 𝑑𝑔
+∞

0
𝑐cond(𝑔) ∫ 𝑑𝐷p1Ω[𝑉DMA, 𝑍p1(𝐷p1)]ΩWFIMS,𝑖[𝑍p(𝑔𝐷p1)]

+∞

0
+ 𝜖𝑖                              (5) 120 

The integration can be approximated bywritten as a sum over 𝐽 GF bins, with the assumption that 𝑐cond(𝑔) is a constant value 

within each GF bin:  
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𝑅𝑖,theo = 𝐸 ∑ 𝑐cond(𝑔𝑗) ∫ 𝑑𝑔
𝑔

𝑗+
1
2

𝑔
𝑗−

1
2

∫ 𝑑𝐷p1Ω[𝑉DMA, 𝑍p(𝐷p1)]ΩWFIMS,𝑖[𝑍p(𝑔𝐷p1)]
+∞

0

𝐽
𝑗=1 + 𝜖𝑖                   (6) 

 where 𝑔𝑗−1/2 and 𝑔𝑗+1/2 (𝑗 = 1, 2, 3, …, 𝐽) are the lower and upper bounds of the 𝑗th GF bin. Eq. (6) can be further arranged 

into a matrix form (neglecting the error term) as  125 

𝐑 = 𝐌 × 𝐜                                                                                       (7) 

where the HFIMS response 𝐑 is an 𝐼 × 1 array composed of 𝑅𝑖 (𝑖 = 1, 2, 3, …, 𝐼). 𝐼 is the selected size bins of the WFIMS 

that covers the size range of (0.8𝐷p1
∗ , 2.0𝐷p1

∗ ) according to the settings of the DMA centroid diameter 𝐷p1
∗ . The unknown GF-

PDF 𝐜, an 𝐽 × 1 array composed of 𝑐𝑗  (𝑗 = 1, 2, 3, …, 𝐽), can be found by solving the Fredholm integral equation (7). 

The element of the HFIMS kernel matrix, 𝐌, is calculated by  130 

𝑀𝑖𝑗 = 𝐸𝑖 ∫ 𝑑𝑔
𝑔

𝑗+
1
2

𝑔
𝑗−

1
2

∫ 𝑑𝐷p1Ω[𝑉DMA, 𝑍p(𝐷p1)]ΩWFIMS,𝑖[𝑍p(𝑔𝐷p1)]
+∞

0
                                   (8) 

The HFIMS kernel describes the probability of particles with GF between 𝑔𝑗−1/2 and 𝑔𝑗+1/2 that is measured between the 

channel limits between 𝑍p,𝑖−1/2
∗  and 𝑍p,𝑖−1/2

∗ . As described above, the inversion of the GF-PDF (𝐜) becomes an ill-posed 

problem due to overlapping of the HFIMS kernel function, like that of the aerosol size spectrometers (Kandlikar and 

Ramachandran, 1999; Collins et al., 2002; Talukdar and Swihart, 2003). It is worth noting that the derivation of the HFIMS 135 

kernel function can be easily applied to HTDMA measurement by replacing the WFIMS transfer function 

ΩWFIMS,𝑖[𝑍𝑝(𝑔𝐷p1)] with the transfer function of the 2nd DMA  Ω[𝑉𝑖 , 𝑍𝑝(𝑔𝐷p1)] in Eq. (8), where 𝑉𝑖 is the classifying voltage 

of the 2nd DMAas detailed in the supplementary information (SI)..  

2.2 Inversion methods 

A number of techniques have been developed to solve the Fredholm integration (Kandlikar and Ramachandran, 1999). With 140 

Eqs. (7) and (8), nonparametric algorithms can be straightforwardly applied to invert GF-PDF, hence no prior knowledge of 

the functional form of GF-PDF is needed. 

Unregularized least-squares 

The simplest route is the ordinary least-squares (LSQ) which seeks to minimize the square of the residual:  

𝐜𝐋𝐒𝐐 = 𝑎𝑟𝑔 min
𝐜

{‖𝐌𝐜 − 𝐑‖𝟐
𝟐}                                                                       (9) 145 

where ‖∙‖2 denotes the Euclidean norm. Here, the least-squares solution is solved by using the lsqnonneg function from 

MATLAB. As the uncertainty in measurements can vary substantially for different 𝐷p
∗ bins, the residue is often weighted by 

measurement uncertainty. A weighted LSQ (WLSQ) seeks to minimize the weighted sum of squares (Sipkens et al., 2020): 

𝐜𝐖𝐋𝐒𝐐 = 𝑎𝑟𝑔 min
𝐜

{‖𝐖(𝐌𝐜 − 𝐑)‖𝟐
𝟐}                                                                  (10) 

where 𝐖 denotes a diagonal weight matrix, whose 𝑖th diagonal element is the reciprocal of the standard deviation for data 150 

point i.  



