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Abstract. Accurate solar surface irradiance data (SSI) is a prerequisite for efficient planning and operation of solar energy

systems. Respective data are also essential for climate monitoring and analysis. Satellite-based SSI has grown in importance

over the last few decades. However, a retrieval method is needed to relate the measured radiances at the satellite to the solar

surface irradiance. In a widespread classical approach, these radiances are used directly to derive the effective cloud albedo

(CAL) as basis for the estimation of the solar surface irradiance. This approach has been already introduced and discussed5

in the early 1980s. Various approaches are briefly discussed and analyzed
:::::::
analysed, including an overview of open questions

and opportunities for improvement. Special emphasis is placed on the reflection of fundamental physical laws and atmospheric

measurement techniques. In addition, atmospheric input data and key applications are briefly discussed. It is concluded that the

well established observational-based CAL approach is still an excellent choice for the retrieval of the cloud transmission. The

coupling with Look-Up-Table based clear sky models enables the estimation of solar surface irradiance with high accuracy10

and homogeneity. This could explain why, despite its age, the direct CAL approach is still used by key players in energy

meteorology and the climate community. For the clear sky input data it is recommended to use ECMWF forecast and reanalysis

data.

1 Introduction

The surface solar irradiance (SSI) is defined as the incoming solar radiation at the surface in the 0.2–4.0 µm wavelength region15

on a given surface area, and is usually expressed in W/m2 (Watts per square meter). SSI consists of the diffuse part (diffuse

irradiance) and the direct part (direct irradiance), which is received from the direction of the sun. Diffuse radiation results from

scattering by the atmosphere and is received from all directions.

Solar irradiance is a forcing quantity for heat fluxes, which causes atmospheric motion in all scales and is therefore a

driving force for the circulation system (Müller, 2012b). Solar irradiance is needed for the monitoring of the Earth’s radiation20

budget (Hollmann et al., 2006; Mueller et al., 2009; Cox et al., 2004; Darnell et al., 1992; Gupta et al., 2001, 1999; Harries

et al., 2005; Harrison et al., 1990; Ramanthan and Cess, 1989), for analysis and prediction of extremes like heat waves (Träger-

Chatterjee et al., 2013, 2014), climate change studies (Wild, 2009; Gilgen et al., 2009) and trend analysis (Pfeifroth et al., 2018;

Pinker et al., 2005; Hinkelmann et al., 2009). Further, climate indices based on solar irradiance are of value for monitoring
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and seasonal prediction of specific climate impacts (Wang and Qu, 2007). As a consequence solar irradiance is a key for a25

better understanding of atmospheric dynamics as well as the monitoring and analysis of climate trends and variability. Further

applications include the satellite based estimation of droughts and evaporation (Dobler et al., 2011), hydrological modelling

(Müller-Schmied et al., 2016), agro meteorology (Müller, 2021) as well as verification of reanalysis data and numerical weather

prediction (Urbich et al., 2019, 2020; Babst et al., 2008; Träger-Chatterjee et al., 2010; Urraca et al., 2018).

An outstanding socio-economic application area is energy meteorology, which is linked to a huge commercial market as-30

sociated with extensive and many-sided user demands on solar radiation data. The goal of energy meteorology is to provide

specific information for efficient and sustainable use of renewables. Climatological data of solar surface irradiance are neces-

sary for an efficient planning and monitoring of solar energy systems, e.g. the estimation of energy yield for Photovoltaic (PV)

(Huld et al., 2012), monitoring and analysis of operational PV-systems (Hammer et al., 2003) and PV Performance Studies

(Amillo et al., 2015; Huld and Amillo, 2015). Near real time data and forecasts of solar surface irradiance are needed for the35

efficient integration of solar energy into the electric grid. Solar energy is fluctuating, hence forecasts are needed to optimise the

levelling of conventional power plants (e.g. increase/decrease of power supply) and storage systems, to minimise the need for

spontaneous trading of electricity on an in-balanced market (Hammer et al., 2003, 2015; Urbich et al., 2019) and to avoid grid

overloads. Supported by the European Commission (EC) goal to aim for a secure, independent, sustainable and environmental

friendly energy supply (EC1, 1996; EC2, 2013) the renewable energies contribute nowadays significantly to the energy produc-40

tion. The share of PV of the total electricity sold in 2018 was 7.1 % in Italy (Jäger-Waldau, 2019) and 9.3 % 2020
::
in Germany

in 2020 (Wirth, 2021). Even in less sunny regions (e.g. Denmark, UK) the share is of about 3 %. PV electricity generation

capacity accounted for 39 % of the new installed capacity in 2018 (Europe), but worldwide Asia and the Pacific region had the

highest share of new installed PV power capacity in 2018. Nevertheless, also the United States had reached a cumulative PV

capacity of almost 62.7 GW by the end of 2018 (Jäger-Waldau, 2019). Almost all players predict a further increase of PV. As a45

consequence, the demand for accurate climatological data, near real time data and forecasts of SSI data are expected to further

increase.

For all mentioned applications accurate SSI data with a large geographical coverage and a high spatial and temporal resolu-

tion is either needed or of great benefit. SSI data gained from satellite observations meet these requirements and are therefore

widely used in many application areas. There are typically two types of satellite systems available for the retrieval of SSI.50

Geostationary weather satellites with a fixed location above the equator and polar orbiting satellites that fly in low orbit around

the Earth. flying in low orbit around the Earth. Geostationary satellites provide images in high spatial and temporal resolution,

but are blind near the poles. This gap can be filled by polar orbiting satellites or by data from Numerical Weather Prediction

(NWP). Geostationary satellites like METEOSAT (METEOrological SATellite, Schmetz et al. (2002), GOES (Geostationary

Operational Environmental Satellite GOES (2019)) or HIMAWARI (Sunflower, JMA (2017)) provide satellite data with a spa-55

tial resolution of about 500m to 3 km (sub-satellite point) and a temporal resolution of about a few minutes to 15 minutes,

depending on the mode of operation and spectral channel. E.g. the visible 600 nm channel of HIMAWARI has a spatial res-

olution of 500 m and a temporal resolution of 10 minutes, with even higher temporal resolutions in rapid scan mode. These
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satellites cover the complete geostationary ring and are quite useful for the estimation of solar irradiance at any point outside

the polar region.60

The respective retrieval methods for SSI are primary
:::::::
primarily

:
based on the law of energy conversation

::::::::::
conservation. Ra-

diation that is not reflected or absorbed by the atmosphere will reach the ground. Clouds are the main component for the

atmospheric reflection. The satellite based observation of radiances reflected by clouds is the basis for the calculation of the

cloud transmission. The combination with information of the clear sky transmittance enables the retrieval of gridded radiation

data sets with large geographical coverage and high spatial and temporal resolution. In many regions of the world ground65

based measurements are quite rare, (e.g. African continent, oceans). A look on the station list of the global high quality

network BSRN(Ohmura et al., 1998)
:::::::
Baseline

:::::::
Surface

::::::::
Radiation

::::::::
Network

:::::::
(BSRN,

:::::::::::::::::
Ohmura et al. (1998)

:
) reflects the scarcity

of well maintained solar radiation measurements. Over oceans satellite data are needed for climate monitoring because of the

lack of almost any reliable ground based SSI measurements (Behr et al., 2009). Thus, for most of the world satellite based solar

irradiance data are the primary observational source. Moreover, for any application requiring direct irradiance, satellite data70

are the main observational source, also in regions with a dense network of SSI measurements. This also applies for spectral

resolved irradiance. The respective applications cover beside others the estimation of sunshine duration (WMO, 2010), the cal-

culation of SSI on tilted planes and PV studies (Huld and Amillo, 2015; Amillo et al., 2015). Finally, satellite based SSI data

are also a powerful alternative and complement in regions with a dense network of well maintained ground based pyranometer

measurements, e.g. (Perez et al., 1998; Journée et al., 2012).75

Satellite-based SSI data therefore play a key role in almost all applications today and also add important information in

countries with a dense ground-based network. The value of satellite data is further increased due to the automation of ground

based networks.
::
For

::::::::
example,

::
at
::::::

DWD
::::::::::::
satellite-based

:::::
direct

:::::::::
irradiance

::
is

::::
used

::
to
::::::

derive
:::::
raster

::::
data

::
of

::::::::
sunshine

:::::::
duration

:::
as

:
a
::::::::::
replacement

:::
of

:::
the

::::::
former

:::::::::::::::
Campbell–Stokes

::::::::
recorders.

:
As a consequence, satellite based solar surface radiation data sets

are available from different sources all over the world. Open access to data and services are essential for science and for the80

efficient economical use. Thus, this review focuses on the retrieval methods used to generate open data. Within this discussion

a climate data record (CDR) is hereafter referred to as a time series of sufficient length, consistency, and quality to determine

climate variability and change. A CDR enables the accurate monitoring and analysis of climate trends and extremes. Essential

data provider
::::::::
providers

:
in Europe are the Satellite Applications Facilities (SAFs). SAFs are dedicated centres for process-

ing satellite data, focusing on different application areas. They are part of the European Organisation for the Exploitation of85

Meteorological Satellites (EUMETSAT) and belong to the EUMETSAT network of SAFs (Schmetz et al., 2002). They are

funded by EUMETSAT and the SAF consortium members, which consists mainly of meteorological services and institutes.

Three of the SAFs provide satellite based solar surface irradiance.
:
: The Climate Monitoring SAF (CM SAF), the Land Sur-

face Analysis SAF (LSA SAF) and the Ocean and Sea Ice SAF (OSI SAF). The CM SAF generates and provides satellite

based Essential Climate Variables (ECVs) related to the energy and water cycle for the analysis and monitoring of the climate90

system, please see (Schulz et al., 2008) for more details. Beside surface radiationalso ,
:

cloud parameters, top of atmosphere

(TOA) radiation budget components, atmospheric water vapour and precipitation data are part of the CM SAF data portfolio

(Woick et al., 2002). The methods for the retrieval of the SSI are described in Mueller et al. (2009, 2011, 2012a); Mueller and
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Trentmann (2015); Müller et al. (2015) and Posselt et al. (2011b). The data can be ordered via the CM SAF web user interface

(wui.cmsaf.eu). The LSA SAF develops methods for the retrieval of land surface products, such as radiation products, surface95

albedo, snow cover, evapotranspiration and wild fires. The respective near real time products are provided via the EUMETcast

service. LSA SAF methods are also used within the COPERNICUS services. The method for the retrieval of SSI is described in

Carrer et al. (2019). The OSI SAF develops, processes and distributes near real-time products related to the ocean-atmosphere

interaction. This includes, scatterometer winds, sea ice concentration, sea surface temperature, as well as radiation products,

which are also generated over land. Products are accessible on OSI SAF FTP servers, EUMETCast, and EUMETSAT Data100

Centre (EDC). The method for the retrieval of surface radiation is described in Marsouin (2019) and follows the approach of

Gautier et al. (1980).

