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Abstract. During the last decade, rainfall monitoring using signal level data from commercial microwave links (CMLs) in

cellular communication networks has been proposed as a complementary way to estimate rainfall for large areas. Path-averaged

rainfall is retrieved between the transmitting and receiving cellular antenna of a CML. One rainfall estimation algorithm

for CMLs is RAINLINK, which has been employed in different regions (e.g., Brazil, Italy, the Netherlands, and Pakistan)

with satisfactory results. However, the RAINLINK parameters have been calibrated for a unique optimum solution, which is5

inconsistent with the fact that multiple similar or equivalent solutions may exist due to uncertainties in algorithm structure,

input data, and parameters. Here, we show how CML rainfall estimates can be improved by calibrating all parameters of the

algorithm systematically and simultaneously with the stochastic optimization method Particle Swarm Optimization, which is

used for the numerical maximization of the objective function. An open dataset of approximately 2,800 sub-links of minimum

and maximum received signal levels over 15-minute intervals covering the Netherlands (∼35,500 km2) is employed, where10

12 days are used for calibration and 3 months for validation. A gauge-adjusted radar rainfall dataset is utilized as reference.

Verification of path-average daily rainfall shows a reasonable improvement for the stochastically calibrated parameters with

respect to RAINLINK’s default parameter settings. Results further improve when averaged over the Netherlands. Moreover,

the method provides a better underpinning of the chosen parameter values and is therefore of general interest for calibration of

RAINLINK’s parameters for other climates and cellular communication networks.15

1 Introduction

Accurate rainfall observations with high temporal and spatial resolution are crucial for, e.g., agriculture, meteorology, flood

warnings and fresh water resource management. However, for many places on the earth’s land surface, accurate rainfall infor-

mation is lacking, especially from ground-based measurements at sub-daily and daily time scales (Sun et al., 2018). Another

issue is the severe reduction in available data availability of ground-based measurements. For instance, the largest worldwide rain20

gauge database, maintained by the Global Precipitation Climatology Centre (GPCC) had 45,000 rain gauges in 1961-2000

and down to 10,underwent a decline caused by the delay of the 000 after 2016. This decrease was caused a delay in data delivery and

by post-processing at GPCC . A reduction of approximately 43, 000 (81%) and 27, 000 (77%) rain gauges with monthly and daily precipitation records during the last
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30 years , respectively (Schneider et al., 2021). Although, decreasing in the past due to quality control, the GPCC database has

been increasing in recent years as a result of delivery of updates as well as supplements with additional stations and long25

time-series of data (Schneider et al., 2021).

Suggested by Upton et al. (2005) and initially applied by Messer (2006) and Leijnse et al. (2007), the technique to esti-

mate rainfall intensities based on signal level data from commercial microwave links (CMLs) is slowly but surely becoming a

complementary source of rainfall information next to traditional ground-based measurements from rain gauges, weather radars

and disdrometers. A CML is the link along a path between a transmitting antenna on one cell phone tower and a receiving30

antenna on another cell phone tower, often having two sub-links for communication in both directions. Since rainfall attenuates

microwave radiation at frequencies of tens of GHz (wavelengths of about 1 cm), typically employed by CMLs, the integrated

rain-induced attenuation along the link path can be computed from the decrease in signal levels with respect to dry weather,

and subsequently converted to path-average rainfall. The core of the rainfall retrieval algorithm is the conversion of specific

attenuation k (dB km−1) to path-average rainfall intensityR (mm h−1) via the power-law relationR= akb (Atlas and Ulbrich,35

1977; Olsen et al., 1978). The coefficient a (mm h−1 dB−b kmb) and exponent b (–) depend mainly on the microwave link’s

frequency and polarization and on the rain drop size distribution (DSD) (Leijnse et al., 2007). Before applying the power-law

relation, the received signal power must be processed to filter out any attenuation unrelated to rain, and to compare signals dur-

ing a rainy interval with those from dry intervals. A typical workflow consists of: (i) CML data acquisition and preprocessing;

(ii) identification of rain events in noisy raw data (wet-dry classification); (iii) baseline determination, representative of dry40

intervals; (iv) removal of outliers due to malfunctioning links; (v) correction of received signal powers; and (vi) computation

of mean path-average rainfall intensities (Overeem et al., 2016a; Chwala and Kunstmann, 2019).

An advantage of CMLs is that they use the existing infrastructure of mobile network operators (MNOs) for network mainte-

nance, data storage and acquisition. Furthermore, CMLs can be employed as a complement to existing rain gauge and weather

radar networks, as well as in areas where instruments for ground observation are poor or non-existent. Thus, rainfall retrieval45

from CML data and subsequent mapping is a form of “opportunistic” sensing that has gained prominence in recent years

(Uijlenhoet et al., 2018; Chwala and Kunstmann, 2019).

A number of studies highlight the successful employment of CMLs for rainfall retrieval, of which the most relevant for

this study are discussed here. Zinevich et al. (2009) show that this technique is suitable for measuring near-ground rainfall

around the cities of Ramle and Modi’in (area ≈ 900 km2; density ≈ 0.025 CML km−2) in Israel. Incorporating the uncer-50

tainty associated with the different sources of rainfall information, Bianchi et al. (2013) obtained reliable rainfall intensity

estimates by combining rain gauge, radar, and microwave link observations in the Zürich area, Switzerland (area ≈ 460 km2;

density ≈ 0.03 CML km−2). In a dedicated case study in Prague, Czech Republic, Fencl et al. (2015) used 14 CMLs over

a small area of 2.5 km2 (i.e. a density of 5.6 CML km−2), concluding that quantitative precipitation estimates from CMLs

capture the spatio-temporal rainfall distribution at the microscale very well. Recently, de Vos et al. (2019) reached correlations55

around 0.60 for daily rainfall accumulations, using instantaneously sampled data from a CML network in the Netherlands

(density ≈ 0.054 CML km−2). Moreover, comparing those results with earlier studies in the Netherlands, the authors highlight

min/max sampling outperforms instantaneous sampling in terms of rainfall estimates. Long-term studies involving country-
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wide verification of CML rainfall estimates based on data from a few thousand CMLs are provided by Overeem et al. (2016b)

for the Netherlands employing RAINLINK (Overeem et al., 2016a), and by Graf et al. (2020) for Germany employing py-60

comlink (https://github.com/pycomlink/pycomlink), both open-source rainfall retrieval packages. Machine learning supervised

algorithms have been used for rainfall retrieval via CMLs, improving the performance of this kind of rainfall measurement

(Pudashine et al., 2020; Habi and Messer, 2021). Although representing a recent advancement, These data-driven solutions are not also hold

a promise for ungauged areas, but it will not be feasible for places or countries without sufficient reference data to train the

machine learning algorithms. That is, data-driven models require a huge number of observations to learn and detect the65

whole behavior of the phenomenon to be modeled. For other algorithms, such as a gauge-adjusted radar dataset which provides full coverage

over a CML networkRAINLINK, it may still be feasible to at least tune a few parameters, for instance, by employing drop size

distribution observations (from a region with a similar climate) to obtain more appropriate coefficients of the relationship

between specific attenuation and rain rate.