6 
 

Tikhonov regularization 

Tikhonov regularization is a common regularization method that overcomes noise amplification, and it has been used to invert 

aerosol size distribution and 2-D aerosol mass-mobility distributions (Talukdar and Swihart, 2003; Petters, 2021; Stolzenburg 

et al., 2022). In Tikhonov regularization, an additional regularization term is included in the least-squares approach:   155 

𝐜𝐓𝐢𝐤 = 𝑎𝑟𝑔 min
𝐜

{‖𝐌𝐜 − 𝐑‖𝟐
𝟐 + 𝜆2‖𝐋𝐜‖𝟐

𝟐}                                                     (11) 

where 𝜆2‖𝐋𝐜‖𝟐
𝟐  represents the regularization term designed to minimize the derivative of a specific order and 𝜆  is the 

regularization parameter that controls the degree of regularization. The penalization matrix 𝐋 is often set as the identity matrix 

𝐈, the bidiagonal (-1, 1) matrix, and the upper tridiagonal (1, -2, 1) matrix for the 0th, 1st, and 2nd order regularization, 

respectively (Hansen and O’Leary, 1993; Hansen, 1994). The parametric L-curve of ‖𝐌𝐜𝜆 − 𝐑‖𝟐 vs ‖𝐋𝐜𝜆‖𝟐 is plotted and the 160 

corner of the L-curve with the maximum curvature is identified using the “L-curve” routine from the regularization tools 

package developed by Hansen (1994). This as the optimal regularization parameter 𝜆 which corresponds to a good balance 

between minimization of the residual and reduction of the noise in the inverted 𝐜 (Hansen, 1992; Hansen and O’Leary, 1993).   

Similarly, a weighted Tikhonov regularization (WTik) can be applied by (Sipkens et al., 2020):  

𝐜𝐖𝐓𝐢𝐤 = 𝑎𝑟𝑔 min
𝐜

{‖𝐖(𝐌𝐜 − 𝐑)‖𝟐
𝟐 + 𝜆2‖𝐋𝐜‖𝟐

𝟐}                                               (12) 165 

The effect of introducing the weight in the LSQ inversion and Tikhonov regularization is examined in Section 3.2. 

Twomey’s method 

Twomey’s method is commonly used to find solutions for ill-posed problems and has been proved to be effective in inversions 

of the aerosol size distribution (Collins et al., 2002; Olfert et al., 2008) and aerosol mass-mobility distribution (Rawat et al., 

2016; Sipkens et al., 2020). It is a non-linear optimization method and provides iterative regularizations. An initial guess 170 

solution is iteratively multiplied by small multiples of the HFIMS kernel function which are proportional to the ratio of the 

measured to calculated measurements as follows: 

 𝑐𝑗
𝑘+1 = [1 + (

𝑅𝑖

𝐦𝑖𝐜𝑘 − 1) 𝑀𝑖𝑗] ∙ 𝑐𝑗
𝑘                                                                    (13) 

where 𝐦𝑖 is the 𝑖th row of the HFIMS kernel function 𝐌, and 𝑅𝑖 𝐦𝑖𝐜
𝑘⁄  denotes the relative divergence between actual and 

reconstructed HFIMS measurements. The positively constrained, least-squares solution is set as the initial guess (Olfert et al., 175 

2008). Then, the initial guess is smoothed using a three-term moving average (Markowski, 1987) and input into the iterative 

Twomey’s routine which is then repeated until a Chi-squared criterion is satisfied. It is worth noting that Twomey’s method 

may require sufficient counting statistics to ensure converged solutions. 

Parametric LSQ fittings 

The parametric fitting methods assume a prior known distribution of the GF-PDF and calculate the forward model problem 180 

(Eq. 4) to reconstruct the HFIMS measurements. A nonlinear least-squares fitting with boundary constraints is performed to 
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search for the least-squares solution within the bounds. The ML and PL fitting routines for the GF-PDF inversion from HFIMS 

measurements have been developed by Wang et al. (2019). The influence of counting statistics and GF-PDF parameters (i.e., 

the number of modes of ML GF-PDF and the number of sections of PL GF-PDF) has been statistically studied. In this work, 

the GF-PDF inverted using ML and PL fitting routines with the optimized parameters are compared with those retrieved using 185 

nonparametric inversion methods described above. 

2.3 Generation of synthetic data to evaluate inversion algorithms   

HFIMS measurements are synthesized to evaluate the performance of different inversion methods. The synthetic data are based 

on three representative GF-PDFs that consist of one, two, and three lognormal modes, respectively. The mode parameters of 

the pre-defined GF-PDFs are listed in Table 1, similar to those listed in Wang et al. (2019). The parameters of 𝑓, 𝐺, 𝜎 are the 190 

fractional weight, mean diameter growth factor, and geometric standard deviation of each mode. The theoretical HFIMS 

response (i.e., 𝑅𝑖) is derived using Eq. (4) based on each of the three GF-PDFs, and Gaussian and Poisson noise are then added 

to the response using the following approach. First, a zero-mean Gaussian noise component is added to the theoretical HFIMS 

response to simulate the system noise such as fluctuation of the sample flow rate: 

𝑅𝑖,G = 𝑅𝑖(1 + 𝛼𝑛𝑖
G)                                                                                          (14) 195 

where 𝑅𝑖 is the derived theoretical response of the 𝑖th 𝐷p
∗ bin, 𝑛𝑖

G is the 𝑖th element of a standard normally-distributed random 

vector, 𝑛𝐺, with zero mean and variance of 1. The magnitude of the Gaussian noise is varied using a factor, 𝛼. The HFIMS 

measurement is then simulated using the following Poisson distribution to reflect the discrete nature of the particle counting 

process:  

 𝑃(𝑥) =
𝑅𝑖,G

𝑥

𝑥!
exp (−𝑅𝑖,G)                                                                                     (15) 200 

𝑤here 𝑃(𝑥) is the probability that x number of particles are detected by HFIMS in the 𝑖th 𝐷p
∗ bin (i.e., actual measurements).  

The impact of the Gaussian noise on the performance of the inversion methods is examined for different noise levels in Section 

3.2. Five hundred sets of HFIMS measurements are generated using Monte Carlo methods with constant counting statistics 

(i.e., 𝑅tot of 100). These synthetic HFIMS measurements are then used to evaluate the inversion methods described above. 