::::
Solar

::::::::
radiation

::::
data

:
is
::::
also

::::::::
available

:::::
online

::::
from

::::::
KNMI

:
(
:::::::::::::
msgcpp.knmi.nl

:
).
::::
The

:::
data

:::
are

:::::
based

:::
on

:::
the

:::::
Cloud

:::::::
Physical

:::::::::
Properties

:::::
(CPP)

:::::::::
algorithm,

::::::
which

::
is

:::::
being

:::::::::
developed

::
at
:::::::

KNMI
::
to

::::::
derive

::::::
cloud,

:::::::::::
precipitation

:::
and

::::::::
radiation

::::::::
products

:::::
from

:::::::
satellite

:::::::::
instruments

:::::
(e.g.

::::::::
SEVIRI).

::::
The

:::::::::::
development

::::
was

:::::
partly

:::::::
funded

::
by

:::::::::
Eumetsat

::::::
within

:::
the

:::::
scope

:::
of

:::
the

::::
CM

::::
SAF

:::::::::
activities.105

::::
Open

:::::::::
Geospatial

::::::::::
Consortium

::::::
(OGC)

:::::::
services

:::
are

::::
used

::
to
:::::
offer

:::
the

::::
near

:::
real

::::
time

::::::::
products.

The Global Energy and Water Exchanges (GEWEX) project is dedicated to understanding Earth’s water cycle and energy

fluxes. GEWEX is a network of scientists (
::::::::
gewex.org

:
). Thus, several data sets are offered free off charge under the umbrella of

GEWEX. Respective data sets are usually announced and discussed in the quarterly GEWEX newsletter (GEWEX-Quarterly).

The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part of the World Climate Research110

Program (WCRP). A main goal of ISCCP is the generation of satellite based global cloud data for the monitoring and analysis

of the global distribution of clouds, their properties, and their diurnal, seasonal and inter-annual variations. Within this scope

Bishop and Rossow (1991) developed a fast radiative transfer algorithm for calculating SSI, which uses the total cloud amount

and cloud optical depth from the International Satellite Cloud Climatology Project (ISCCP) as important input parameters.

The ISCCP method for cloud detection is described in Rossow and Garder (1993). Respective data is available from the IS-115

CCP web page and as SSI data set from National Aeronautics and Space Administration - Goddard Institute for Space Studies

(NASA-GISS).

The Clouds and the Earth’s Radiant Energy System (CERES) teams generate and provide data of the Earth Radiation Budget

:
(
:::::::::::::::
ceres.larc.nasa.gov ). The satellite instruments used for CERES products are developed for NASA’s Earth Observing System

(EOS). The first CERES instrument was launched in December 1997 aboard NASA’s Tropical Rainfall Measurement Mission120

(TRMM). CERES instruments are collecting observations on different satellite missions, including the EOS Terra and Aqua

observatories, as well as the Suomi National Polar-orbiting Partnership (S-NPP) observatory of NASA and NOAA.

Solar energy specific data are provided from several sources as well. Joint Research Centre’s PhotoVoltaic GeoInformation Sys-

tem PVGIS (ec.europa.eu/jrc/en/pvgis) offers an online tool for the estimation of the expected PV yield for user selected sites.

Several parameters can be chosen online, e.g. the slope of the PV module, the kind of solar cell. As an additional service PVGIS125

allows
:::
one to visualise and download solar surface radiation (broadband) for user selected sites. Hereby different data sources

can be selected, in .
:::
In addition to the satellite based CM SAF SARAH data sets (Mueller and Trentmann, 2015) also data from

NWP models, e.g. ERA-5 (Hersbach et al., 2020)
:::
are

:::::::
available. SSI data is also available at the SoDa servide

:::::
service. It origi-
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nates from a European project funded by the European Commission in 1999. SoDa is
:::
was commercialised by Transvalor S.A.

since 2009. However, SoDa still offers solar radiation data free of charge. Please see the the SODA web page (www.soda.de)130

for further information. Satellight (www.satellight.com) is a European data base for daylight and solar radiation. The starting

point of the project was also a European project. The main data source in the US is NREL (Cox et al., 2018; NREL1)

2 The methods - Basics

:::
The

::::::
outline

::
of

:::
the

:::::::::
manuscript

::
is
::
as

:::::::
follows.

::
In

::::::
section

::
2
::::::
general

:::::
basics

::::::::::
concerning

:::
the

::::::
method

:::
for

:::
the

:::::::
retrieval

::
of

::::
solar

::::::::
radiation

:::
data

::::
are

::::::::
discussed.

:::
In

::::::
section

::
3
::::
and

::
4

::::
more

::::::
details

::::::::::
concerning

:::
the

::::::::
methods

:::
are

::::::::
provided,

:::::::::
including

:
a
::::::::::

discussion
::
of

:::::
main135

:::::::::
differences.

:::
In

::::::
section

:
5
:::::::
specific

::::::::
emphasis

::
is

:::::
given

::
to

:::
the

::::::
method

:::
for

:::
the

:::::::
retrieval

::
of

:::::::
spectral

:::::::
resolved

:::::::::
irradiance.

::::
For

:::
the

::::
sake

::
of

::::::::::::
completeness,

:::::::::
forecasting

::
of

:::::
solar

:::::::
radiation

::
is
::::::
briefly

::::::::
discussed

::
in
:::::::
section

::
6.

::::::
Finally,

::
in
:::::::
section

:
7
::::::
recent

:::::::::::
developments

::::
and

::::
open

:::::
issues

:::
are

::::::::
discussed

:::::::::
concerning

:::
the

:::::::
method

:::::::
(section

:::
7.1)

::
as

::::
well

::
es

:::::
input

::::
data

::::::
(section

::::
7.2).

::::
The

:::::::::
manuscript

::
is
::::::
closed

::::
with

:
a
::::::::::
conclusion.

2
:::
The

::::::::
methods

:
-
::::::
Basics140

SSI results from the emission of radiation from the sun. Without scattering and absorption by the atmosphere the SSI would

only depend on the solar zenith angle and would be identical to the incoming solar radiation at the Top Of Atmosphere (TOA).

The atmosphere modifies the amount and distribution of the TOA solar irradiance by scattering and absorption. All retrieval

methods rely on the same basic equations, which is based on the law of energy conservation, expressed here as

T +R+A= 1 (1)145

T is hereby the Transmittance, which defines the proportion of radiation which passes through a medium. R is the proportion

which is reflected and A the proportion that is absorbed by the medium, respectively. The sum of transmitted radiation plus

the absorbed radiation plus the reflected radiation is 1. This means radiation that is not absorbed or scattered back by the

atmosphere reaches the surface, leading to the following basic equation, see Müller (2012b) for further details.

SSI = SSIclear ∗Tcloud (2)150

with

SSIclear = Tclear ∗SSIext ∗ cos(SZA) (3)

SSI is the solar surface irradiance, SSIclear is the clear sky irradiance, Tcloud is the cloud transmission, SSIext is the

extraterrestrial irradiance, often approximated as solar constant and cos(sza) is the cosine of the solar zenith angle. Various
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algorithms and methods have been developed to estimate broadband surface solar radiation data sets based on equation 2 e.g.,155

(Möser and Raschke, 1984; Cano et al., 1986; Bishop and Rossow, 1991; Pinker and Laszlo, 1992; Pinker et al., 1995; Darnell

et al., 1992; Rigollier et al., 2004; Mueller et al., 2009; Dürr and Zelenka, 2009; Posselt et al., 2011b; Müller et al., 2015). In the

following the individual components of equation 3 are discussed concerning applied methods and needed input information.

Please note that all quantities in the above equations are fluxes and not radiances.

2.1 Extraterrestrial irradiance160

The extraterrestrial irradiance SSIext results from the radiation emmitted
::::::
emitted

:
by the sun and the distance between Earth

and sun and is given by equation 4.

SSIext = SSIext,const ∗ dcor (4)

Here,
::::
Here,

::::
dcor::

is
::
a

::::::::
correction

:::::
factor

:::
for

:::::::
varying

:::::::
distance

:::::::
between

:::
the

:::::
Earth

:::
and

:::
the

::::
Sun

:::
and

:
SSIext,const is the so called

solar constant, a long term mean of the extraterrestrial irradiance for a mean distance between the Earth and the Sun (dcor = 1).165

Nowadays accurate values of SSIext can be gained from satellite measurements (Kato et al., 2013; Harries et al., 2005). The

University Corporation for Atmospheric Research (UCAR) proposes a value of 1361 W/m2 for SSIext,const (UCARteam).

SSIext is valid for the whole globe and results from the nearly constant flux of energy emitted by the sun (Carroll and Ostlie,

2017). However, the term solar constant is somehow
::::::::
somewhat

:
misleading, as there are variations in the solar irradiance at the

top of atmosphere due to sun activity. The changes of the solar irradiance due to variations in sun activity are usually within170

the range of 2-3 W/m2 and are therefore often neglected (Müller, 2012b).

In addition, variations in extraterrestrial irradiance are caused by the distance between Earth and Sun. Induced by the el-

liptical orbit of the Earth around the sun, the Earth-Sun distance varies sinusoidal throughout the year in the order of +/- 3.3

%, leading to an
:
a respective increase and decrease of solar irradiance at the top of atmosphere. This effect is considered in

equation 4 by the factor dcor and can be gained from standard astronomical equations (Iqbal, 1983).175

2.2 Solar zenith angle

The Earth is approximately a sphere, hence, close to the equator the incoming solar irradiance covers a smaller region than

at higher latitudes. Here, the same amount of incoming photons are spread over a larger region, hence the solar irradiance is

lower per unit area. In mathematical terms this effect is expressed by the cosine of the solar zenith angle. The solar altitude

is defined as 90 degree minus the solar zenith angle. As can be seen in equation 3, the solar zenith angle is a dominant factor180

for solar surface irradiance. The local noon solar zenith angle and its diurnal and seasonal variation depend on the latitude,

longitude and time of the year. These variations originate from the rotation of the Earth around it´s axis in combination with

the rotation of the Earth around the Sun on an elliptical sphere. The Earth’s rotation axis is tilted at 23.5 degree with respect to

the ecliptic axis. This tilt is called the obliquity of Earth’s axis and is responsible for winter and summertime. The higher the

latitude the lower the local noon solar zenith angle, which decreases from summertime to wintertime. The sun earth geometry185
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is well defined and the SZA can be calculated with standard astronomical equations (Iqbal, 1983) using latitude, longitude and

time as input. The calculation of the SZA is therefore straightforward.
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Figure 1. The principle of an LUT approach. The transmission is pre-calculated for a variety of atmospheric states with a radiative transfer

model (RTM) and saved in a look-up table (LUT). The LUT is then used to determine SSI based on the input given for the atmospheric state

for each pixel and time step by interpolation.