Likewise, research has been conducted to evaluate CML-derived rainfall in hydrological model responses. Brauer et al.70

(2016) study the effects of differences in rainfall measurement techniques (including CMLs) on discharge and groundwater

simulations using a lumped rainfall-runoff model in a small (6.5 km2) catchment. CML-derived rainfall estimates are found

to lead to much better results than real-time weather radar data when comparing discharge and groundwater simulations to

observations for a full year. Investigating the potential of CML-derived rainfall estimates for streamflow prediction and water

balance analyses, Smiatek et al. (2017) observe a significant improvement in the reproduction of observed discharge values75

for events with local heavy rainfall. The authors find that even rainfall fields provided by gauge-adjusted weather radar do not

capture such events, which suggests that an extremely dense monitoring network would be needed to properly capture local

heavy rainfall. Likely, this explains why Liberman et al. (2014) achieve better results by merging CML and radar data rather

than using just one of these sources to retrieve rainfall intensities.

Despite all these studies showing the potential of CMLs for rainfall monitoring, challenges remain. These are mainly related80

to dealing with typical sources of error, e.g., wetting of antennas in rain events causing additional attenuation and hence

resulting in rainfall overestimation, as well as signal level decrease during dry periods in CML raw data (Leijnse et al., 2008;

Messer and Sendik, 2015; Overeem et al., 2016a). Rainfall retrieval algorithms for CMLs aim to take these phenomena into

account, although issues such as wet-dry classification still require improvement. Another challenge concerns the calibration

of the parameters of the rainfall retrieval algorithms. Current calibration procedures fall short of addressing the uncertainties85

associated with CML signal levels (e.g. due to different brands of antennas and varying path lengths), algorithm structure

(e.g. attenuation thresholds for classification of rainy and non-rainy periods), model parameters (e.g. for wet antennas and

outlier filters), and rainfall itself (e.g. due to DSD spatial variability along the link path). Concretely, the parameters of the

algorithms are calibrated empirically in order to obtain a unique optimum solution. In fact, many optimum solutions can occur,

in accordance with a strong variability of the parameters, thus the optimization should account for the distribution of these solutions and parameters , selecting them based on90

uncertainty levelscorresponding to different parameters sets (a phenomenon known as equifinality).

Here, we partly address this by calibrating the most important parameters of the open-source rainfall retrieval algorithm

RAINLINK systematically and simultaneously with the stochastic optimization method Particle Swarm Optimization. This
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is preceded by a sensitivity analysis selecting the most important parameters. RAINLINK has been used for CML rainfall

estimation in various regions, i.e. Australia, Brazil, Italy, the Netherlands, Nigeria, Pakistan, and Sri Lanka (Overeem et al., 2016a,95

b; Sohail Afzal et al., 2018; Rios Gaona et al., 2018; de Vos et al., 2019; GSMA, 2019; Roversi et al., 2020)(Overeem et al., 2016a, b; Sohail Afzal et al.,

2018; Rios Gaona et al., 2018; de Vos et al., 2019; GSMA, 2019; Roversi et al., 2020; Overeem et al., 2021b; Pudashine

et al., 2021), and has been calibrated deterministically (Overeem et al., 2011, 2013, 2016a, b; de Vos et al., 2019). With the

new optimization method, we provide a better underpinning of parameter values for this CML rainfall retrieval algorithm, also .

Moreover, we optimize for the first time the main RAINLINK processes, namely i.e., wet-dry classification and rainfall retrieval,100

separately. These resulting CML rainfall estimates are contrasted to those based on RAINLINK’s default parameter values

(Overeem et al., 2011, 2013, 2016a). A gauge-adjusted radar rainfall dataset is utilized as reference for the CML-derived path-

average rainfall estimates. We use a large publicly available CML dataset of approximately 2,800 sub-links of minimum and

maximum received signal levels over 15-minute intervals covering the Netherlands (∼ 35,500 km2), where 12 days are used

for calibration and 3 months for validation.105

This study is organized as follows. First, study area (Section 2.1), and datasets (Section 2.1), and methodology (Sections 2.2

and 2.3) employed for RAINLINK calibration are presented. Next, the results and discussion (Section 3) present our major

findings. Finally, the conclusions (Section 4) summarize the findings and highlight the recommendations and outlooks for

further research.

2 Material and methods110

2.1 Study area and datasets

The study area considered is the Netherlands (∼ 35,500 km2; Fig. 1 (a)), which has a temperate oceanic climate according

to the Köppen-Geiger classification (Peel et al., 2007). CML data were obtained from MNO T-Mobile NL: minimum and max-

imum received powers over 15-minute intervals, based on 10 Hz sampling with a precision of 1 dB. Data from approximately

2,800 sub-links (validation) and 2,940 (calibration) per time interval were available (after preprocessing with RAINLINK).115

The 12-day calibration dataset, used to optimize RAINLINK’s parameters, covers the period from June to September 2011. It

served as validation dataset in Overeem et al. (2013). The 3-month validation dataset covers the summer months June, July,

and August 2012. We are only using data from summer in the Netherlands to prevent analyzing events with solid precipitation.

This has the added advantage of the data bearing greater resemblance to rainfall in (sub)tropical climates, where the use of

CMLs for rainfall retrieval has the largest potential.120

Figure 1 illustrates the main characteristics of the CML dataset used for validation. Being distributed over the entire country

(Fig. 1 (a)), the CMLs have a high temporal and spatial data availability, i.e., 92% of CMLs sub-links have observations for

more than 80% of the period. In spite of not having a perfectly uniform distribution in terms of their directions, all direction

classes are well-represented (Fig. 1 (b)). Microwave frequencies range from ∼13 GHz to 40 GHz (the majority from 37 to 40

GHz, Fig. 1 (c)). Lengths vary from 0.1 km to 20 km (the majority less than 5 km, Fig. 1 (d)), where shorter lengths typically125

correspond to higher microwave frequencies (Fig. 1 (d)).
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Figure 1. Map of the Netherlands and sub-link characteristics for the validation dataset: (a) CML locations and availability, (b) distribution

of link directions, (c) distribution of microwave link frequencies, (d) distribution of link lengths, and (e) density of link length and frequency

combinations.