Note that in the forward model for deriving the theoretical HFIMS response (i.e., Eq. 4), a higher resolution of 𝑔 (i.e., 120 bins 205 

over 0.8 - 2.0) is used than that of the HFIMS kernel matrix (i.e., 20 bins of 𝑔, Eq. 8). The difference between the forward and 

inverse models, together with the inclusion of Gaussian and Poisson noises, minimizes the effect of inverse crime (Colton et 

al., 1998).  

 

Table 1. Mode parameters of representative GF-PDFs for generating synthetic HFIMS measurements. 210 

Predefined  

GF-PDF 

Mode 1 Mode 2 Mode 3 

𝑓 𝐺 𝜎 𝑓 𝐺 𝜎 𝑓 𝐺 𝜎 

1 1.0 1.40 1.15 NA NA 
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2 0.45 1.10 1.05 0.55 1.30 1.05 NA 

3 0.39 1.05 1.10 0.32 1.40 1.05 0.29 1.70 1.10 

3 Results and discussion 

3.1 Optimal numbers of Growth factor bins and HFIMS size bins (𝑫𝐩
∗ )  

The numbers of GF bins (𝐽) and 𝐷p
∗  bins (𝐼) determine the dimensions of HFIMS kernel function, which affects the inversion 

of GF-PDF. The optimal number of 𝐷p
∗  bin is a trade-off between sizing resolution and counting statistics. Wang et al. (2019) 

examined the influence of WFIMS 𝐷p
∗ bin number (𝐼) on the inverted GF-PDF and found an optimal range of 23-32 for total 215 

particle counts of 100. For representative remote continental and urban aerosols, the number of particles measured by the 

HFIMS often exceed 100 in 20 seconds (Pinterich et al., 2017b; Zhang et al., 2021), ensuring sufficient counting statistics for 

ambient measurements. The dynamic range of WFIMS is roughly a factor of 10 in mobility, corresponding to a factor of ~3 in 

the size range (Zhang et al., 2021). In this study, 30 size bins (i.e., 𝐼 = 30) that are evenly spaced on a logarithmic scale over 

the WFIMS size range are used in the inversions. 220 

The influence of growth factor bin number (𝐽) on the inverted GF-PDF is examined using the synthetic HFIMS measurements 

described above. The GF-PDF was inverted from each set of the simulated HFIMS measurements using different GF bin 

numbers ranging from 10 to 50 (i.e., corresponding to a GF resolution range of 0.024 – 0.12). To facilitate the comparison of 

GF-PDFs inverted with different GF bin numbers, we interpolate the inverted GF-PDFs to 120 fixed growth factors that are 

evenly distributed from 0.8 to 2.0. The average error of the inverted GF-PDF γ is defined as: 225 

𝛾2 =
1

𝑁
∑ (𝑐𝑖,𝑖𝑛𝑣 − 𝑐𝑖,𝑠𝑖𝑚)

2𝑁
𝑖=1                                                                    (1316) 

where 𝑐𝑖,𝑖𝑛𝑣 and 𝑐𝑖,𝑠𝑖𝑚 are the interpolated GF-PDF and pre-defined GF-PDF (i.e., true values) at the 120 fixed growth factors, 

respectively. 𝑁 is the number of points of fixed growth factors (i.e., 120). The smoothness of the inverted GF-PDF is evaluated 

using the absolute second-order derivative: 

𝜉 = ∑ |2𝑐𝑖𝑛𝑣(𝑔𝑖) − 𝑐𝑖𝑛𝑣(𝑔𝑖+1) − 𝑐𝑖𝑛𝑣(𝑔𝑖−1)|𝑁−1
𝑖=2                                                 (1417) 230 

To evaluate how well the inverted GF-PDF reproduces the HFIMS measurement, we define the residual of the reconstructed 

HFIMS measurement (i.e., reconstruction error) as: 

𝜒2 = ∑ (𝑅̃𝑖,𝑖𝑛𝑣 − 𝑅̃𝑖)
2𝐿

𝑖=1                                                                      (1518) 

where 𝑅̃𝑖,𝑖𝑛𝑣 is the normalized HFIMS measurement that is reconstructed using Eq. (7) (i.e., forward calculation).  𝑅̃𝑖 is the 

normalized synthetic HFIMS measurement (i.e., true values).  235 

Figure 1 shows the smoothness of the inverted GF-PDF inverted using Twomey methods (𝜉 ) versus the residual of 

reconstructed HFIMS measurement (𝜒2) for different GF bin numbers (𝐽). The variation of 𝜉 with 𝜒2  exhibits an L-shaped 

curve for all three representative PF-PDF. The initial increase of 𝐽 from 10 to 20 substantially improves the agreement between 
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the reconstructed and simulated HFIMS measurements, as indicated by a much reduced 𝜒2  value. At the same time, 𝜉 remains 

relatively small, indicating a high smoothness of the inverted GF-PDF. In contrast, an increase of 𝐽 above 20 leads to a minor 240 

reduction of 𝜒2  value but a drastic increase of 𝜉, suggesting strong noise in the inverted GF-PDF. The optimal solution lies 

near the corner of the “L-curve” (Hansen and O’Leary, 1993) that strikes a balance between the smoothness and the fidelity to 

the HFIMS measurements. For all three pre-defined GF-PDFs, the corner of the L-curve corresponds to a 𝐽 value of 20. GF-

PDF inverted with 20 growth factor bins generally shows the smallest error (𝛾2), indicating best agreements between the 

inverted and the true GF-PDFs. Note that the above results are based on inversions using Twomey’s method. The same type 245 

of L-curves for GF-PDFs inverted using unregularized LSQ and Tikhonov regularizations are shown in SI (Section S2), and 

they also reveal a corner that corresponds to a 𝐽 value of 20. These results suggest an optimal J value of 20 for a range of 

representative GF-PDFs and different inversion methods. 