2.3 Radiative Transfer Models

The cloud and clear sky transmission needed to derive SSI (equation 2) can be calculated by a Radiative Transfer Model (RTM)

with high accuracy for any given atmospheric state. With libradtran (Mayer and Kylling, 2005; Emde et al., 2016) a powerfull190

open software pacckage
:::::::
powerful

::::
open

::::::::
software

:::::::
package is available for RTM calculations (www.libradtran.org). Also for 3-d

modelling RTMs are available in open access, e.g. Spherical Harmonic Discrete Ordinate Method (SHDOM) for Atmospheric

Radiative Transfer (Pincus and Evans, 2009). An exemplary application of SHDOM within the scope of remote sensing of SSI

is discussed in (Girodo, 2003; Girodo et al., 2006). However, concerning satellites an explicit usage of RTM for each pixel and

time step would be too slow for the generation of long time series (climate data records) or near real time applications. Thus,195

instead of explicit RTM runs pre-calculated look-up-tables (LUTs) are usually used. A Look Up Table (LUT) contains the

pre-calculated results of radiative transfer calculations performed for many different states of the atmosphere, surface albedo,

and solar zenith angles. Figure 1 illustrates the principle of the LUT approach.

Nevertheless, classical LUT approaches have still a significant disadvantage. First, the computation speed is still hampered

by the need to interpolate within large multi-dimensional arrays. Second, and more importantly, many RTMs
::::
RTM

::::::::::
calculations200

must be performed to generate the LUTs, resulting in large and cumbersome binary matrices that raise the recalculation thresh-

old. However recalcuation , whiis
:::::::::::
recalculation

:
,
:::::
which

::
is necessary from time to time to take advantage of new developments.

Further, big and cumbersome LUTs increase also the chance for hidden bugs. E.g
:::
For

:::::::
example. after 4 years of development the

CM SAF classical LUTs had a bug , probably induced by a switch in the indices somehow. Thus, 4 years of development were

more or less worthless. The LUTs (clear sky, cloudy sky) contained over 100 000 RTM calculations each. As a consequence205

of the mentioned handicaps and the burden of a recalculation of
:::::::::::
recalculating classical LUTs a novel approach was developed,

referred to as the "eigenvector hybrid” LUT approach (Mueller et al., 2009) . This method takes benefit of the symmetries of

atmospheric absorption processes and separates them from the linear independent processes of aerosol scattering. A further

reduction is achieved by the use of the Modified Lambert Function (Mueller et al., 2004; Ineichen, 2008), which requires only
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two SZA points (0 and 60 degree) to cover the complete SZA dependency in good accuracy. Overall, the number of needed210

RTM calculation
:::::::::
calculations

:
could be scaled down from 100 000 to about 100 without loosing accuracy (Mueller et al.,

2009, 2012a). The RTM calculations were performed with libRadtran (Mayer and Kylling, 2005) using the DISORT solver

(Stamnes et al., 1988). The respective retrieval procedure enables also the calculation of direct irradiance, resulting from a
::
an

adaptation of the Skartveit et al. (1998) model for diffuse irradiance. Overall, this work implements several of the requirements

discussed in (Pinker et al., 1995) for the improvement of solar surface irradiance retrieval, RTMs are not only needed for the215

calculation of LUTs but are also essential for the development of parameterizations and a better understanding of the processes

in the Earth atmosphere.

2.4 Clear sky transmittance

The clear sky irradiance can be derived by multiplication of the extraterrestrial irradiance SSIext with the cosine of the solar

zenith angle and the clear sky transmittance Tclear220

SSIclear = Tclear ∗SSIext ∗ cos(SZA)

:
,
::::::::
according

::
to

:::::::
equation

::
3

The term clear sky radiation is commonly used, but nevertheless
::::::::
somewhat

:
misleading. It is the radiation received in cloud

free skies, which can still be quite turbid (low visibilities, high aerosol load). The incoming irradiance is scattered and absorbed

by gases and particles in the atmosphere. Scattering and absorption lead not only to attenuation of light but also modify
::
to225

:
a
:::::::::::
modification

::
of

:
the spectra of the extraterrestrial irradiance. Scattering leads to a continuous modification of the spectra

whereas absorption occurs in specific spectral bands, the so called absorption bands. In these bands the absorption is strong

and the radiation is significantly reduced. E.g.
:::
For

:::::::
example,

:
O3 is

:::::
acting

::
as

:
a strong absorber in the UltraViolet (UV), hence

almost all of the UV-A radiation reaching the top of
:::::
UV-B

::::::::
radiation

:::
that

::::::
enters

:::
the atmosphere is absorbedin the atmosphere,

which is great luck for us, because it causes skin cancer. Further, water vapour has strong absorption bands in the InfraRed230

(IR), but also in the microwave, thus acting as strong greenhouse gas. The absorption bands result from the transition of

radiation into periodic vibrations of molecules or atoms (IR) or change in electrons state (UV, VIS), whereby the energy of the

radiation is used to reach a higher energy level. The effect of the atmospheric scattering is apparent every day. The blue sky

results from Rayleigh scattering at air molecules (particles smaller than wavelength λ). The air molecules scatter the incoming

irradiance with a wavelength dependency of λ4
:::
λ−4. This means that the scattering effect decreases in the power of 4 with235

increasing wavelength. As a result, blue light is scattered and reflected much more by the sky than other colours leading to

a blue illumination of the sky (blue sky). In contrast, cloud droplets and aerosols are leading to
::::::::
spherical

:::::::
aerosols

::::::
follow

Mie scattering, which has a wavelength dependency of λ−1 (particles are about the same size as wavelength and assumed

to be spheres). Thus there is only a small dependency on the wavelength leading to grey sky. Scattering forces the light to

deviate from the direct path and is induced by the interaction of the photons with the respective media as a consequence of240

oscillating electric fields or by consideration of the wave-particle dualism of quantum physics as particle to particle collisions.

More details can be found in Jackson (1998). The great majority of air molecules (N2, O2, CO2, methane, noble and inert
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gases) are well mixed and uniformly distributed and do not affect the spatial and temporal distribution
:::::::
variation

:
of solar surface

irradiance.
::::
Even

:::
the

:::::
rather

:::::
small

::::::::::
fluctuations

::
of

:::::::
methane

:::
and

:::::
CO2 ::::

have
::
no

:::::::::
significant

:::::
effect

::
on

::::
SSI

::::::::
variation. Thus, their effect

is rather static in space and time and they pose no problem for the estimation of SSI as a static transmission can be assumed245

(Müller, 2012b). In contrast, ozone, water vapour and tropospheric aerosols are not well mixed. Their distribution is driven by

atmospheric dynamics. They show significant temporal and spatial gradients and patterns on different scales. Thus, the spatial

and temporal variation of clear sky irradiance is dominated by these parameters. Yet, the effect of ozone on the broadband solar

irradiance is rather small and is therefore neglected in some methods. Sources of information for these variables are discussed

in detail in section 7.2. Figure 2 shows the irradiance at the top of atmosphere and the surface on an inclined plane at 37 degree250

tilt (toward the equator) for a US standard atmospere
:::::::::
atmosphere

:
and aerosol load and a SZA of 48.18 degree. The respective

data was downloaded from NREL (NREL2, 1998), where more details on the atmsopheric
:::::::::
atmospheric

:
components are given.

Different methods are applied to consider the effects of the clear sky components on the solar surface irradiance. A set of

models use semi-empirical functions to derive the clear sky irradiance, e.g. (Ineichen and Perez, 2002; Beyer et al., 1996; Cano

et al., 1986; Rigollier et al., 2004; Bird and Hulstrom, 1981; Sengupta and Peter, 2003; Perez et al., 2002). More complex meth-255

ods are based on look up tables derived from radiative transfer modelling e.g. (Gupta et al., 2001; Mueller et al., 2004, 2009)

or some kind of hybrids
:::::
hybrid of the two. However, as a satellite retrieval of SSIclear is not needed for a proper and accurate

estimation of SSI (Mueller et al., 2012a, 2009, 2004; Müller et al., 2015), the futher
:::::
further

:
discussion of the methods focus

on the retrieval of the cloud transmittance.
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Figure 2. Illustration of the solar irrdiance
:::::::
irradiance

:
spectrum at the top of atmosphere (extraterrestrial irradiance) and the surface for cloud

free skies. The main processes leading to the attenuation of irradiance are shown in the associated spectral range.
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2.5 Cloud transmission260

Overall, clouds are the dominant atmospheric component for the spatial and temporal variation of solar surface irradiance.

Thus, accurate information of the cloud transmittance is crucial for the accurate retrieval of solar surface irradiance. Satellites

measure the reflection of the surface and atmosphere. In order to derive the cloud transmission the reflection of the surface

and clear sky atmosphere has to be separated from that of the clouds. The scattering effect of clouds is by far dominant and

absorption can be neglected in
::
to

:
a
:

good approximation. Thus, radiation that is not reflected by clouds is transmitted trough265

::::::
through

:
the clouds. Therefore cloud transmission equals in

::
to

:
good approximation one minus cloud reflection, see equation 1.

Tcloud = 1−Rcloud (5)

Here, Tcloud is the cloud transmission andRcloud the cloud reflection. It is important to mention here that the above equation

is valid for fluxes. Satellites however, are observing radiances, i.e. photons reaching the satellite from a specific direction, see

figure 3 for illustration. The reflection of the Earth’s atmosphere is usually not isotropic (equal share of radiation in all direc-270

tions) but depends on the specific direction and viewing angle. Therefore angular distribution models (ADM), which results

from Bidirectional Reflectance Distribution Function (BRDF) have to be applied to transfer radiances to fluxes (Nicodemus

et al., 1977) . See Loeb et al. (2005) for further details about BRDF and ADM.

Further, the upward flux depends on the solar zenith angle as the Surface Albedo (SAL) changes with changing SZA

(Briegleb and Ramanathan, 1982). Further, the retrieval of SAL is characterised by severe uncertainties (Shuai et al., 2020;275

Carrer et al., 2010, 2018; Fell et al., 2021). This adds further difficulties to the accurate definition of ADMs (BRDFs) as the

problem is somehow ill-posed. Is the change in the fluxes induced by a different viewing geometry for the same SAL or by

the change in SAL induced by SZA , change in vegetation, different
:::
The

:::::::
relation

:::::::
between

::::::::
observed

::::::::
radiances

:::
and

:::::::::
simulated

:::::
fluxes

:::::::
depends

:::
not

::::
only

:::
on

:::
the

:::::::
viewing

::::::::
geometry

:::
but

::::
also

::
on

:::::::
landuse

::::
(e.g.

:::::
SAL

::::
SZA

:::::::::::
dependency),

:
pixel size, calibration is-

sues (ageing of channels, change of spectral response function) , change of satellite instruments, and others
:::
and

::::
other

::::::
effects.280

BRDF and ADM are also spectrally dependent, hence differ from wavelength band to wavelength band. Thus, they can not be

easily transferred from one satellite instrument to another. This poses the question which path is the best to follow, because

there are mainly two different paths to get the cloud transmission. We follow the suggestion of Skartveit and Olseth
::::::::
(personal

:::::::::::::
communication)

:
to name them direct and indirect paths. For the indirect path

:
, fluxes and thus ADMs and accurate SAL in-

formation are needed. For the direct path this information is not needed but implicitly considered by the satellite observations285

within the retrieval of the cloud transmission. The two paths are briefly discussed in the following sections.