A climatological gauge-adjusted radar rainfall dataset of 5-min rainfall depths, aggregated over 15 minutes, was used as

reference for calibration of the rainfall retrieval algorithm (RAINLINK) and validation of rainfall estimates. The radar dataset

is maintained by the Royal Netherlands Meteorological Institute (KNMI) and has a 1-km spatial resolution. For more details

see Overeem et al. (2009a, b, 2011).130

2.2 Rainfall retrieval algorithm

Overeem et al. (2016a) describes the CML rainfall retrieval algorithm RAINLINK. Made available as R-package (R Core

Team, 2018), current version of RAINLINK is 1.21 (?)(Overeem et al., 2021a), and version 1.2 was used in this study, which

is hosted at GitHub. RAINLINK’s default parameter values are derived or selected in (Overeem et al., 2011, 2013, 2016a).

The algorithm begins with a quality control by preprocessing of the CML data. Links with frequencies lower than 12.5 GHz135

and higher than 40.5 GHz are discarded. Moreover, the attributes frequency, link coordinates, path length, and identifier are

checked for either duplicated or mismatches of information. Next, RAINLINK is divided into two main sub-processes, one for

defining wet and dry periods and the other one for the actual rainfall retrieval.
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Table 1. Wet-dry classification parameters (WDpn): default values from RAINLINK and calibration search space (minimum and maximum

values). Modified from Overeem et al. (2016a).

Parameter description Symbol and unit Default value Minimum value Maximum value
WDp1 – Minimum number of hours

needed to compute max(Pmin)

– (h) 6 2 15

WDp2 – Number of previous hours over

which max(Pmin) is to be computed

(also determines period over which cu-

mulative difference F of outlier filter is

computed)

– (h) 24 6 24

WDp3 – Radius r (km) 15 10 30
WDp4 – Attenuation threshold median(∆P ) (dB) −1.4 −8 0
WDp5 – Specific attenuation threshold median(∆PL) (dB km−1) −0.7 −2 0
WDp6 – Minimum number of available

(surrounding) links

– (–) 3 3 10

WDp7 – Minimum received power

threshold

– (dB) 2 1 4

2.2.1 Wet-dry classification

The process to define wet and dry periods assumes that rainfall is spatially correlated. Therefore, during a rainy time interval,140

a substantial decrease in received signal levels should be detected by nearby links within a specific radius (Overeem et al.,

2011, 2016a). This approach is called “nearby link approach”. The output is a binary response to indicate wet and dry periods,

respectively. Table 1 highlights all employed parameters.

2.2.2 Rainfall retrieval

Once the rainy and non-rainy time intervals have been identified, a reference signal level (Pref) is computed, which represents145

the median received power during dry intervals. Next, outliers are removed by applying a filter which uses specific attenuation

derived from the uncorrected minimum received power. It assumes that rainfall is correlated in space. The filter removes a time

interval of a link for which the time-integrated difference between its specific attenuation and that of the surrounding links over

the previous period (Tab. Table 2, parameter RRp2) is lower (i.e. more negative) than a certain threshold (Tab. Table 2, parameter

RRp3).150

Preventing non-zero rainfall estimates during non-rainy intervals, corrected minimum (PC
min) and maximum (PC

max) received

powers are calculated by adjusting the signals to the base level for non-rainy intervals. Subsequently, the minimum and maxi-

mum rain-induced attenuation, Amin (dB) and Amax (dB), respectively, are calculated for each link and time interval using

Amin = Pref −PC
max,

Amax = Pref −PC
min.

(1)
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Table 2. Rainfall retrieval parameters (RRpn): default values from RAINLINK and calibration search space (minimum and maximum values).

Modified from Overeem et al. (2016a).

Parameter description Symbol and unit Default value Minimum value Maximum value
RRp1 – Minimum number of hours that

should be dry in preceding period

– (h) 2.5 2.5 12

RRp2 – Period over which reference

level is to be determined

– (h) 24 12 24

RRp3 – Outlier filter threshold Ft (dB km−1 h) −32.5 −100 0
RRp4 – Wet antenna attenuation Aa (dB) 2.3 0 5
RRp5 – Temporal rainrate distribution

coefficient

α (–) 0.33 0.1 0.6

Next, the minimum and maximum path-averaged rainfall intensities, Rmin (mm h−1) and Rmax (mm h−1), respectively, are155

computed according to

Rmin, max = a

(
Amin, max −Aa

L
H (Amin, max −Aa)

)b

, (2)

where H is the Heaviside function (if the argument of H is smaller than zero, H = 0; else H = 1). Aa (dB) is a fixed wet

antenna attenuation correction term, and a (mm h−1 dB−b kmb) and b (-) are the coefficient and exponent of the employed

power-law R−k relation, respectively. The values of a and b, which depend mainly on link frequency, have been derived from160

measured raindrop size distributions and computations of electromagnetic scattering by rain drops for vertically polarized

signals (Leijnse et al., 2008). The polarization for individual links was unknown, but the majority of links used vertically

polarized signals.

Finally, the mean path-averaged rainfall intensity, R (mm h−1) is computed by means of

R= αRmax + (1−α)Rmin, (3)165

where α is a coefficient which determines the contribution of the minimum and maximum path-averaged rainfall intensity

during a time interval. Table 2 gives an overview of all parameters used in the rainfall retrieval process.

2.3 RAINLINK sensitivity analysis and calibration

Using the 15-minute rainfall accumulations mean 15-min path-averaged rainfall intensities retrieved from RAINLINK, the param-

eters with the highest importance in the algorithm are identified by means of a sensitivity analysis called Latin-Hypercube170

One-factor-At-a-Time (LH-OAT) (Van Griensven et al., 2006). This method ensures that the full range of parameters is sam-

pled according to a LH design and within each sample the parameters are tested, one at a time. Initially, it takes N LH sample

points for N intervals while varying each LH sample point p times by changing each of the n parameters one at a time, ac-

cording to the OAT design (Van Griensven et al., 2006). Around each Latin Hypercube point a relative partial effect for each

parameter is calculated. A final effect is calculated by averaging the partial effects over all N LH points. Having the same fea-175
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ture as the Monte Carlo sampling, i.e., a global screening method, LH sampling reduces the computational cost significantly

(n− 1 times), being more efficient (Van Griensven et al., 2006).

The method is very efficient, as the N intervals in the LH method require a total of N(p+ 1) evaluations. The relative

importance of the parameters is determined by ranking the final effects from large to small (Van Griensven et al., 2006). Each

relative importance can be divided by the sum of all relative importances to yield a normalized measure of relative importance.180

We choose a step size that represents a fraction of 0.1 of the parameter search space. The twelve parameters selected for the

sensitivity analysis are listed in Tables 1 and 2. The most sensitive parameters are selected such that the sum of their normalized

relative importances reaches at least 95%.