 

Figure 1. “L-curve” showing the dependence of reconstruction residual, 𝜒2, and the smoothness, 𝜉, on the number of GF bins of pre-defined 250 

GF-PDFs with (a) one mode, (b) two modes, and (c) three modes, respectively. The symbol size represents the error in inverted GF-PDF, 

𝛾2. Whiskers represent standard deviation. The inversion is conducted using Twomey’s method. 

3.2 Effect of measurement uncertainties 

The uncertainty in HFIMS measurements consists of mainly normal distributed random instrumental noise (e.g., sample flow 

fluctuation) and Poisson noise due to counting statistics. As the uncertainty varies among different HFIMS 𝐷p
∗ bins, we first 255 

compare the performance of weighted and unweighted inversion methods, including LSQ and Tikhonov regularizations. For 

this comparison, inversion methods are applied to HFIMS data synthesized with 𝛼=0.05, a typical value used in previous 

studies (Gysel et al., 2009). A total of 500 sets of synthetic data are generated for each of the three pre-defined GF-PDFs. The 

values of synthesized HFIMS response (Ri,s) are integers, which reflect the discrete nature of particle counting. For weighted 

LSQ and Tikhonov regularizations, the weight for 𝐷p
∗ bins (i.e., diagonal elements in W) is derived as 1/√𝑅𝑖,s. However, this 260 

approach leads to a weight of infinite when 𝑅𝑖,s has a value of zero (i.e., no particle detected within the 𝐷p
∗ bin). To overcome 

this issue, we replace zero 𝑅𝑖,s  values with a fixed number 𝑅𝑖,min when deriving the weight. Figure 2 compares the 

reconstruction residual, the GF-PDF error, and the smoothness of GF-PDF inverted using unweighted LSQ and weighted LSQ 

with 𝑅𝑖,min values of 1, 0.1, 0.01, respectively. Whereas statistically no substantial difference is found among the smoothness 
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of GF-PDFs inverted using unweighted and weighted LSQ, unweighted LSQ leads to lower reconstruction residual and the 265 

error in inverted GF-PDF compared to the weighted LSQ. For the weighted LSQ inversions, both the reconstruction residue 

and the error in inverted GF-PDF increase with increasing weight for Ri,s of zeros values (i.e., 1/√𝑅𝑖,min). The measurement 

uncertainty is larger and therefore the weight is lower for channels with higher Ri,s, which corresponds to higher probability 

densities (i.e., higher 𝑐(𝑔) values). As a result, the GF-PDF inverted using weighted LSQ may have relatively larger errors for 

high 𝑐(𝑔) values, and consequently the average GF-PDF error (𝛾2). The same comparisons are also carried out for weighted 270 

and unweighted Tikhonov algorithms, and again the weighted algorithms do not provide better performances (i.e., lower error 

in inverted GF-PDFs) than the unweighted ones. Therefore, subsequent analyses of this study are focused on unweighted 

algorithms for LSQ and Tikhonov regularizations. It is worth noting that derivation of the weight as 1/√𝑅𝑖,s implicitly assumes 

that the noise in HFIMS measurements is due to counting statistics only, whereas the synthetic HFIMS data are generated with 

5% Gaussian noise. As shown next, the noise in the synthetic HFISM data is dominated by the counting statistics. In addition, 275 

for real measurements, the level of Gaussian noise (i.e., 𝛼) is often not accurately known. We also repeated the above 

comparisons by deriving the weight as 1/√(𝑅𝑖,s + 𝛼2𝑅𝑖,𝑠
2 ), which accounts for both Poisson and Gaussian noises. The results 

are essentially the same.  

Figure 2. Comparison of reconstruction residual, 𝜒2 (a), the GF-PDF error, 𝛾2 (b), and the smoothness, 𝜉 (c) of GF-PDFs inverted using 280 

the unweighted and weighted LSQ methods with different weighting schemes for zero value 𝐷p
∗ bins (i.e., replacing zero values by 1, 0.1, 

and 0.01, respectively). Colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes (orange), and three modes (yellow). 

The results are averages based on inversions of 500 sets of synthetic HFIMS data for each of three pre-defined GF-PDFs. 

 

The effect of the level of Gaussian noise on the inverted GF-PDF is examined. Synthetic HFIMS measurements are generated 285 

following the approach described above (Eq. 13 and 14) at four Gaussian noise levels (i.e., 𝛼= 0%, 1%, 5%, and 10%). At 

each 𝛼 level, 500 sets of synthetic data are generated and inverted using Twomey’s method for each of the three pre-defined 

GF-PDF. All retrieved inversion parameters, including the reconstruction residual, the GF-PDF error, and the smoothness, are 

statistically the same for all four Gaussian noise levels (Fig. 3), indicating that HFIMS measurements noise is dominated by 

counting statistics, and the inclusion of the Gaussian noise has negligible impact on the GF-PDF inverted by Twomey’s method. 290 
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Similarly, the impact of Gaussian noise is also negligible for GF-PDF inverted using unweighted LSQ and 0th, 1st, and 2nd 

order Tikhonov regularizations (not shown).   

 

 

Figure 3. Comparison of reconstruction residual, 𝜒2 (a), the GF-PDF error, 𝛾2 (b), and the degree of smoothing, 𝜉 (c) of GF-PDFs inverted 295 

using Twomey’s methods from synthetic HFIMS data with additional Gaussian noises of different levels (i.e., none, 1%, 5%, and 10%). 

Colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes (orange), and three modes (yellow). The results are averages 

based on inversions of 500 sets of synthetic HFIMS data for each of three pre-defined GF-PDFs. 