3 The indirect paths: Methods using flux quantities

The cloud transmission can be defined by the micro-physical parameters cloud optical depth (COD) and the effective radii

(reff ) of cloud droplets. Thus, one way forward is to retrieve cloud optical depth and effective radii, following an approach

discussed in Nakajima and King (1990). Once COD and reff are retrieved the cloud transmission can then be calculated290
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Figure 3. Flux is defined as the integration of all radiances over the sphere. The satellite observes the radiance for a specific direction. The

reflection of the earth atmosphere is usually not isotopropic
::::::
isotropic

:
(equal amount of radiation in all directions) but depends on the specific

direction and viewing angle.

based on RTM parameterisation or by RTM based Look Up Tables (LUTs). E.g. Deneke and Feijt (2008) use information of

cloud physical properties retrieved with a LUT approach for the estimation of surface solar irradiance. The respective retrieval

of COD and reff was developed by the Royal Netherlands Meteorological Institute (KNMI) and is applied to retrieve cloud

optical thickness, liquid water path and particle size from satellite imagers within the CM-SAF framework (Roebeling et al.,

2005). A similar approach was used by ISCCP (Rossow and Zhang, 1995; Zhang et al., 1995) for the generation of CDRs.295

As mentioned in the method section, several approaches for the retrieval of solar surface irradiance are using the cloud optical

depth and the effective radii for the estimation of the cloud transmission. However, for the retrieval of COD and reff accurate

surface albedo (surface reflection) and ADMBRDF simulations are needed in order to separate the reflection by clouds from

that of the surface and to transfer radiances to fluxes. Further, the clouds are usually assumed to be plane-parallel, which is a

rough assumption. Finally, the problem is somehow ill-posed as the retrieval of COD depends on reff and vise versa, and on300

the ratio between ice and water particles in mixed phase clouds, see Nakajima and King (1990) for details. However this ratio

is usually unknown. For some of these effects a quantitative analysis is given by Kato et al. (2006)

Another indirect approach takes benefit of the linear relation between Transmission (T) and the Top of Atmosphere (TOA)

albedo, as discussed in (Li et al., 1993). For a given surface albedo and clear sky state the cloud transmission changes linearly

with increasing COD. Thus, assuming a standard plane-parallel cloud, the relation between transmission and TOA albedo can305

be pre-computed for a variety of CODs, surface albedos and clear sky parameters. The precomputed RTM results are saved in

a Look-Up-Table (LUT). The observed TOA albedo is then used as variable to retrieve the cloud transmission by interpolation

within the LUT. This approach has been the basis for the first operational version referred to as
::
the

:
prototype of the CM-SAF

scheme, described and validated in Mueller et al. (2009) and Hollmann et al. (2006). This prototype followed the concepts
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and ideas of Pinker and Laszlo (1992) and Pinker et al. (1995) . Also, the OSI SAF retrieval procedure for SSI is using TOA310

Albedo as input (Marsouin, 2019; Gautier et al., 1980). However, also in this approach clouds are assumed to be plane-parallel,

ADMsBRDFs are needed to convert radiances to fluxes and accurate SAL data are necessary.

In brief, using the indirect approach means to be further away from the observations, to introduce further error sources by

weak assumptions and to use simulations instead of observations directly. All in all, there are additional variables and functions

needed , which are partly based on ill-posed retrievals.
::
as

::::::::
additional

:::::::::::
assumptions

:::
and

::::::::::
simulations

:::
are

::::::
needed

::
in

:::::::
contrast

::
to

:::
the315

:::::
direct

::::
path,

:::::
which

::
is
::::::::
discussed

::
in
:::
the

::::
next

:::::::
section.

4 The direct path

For the indirect paths (flux based methods) accurate SAL and ADMsBRDFs are needed. Further the clouds are assumed to be

plane-parallel. These induces
::::::
induce uncertainties into the estimation of the cloud transmission and motivates the use of

:::
the

direct path. The direct path relates the measured reflection (radiances) directly to the cloud transmission without the need of320

any radiative transfer modelling, ADM or SAL, as they are implicitly considered by observations. In the following the method

applied at CM SAF and DWD is described in more detail. It is based on the concepts of (Möser, 1983; Möser and Raschke,

1984; Cano et al., 1986; Diekmann et al., 1988) and originates from the Heliosat code developed at the University of Oldenburg

(Beyer et al., 1996; Hammer, 2000; Hammer et al., 2003). Only observed radiances are needed in order to retrieve the Effective

Cloud Albedo (Mueller et al., 2011), which is also referred to as cloud index or effective cloud coverage. The effective cloud325

albedo (CAL) is defined as the normalised relation between the all sky and clear sky reflection derived from satellite images in

the solar spectral range. CAL is linearly related to the cloud transmission for CAL values lower than 0.8. A clear sky model

is used afterwards to calculate the solar surface irradiance based on the retrieved cloud transmission according to equation 2.

This approach is still the basis for several state of the art retrieval schemes, described in more detail in (Dürr and Zelenka,

2009; Posselt et al., 2011b; Mueller et al., 2012a; Müller et al., 2015; Castelli et al., 2014; Pfeifroth et al., 2019b).330

In order to derive the effective cloud albedo it is important to consider the effect of the solar zenith angle on the extraterrestrial

irradiance. Furthermore, the dark offset of the instrument has to be subtracted from the observed reflections. Thus, the observed

reflections are normalised by application of equation 6 in a first processing step.

ρ=
D−D0

f ∗ cos(θ)
(6)

Here, D is the observed digital count (including the dark offset). D0 is the dark offset, the instruments value in the dark,335

which is provided by EUMETSAT. The sun-earth distance variation is considered by the factor f , finally, the cosine of the solar

zenith angle corrects the different illumination conditions at the top of atmosphere introduced by different solar altitudes. The

resulting ρ is referred to as normalised reflection. The effective cloud albedo is then derived from the normalised reflection ρ,

the clear sky reflection ρcs and the calibration value ρcal by equation 7

CAL=
ρ− ρcs
ρcal− ρcs

(7)340
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Here, ρ is the observed normalised reflection for each pixel and time. ρcs is the clear sky reflection, which is derived for

every pixel and time slot separately. In principle this is done by applying statistics over the lowest reflections observed during

a typical time span of 3-4 weeks, e.g the average of the lowest reflections within an epsilon band, which can be defined by the

user and is typically of about 10 % of ρcal. Also percentile functions can be used, but based on tests at DWD this is expected

to lead to a lower performance. Further details on the method to derive ρcs are given in Hammer (2000); Müller et al. (2015)345

and Mueller and Trentmann (2015). The need to calculate ρcs for every time slot of the day results from the strong dependency

of the clear sky albedo (which is in turn usually dominated by the surface albedo) on the solar zenith angle (Briegleb and

Ramanathan, 1982). ρcal is a measure for the reflections observed for the highest cloud albedos. It is therefore often also

referred to the "maximum" reflection ρmax. It is typically determined by the 95-98 percentile of all reflection values at local

noon in a target region, characterised by high frequency of cloud occurrence for each month (Mueller et al., 2012a; Müller350

et al., 2015). In this manner changes in the reflections induced by the satellite are accounted for (Posselt et al., 2011a). Further,

it calibrates also the reflections between clear sky (CAL=0) and "maximum" overcast (CAL=1).

For CAL values below 0.8 the relation between CAL and Tcloud is simply given by

TCloud = 1−CAL (8)

Thus,355

SIS = (1−CAL) ∗SISclear (9)

For very thick clouds SSI does not decrease linearly any more with CAL as a result of lateral scattered light and a modifi-

cation of the relation 9 is needed, e.g. as following.

TCloud = 1.1661− 1.7814 ∗CAL+0.7250 ∗CAL2 (10)

The term Heliosat is widely used in the energy meteorology community for methods using the relation given in 7. Yet,360

this naming is somehow misleading. In some Heliosat methods the observational approach for ρcs is partly replaced, e.g

Heliosat-2 (Rigollier et al., 2004), or completely replaced, e.g. Heliosat-5 (Tournadre et al., 2021), by modelling of ρcs.

However, the planetary reflection is in good approximation observed by the satellite and a seperation
::::::::
separation

:
of the

effect of ground albedo and atmospheric reflection or a complete replacement of ρcs with RTM simulations is a detour

adding additional uncertainties. The motivation for these modifications is incomprehensible both from the point of view of365

measurement technology as well as from the point of view of radiative transfer modelling (see section 3 and the open re-

viewer comments concerning Tournadre et al. (2021)). In order to avoid misunderstandings we introduce the term CAL-

SAT for the described method and use it instead of Heliosat throughout the manuscript. The CALSAT approach is applied

routinely in real time at the University of Oldenburg since 1995. It was used to establish the server Satel-Light, which

delivers valuable information on daylight in buildings to architects and other stakeholders (Fontoynont et al., 1997). The370

method was also used to provide the data for successful projects like PVSAT and PVSAT-2 (Lorenz et al., 2004; Hammer
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et al., 2003) which went into 24/7 operational services. All CM SAF Climate Data Records (CDRs) (Posselt et al., 2011b;

Müller et al., 2015; Pfeifroth et al., 2019b) has
::::
have been retrieved with the CALSAT approach coupled with a clear sky

model based on the eigenvector hybrid LUT method (Mueller et al., 2009). The respective data sets belong to the most

used and validated data sets in the world covering a wide field of applications, as can be seen from recent publications375

(Wild et al., 2021; Kulesza, 2021; Alexandri et al., 2021; Gardner et al., 2021b, a; Farahat et al., 2021; Yang and Gueymard, 2021; Kulesza, 2021; Kulesza and Bojanowski, 2021; Fountoulakis et al., 2021; Drücke et al., 2021; Daggash and Mac Dowell, 2021)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wild et al., 2021; Kulesza, 2021; Alexandri et al., 2021; Gardner et al., 2021b, a; Farahat et al., 2021; Yang and Gueymard, 2021; Kulesza and Bojanowski, 2021; Fountoulakis et al., 2021; Drücke et al., 2021; Daggash and Mac Dowell, 2021)

. CAL based SSI data are characterised by a high accuracy and homogeneity, which is a reason for the popularity, even up to

quality control of ground based stations (Urraca et al., 2017, 2020). The CM SAF SSI data are regurarly
:::::::
regularly validated

by the CM SAF team e.g. Pfeifroth et al. (2019) but also by the user community, e.g. (Wang et al., 2018; Amillo et al., 2018;380

Urraca et al., 2007; Trolliet et al., 2018; Riihelä et al., 2015; Posselt et al., 2011b; Ineichen et al., 2009) and references therein.

The complete list of peer-reviewed articles dealing with CM SAF radiation data is available on cmsaf.eu under the menu item

Publications (CMSAFpubl). Even if only the CM SAF data is counted there are already thousands of users all over the world

(Selbach and Thies, 2021). There are of course much more if the other data provider are accounted for. All CM SAF Validation

Reports, Product User Manuals, Algorithm Theoretical Baseline Documents and Operations Reports are available on cmsaf.eu385

unter
::::
under

:
the menu item Documentation. The CAL based CM SAF SSI data went also into the PVGIS service (Huld et al.,

2012; Amillo et al., 2014), which has several hundreds of accesses per week (T.Huld, personal communication). Finally, the

CALSAT method is also used at DWD to generate 24/7 operational near real time data and forecasts, which are available at

www.opendata.de. In summary, the direct approach using the observable CAL to define the cloud transmission ist
:
is
:
quite well

established and is used and for the creation of radiation data sets that are widely used around the world, e.g. Selbach and Thies390

(2021). It enables the retrieval of monthly means with an accuracy of 5.2 W/m2 and 7.7 W/m2 for SSI and direct irradiance,

respectively (Pfeifroth et al., 2019). Hereby, the mean absolute difference is used as metric for the accuracy. It is defined as

the average of the absolute values of the differences between the ground based measurements and the satellite based irradiance

first over all months and then over all stations. For the validation all available BSRN stations were used.