After having selected the most important parameters by sensitivity analysis, the RAINLINK parameters are optimized with

the method Standard Particle Swarm Optimization (SPSO-2011) (Clerc, 2012). Being a major improvement over previous185

PSO versions, with an adaptive random topology and rotational invariance, SPSO-2011 is a stochastic, effective, and effi-

cient calibration method, as highlighted in recent studies with other hydrological and environmental models (Abdelaziz and

Zambrano-Bigiarini, 2014; Bisselink et al., 2016; Pijl et al., 2018). The optimization is performed for the two RAINLINK sub-

processes separately. First, the wet-dry classification parameters are calibrated, to make sure RAINLINK is able to correctly

identify dry and rainy periods. Next, using the optimum parameters for the wet-dry classification, the rainfall retrieval parame-190

ters are calibrated. We have included all zero rainfall observations in the entire calibration process, both for the gauge-adjusted

radar reference and for the RAINLINK estimates. Note that data from individual sub-links were used in the calibration process,

so data from two links (in opposite directions) having the same link path were not averaged.

The goodness-of-fit measures chosen to drive the optimization and performance for the wet-dry classification and the rainfall

retrieval processes are the Matthews Correlation Coefficient (MCC) (Matthews, 1975) and the modified Kling-Gupta efficiency195

(KGE) (Kling et al., 2012), respectively. Both are maximized towards an optimum value of 1. A 15-minute time interval from

a given sub-link is considered dry if the reference is below 0.25 mm.

Due to the higher frequency of non-rainy 15-min intervals (data points), the process of wet-dry classification is considered an

imbalanced classification problem. Employing recurrent metrics for binary classification, such as F1 score and Accuracy, may

lead to inflated results. The Matthews Correlation Coefficient is less subjective and preferred since it informs how correlated200

the predictions and observations are, reaching a high score only if the prediction obtained good results in all the four confusion

matrix categories (true positives (TP ), false negatives (FN ), true negatives (TN ), and false positives (FP )) (Chicco and

Jurman, 2020). The Matthews Correlation Coefficient is defined as

MCC =
TP ·TN −FP ·FN√

(TP +FP )(TP +FN)(TN +FP )(TN +FN)
,. (4)

The denominator is arbitrarily set to one when any of the four sums in the denominator is zero. Kling-Gupta efficiency is205

defined as

KGE = 1−
√

(ρ− 1)
2

+ (β− 1)
2

+ (γ− 1)
2
, (5)
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with ρ the Pearson correlation coefficient, β the bias ratio

β =
µe

µo
, (6)

and γ the variability ratio210

γ =
CVe

CVo
=
σeµo

µeσo
, (7)

where µ and σ are the mean and standard deviation of path-averaged rainfall intensity (mm h−1) for CML estimates (e) and

gauge-adjusted radar observations (o). CV is the coefficient of variation, defined as the ratio of the standard deviation and the

mean.

2.4 RAINLINK validation215

The validation was performed for both wet-dry and rainfall retrieval RAINLINK processes by using the newly calibrated

parameters against its default parameters as given by Overeem et al. (2016a). In addition to MCC and following the confusion

matrix, the assessment binary metrics, Accuracy, Sensitivity, and Specificity were computed as follows:

Accuracy =
TP +TN

TP +TN +FP +FN
, (8)

220

Sensitivity =
TP

TP +FN
, (9)

Specificity =
TN

FP +TN
. (10)

As for the RAINLINK rainfall retrieval process, besides KGE and its components ρ, β and γ, the CV of the residuals (CVres),

the percent bias (PBIAS) and root-mean-square error (RMSE) were employed.225

CVres =
σres

µo
, (11)

PBIAS = 100

n∑
i=1

(ei − oi)

n∑
i=1

oi

, (12)

RMSE =

√√√√√ n∑
i=1

(ei − oi)
2

n
. (13)230
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Table 3. Wet-dry classification sensitivity analysis: WDpn (symbol) – wet-dry classification parameters, see description in Table 1. Note: a -

Most sensitive parameters obtained from the Latin-Hypercube One-factor-At-a-Time analysis.

Rank Parameter (symbol)
Relative RI
Importance (RI) Normalized

1a WDp2 77.68 0.48
2a WDp4 (median(∆P )) 35.07 0.21
3a WDp1 29.44 0.18
4a WDp5 (median(∆PL)) 10.37 0.062
5a WDp3 (r) 10.23 0.061
6 WDp7 2.16 0.013
7 WDp6 0.32 0.0019

Finally, the level of agreement of daily rainfall patterns is analyzed graphically. RAINLINK’s ability to estimate 15-minute

path-average rainfall rates is also evaluated. Moreover, both agreement of accumulated rainfall for all individual CMLs and

agreement of daily mean rainfall over the Netherlands estimated from the CML values (as time series) are considered, taking

those links with over 75% of data availability into account.

3 Results and discussion235

3.1 Calibration

3.1.1 Wet-dry classification parameter optimization

The sensitivity analysis for the wet-dry classification process is performed at a 15-minute time interval. Table 3 provides

the parameter ranking obtained considering the search space illustrated in Tab. Table 1. The most important parameters are,

WDp2, WDp4 (median(∆P )), WDp1, WDp5 (median(∆PL)), and WDp3 (r). The accumulated relative importance of these240

parameters is 98%. The importance of the two thresholds (WDp4 and WDp5) was expected, because these parameters define

the values for which an individual microwave link will be classified as rainy or not. However, the analysis performed here,

which systematically evaluates all parameters together by maximizing a goodness-of-fit measure, reveals that the parameters

WDp2, WDp1, and WDp5 are important as well. The highest importance reached by the WDp2 parameter highlights the

rain-induced attenuation temporal correlation. Since, this parameter represents the number of previous hours over which245

the maximum value of the minimum received power (Pmin) is computed, it governs the wet-dry classification process by

influencing on the attenuation (median(∆P )) and specific attenuation (median(∆PL)) computation. The low ranking of the

WDp7 threshold is consistent with the findings of Overeem et al. (2016a), who report that including this step hardly changes

results for a 12-day dataset when validating rainfall depths (i.e., the total effect on the amounts, not the occurrence of wet and

dry periods as such).250

The five highest ranked parameters are now employed in the calibration, taking the ranges reported in Tab. Table 1 into

account. Using particle swarm optimization (PSO), the parameters’ dispersion and distributions across the search space have
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been computed for the 12-day calibration dataset (Fig. 2). The distributions are obtained for the all solutions, the frequency

histograms of the parameters are multi-modal and skewed (Fig. 2 (b)), reflecting the uncertainties in the optimum values.

The parameters WDp1, WDp2, WDp3,WDp4, and WDp5 reach the optimum values equal to 7.5 h, 14.1 h, 19.7 km, −2.7 dB,255

and −0.9 db km−1, respectively. Compared with the default values of these parameters, namely 6 h, 24 h, 15 km, −1.4 dB,

and −0.7 dB km−1, the difference is considered small for the parameters WDp1, WDp3, and WDp5. However, the parameters

WDp2 and WDp4 presented a reasonable difference compared to the default values. For those solutions with MCC value greater

than 0.53, being classified as “behavioral” solutions (Zambrano-Bigiarini and Rojas, 2013), the median value of the parameters

were 4.8 h, 10 h, 18.9 km, −1.5 dB, −0.7 dB km−1 for WDp1, WDp2, WDp3, WDp4, and WDp5, respectively. The values260

obtained for the calibrated parameters are based on the median of the “behavioral” solutions and are in line with the default

parameters, except for WDp2, which indicates a smaller shorter period for computing the maximum of the minimum received

power.