 

We also challenged the inversion algorithms with different forward and inverse models to simulate the scenarios when DMA 300 

or WFIMS is not perfectly calibrated. A different DMA or WFIMS transfer function width is used to generate the synthetic 

HFIMS measurements than that used to calculate the inversion matrix. We found that up to ±20% variation of the DMA or 

WFIMS transfer function width has negligible impacts on the inverted GF-PDF. The results and discussion are detailed in 

Section S3 of the SI. 

3.2 3 Comparisons of different inversion methods 305 

The performances of different inversion methods described in Section 2.2 are systematically compared. A total of 500 sets of 

synthetic HFIMS data are generated and inverted for each of three pre-defined GF-PDFs. For all nonparametric methods, the 

inversions were carried out using the optimal numbers of GF bins (𝐽) and 𝐷p
∗ bins (𝐼), 20 and 30, respectively. Figure 2 4 shows 

the residual of reconstructed HFIMS measurements (𝜒2), the smoothness (𝜉), the error of inverted GF-PDF residual (𝛾2), and 

the computing time for different inversion methods. The results are the averages for the 500 sets of synthetic HFIMS data are 310 

shown for each of three pre-defined GF-PDFs. Compared with parametric counterparts (i.e., ML and PL least-squares fitting), 

the nonparametric methods generally retrieve more accurate GF-PDFs. Note that the ML least-squares fitting fails to converge 

to a valid solution occasionally, resulting in the abnormally large error in the inverted GF-PDFs, particularly for the pre-defined 

GF-PDFs with two and three modes. It may be due to the assumed spectral shape of GF-PDFs or the finite range of the 

boundary constraints that lead to a failure of searching for a least-squares solution in the presence of random noise. Among all 315 

nonparametric inversion methods, the unregularized LSQ provides the solution with the lowest reconstruction residual but 
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largest noise and error in the inverted GF-PDFs, consistent with the noise amplification in unregularized methods. In 

comparison, regularized inversion methods generally produce smoother solutions at the expense of increased reconstruction 

residuals. Among different Tikhonov regularization methods, higher-order regularizations (i.e., 1st and 2nd) tend to produce 

smoother solutions, although the errors in inverted GF-PDF are very similar statistically. The 𝜉 value of the GF-PDF inverted 320 

using 1st and 2nd order Tikhonov regularizations increase with the mode number of GF-PDF, consistent with the increasingly 

more complex spectral shape of GF-PDF. Overall, Twomey’s method outperforms the other regularized inversionTikhonov 

regularization methods regardless of the shapes of the pre-defined GF-PDFs. On average, the GF-PDF inverted using 

Twomey’s method has the smallest error (𝛾2) and lowest 𝜉 value, indicative of the best performance. Note that the results are 

based on synthetic data generated with relatively low counting statistics (i.e., 𝑅tot of 100). We also synthesized HFIMS data 325 

with 𝑅tot of 500 and compared the performance of different inversion methods for measurements with the improved counting 

statistics, and the results are consistent with those shown in Fig. 4 (Fig. S7). We, therefore, expect the results reflect the general 

performances of different inversion methods for a typical range of counting statistics of HFIMS measurements.  

Figure. 24(d) shows that once the matrix is generated, the implementation of the nonparametric methods requires a much 

shorter computing time than the parametric fitting methods. Here, the computing time is recorded on a desktop with Intel’s 8th 330 

generation processor Core i7-8700. On average, a single-time implementation of the unregularized LSQ (i.e., the “lsqnonneg” 

function in MATLAB) requires ~1s for all three pre-defined GF-PDFs, and the computing times for all other any nonparametric 

methods are similar (with the requires only ~1s for all three pre-defined GF-PDFs. largest difference of only ~4%), indicative 

of equally good computing efficiencies. In contrast, both ML and PL least-squares fitting routines require more than one order 

of magnitude longer time.  335 
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Figure 24. Comparison of reconstruction errorresidual, 𝜒2 (a), the smoothness, 𝜉 (b), the GF-PDF residualerror, 𝛾2 (c), and the computing 

time (d) of GF-PDFs inverted using different inversion methods. Colors correspond to the pre-defined GF-PDFs with one mode (blue), two 

modes (orange), and three modes (yellow). The results are averages based on inversions of 500 sets of synthetic HFIMS data for each of 340 

three pre-defined GF-PDFs. 

3.4 Comparison of Tikhonov regularization and Twomey’s method 

In this section, we investigate why Twomey’s method performs better than Tikhonov regularizations. The Tikhonov 

regularized solutions depend on the regularization parameter, 𝜆. The value of 𝜆 is often determined by heuristic methods, 

including the L-curve approach (Hansen and O’Leary, 1993) and the Hanke-Raus rule (Hanke and Raus, 1996). The L-curve 345 

approach determines 𝜆 by seeking a trade-off between minimizing the residual term and minimizing the regularization term 

(i.e., roughness of the solution), and the Hanke-Raus rule selects a computable 𝜆 that minimizes the 𝜆-dependent residual term 

1

𝜆
‖𝐌𝐜𝑻𝒊𝒌(𝜆) − 𝐑‖

𝟐
 (Hanke and Raus, 1996; Sipkens et al., 2020). As the pre-defined GF-PDFs are known for the synthetic 

HFIMS data, the value of 𝜆 can be optimized by comparing the inverted GF-PDF with the true solution, i.e., minimizing the 

error in inverted GF-PDF (𝛾2). Figure 5 shows the comparison of the statistics of inversions using LSQ, Twomey’s method, 350 

and 1st order Tikhonov. The results are averages based on inversions of 500 sets of synthetic HFIMS data for each of three 

pre-defined GF-PDFs. Here, the 1st order Tikhonov regularization is chosen as it shows better performance (i.e., lower GF-