MAD = 1/n

1−n∑
i

|(Isat,i− Iground,i)| (11)395

The uncertainty in CALSAT SSI trends is with -0.8±0.4 W/m2/decades quite small, which shows the adequate homogeneity

of the data set and its ability to identify climate trends and decadal variability.

Already the early CALSAT methods had significant impact. e.g. the method developed by (Möser and Raschke, 1984;

Diekmann et al., 1988) was routinely applied at the German Weather Service till it was replaced by a modified SPECMAGIC

(Mueller et al., 2012a) version in 2018 A similar method was also used for the GEWEX Surface Radiation Budget Project as400

a quality control algorithm (Gupta et al., 2001; Darnell et al., 1992). This algorithm known as Staylor algorithm was chosen

by the World Climate Research Program (WCRP) SRB project for generation of surface solar irradiance for a test period of

several years (Whitlock et al., 1995) and has been used to produce long term data set.
:::::::
Finally,

::
the

::::::::
CALSAT

::::::::
approach

:::
has

:::::
been

:::
also

:::::::
adapted

::
to

:::::
polar

::::::
orbiting

::::::::
satellites

::
as

:::::::
effective

:::::
cloud

:::::::
fraction

:::::::::::::::::::::
Wang et al. (2014, 2011)
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5 Spectral resolved irradiance405

The demand for spectrally resolved irradiance has increased significantly in recent years due to new solar cell technologies and

increased awareness of climate change. The importance of the spectrally resolved irradiance (SRI) for the efficient planning of

PV systems is discussed in Huld and Amillo (2015). Further, SRI is of benefit for a more extensive monitoring and analysis of

the climate system and enables the generation of essential meteorological variables for several application fields, e.g.

– Daylight, which is of importance for the design and planning of office buildings and health studies, e.g., concerning410

Seasonal Affective Disorder.

– Ultraviolet (UV)-A and UV-B, important for weather warnings concerning the UV dose

– Photosynthetic Active Radiation (PAR), important for agro-meteorology.

However, retrieval algorithms for the generation of accurate long term series of spectral resolved irradiance covering the com-

plete solar spectrum were not available or applied to generate CDRs until 2012. The development of SPECMAGIC (Mueller415

et al., 2012a), a fast and accurate method for the retrieval of spectral resolved irradiance, was a game changer. It has been used

to improve the quality of the broadband radiation of the CM SAF CDRs, but also to provide the first spectral resolved solar

irradiance climate data record.

The SPECMAGIC method is a adaption
::::::::
adaptation

:
of the concept for the broadband radiation (Mueller et al., 2009) to

Kato bands (Kato et al., 1999) using the correlated-k approach offered as part of libradtran (Mayer and Kylling, 2005). The420

correlated-k method is developed to compute the spectral transmittance (hence the spectral fluxes) based on grouping of gaseous

absorption coefficients. However, in contrast to Mueller et al. (2009) the cloud transmission is derived with the CAL approach

in SPECMAGIC (Mueller et al., 2012a) and only the clear sky irradiance is calculated with an eigenvector LUT. The CALSAT

method was developed for broadband radiation. Thus, a spectral correction of the broadband transmission was needed, which

was done by a RTM based spectral correction factor for the broadband CAL. A detailed description of the methods is given in425

Mueller et al. (2012a). Further validations were presented in Amillo et al. (2015). As ground measurements of spectral resolved

irradiance are extremely rare, satellite derived information constitutes the primary data source for spectral resolved irradiance

within the scope of climate monitoring and solar energy applications. The validation of the spectral resolved irradiance climate

data record (SRI) in Ispra (Italy) shows an accuracy of the monthly mean values of spectral resolved data higher than 0.03

W/m2/nm for wavelengths below 1000 nm and even better for larger
:::::
longer wavelengths (Pfeifroth et al., 2019).430
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6 Forecastingand seamless prediction

Over recent decades the share of solar energy has increased enormously around the world, as
::::::
already

:
briefly discussed in

section 1. In contrast to fossil and atomic energy, solar resources are fluctuating and the energy yield depends on the weather.

Variations in solar radiation, and thus in solar energy, have to be balanced, either by increase or decrease of the production from

conventional power plants or by trading energy on the electricity market. The shorter the time for this compensation, the higher435

the costs and the lower the efficiency of renewables. In addition, wrong forecasts of extreme weather events might also lead to

grid instabilities and regional overloads. Accurate forecasts are therefore needed to enable an efficient, planing and operation

of the energy production and to optimise the use of renewable energies and the reduction of CO2 emissions. Beside forecasts,

instantaneous near real time data are also essential for the optimisations and monitoring of solar energy systems. As a result,

the demand for accurate near real time data and forecasts of solar surface irradiance has steadily increased. Satellite based440

cloud information is well suited for the estimation of near real time radiation data and the basis for short term forecasts, which

outperforms NWP in the first hours (Lorenz et al., 2017; Urbich et al., 2019).
::::::::
However,

:::::::::
forecasting

::::
SSI

::
is

:::
not

::::
only

:::::::
needed

:::::
within

:::
the

:::::
scope

:::
of

::::
solar

::::::
energy,

::::
but

:
is
::::

also
::::::
useful

:::
for

:::::::
weather

::::::::
warnings

:::::::::
concerning

::::
UV

::::::::
radiation,

::::
heat

::::::
waves,

:::::::
droughts

::::
and

::::::::::
evaporation.

The satellite based short term forecast of SSI, also referred to as nowcasting, is usually done by retrieval of atmospheric mo-445

tion vectors from satellite images and subsequent application to extrapolate the observed clouds into the future. The predicted

cloudiness can then
:
be

:
used to calculate SSI with one of the methods discussed in section 4. In order to get the forecasts in

the needed spatial and temporal resolution a dense field of cloud motion vectors is needed. The use of cloud motion vectors

for nowcasting is widespread and many approaches have been proposed so fare.g. ,
::::

for
:::::::
example

:
Gallucci et al. (2018) and

Sirch et al. (2017) used cloud motion vectors from SEVIRI (Spinning Enhanced Visible and Infrared Imager) on board of450

MSG
:::::::
Meteosat

:::::::
Second

:::::::::
Generation

::::::
(MSG) to forecast solar surface radiation for up to 2 hours. Further methods to gain AMVs

are discussed for example in Raza et al. (2016); Wolff et al. (2016); Antonanzas et al. (2016) and Barbieri et al. (2017). In

recent years, however, computer vision techniques (Szeliski, 2011) have found their way into meteorology and have offered

the advantage of a strong developer community, which is typical for open software. This led to the use of optical flow methods

for the estimation of atmospheric motion vectors. Optical flow has been used pre-dominantly for image pattern recognition in455

the fields of traffic, locomotion and face recognition (Sonka et al., 2014). To our knowledge, one of the first applications in

meteorology has been the utilisation of the optical flow for radar images as described by Peura and Hohti (2004). At DWD

the TV-L1 method (Zach et al., 2007) was implemented in 2018 for the short-term forecast of radar reflectivity by Manuell

Werner. This has motivated the adaptation of TV-L1 toCAL images (Urbich et al., 2018) in order to track the cloud movements

and to extrapolate the CAL values with optical flow. In order to met
::::
meet the requirements of the operational near real time460

retrieval of CAL based on SPECMAGIC (Mueller et al., 2012a) has been modified. The modified version is referred to as

SPECMAGIC_NOW. The Visible Channel in the 600 nm band is used instead of broadband visible channel, which is gained

from a combination of VIS006 and VIS008 (Cros et al., 2006). Further, a running backward statistics are performed to calculate

ρcs. In contrast to SPECMAGIC, only 20 days are used for the statistics. Also the estimation of ρcal has been modified. Please
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see section 7 for further details. The near real time data and forecasts up to +18 hours are available at the DWD open data465

server (www.opendata.de).

The combination of the effective cloud albedo with TV-L 1 and SPECMAGIC_NOW delivers a novel powerful method for

the short-term forecast of solar surface irradiance, as discussed in Urbich et al. (2019). Yet, for the satellite based nowcasting

2
:::
two subsequent images are needed. Before sunrise no former image in the visible is available for the estimation of the

atmospheric motion vectors. Thus, the University of Oldenburg extended the Heliosat method to Infrared Images Hammer470

et al. (2015). For longer forecast horizons a blending with NWP models is needed (Urbich et al., 2020; Lorenz et al., 2017).

::::::::
However,

:::::
cloud

::::::
motion

:::::
vector

::::::::
methods

::::
have

:::
the

:::::::::::
disadvantage

::::
that

::::
they

:::
can

:::
not

:::::::
capture

:::::::::
convection

::
or

::::::::::
dissipation

:::::::
(change

::
in

::::::::
intensity).

::::::::
Although

:::::
NWP

:::
has

::::
also

::::
great

:::::::::
difficulties

::
in

:::
this

::::
area

::::
they

::::::
include

::
at
::::
least

::::::::
physical

::::::::::::::
parameterisations

::
to

::::
deal

::::
with

:::
the

::::::::::
phenomena.

::::
That

::
is

:::
the

:::::
reason

::::
why

::::
after

::
a

:::::
couple

:::
of

::::
hours

:::::
NWP

:::::::
models

:::::::::
outperform

:::::
NWC

::::
and

:
a
::::::::::
combination

::
of

::::
both

::::::::
methods

:
is
:::::::
needed

::
in

::::
order

:::
to

::::
gain

:::
the

::::::
optimal

::::::::
accuracy

:::
for

:::::
every

::::
time

::::
step.

::::
The

::::
near

:::
real

::::
time

::::
data

::::
and

:::::::
forecasts

:::
up

::
to

::::
+18

:::::
hours

:::
are475

:::::::
available

::
at

:::
the

:::::
DWD

:::::
open

:::
data

::::::
server

::::::::::::::::
(www.opendata.de).

:

However, forecasting SSI is not only needed within the scope of solar energy, but is also useful for weather warnings

concerning UV radiation, heat waves, droughts and evaporation.

7 Recent developments and discussion

7.1 Method480

Copernicus "hoping to return the science to a less cumbersome, more elegant view of the Universe suggested a heliocentric

(Sun-centred) model of planetary motion" (Carroll and Ostlie, 2017) instead of the geocentric system, which was the prevailing

view until then. His approach led to a much simpler description between planets and stars.