It should be noted that, in spite of being gauge-adjusted, the radar product used here is not a perfect reference. Differences

between radar sampling (indirect measurements aloft) and ground-based sensors can lead to significant errors (de Vos et al.,265

2019). Thus, accounting for this sampling difference could even further increase the value of the MCC metric. In particular for

small rainfall events these errors can lead to false positive and false negative classifications.

Due to the similar value of The value of the WDp1 parameter results in exclusion of 12% of the data points are excluded during the

algorithm processing for both default and calibrated parameters setsets (which have a similar value). This parameter has

a direct relation with data availability, since it determines the minimum number of hours needed to compute max(Pmin).270

Note that max(Pmin) is only computed if at least a minimum number of hours of data are available; otherwise it is not

computed and no rainfall intensities will be retrieved (Overeem et al., 2016b). Although the calibration dataset has been

selected considering rainy days, the number of non-rainy data points is much higher than the number of rainy data points,

representing 93%, which is comparable to the average occurrence of dry spells in the Netherlands according to automatic

weather stations. Thus, this calibration period can be considered representative for higher other periods within the same weather275

season.

3.1.2 Rainfall retrieval parameter optimization

The same sensitivity analysis and calibration are employed for the rainfall retrieval at the 15-minute time interval (Tab. Table

4), where zeroes in either CML and/or reference are also included. The sensitivity analysis presented here underlines the

uncertainty associated with the microwave link measurements. The most sensitive parameters are the parameters RRp5 (α) and280

RRp4 (Aa). The summed relative importance of these parameters is 95%.

The parameter RRp4 is related to the correction of the attenuation due to wet antennas. This phenomenon is considered an

important source of extra attenuation and may cause significant rainfall overestimation if not sufficiently accounted for (Leijnse

et al., 2008; Messer and Sendik, 2015; Overeem et al., 2016a).

Since the parameter RRp5 represents a coefficient that determines the relative contributions of the minimum and maximum285

path-averaged rainfall intensities (Rmin and Rmax, Eq. 3) to the 15-minute average rainfall intensity estimates, it is directly
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Figure 2. Calibration of the wet-dry classification parameters: (a) dotty plot panel showing the interaction between calibration parameters at

different Matthews correlation coefficient (MCC) values; (b) histograms of the parameters.

related to the temporal sampling strategy of the received signal power and has an important weight in the rainfall retrieval. In

a comparative study, de Vos et al. (2019) found that min/max sampling at a 15-minute time step (as employed by RAINLINK)

outperforms instantaneous sampling in the Dutch climate. This underlines the importance of properly estimating RRp5 (α) for

accurate rainfall retrievals.290

The parameter RRp3 (Ft) represents an outlier filter. Therefore, it seems reasonable to assume a threshold value based on

expert judgment, because strict filtering would result in a high performance, but with a severe decline in the remaining number

of links. Using the default values of the parameters RRp4 (Aa) and RRp5 (α) obtained in Overeem et al. (2013), Overeem et al.

(2016a) applied a sensitivity analysis varying only the parameter RRp3 (Ft), confirming that the default value equal to −32.5

dB km−1 h−1 (Overeem et al., 2013) is a reasonable trade-off between performance and retaining a significant number of295
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Table 4. Rainfall retrieval sensitivity analysis: RRpn – rainfall retrieval parameters, see Tab. Table 2.

Rank Parameter (symbol)
Relative RI
Importance (RI) Normalized

1 RRp5 (α) 1071.18 0.84
2 RRp4 (Aa) 143.92 0.11
3 RRp1 27.96 0.02
4 RRp2 17.39 0.01
5 RRp3 (Ft) 8.32 0.006

links. Therefore, even though Although considered unimportant by the sensitivity analysis in the range from −100 to 0 dB km−1

h, a proper calibration procedure is deemed important, the default value of RRp3 (Ft) fixed at −32.5 dB km−1 h−1 is kept to

prevent an excessive loss of data. One way forward to calibrate RRp3 (Ft) would be to include both the number of available

links in the optimization or perform an optimization based on rainfall maps, which can be influenced by the underlying CML

network density.300

Figure 3 illustrates the interaction between parameters in the calibration procedure for the rainfall retrieval at different

KGE-values. This figure shows that the regions with the highest KGE-values (greens and blue points) correspond mainly to

values ranging from 1 to 2.5 dB for RRp4 and from 0.17 to 0.30 for RRp5. We classified the solutions greather than 0.45 as

“behavioral” solutions (dark green and blue points in Fig. 3 (a)). Different from the calibration of the wet-dry classification

process, we observe a distribution of the parameters less skewed and with a well defined mode (Fig. 3 (b)). Thus, for the305

respective parameters RRp4 and RRp5, the optimum values, 1.7 and 0.23, bears to similarity with are almost identical to the median

values for the “behavioral” solutions, 1.74 and 0.24.

The parameter RRp4 shows a more pronounced dispersion than the parameter RRp5. RRp4 is related to wet antenna atten-

uation and varies depending on the ambient conditions, e.g. while there is dew, rain water or melting precipitation (the latter

unlikely in this study) present on the antenna covers (Leijnse et al., 2008; Overeem et al., 2016b; Uijlenhoet et al., 2018). It310

may also vary depending on the type of antenna cover. Finally, in the rainfall retrieval algorithm it is always assumed that,

whenever it rains, both antennas of a microwave link are wet, whereas in reality none or only one antenna may be wet. Hence,

it is unlikely that all CMLs across the considered study area will share the same excess signal attenuation in terms of magni-

tude, timing and spatial occurrence. In principle, each single CML is expected to have its own time-varying set of values of the

parameter RRp4. This implies great uncertainty in the overall optimum value for the time period and region of interest. These315

parameters are expected to be positively correlated. Likely, higher RRp5 values lead to higher rain intensities, increasing the

weight of the maximum attenuation and consequently a higher value of RRp5 p4 would become necessary to compensate for

the extra attenuation, decreasing the rain intensity estimates.

It is apparent from Fig. 3 that the parameter RRp5 reaches its optimum value at 0.23, which is much lower than RAINLINK’s

default value of 0.33. This implies that the maximum and minimum path-averaged rainfall intensities (Rmax,Rmin) have respec-320

tive weights of 0.23 and 0.77 in the computation of the best estimate of the 15-minute mean path-averaged rainfall intensity.