PDF error) than 0th and 2nd Tikhonov regularizations (Fig. 4). The Tikhonov regularization parameter is identified by all three 

methods: (1) the L-curve, (2) the Hanke-Raus rule, and (3) optimization through minimizing the error in inverted GF-PDFs. It 

is worth noting that the 3rd method is not feasible for real measurements, as the true GF-PDF is unknown. Figure 5b shows 355 

that the Tikhonov regularization with the optimized 𝜆 (i.e., the 3rd method) provides the most accurate solution (i.e., lowest 

GF-PDF error), and outperforms Twomey’s method. However, when 𝜆 derived using the L-curve approach or Hanke-Raus 

rule is used, GF-PDF inverted using 1st order Tikhonov regularization generally has a larger error (i.e., 𝛾2) than that inverted 

using Twomey’s method. The above comparisons indicate that while the Tikhonov regularization can outperform Twomey’s 

method in theory, the optimal regularization parameter 𝜆 cannot be obtained reliably using existing methods in practice, 360 
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leading to inferior performance than Twomey’s method. For example, the L-curve approach does not work well if the curvature 

of the L-curve is negative everywhere, and in such scenario, the leftmost point (i.e., with smaller 𝜆) on the L-curve is taken as 

the corner (Hansen, 1994), leading to insufficient regularizations of the solution (Naseri et al., 2021). On the other hand, the 

Hanke-Raus rule often chooses a much larger 𝜆 compared with the optimal value, which results in over-smoothed solutions 

with even larger errors. We also carried out similar comparisons of Twomey’s method with 0th and 2nd order Tikhonov 365 

regularizations using 𝜆 values derived from the three different methods, and the results are consistent with those shown in Fig. 

5.  

The nonparametric inversion methods are also applied to HFIMS measurements of ambient particles with a dry diameter of 35 

nm (Zhang et al., 2021), as detailed in the SI (Section S5). As the true GF-PDF of ambient aerosols is unavailable, the 

performance of the inversion methods can not be directly compared. Nevertheless, the comparison of the reconstruction 370 

residual and the smoothness of inverted GF-PDF paints a similar picture that Twomey’s method strikes a good balance between 

the smoothness of the inverted GF-PDF and the fidelity in reproducing the HFIMS measurements, and it likely outperforms 

Tikhonov regularizations in practice.  

Figure 5. The reconstruction residual, 𝝌𝟐 (a), the GF-PDF error, 𝜸𝟐 (b), and the smoothness, 𝝃 (c) of GF-PDF inverted using LSQ, 1st order 375 

Tikhonov regularization with the regularization parameter derived from three different approaches (L-curve, Hanke-Raus rule, and optimized 

𝝀), and Twomey’s method. The colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes (orange), and three 

modes (yellow).  

 

3.3 5 Inversion by Twomey’s method  380 

As Twomey’s method is shown to be the best among all inversion methods examined, we characterize the accuracy of the GF-

PDFs inverted using Twomey’s method and the recovered mode parameters. Figure 3 6 compares the GF-PDFs inverted with 

the optimized GF and 𝐷p
∗  bin numbers and with the pre-defined GF-PDFs. The reconstructed and the simulated HFIMS 

measurements are also presented in the top panel. Both the inverted GF-PDF and reconstructed HFIMS measurements are 

averaged over the inversions of 500 sets of synthetic data. The results demonstrate excellent agreement of the reconstructed 385 

HFIMS measurements with the synthetic data (i.e., simulated HFIMS measurements) for all three pre-defined GF-PDFs. Both 
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the spectral shapes and peak locations of the inverted GF-PDFs agreed well with that of the pre-defined GF-PDFs. In addition, 

the inverted GF-PDFs are also in better agreement as compared with those inverted from parametric least-squares approaches 

(i.e., ML and PL GF-PDFs, Wang et al., 2019).  

 390 

Figure 36. (Top panels) Comparisons between the averaged reconstructed HFIMS measurements and the simulated HFIMS measurements 

corrupted with Poisson noises for pre-defined GF-PDFs of one mode (a), two modes (b), and three modes (c), respectively. (Bottom panels) 

Comparisons between the pre-defined GF-PDFs and the GF-PDFs inverted using Twomey’s method with the optimized value of GF bins. 

The shaded area represents GF-PDF solution spaces within one standard deviation.  

 395 

To quantify the accuracy of the inverted GF-PDFs, we fitted the inverted GF-PDFs to recover the mode parameters as shown 

in Table 12. The pre-set mode parameters of the pre-defined GF-PDFs are shown in Table 1. The results show that both the 

mode geometric means and the multimodal number fractions can be recovered accurately with minor uncertainties.  

 

Table 2. Recovered mode parameters of pre-defined GF-PDFs from inverted GF-PDFs. 400 

Predefined  

GF-PDF 

Mode 1 Mode 2 Mode 3 

𝑓 𝐺 𝜎 𝑓 𝐺 𝜎 𝑓 𝐺 𝜎 

1 1.00 ± 0 1.39 ± 0.03 1.09 ± 0.01 NA NA 

2 0.46 ± 0.10 1.10 ± 0.02 1.02 ± 0.01 0.54 ± 0.10 1.30 ± 0.02 1.03 ± 0.01 NA 

3 0.37 ± 0.09 1.05 ± 0.03 1.05 ± 0.02 0.34 ± 0.13 1.40 ± 0.03 1.03 ± 0.02 0.28 ± 0.12 1.69 ± 0.08 1.06 ± 0.03 

4 Conclusion 

In this study, we develop and evaluate nonparametric regularized methods for inverting GF-PDF from HFIMS measurements. 