This paradigm should still be a central key for natural science. Make things as easy
::
A

::::::
central

::::::::
paradigm

::
of

::::::
science

::
is

:::
the

::::
goal

::
to

::::
make

::::::
things

::
as

::::::
simple

:
as possible and as complex as needed. It is always a goal of science to improve methods. However,485

established ways should not be forgotten by this legitimate goal. It should not be expected a priori that more complex and

more cumbersome methods lead to a higher accuracy. Science demands that there is a proof of improvement and not only a

postulation based on the complexity of a method. Further, a central issue of science should be lessons learnt. Research and

development should focus on the open issues to improve the methods and not trying to re-invent the wheel by ignoring existing

knowledge. These arguments call for a reflection of lessons learnt
::::::::
necessary

:::
and

::
to

::::::
benefit

:::::
from

:::
the

:::::::::
knowledge

::::::
gained.

::
In

::::
this490

::::::
context,

:::
we

:::
we

:::::
would

::::
like

::
to

:::::
briefly

::::::
review

:::
the

::::::
lessons

:::::::
learned within the Heliosat-3 project. The goal of the Heliosat-3 project

(Betcke et al., 2006) was to supply high-quality solar radiation data gained from the exploitation of existing Earth observation

technologies by taking advantage of the enhanced capabilities of the new Meteosat Second Generation Satellites. Therefore

one aim was to develop a method to replace the CALSAT method by a method using cloud micro-physical parameters. During

the Heliosat-3 project, the meteorologists Skartveit and Olseth reminded us not to forget the advantages of the the direct path,495

using CAL derived from satellite measurements. Lessons learned within Helisoat-3, CAL is still used and was not replaced

by an approach using COD and reff at the University of Oldenburg, the leading entity of the project. Further, within CM SAF
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the LUT approach used in the early phase for the generation of the first data sets (Mueller et al., 2009) has been replaced by the

CALSAT approach concerning cloud transmission for the generation of CDRs (Posselt et al., 2011b; Müller et al., 2015) and

the generation of near real time data and forecasts (Urbich et al., 2018). For clear sky cases RTM based LUTs are still used in500

the CALSAT approach, beside other arguments, in order to overcome the limitation of turbidity as input (Mueller et al., 2004)

.

Thus, the CALSAT approach has been not
:::
not

::::
been

:
replaced by flux based methods at leading institutes and is to the

knowledge of the authors still the best way forward for the retrieval of cloud transmission. The approach results from the law

of energy conversation
::::::::::
conservation

:
and relates the observed reflection directly to the effective cloud albedo and the cloud505

transmission without the need for external SAL data or ADM simulations. In this
::::
these

:
terms the CALSAT method takes full

benefit of the satellite measurements in the visible (Mueller et al., 2011). Both, the data sets of the University of Oldenburg,

CM SAF and other entities using CAL are among the most validated data sets of the world. The validation results around the

SAF radiation data show that the improved CALSAT methods are in the meanwhile able to derive accurate SSI data close to the

accuracy of well maintained ground based stations (Posselt et al., 2011b; Müller et al., 2015; Pfeifroth et al., 2019). The quality510

is such good that
::::
high

::::::
quality

::
of

:
CAL based SSI data can be used for monitoring the quality

:::
even

:::::::
enables

:::
the

:::::::::
monitoring

:
of

ground based measurements (Urraca et al., 2017, 2020) and
:::::::::::::::::::::
(Urraca et al., 2017, 2020)

:::
and

:::
the

::::
use for climate trend analysis

(Pfeifroth et al., 2018). The success and impact of the CALSAT approach is impressive. Nevertheless, further improvements

of CALSAT have been performed and are still under progress. Yet, many of these improvements are not CALSAT specific,

but represent general issues of satellite based retrieval of SSI. The following sections provide a discussion of limitations and515

possible improvements that are
::
of

:::::
these

:::::::
retrievals

:
to the best knowledge of the authors.

7.1.1 Mountains

The pixel size of the visible MSG full disk channels (VIS006 and VIS008) is with approximately
:::
are

::::
with

:
a
::::
size

::
of

:
3-5 km

::::::
relative

:::::
large over the European mountainsrelative coarse. This leads to pixels which covers mountains and valleys and are

therefore no longer spatially representative of the area covered. The terrain is too heterogeneous and the spatial representatives520

:::::::::::::::
representativeness is largely limited by the resolution of the VIS006 and VIS008 channels. However, over Europe

:::
and

:::::
large

::::
parts

::
of

::::::
Africa the High Resolution Visible (HRV) channel is available. It has a sub-satellite resolution of 1x1km, which means

of about 1x2 km over the European mountains. The spatial representativity
:::::::::::::::
representativeness is significantly improved by the

higher spatial resolution and is a central key for the improvement of the precision and accuracy of SSI in mountainous regions

(Dürr et al., 2010; Dürr and Zelenka, 2009).525

Deep valleys are shadowed by mountains reducing the amount of available solar surface radiation. The shadowing infor-

mation needs to be corrected by the use of additional geographical information and geometrical functions. For this correction

the location, size and height of the mountains are needed, which are provided by a digitally
:::::
digital

:
elevation model (DEM).

Respective data are available free of charge from various web sites, see (OpenDEM-link). Geometric functions can be used

to calculate the solar zenith angle and azimuth angle for every date and hour, enabling to correct the shadowing based on the530

DEM information. This correction is independent of the retrieval method for SSI. A respective correction as well as further
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mountain specific features has been implemented into ths
:::
the CALSAT approach by Dürr and Zelenka (2009). The work of

Dürr and Zelenka (2009) has been the basis for the Heliomont algorithm (Stöckli, 2013; Castelli et al., 2014), which comes

with further improvements.

Further, snow covered surfaces occur with much higher frequency in mountains than in low lands. Thus, also the treatment535

of clouds over snow needs more attention in the mountains. Dürr and Zelenka (2009) implemented a correction for the CAL

retrieval over snow and demonstrated that it leads to higher accuracy.

7.1.2 Long Lasting clouds

All methods need cloud free pixel
::::
pixels

:
in order to get actual information of the surface albedo (indirect flux based methods)

or the clear sky reflection ρcs. Outdated information of SAL or clear sky reflection can lead to significant errors in SSI. The540

clear sky reflection and the surface albedo can only be derived from satellites in cloud free situations. Thus, long lasting clouds

are a serious error source for the satellite based retrieval of SSI. This is valid for all retrieval methods. Long lasting clouds can

contaminate the observation of ρcs. The minimisation of ρ
:::
ρcs leads only to the clear sky reflection if at least one pixel

:::::
during

:
a
::::::
certain

::::
time

::::::
interval

:
is cloud free. However, especially in winter at higher latitudes (e.g. northwestern Europe) it can happen

that there is no cloudless sky for 20-30 days, which leads to cloud contamination and an overestimation of rhocs :::
ρcs and, in545

turn, to an underestimation of CAL.

An option to reduce the uncertainties induced by long lasting cloud
:::::
clouds

:
might be the use of simulated of ρcs based

on RTMs or climatological values for ρcs as a backup. The former option has been implemented in SPECMAGIC_NOW, a

SPECMAGIC modification dedicated and used for the 24/7 production of near real time data at DWD. However, the method

for the decision when the backup is used is still in development and needs further evaluation. Another option is to fit the diurnal550

variation of ρcs and to replace outliers by the fitting function, see Heliomont for details (Castelli et al., 2014). This approach

requires cloudfree skies for neighbouring slots in time and thus can only mitigate but not resolve
::::
clear

:::::
skies

::
for

::::::::
adjacent

::::
time

:::::::
windows

::::
and

:::
can

::::::::
therefore

::::
only

:::::::
mitigate,

:::
not

:::::
solve,

:
the problem of long lasting

::::::::::
long-lasting clouds. However, it has also to be

considered that long lasting clouds occur typically during wintertime at higher latitude
:::::::
latitudes and are therefore associated

with low absolute SSI values and hence also low absolute errors. Even with a bakup
:::::
backup

:
for ρcs, CAL would be still derived555

directly from observations for the vast majority of cases.

7.1.3 Improvement of clear sky reflection, ρcs method

Usually the broadband visible channels are used for the CALSAT method, either directly or as a combination of the visible

channels in the spectral bands 600 nm (VIS006) and 800 nm (VIS008) according to Cros et al. (2006). However, the precision

of the ρcs detection might be improved by using the VIS006 channel as the reflection in this band is rather dark for vegetation.560

This enhances the contrast between clear sky and cloudy reflection and enables a higher precision for optical thin clouds. A

comparison of using different VIS channels was performed by Posselt et al. (2011a). This study showed the potential of using

the VIS006 channel and motivated its use for SPECMAGIC_NOW. Experiments to improve the accuracy by using percentiles
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instead of the original statistical method (Hammer, 2000) did not lead to an improvement. Hence, the same method is used for

the calculation of ρcs in SPECMACIC (Mueller et al., 2012a) and SPECMAGIC_NOW.565

Miss-classification of snow covered surfaces as clouds or clouds as snow
::::
vice

::::
versa

:
is a serious error source for all methods.

This is also valid for the CALSAT method, but with some specificity resulting from the ρcs method. To illustrate, let there

be a certain number of snow free and snow covered days within the 20-30 day period used for the retrieval of ρcs, As ρcs is

calculated with a minimisation function ρcs will capture always the snow free situation. For the snow covered days the snow

will be treated as a thick cloud resulting in a large underestimation of SSI. This effect can be reduced if ρcs is calculated with570

a Fuzzy logic approach, discussed in detail in Posselt et al. (2011b). However, as experienced by the CM SAF the Fuzzy logic

approach induced other artefacts, e.g. wrong ρcs values in the desert. There might be another option to treat this problem. An

accurate snow map can be used to flag snow covered regions and to correct ρcs by simulated values if ρcs shows too low values

for snow. Of course this approach would be a rough workaround which needs further optimisation and adjustments based on

validation studies. A world wide reference for snow cover maps are provided by NIC NOAA, referred to as the IMS snow ice575

map (Helfrich et al., 2018). This map is based on several satellite information including microwave and
::::::::::
instruments

::::::::
including

:::::::::
microwave

::
as

::::
well

::
as

:
ground based information and

::
is therefore not so prone to long lasting clouds. However, still melting

periods of snow are
:::
still

:
sometimes not captured by IMS as a result of long lasting clouds as discussed in the snow workshop

(Helmert et al., 2018).

:::
The

::::::::
upcoming

::::
CM

::::
SAF

:::::::::
SARAH-3

::::
data

:::::
record

::
is

:::::
based

::
on

:::::::
internal

::::
snow

::::::::
detection

::::
with

:::
the

:::
aim

::
of

:::::
better

::::::::
detecting

:::::::::::
snow-covered580

:::::::
surfaces.

::::
The

:::::::
method

::
is

:::::
based

:::
on

::::::
optical

::::
flow,

:::::::::
assuming

:::
that

:::::
cloud

:::::::
objects

:::::
move

:::::
much

:::::
faster

::::
than

:::::
snow

:::::::
objects,

::::::::
allowing

::::::::
separation

::
of

::::::
clouds

:::
and

:::::
snow.

:::::
Initial

::::::
results

:::::::
indicate

:::::::::
significant

::::::::::::
improvements,

:::
but

:::
the

::::::::
validation

::
is

:::
still

::
in
::::::::
progress.