However, a smaller spread around the optimum value compared to the other parameters can be observed, indicating a moderate

uncertainty around the optimum. Note that the value of α is related to the temporal distribution of path-average rainfall intensi-
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Figure 3. Rainfall retrieval performance projected onto the parameter space: dotty plot showing the interaction between calibration parame-

ters at different Kling-Gupta efficiency (KGE) values.

ties within 15-minute intervals, which is influenced by the lengths of the links as well as by the rainfall space-time variability.

This suggests that the optimum parameter value will depend on both link network topology and rainfall climatology.325

Its important to highlight that we did not calibrate the power-law coefficients. Since they are physically-based, we used val-

ues obtained in dedicated experiments representative for the Dutch climate (Leijnse et al., 2007)(Leijnse, 2007). For other countries,

the International Telecommunication Union (ITU) presents recommendations (International Telecommunication Union, 2005).

However, these are not representative for all climates. A physically-based approach which derives these coefficients from drop

size distribution observations and scattering computations is preferred compared to optimizing these coefficients in a statisti-330

cal manner. However, taking these parameters in the optimization into account , especially for frequencies higher than 35 GHz. The drop size

distribution dependence of the k-R relation in the frequency range of approximately 20-35 GHz is considered small com-

pared to errors from wet antenna attenuation or erroneous wet-dry classification. Although a physically-based approach

is considered better, a calibration of power-law coefficients may be a way forward for regions which lack disdrometer data

(Ostrometzky and Messer, 2020).335
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3.2 Validation

After the parameter optimization using the 12-day calibration dataset from 2011, the optimized and default parameter sets are

applied to a 3-month validation dataset from July, August, and September 2012. The 15-minute path-average rainfall estimates

were aggregated to hourly and daily path-average rainfall estimates if CML-availability was at least 75%, resulting in data from

on average 2,783 sub-links for both the default and optimized parameters. Thus, given that after the RAINLINK pre-processing340

on average 2,800 sub-links are left, data availability reduces by approximately 0.7% for both default and optimized parameters

due to the pre-processing.

3.2.1 Wet-dry classification validation

Figure 4 highlights that the wet-dry classification process by using calibrated parameters perform performs better in terms

of MCC and Accuracy metrics, 0.40 and 0.96 against 0.37 and 0.95 for the default parameters, respectively. However, the345

Sensitivity metric shows that the calibrated parameters is are worst for classified rainy events rightly, the default parameters set

reach a value of 0.51 against 0.49 for the calibrated parameters set. We find a MCC value of 0.4 for the validation dataset,

being smaller than the MCC threshold for “behavioral” solutions, i.e., 0.53. This occurred because the calibration did not

generalize at all the wet-dry classification process. It was focused on the calibration dataset, capturing many details and

noise, and subsequently failed to capture a different trend from another dataset, i.e., became an overfitted model. Thus,350

the performance for the validation dataset was worse, because the calibration dataset will not be entirely representative

for other periods. A solution could be to increase the size of the calibration dataset, encompassing more characteristics

and trends about the phenomenon.

In spite of having the same Specificity value, we can observe in confusion matrices (Fig. 4, green cells for line and column

1) that the calibrated parameters set classified more dry periods rightly than the default parameters set. Thus, considering the355

MCC feature, which aims to evaluate all elements of the confusion matrix (false positive, false negative, true positive, and true

negative), the calibrated parameters outperform the default ones. Approximately 50% of the rainy events are classified as

dry, both for the calibrated and default parameter sets. Similar results were reached by Polz et al. (2020), however, the

impact of false rain detection on the resulting rainfall amounts was found to be smaller than the relatively poor wet period

classification suggested.360

According to the wet-dry observations of the reference during the validation period, we observed that 97% of the data points

represent non-rainy intervals. Being just four percentage points higher than for the calibration period , the (93%), the fraction

of dry periods can be considered comparable to each other. Moreover, the employment of the MCC metric justifies any wet-dry distribution dissimilarity

However, the fraction of rainy periods for the calibration period (7%) is more than twice as high as for the validation period

(3%). This implies that the calibration dataset is at least different with respect to the validation dataset concerning the365

percentage of rainy periods, which may have resulted in a lower MCC value for validation.
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Figure 4. Confusion matrices and binary classification metrics for the wet-dry classification process, where 0 refers to wet and 1 to dry

classification: (a) results of the wet-dry classification using calibrated parameters and (b) results of the wet-dry classification using default

parameters. Note: Matthews correlation coefficient (MCC), Accuracy (Acc.), Sensitivity (Sen.), and Specificity (Spe.) metrics.

3.2.2 Rainfall retrieval validation

Figure 5 illustrates the performance in terms of daily path-average rainfall estimates for the two tested parameter sets,

i.e., calibrated and default. In general, the metrics for the calibrated parameters are slightly better than those for the default

parameters. The values improve from 0.37 to 0.45 for KGE, from 6.37 mm to 5.75 mm for RMSE, from 2.5 to 2.27 for CVres,370

and from 0.42 to 0.46 for ρ.

The main improvement is observed for the percent bias (PBIAS). Even if both parameter sets lead to overestimates compared

to the reference, the rainfall depth retrieved when using the calibrated parameters shows 10.6 percentage points less overesti-

mation compared to using the default parameters. Due to overestimation observed by the PBIAS values, we can conclude

that the significant number of false-positives (i.e., erroneous rainfall detection), plays an important role here. Polz et al.375

(2020) observed a different behavior, in the sense that even having a large number of false-positives was not translated

into such an overestimation of the rainfall amounts.

In addition to ρ, the bias ratio (β) and the variability ratio (γ) are incorporated into the KGE metric (Equations (5)–(7)). For

the default parameters β and γ are 1.24 and 0.99, respectively. For the calibrated parameters the values of β and γ are 1.13

and 0.99, respectively. All of the three KGE components have their ideal value at unity and the higher value of KGE when380
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(a) (b)

Figure 5. Daily path-averaged rainfall depth comparison of CML rainfall estimates against gauge-adjusted radar data: (a) rainfall retrieved

using calibrated parameters; (b) rainfall retrieved using default parameters.

using the calibrated parameters is due to a better bias performance. Overall, the calibrated parameters outperform the default

parameters.

Next, the performance of 15-minute path-averaged rainfall estimates is investigated. Table 5 summarizes RAINLINK’s

performance when the default and calibrated parameters are applied for different rainfall thresholds. The calibrated parameter

set yields a better performance of RAINLINK in terms of KGE, RMSE, and CVres for all thresholds. As for PBIAS, the default385

parameters outperform the calibrated ones for the thresholds “Reference > 0” and “Reference > 1”, whereas the calibrated

parameters show better performance for the remaining thresholds. One can also observe that, if a threshold is only applied to

the reference and consequently the false positives are removed, RAINLINK shows a large underestimation with respect to the

reference. This underestimation is not observed if either RAINLINK or the reference are above the threshold. This indicates

that the observed underestimation is due to RAINLINK estimating zero rain when the reference suggests that it is raining. This390

may be related to differences in spatial and temporal sampling, although we are not able to provide a conclusive explanation.