The integrated response of HFIMS, which is a convolution of the aerosol hygroscopic GF-PDF, the transfer function of the 

DMA, and the transfer function of the WFIMS, is first cast into a matrix form. With the matrix form, nonparametric regularized 

methods can be applied straightforwardly to invert the GF-PDF. Synthetic HFIMS measurements are generated using Monte-405 
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Carlo simulations for representative aerosol GF-PDFs, and the synthetic data are used to investigate the dependence of inverted 

GF-PDF on the number of GF bins (i.e., GF resolutions) and the performances of different inversion methods. We show an 

optimal GF bin number of 20 for all nonparametric methods and representative GF-PDFs. The performances of unregularized 

least-squares, Twomey’s algorithm, Tikhonov regularizations, and commonly used parametric inversion methods (i.e., ML 

and PL least-squares fitting) are compared. Nonparametric methods based on the matrix form have substantial advantages in 410 

the inversion of GF-PDF over the parametric fitting methods as (1) no prior assumption of GF-PDF distributions is required; 

(2) the matrix-based form facilitates the application of different regularizations (e.g., Tikhonov regularization and Twomey’s 

iterative regularization), which reduce the error in inverted GF-PDF by eliminating noise amplification; (3) they are much 

more computationally efficient once the matrix is generated. The Tikhonov regularized solutions depend on the regularization 

parameter, 𝜆. While the Tikhonov regularization can outperform Twomey’s method in theory, the optimal 𝜆 value cannot be 415 

obtained reliably using existing methods in practice, leading to inferior performances than Twomey’s method. On average, the 

GF-PDF inverted using Twomey’s method has the smallest error compared to solutions using the other inversion methods 

regardless of the shapes of the pre-defined GF-PDFs, and it accurately reproduces the true GF-PDF, including the mode 

parameters and other key statistics.  

 420 
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More information is provided with the README in the repository. 

Author contributions. JZ and JW designed the study. JZ developed the code. JZ and JW prepared the manuscript with 

contributions from all co-authors.  425 

Competing interests. The authors declare that they have no conflict of interest. 

Acknowledgements. We acknowledge the funding support from the U. S. Department of Energy’s Small Business Innovation 

Research (SBIR) program under contract DE-SC0013103 and Small Business Technology Transfer (STTR) program under 

contract DESC0006312. 

References 430 

Collins, D. R., Flagan, R. C., and Seinfeld, J. H.: Improved Inversion of Scanning DMA Data, Aerosol Science and Technology, 
36, 1-9, 10.1080/027868202753339032, 2002. 

 

Colton, D. L., Kress, R., and Kress, R.: Inverse acoustic and electromagnetic scattering theory, Springer, 1998. 

 435 

Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, 

G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, 

Atmos. Chem. Phys., 7, 6131-6144, 10.5194/acp-7-6131-2007, 2007. 

 

Gysel, M., McFiggans, G. B., and Coe, H.: Inversion of tandem differential mobility analyser (TDMA) measurements, Journal 440 

of Aerosol Science, 40, 134-151, https://doi.org/10.1016/j.jaerosci.2008.07.013, 2009. 

https://github.com/zjs023/Regularized_inversion_HFIMS
https://doi.org/10.1016/j.jaerosci.2008.07.013


17 
 

 

Hanke, M., and Raus, T.: A General Heuristic for Choosing the Regularization Parameter in Ill-Posed Problems, SIAM Journal 

on Scientific Computing, 17, 956-972, 10.1137/0917062, 1996. 

 445 

Hansen, P. C.: Analysis of Discrete Ill-Posed Problems by Means of the L-Curve, SIAM Review, 34, 561-580, 

10.1137/1034115, 1992. 

 
Hansen, P. C., and O’Leary, D. P.: The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal 

on Scientific Computing, 14, 1487-1503, 10.1137/0914086, 1993. 450 

 

Hansen, P. C.: REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems, 

Numerical Algorithms, 6, 1-35, 10.1007/BF02149761, 1994. 

 

Kandlikar, M., and Ramachandran, G.: INVERSE METHODS FOR ANALYSING AEROSOL SPECTROMETER 455 

MEASUREMENTS: A CRITICAL REVIEW, Journal of Aerosol Science, 30, 413-437, https://doi.org/10.1016/S0021-

8502(98)00066-4, 1999. 

 

Liu, B. Y. H., Pui, D. Y. H., Whitby, K. T., Kittelson, D. B., Kousaka, Y., and McKenzie, R. L.: The aerosol mobility 
chromatograph: A new detector for sulfuric acid aerosols, Atmospheric Environment (1967), 12, 99-104, 460 

https://doi.org/10.1016/0004-6981(78)90192-0, 1978. 

 

Markowski, G. R.: Improving Twomey's Algorithm for Inversion of Aerosol Measurement Data, Aerosol Science and 

Technology, 7, 127-141, 10.1080/02786828708959153, 1987. 

 465 

Naseri, A., Sipkens, T. A., Rogak, S. N., and Olfert, J. S.: An improved inversion method for determining two-dimensional 

mass distributions of non-refractory materials on refractory black carbon, Aerosol Science and Technology, 55, 104-118, 

10.1080/02786826.2020.1825615, 2021. 

 

Olfert, J. S., Kulkarni, P., and Wang, J.: Measuring aerosol size distributions with the fast integrated mobility spectrometer, 470 

Journal of Aerosol Science, 39, 940-956, https://doi.org/10.1016/j.jaerosci.2008.06.005, 2008. 
 