::
A

:::::::
detailed

::::::::
discussion

:::
of

:::
this

::::::::
approach

::::
and

::
its

:::::::::
validation

::::
will

::
be

::::::::
included

::
in

:::
the

:::::::::
SARAH-3

::::::::::
documents.

::
A

::::::::::::
comprehensive

:::::::::
discussion

:::
of

:::
this

::::::::
approach

:::
and

::
its

:::::::::
validation

::::
will

:::
take

:::::
place

::
in

:::
the

:::::::::
SARAH-3

::::::::::
documents.

In SPECMAGIC_NOW the duration used for the slot-wise detection of ρcs has been reduced from 30 to 20 days. This is585

expected to reduce the effect of snow miss-classification as cloud, but might be a handicap for long lasting clouds. However, for

Germany the operational comparison with other data sets (DWD in-situ network, SPECMAGIC) have not shown any significant

drawbacks concerning long lasting clouds so far.

7.2 Calibration

7.1.1
::::::::::
Calibration590

An accurate calibration is of very high importance for the generation of homogeneous climate data records. Thus, it is the

basis to enable appropriate trend analysis. The focus of the first geostationary Meteosat satellites was the support of weather

monitoring and forecasting. As a result calibration issues of the visible channels were not considered (thoroughly) for MVIRI

onboard of MFG and for SEVIRI onboard of MSG, respectively. Both instrument generations are not equiped
::::::::
equipped with

onboard calibration units for the visible channels. The increased awareness of climate change and the need for improved595

climate monitoring and analysis led also to the demand to use Meteosat satellite data for climate monitoring. As a result, the
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CM SAF was implemented by EUMETSAT in 1999 and the activities concerning calibration of the visible channels increased.

For example, Govaerts et al. (2004) developed a method for the calibration of the SEVIRI visible channels using desert and

cloud targets as radiation references. However, longer time series are required for a CDR, which requires the use of MVIRI

to extend the time series, but the method of Govaerts et al. (2004) is not applicable to MVIRI. Unfortunately the MVIRI time600

series is quite in-homogeneous as in the early days of MFG changes in the gauge were not unusual. Further, up to Meteosat-6

no inter-calibration between the satellite instruments was done, adding additional breaks in the observed reflections, see figure

4.

Figure 4. Temporal evolution of the 95th percentile (ρmax) of the observed reflections for MVIRI, covering 1983 to 2005. The different

MVIRI instruments (M 2-7) are coloured for a better distinction. Image from Posselt et al. 2011

For these reasons CM SAF took benefit of the calibration value ρcal of the CALSAT method (see equation 7) for the self-

calibration of MVIRI
:::::::
Meteosat

::::::::::
instruments

::::
(e.g.

::::::
MVIRI

::::
and

:::::::
SEVIRI). This is described in more detail in Posselt et al. (2011a).605

Basically, the ρ values are ordered with a function in a first step. Then the 95 or 98 percentile is used as ρcal. This is done for

a target region with a high cloud coverage (Atlantic ocean, South West of Southern Africa). The advantage of this approach

is that the calibration is done for the same targets (clouds) for which the transmission is retrieved. It has been shown that the

method leads to stable homogeneous data sets across satellite generations (Posselt et al., 2011b; Pfeifroth et al., 2018).

This approach has been slightly modified for SPECMAGIC_NOW. First of all another target region is used, following an610

approach of the Royal Meteorological Insitute
::::::
Institute

:
of Belgium (RMIB). The novel target region covers the ITC region. It

is defined from line 1234 to 2486 of the Meteosat level 1.5 images. Here all counts of the 12 UTC slots are sampled over a

period of 3 days and sorted with the heapsort function and subsequently assigned to a vector (fper). Then, the index of the 95

percentile (pm) and the 99.99 percentile (pmm) are calculated. Afterwards, ρcal is calculated within a loop between the indices

of the respective radiances and finally multiplied by 1.1. Please see the following C-code lines
:
in
:::
the

::::::::
appendix

:
for details.615

heapsort(kend1,fper);

int pm=(int)(0.95*(kend1+1));

int pmm=(int)(0.9999*(kend1+1));
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for (kkk=pm; kkk < pmm; kkk += 1){

Rmaxsum += fper[kkk];620

Rnum += 1;

}

rho_cal=1.1*Rmaxsum/Rnum;

Comparison with the former method of CM SAF for the calculation of ρcal indicates that this method leads to less noise. As

SPECMAGIC_NOW is operated 24/7 using SEVIRI as input the method of Govaerts et al. (2004) could be applied. However,625

concerning physics the ρcal method described above has a significant advantage. Identical channels and targets (clouds) are

used for both the calibration and the retrieval of CAL. Yet, the Govaerts et al. (2004) method uses desert targets in addition,

which is expected to add uncertainties to the calibration because the spectral albedo is quite different to that of clouds. At

least during the development and testing of SPECMAGIC the ρmax calculation could not be improved by the use of additional

desert targets.630

7.1.2 Parallax correction

Figure 5. Illustration of the parallax effect.

The geolocation of the satellite is always related to the Earth surface (sea level). This means that independent on
::
of cloud

height the cloud is assumed to be at the surface. The higher the clouds and latitudes the larger is the displacement of the

geolocation. E.g.
:::
For

::::::::
example, for a cloud with a top height of about 10 km the displacement effect at mid latitudes is several

kilometres. This hampers the comparison between satellite data and ground based information, in particular if instantaneous635

data and not averages are compared. The parallax effect is illustrated in Figure 5. Eumetsat offers a geometrical function for

the correction of parallax effect, which needs only latitude, longitude and the cloud top height (CTH) as input. The CTH
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can be estimated from the Brightness Temperature of the window channel at 10.8 nm. The displacement is then calculated

based on geometrical (sin cos) functions. This approach works well for the Infrared channels. In the IR the satellite receives

mainly the emission from the cloud top if the clouds are not semi-transparent, which can be assumed for a COD larger than640

10. Thus, CTH can be used for the needed altitude information for the parallax correction. However, the diffuse part of SSI is

reflected throughout the cloud and the height needed for the parallax correction can not be assumed to be close to the top of the

cloud. Therefore, the parallax correction should only applied to the direct radiation. The application of a parallax correction

for direct irradiance was already postulated in 1996 by Beyer et al. (1996). A parallax correction has been implemented in

the HelioMont method (Stöckli, 2013; Castelli et al., 2014), but the reduction in the error measures was marginal compared645

to other more dominant effects (Reto Stöckli, personal communication). One reason might be that for COD larger than about

10 direct irradiance is zero. This means that diffuse radiation usually dominates SSI in cloudy situations and CTH is not well

suited for the correction. Thus, the optimal definition of the cloud height for the parallax correction needs further investigations,

in particular empirical studies and RTM calculations for different cloud scenes.
:::::::::
Especially

::::
since

:::
the

:::::::
parallax

:::::::::
correction

:::::
could

::
be

:::::
more

::::::::
significant

:::
in

:::::::::::
homogeneous

:::::::
terrain. After all, the parallax effect is not a weakness of a specific retrieval method, but650

results from the viewing geometry. Close to the equator, everything is fine.

7.1.3 Slant column correction

The geostationary orbit leads to slant column viewing geometries at higher latitudes
::
and

::::::::
towards

:::
the

:::::::
western

:::
and

:::::::
eastern

::::::
borders

::
of

:::
the

:::::::
satellite

:::::
field

::
of

:::::
view.. As a consequence the "cross section" of the clouds increases significantly, see Figure

6 for illustration. Thus, on average the cloud coverage is artificially enhanced at larger satellite zenith angles leading to an655

underestimation of surface solar radiation. The validation study of Riihelä et al. (2015) provided a clear indication for the

underestimation with increasing latitude. Based on that results
::::
these

::::::
results,

:
a brief empirical correction has been developed

and implemented in SPECMAGIC for the generation of the SARAH 2.1 data set (Pfeifroth et al., 2019c). The correction term

for the slant geometry effect is approximated as a function of the satellite zenith angle θsat:

Corr = 0.1 · ((cos(θsat/1.13)1.3)−0.9− 1) (12)660

The correction term is afterwards applied for CAL ∗ θsat/1.3< 0.55 and CAL> 0.04

CAL= CAL ∗ (1−Corr) (13)

This results in an improved performance of the retrieval, especially in higher latitudes (Pfeifroth et al., 2019). Yet, further

empirical studies and RTM calculations are needed to improve the correction of the slant geometry effect. Again this effect

is relevant for all methods. The cloud cross section increases also with increasing SZA, but here also the reflection increases665

as cloud optical thickness is increasing, but the slant viewing geometry of the satellite leads to an artificially increased cloud

cover that does not match the ground observations.
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Figure 6. Illustration of the slant geometry effect. For a satellite zenith angle of 0 the cloud coverage would be 0.5, but for the slant geometry

it would be 1.

7.1.4 Deep learning - neural networks

Overall, the use of artificial intelligence methods, in particular deep learning (machine learning) with neural networks
::::::
Neural

::::::::
Networks

:::::
(NN), is also increasing in meteorology. This includes also

:::
also

:::::::
includes

:
the estimation of solar surface irradiance670

from satellites (Senkal, 2009; Yeom et al., 2019; Cornejo-Bueno et al., 2019; Dewitte et al., 2021).

However, a drawback of neural networks is the
::::
their black box character and the need for retraining for new regions and

satellite systems. A neural network is, strictly speaking, only valid for the training framework, as only the behaviour of the

training data sets can be reproduced. An application to other regions, periods or satellite instruments typically requires ex-

tensive re-training. That is a reason why scientists started to develop spectral transfer functions to ease the adaption of the675

network to other satellite instruments. However, this means using physical approaches to avoid the need for extensive retrain-

ing. Further, the black box character hampers a deeper understanding of the involved physics and consequently the analysis of

error sources. Ultimately, it is a complex regression and the term intelligence is somehow misleading. For the retrieval of solar

surface irradiance the physics is well defined. Thus, it is not obvious what advantage NN could provide compared to physical

approaches. However, a good application of neural networks (NN) might be the replacement of LUTs. This has be
:::
been

:
done680

for the retrieval of SIS (e.g. Takenaka et al. (2011)). In this study an algorithm for estimating solar radiation from space using a

neural network (NN) to approximate radiative transfer calculations were developed. Similar approaches are also used for other

atmospheric variables, e.g. for volcanic ash (Bugliaro et al., 2021). However, with respect to SSI, the burden of cumbersome

LUTs, which require hundreds of thousands of RTM calculations, is eliminated by using the hybrid eigenvector LUT concept

(Mueller et al., 2009). These LUTs are relatively easy to calculate and to manage. This might reduce the value of NN as re-685
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placement of LUTs within the scope of SSI. Thus, the authors believe that there is no urgent need to apply neural networks for

the retrieval of solar surface radiation,in particular if the CAL approach is used for the retrieval of the cloud transmission.

7.2 The clear sky input data

3
::::
Three

:
SAFs are engaged in the retrieval of SSI. EUMETSAT triggered an intensive discussion and interaction between the

SAFs in order to exploit synergies. As a consequence, a comparison of the SAF SSI data (Ineichen et al., 2009) was done and690

several SAF radiation workshops took place. It was discussed that all SAFs use established methods for the retrieval of the

cloud transmission, but that there is a need for action on the clear sky input data. Therefore, the clear sky input data is briefly

discussed in the following paragraphs.