The ρ goodness-of-fit metric results in a better performance for the default parameters, where the CML rainfall estimates

are used in the thresholds. On the other hand, when just the radar reference are is considered in the thresholds, the calibrated

parameters set reach better ρ performance.

As a result of the optimization setup including the zero observations, these positive validation outcomes are actually very similar and do not tend to really indicate improve-395

mentsWhen no thresholding is applied the calibrated parameters clearly perform better than the default ones in terms of

KGE and PBIAS values. With respect to data availability, the calibrated and default parameter sets contain 15.6% and 12.3%

less observations after running all of RAINLINK’s processing steps than the entire data set, respectively.
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Table 5. 15-minute path-averaged rainfall depth performance for different thresholds. Note: Reference is the gauge-adjusted radar data.

Thresholds of RAINLINK with KGE RMSE PBIAS CVres ρ
rainfall (mm) parameters (mm) (%)

Reference OR
Default 0.21 1.06 33.10 2.69 0.28

RAINLINK > 0 Calibrated 0.27 0.99 8.50 2.23 0.27

Reference OR
Default 0.18 1.15 31.60 2.49 0.26

RAINLINK > 0.1 Calibrated 0.24 1.05 7.40 2.10 0.25

Reference OR
Default −0.16 2.20 56.20 1.95 0.00

RAINLINK > 1 Calibrated −0.05 2.02 22.60 1.68 −0.02

Reference > 0
Default −0.11 1.01 −38.00 1.30 0.48

Calibrated 0.03 0.92 −42.20 1.16 0.50

Reference > 1
Default −0.46 1.92 −39.70 0.89 0.38

Calibrated −0.31 1.77 −45.20 0.78 0.40

No threshold
Default 0.33 0.28 33.10 10.55 0.42

(zero included) Calibrated 0.42 0.25 18.50 9.37 0.45

Reevaluating the Overeem et al. (2016b) study employing default parameter values, de Vos et al. (2019) find 5.75%, 2.84,

and 0.27 for PBIAS, CVres, and ρ, respectively, for path-average 15-minute rainfall depths, and for link or radar larger than 0400

mm. Differences with respect to the performance obtained here for the default parameter values (33.10%, 2.69, and 0.28 for

PBIAS, CVres, and ρ, respectively) can be explained by the fact that the underlying data for both studies are from different

periods, with different durations (∼ 20 months for the months of February-October in de Vos et al. (2019) and 3 months for

the months of June-August here). Possibly, the wet-dry classification using default parameters applied by de Vos et al. (2019)

results in less false positives or due to the longer period the false negatives compensate for the false positives, resulting in a405

lower PBIAS value. The summer of 2012 was rainy, with 286 mm of rain compared to the climatological average of 225 mm,

averaged over the Netherlands. For the central weather station in the Netherlands, a long precipitation duration of 153 hours

was observed compared to the climatological average of 121 hours over the summer months June, July, and August. This could

be a reason for differences in PBIAS, although this summer is also part of the 613-day dataset evaluated in de Vos et al. (2019).

Figure 6 shows density plots for all CML double-mass curves, i.e., the relation between the accumulations of rainfall re-410

trieved by RAINLINK and that obtained from the gauge-adjusted radar reference. This figure shows that the class with the

highest occurrence coincides with the diagonal, indicating a reasonable agreement between the estimates and the observations.

A considerable dispersion above the diagonal is found for both the calibrated and the default parameters. However, it is clear

that with the calibrated parameters, this dispersion is less severe. This overestimation observed in the double-mass curves is

in line with the PBIAS values reported earlier (Tab. Table 5), being justified caused by the higher presence of false positive ob-415

servations. Identifying the extra attenuation as the main source of error, de Vos et al. (2019) report a similar behavior of the
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Figure 6. Density plots of the double mass curves of all individual CMLs with respect to the gauge-adjusted radar reference at 15-minute time

intervals: (a) rainfall accumulations retrieved by RAINLINK with calibrated parameters; (b) rainfall accumulations retrieved by RAINLINK

with default parameters.

double-mass curves for instantaneous signal power sampling, although the considered period and hence the meteorological

circumstances are partly different.

So far small improvements in the rainfall retrievals are obtained when employing the calibrated parameters through the

stochastic method Particle Swarm Optimization (PSO). However, analyzing the average over an area, in this case the Nether-420

lands, more substantial improvements are found. Figure 7 shows time series of the daily mean rainfall depth over the Nether-

lands, i.e., for each day the mean of all CML rainfall estimates is computed.

By employing the calibrated parameters, all metrics improved improve with respect to the default parameters. The values of

KGE, RMSE, PBIAS, CVres, and ρ improved improve from 0.49, 3.39 mm, 24.4%, 1.32, and 0.59 to 0.57, 3.07 mm, 13.8%, 1.21,

and 0.63, respectively. Since the CML rainfall estimates are averaged over a ∼35,500 km2 area not taking into account how they425

are distributed, the PBIAS and β values stay the same (Fig. 5). On the other hand, the variability and similarity (correlation),

expressed by KGE components γ and ρ, respectively, are slightly better. In spite of not being a homogeneous network, the

CMLs are observing in the entire Netherlands, having a high enough spatial representativity for computing a spatial average

rainfall. Thus, for the areal time series obtained by employing calibrated parameters, γ and ρ are equal to 0.83 (0.81 for default)

and 0.63 (0.59 for default), respectively. The γ value closer to unity, confirms that the estimated rainfall time series vary to430
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(a) (b)

Figure 7. Comparison of the daily mean rainfall depth time series for the entire Netherlands during the summer months June, July and

August 2012: (a) rainfall time series retrieved by RAINLINK with calibrated parameters; (b) rainfall time series retrieved by RAINLINK

with default parameters.

the same extent as the observed rainfall time series. Hence, as concluded from the path-averaged rainfall evaluation, the main

improvement provided by the calibrated parameters as compared to the default parameters is a lower relative bias.

For both sets of parameters, calibrated and default, CML-derived rainfall estimates correspond reasonably well to the gauge-

adjusted radar rainfall estimates. For path-averaged daily rainfall an improvement is found when calibrated parameter values

are employed, especially in terms of relative bias. Results further improve when rainfall estimates are averaged over the entire435

Netherlands. Differences in calibrated parameter values with respect to the default ones may be caused by the calibration being

performed over different events in June and July 2009 and in 2011 for the default parameters (Overeem et al., 2011, 2013).

Moreover, the calibration here is done with a state-of-the-art and efficient method.