Petters, M. D.: A Software Package to Simplify Tikhonov Regularization with Examples for Matrix-Based Inversion of SMPS 

and HTDMA Data, Atmos. Meas. Tech. Discuss., 2021, 1-27, 10.5194/amt-2021-51, 2021. 

 475 

Pilinis, C., Pandis, S. N., and Seinfeld, J. H.: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and 

composition, Journal of Geophysical Research: Atmospheres, 100, 18739-18754, https://doi.org/10.1029/95JD02119, 1995. 

 

Pinterich, T., Spielman, S. R., Hering, S., and Wang, J.: A water-based fast integrated mobility spectrometer (WFIMS) with 

enhanced dynamic size range, Aerosol Science and Technology, 51, 1212-1222, 10.1080/02786826.2017.1338664, 2017a. 480 

 

Pinterich, T., Spielman, S. R., Wang, Y., Hering, S. V., and Wang, J.: A humidity-controlled fast integrated mobility 
spectrometer (HFIMS) for rapid measurements of particle hygroscopic growth, Atmos. Meas. Tech., 10, 4915-4925, 

10.5194/amt-10-4915-2017, 2017b. 

 485 

Rader, D. J., and McMurry, P. H.: Application of the tandem differential mobility analyzer to studies of droplet growth or 

evaporation, Journal of Aerosol Science, 17, 771-787, https://doi.org/10.1016/0021-8502(86)90031-5, 1986. 

 

Rawat, V. K., Buckley, D. T., Kimoto, S., Lee, M.-H., Fukushima, N., and Hogan, C. J.: Two dimensional size–mass 

distribution function inversion from differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) measurements, 490 

Journal of Aerosol Science, 92, 70-82, https://doi.org/10.1016/j.jaerosci.2015.11.001, 2016. 

https://doi.org/10.1016/S0021-8502(98)00066-4
https://doi.org/10.1016/S0021-8502(98)00066-4
https://doi.org/10.1016/0004-6981(78)90192-0
https://doi.org/10.1016/j.jaerosci.2008.06.005
https://doi.org/10.1029/95JD02119
https://doi.org/10.1016/0021-8502(86)90031-5
https://doi.org/10.1016/j.jaerosci.2015.11.001


18 
 

 

Sipkens, T. A., Olfert, J. S., and Rogak, S. N.: Inversion methods to determine two-dimensional aerosol mass-mobility 

distributions: A critical comparison of established methods, Journal of Aerosol Science, 140, 105484, 

https://doi.org/10.1016/j.jaerosci.2019.105484, 2020. 495 

 

Stolzenburg, D., Ozon, M., Kulmala, M., Lehtinen, K. E. J., Lehtipalo, K., and Kangasluoma, J.: Combining instrument 

inversions for sub-10 nm aerosol number size-distribution measurements, Journal of Aerosol Science, 159, 105862, 
https://doi.org/10.1016/j.jaerosci.2021.105862, 2022. 

 500 

Stolzenburg, M., and McMurry, P.: TDMAFIT user’s manual, University of Minnesota, Department of Mechanical 

Engineering, Particle Technology Laboratory, Minneapolis, 1-61, 1988. 

 

Stolzenburg, M. R., and McMurry, P. H.: Equations Governing Single and Tandem DMA Configurations and a New 

Lognormal Approximation to the Transfer Function, Aerosol Science and Technology, 42, 421-432, 505 

10.1080/02786820802157823, 2008. 

 

Swietlicki, E., Hansson, H.-C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Petäjä, T., 

Tunved, P., and Gysel, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA 
instruments in various environments—a review, Tellus B: Chemical and Physical Meteorology, 60, 432-469, 2008. 510 

 

Talukdar, S. S., and Swihart, M. T.: An Improved Data Inversion Program for Obtaining Aerosol Size Distributions from 

Scanning Differential Mobility Analyzer Data, Aerosol Science and Technology, 37, 145-161, 10.1080/02786820300952, 

2003. 

 515 

Tang, I., and Munkelwitz, H.: Aerosol phase transformation and growth in the atmosphere, Journal of Applied Meteorology, 

33, 791-796, 1994. 

 

Twomey, S.: Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation 

of particle size distributions, Journal of Computational Physics, 18, 188-200, https://doi.org/10.1016/0021-9991(75)90028-5, 520 

1975. 
 

Wang, Y., Pinterich, T., and Wang, J.: Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated 

mobility spectrometer, Journal of Aerosol Science, 121, 12-20, https://doi.org/10.1016/j.jaerosci.2018.03.006, 2018. 

 525 

Wang, Y., Zheng, G., Spielman, S. R., Pinterich, T., Hering, S. V., and Wang, J.: Retrieval of high time resolution growth 

factor probability density function from a humidity-controlled fast integrated mobility spectrometer, Aerosol Science and 

Technology, 53, 1092-1106, 2019. 

 

Zhang, J., Spielman, S., Wang, Y., Zheng, G., Gong, X., Hering, S., and Wang, J.: Rapid measurement of RH-dependent 530 

aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS), Atmos. Meas. Tech., 

14, 5625-5635, 10.5194/amt-14-5625-2021, 2021. 
 

Zheng, G., Kuang, C., Uin, J., Watson, T., and Wang, J.: Large contribution of organics to condensational growth and formation 

of cloud condensation nuclei (CCN) in the remote marine boundary layer, Atmospheric Chemistry and Physics, 20, 12515-535 

12525, 2020. 

 

https://doi.org/10.1016/j.jaerosci.2019.105484
https://doi.org/10.1016/j.jaerosci.2021.105862
https://doi.org/10.1016/0021-9991(75)90028-5
https://doi.org/10.1016/j.jaerosci.2018.03.006