3.3 Search space of parameters

For some parameters in Tables 1 and 2 a wider search space could have been chosen. For WDp2 and RRp2 a maximum value440

of 24 h was chosen, implying that data from the previous day are needed. Because the calibration dataset is not continuous,

it was not feasible to use a larger value for WDp2. In both cases 24 h seems reasonably long for a reliable computation.

The maximum allowed value of 24 h for RRp2 may even be beneficial for the reference level determination. If this value

would become longer than 24 h, varying meteorological conditions (e.g. related to changes in relative humidity) may affect

the accuracy of the reference level determination, being less representative of the reference level just before a rainfall event.445

For the radius WDp3 the minimum value is 15 km. A lower value could be tested, but given the network density (Fig. 1), this
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is expected to lead to a (severe) reduction of available sub-links. This is because the wet-dry classification needs a minimum

number of nearby links, which is more difficult to achieve in case of a smaller radius. The employed minimum value for WDp6

is already quite low. The wet-dry classification is expected to become more reliable when more sub-links are involved. Hence,

it does not seem sensible to choose an even lower minimum value.450

4 Conclusions

A novel and reliable method for the objective estimation of optimum parameter sets for RAINLINK and potentially for

other CML-based rainfall retrieval algorithms has been presented and tested. Using a 12-day dataset, the calibration was

performed by means of a stochastic approach, Particle Swarm Optimization (PSO), preceded by a sensitivity analysis selecting

the parameters to be optimized. The optimized parameters were determined according to optimum goodness-of-fit values and455

for the median of “behavioral” solutions, i.e., those solutions performing better than a threshold. Table 6 summarizes the

values of RAINLINK’s optimized parameters and the default ones.

The validation of daily path-averaged CML rainfall estimates over three summer months reveals a reasonable improvement

for the calibrated parameters compared to the default values. When daily path-averaged values are averaged over the entire sur-

face area of the Netherlands, the improvement becomes much stronger. The aggregation over an area tends to limit the effects460

of representativeness errors in the rainfall estimates and yields information with an acceptable performance for hydrological

and meteorological applications. This result is important, because from a general perspective, hydrological and meteorological

scales of application are defined over areas, e.g., watersheds, climate zones, political and administrative regions, etc. Com-

pelling improvements were achieved not only in terms of the performance of CML rainfall estimates as such, but also with

respect to the choice of parameter values, which are now underpinned in a more objective way.465

In fact, we now have a way to analyze the sensitivity and optimize stochastically all parameters used in a rainfall retrieval

algorithm. The proposed methodology is applicable for different CML networks, climates, and algorithms, where either rain

gauge or (gauge-adjusted) radar data can be used as reference. In case of other sampling strategies than min/max the algorithm

can be easily adapted. Ideally, optimized parameters would be obtained for different seasons. Hence, for each processing period

a dedicated parameter set would be obtained.470

Fencl et al. (2019) underline the importance of considering the rainfall properties in the quantification of wet antenna

attenuation, where a fixed value may lead to overestimation of heavy rainfalls. This can lead to an increase in the computational

cost however, especially in case of extensive CML datatsets. We also recommend to extend our algorithm by adding an extra

goodness-of-fit criterion to the optimization regarding the sub-link data availability after running RAINLINK’s processing

steps (de Vos et al., 2019). This could lead to improved coverage of CML rainfall estimates. In general, quantifying the effect475

of processing steps on data availability is important. Moreover, due to the large impact of false positives on PBIAS, a calibration

of the rainfall retrieval process taking into account the wet-dry classification from the reference should be considered for further

research. Thus, an overestimation of wet antenna attenuation that has to compensate for the long-term rainfall overestimation

from false positives would be avoided.
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Table 6. RAINLINK parameters: default and calibrated values (median of “behavioral” solutions). Note: calibrated parameter values are

in bold font.

Parameter description Symbol and unit Default value Calibrated value

WDp1 – Minimum number of hours

needed to compute max(Pmin)

– (h) 6 4.8

WDp2 – Number of previous hours

over which max(Pmin) is to be com-

puted (also determines period over

which cumulative difference F of out-

lier filter is computed)

– (h) 24 10

WDp3 – Radius r (km) 15 18.9

WDp4 – Attenuation threshold median(∆P ) (dB) −1.4 −1.5

WDp5 – Specific attenuation threshold median(∆PL) (dB km−1) −0.7 −0.7

WDp6 – Minimum number of available

(surrounding) links

– (–) 3 3

WDp7 – Minimum received power

threshold

– (dB) 2 2

RRp1 – Minimum number of hours that

should be dry in preceding period

– (h) 2.5 2.5

RRp2 – Period over which reference

level is to be determined

– (h) 24 24

RRp3 – Outlier filter threshold Ft (dB km−1 h) −32.5 −32.5

RRp4 – Wet antenna attenuation Aa (dB) 2.3 1.74

RRp5 – Temporal rainrate distribution

coefficient

α (–) 0.33 0.24

As a recommendation, studies could be conducted by testing the convergence and performance of different goodness-of-fit480

measures in addition to the Kling-Gupta efficiency (Kling et al., 2012). Moreover, one could optimize the parameters using

rain gauges near the CMLs as reference in order to exclude deviations that are sometimes found in radar rainfall observations.

Moreover, representativeness errors between radars, measuring aloft, and CMLs, measuring near the Earth’s surface, can affect

comparisons between the two. This especially holds for short time intervals, as short as 15 minutes in this study.

In spite of having stochastic proprieties properties and aiming to explore the uncertainties affecting rainfall retrievals from485

CMLs, the approach proposed here is not a panacea. In regions without reliable rainfall ground-truth the calibration of rain-
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fall retrieval algorithm parameters can be a challenge (Chwala and Kunstmann, 2019). Hence, we recommend the set-up of

experiments in regions with little ground-based rainfall information in order to optimize parameters for specific networks and

climates, or even to improve rainfall retrieval algorithms such as RAINLINK themselves. As an alternative, parameters could

be optimized in a well-gauged region having a similar climate and CML network as the ungauged region for which CML490

rainfall estimates are desired.

Further research can be conducted to test how the parameter range affects the importance of parameters in this

approach. Specifically, even wider parameter ranges could be tested. Moreover, a longer calibration period could be

analyzed to make the optimized parameters more generally applicable to other data from other periods. This especially

holds for the wet-dry classification process.495

Comparing CML-derived rainfall maps and gauge-adjusted radar observations, Overeem et al. (2016b) found a better per-

formance for the summer season than for the winter season in the Netherlands, among others due to the absence of snow and

melting precipitation. The rainfall type during the Dutch summer is largely of a convective nature, bearing some resemblance

with that in regions characterized by (sub)tropical climates, which often lack surface rainfall observations. As a consequence,

we believe CML rainfall monitoring is especially promising for low- to middle-income countries, typically having (sub)tropical500

climates.
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