7.2.1 Ozone:

O3 is a strong absorber and can be well detected from satellites. Data in good quality can be gained from from GOME /695

SCIAMACHY (Burrows and Chance, 1992) , TOMS (Fleig et al., 1986) and the Ozone Measuring Instrument (Ziemke et al.,

2011) and the respective follow-up satellites. There is no need to use data in high temporal resolution as the spatial and

temproal
:::::::
temporal

:
variation of SSI is dominated by clouds in the meso-scale. Thus, observations based on polar orbiting

satellites are not a handicap. Alternatively ozone data from the ECMWF models can be used (Bechtold et al., 2008). However,

also climatologies can
:::::::::::
climatologies

:::
can

::::
also be used in good approximation for broadband SSI as a deviation of about 150 DU700

from the US standard atmosphere leads only to changes in SSI of about +/-5.5 W/m2. This is in the range of the uncertainty of

solar irradiance measurements (Müller, 2012b).
::::::::
However,

:::
the

:::::::::
absorption

:::::
effect

::
of

:::::
ozone

::
in

:::
the

:::
UV

::
is
::::
very

::::::
strong

:::
and

::::::::
therefore

:::::::
accurate

::::::::::
information

:::::
about

::
the

::::::
ozone

:::::::::::
concentration

::
is

:::::::
required

:::
for

:::
this

:::::::
spectral

::::::
range.

7.2.2 Water vapour:

Water vapour (H2Og) is a strong absorber and the total column can be well retrieved from satellites. However, H20g can only705

be retrieved in cloud free skies wihout
::::::
without

:
appropriate profile information. Thus, using H20g from satellite is expected

to induce a clear sky bias in H20g . Therefore, data from NWP might be the better option as the water vapour channels are

assimilated by modern state of the art NWP models (4d-VAR). Thus, this data source is strongly recommended for H20g , e.g.

CM SAF is using water vapour information from the ECMWF European Medium-Range Weather Forecasts NWP model
:::::
NWP

:::::
model

:::
and

:::::
from

:::
the

::::::
ERA-5

::::::::
reanalysis

:
(Dee and Uppala, 2009; Betts et al., 2003). Also OSI SAF uses data from ECMWF. The710

use of climatologies can lead to significant deviations for daily and hourly SSI (broadband) values and is not recommended as

a primary choice.

7.2.3 Surface Albedo

Satellites are a good source for gridded Surface ALbedo (SAL) data. The optimum accuracy for the retrieval of SAL is of

about 5 % (Fell et al., 2021; Riihelä and Kallio-Myers, 2020). The accuracy is limited by uncertainties in ADMs, spectral715
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response functions and calibration of the visible channels. This could lead to different SAL values for different instruments.

E.g.
::
For

::::::::
example,

:
during the CM SAF CDOP-1 phase the SAL values derived from MSG and NOAA polar orbiting satellites

showed a difference of several per cent albeit identical retrieval methods were applied. Further, SAL can only be retrieved

accurately in cloud free skies. This is particular of
:
of

:::::::::
particular importance for regions with changing snow cover due to fresh

snowfall or melting periods as this are the main driver
::::::
drivers for huge short-term changes in SAL. Respective changes can not720

be detected provided there are long lasting clouds.
::::::::::::
Corresponding

:::::::
changes

::::::
cannot

:::
be

:::::::
detected

::
in

::::
case

::
of

::::::::::
long-lasting

:::::::
clouds.

Snow is associated with high surface albedos and it’s
::
its

:
miss-classification leads to large errors in the retrieved SSI values.

The uncertainties of SAL retrievals are discussed in more detail in Shuai et al. (2020); Carrer et al. (2010, 2018) and Fell

et al. (2021). They hamper an accurate retrieval of COD, reff and aerosols. Surface albedo data is available from LSA-SAF

COPERNICUS (Geiger et al., 2008; Carrer et al., 2010, 2018) , CM-SAF
:::
CM

::::
SAF (Schulz et al., 2008), COPERNICUS NOAA725

/ NESDIS (Wang et al., 2013), GEWEX (GEWEX-Quarterly) and several other sources. To the knowledge of the authors the

best data source for snow coverage is the IMS snow mask Helfrich et al. (2018)
:::::::::::::::::
(Helfrich et al., 2018), however this mask is

provided only in a daily resolution. Again, data from modern NWP models might be a good alternative as satellite information

is assimilated. This option should be investigated in more detail.

7.2.4 Aerosols730

Aerosol information has the highest uncertainty among the atmospheric clear sky parameter
:::::::::
parameters. This results from the

gap of a dense ground based network and the limitations of satellite retrieval methods. The Aeronet network provide
:::::::
provides

high quality data, but the station density is too low to gain an accurate gridded data set. Satellite based AOD can not fill

this gap as the retrieval of aerosols (AOD and type) is ill-posed. The reflection signal is weak compared to that of SAL and

clouds. Therefore, quite accurate cloud screening and accurate spectral resolved information of the surface reflection is needed.735

However, optical thin cirrus clouds are hard to detect and the uncertainty of SAL retrieval is in the same order of magnitude as

the signal from aerosols for low to medium aerosol loads (RTM study CM SAF, not published). Further, for a given AOD the

reflection depends also on the composition and the shape of the aerosols (aerosol type), and visa
::::
vice versa. Absorbing aerosols

(e.g. urban aerosols) tend to lead to a reduction of the reflection for increasing AOD whereas scattering aerosols (desert, rural,

maritime... ) lead to a significant increase in the reflection (Müller et al., 2016). Unfortunately, the possibilities for the accurate740

retrieval of aerosol composition and shape from operational satellites is very limited. ADMs/BRDFs are needed for the retrieval

as well. Although, significant progress has been made using MODIS data (Lipponen et al., 2018), accurate estimation of aerosol

information is still a great challenge. MODIS is equiped
:::::::
equipped

:
with a blue (dark) channel which favours the retrieval of

aerosols as SAL is relativ
:::::::
relatively

:
dark over vegetated surfaces in this wavelength region. However, accurate calibration is a

serious challenge in the blue channels due to the exposure with UV, leading to ageing of the optical devices (e.g. the diffuser).745

In summary, satellite based aerosol data comes with serious uncertainties and the aerosol information is only provided for

cloud free skies, yet, the AOD depends for hygroscopic aerosols
::
the

:::::
AOD

:::::::
depends

:
on the relative humidity (Hess et al., 1998)

and thus changes with cloudiness. Based on the validation results and RTM studies of CM SAF, the authors are not aware

of any aerosol data set that captures the temporal and spatial variation of AOD with a higher accuracy of
::
an

::::::::
accuracy

::::::
higher
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:::
than

:
approximately +/− 0.1. This might explain why amazingly good accuracy of SSI can be gained over Europe with a750

fixed visibility of about 23 km (Ineichen et al., 2009). Within this scope it is important to consider that the variation in AOD

is on average relative
:::::::
relatively

:
low in many regions compared to its uncertainties, and that 23 km visibility is a reasonable

climatological assumption (see Aeronet measurements and Müller et al. (2016)). Thus, accurate information of the spatial

and temporal aerosol distribution are needed to beat on average climatological values or fixed visibilities. As a result of the

disadvantages of the individual data sources (i.e. ground based measurements, satellite based data sets and chemical transport755

models) a reasonable way forward might be the use of aerosol information from data assimilation, the combination of numerical

modelling, satellites and ground based measurements. At least for the CALSAT methods it has been shown that this approach

has a great potential to provide better aerosol data sets (Mueller and Träger-Chatterjee, 2014; Müller et al., 2016). Therefore,

MACC reanalysis data (Inness et al., 2013) was used for the generation of the CM SAF SARAH data sets e.g. (Müller et al.,

2015; Mueller and Trentmann, 2015; Pfeifroth et al., 2019b).
:::
The

::::::::
research

:::
and

:::::::::::
developments

:::
of

:::
the

::::::
MACC

:::::::
projects

::::
went

::::
into760

::
the

::::::::::
Copernicus

:::::::::::
Atmosphere

:::::::::
Monitoring

:::::::
Service

::::::::
(CAMS)

:
?
:
,
:::::
which

::::
was

:::::::::::
implemented

:::
by

::::::::
ECMWF

::
as

::::
part

::
of

:::
the

::::::::::
Copernicus

::::::::::
Programme.

:::::
Thus,

::::::
CAMS

::
is
:::::
some

::::
kind

:::
of

::::::::
successor

::
of

:::::::
MACC

:::
and

::
a
::::
very

:::::::
valuable

::::::
source

:::
for

:::::::
aerosol

::::::::::
information.

:::::::
CAMS

:::::::
provides

::::::::
reanalysis

:::
as

::::
well

::
as

:::::::
forecast

::::
data.

:
The MACC procedure consists of a forward model for aerosol composition and

dynamics (Morcrette et al., 2009) and a data assimilation procedure (Benedetti et al., 2009). The data set is available at MACC-

Weblink and has been used to assess the radiative forcing by aerosols (Bellouin et al., 2013). It is recommended to consider765

this data set for aerosol information within the retrieval of SSI. Yet, for CAL methods, a specific feature enters the door.

High fluctuations of desert aerosols (and familiar
:::::
related

:
types) relative to the background , e.g. as

::::::
aerosol

:::::
load,

::::
such

::
as

:::::
those

induced by desert storms, are interpreted as clouds , because the reflection is significantly increased compared to clear sky

reflection. This has to be considered and a modification of the used aerosol information might be of benefit for CAL methods.

An respective approach is presented and discussed in more detail in Müller et al. (2016).770

7.2.5 Turbidity

Until the Helioat-3
:::::::::
Heliosat-3 project Linke turbidity was usually used as input for the clear sky model applied within Heliosat

methods (Ineichen and Perez, 2002; Beyer et al., 1996; Cano et al., 1986; Rigollier et al., 2004; Perez et al., 2001) instead

of separate aerosols and water vapour information. However, the use of Linke turbidity has a serious disadvantage. For the

accurate calculation of the ratio between diffuse and direct irradiance, information of the aerosol type and the aerosol optical775

depth are required (Mueller et al., 2004). An exact ratio of direct and diffuse radiation is essential for an accurate estimation

of the irradiation on tilted surfaces that are typical for PV systems. The use of turbidity was therefore in contradiction to

the aims of the Heliosat-3 project to support the solar energy community in its efforts for increasing the efficiency and cost-

effectiveness of solar energy systems and improving the acceptability of renewables. Therefore, RTM based methods were

developed (Mueller et al., 2004) in the Heliosat-3 project, which are able to consider the effect of AOD and aerosols type,780

water vapour as well as ozone separately. These concept
:::::::
concepts

:
and input information were already used in the climate

community (Gupta et al. (1999) and references therein). Thus, nowadays a clear sky model or parameterisation should be able

to use the full set of information of the dominant atmospheric variables, aerosol optical depth and aerosol type, water vapour
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content and ozone. See Mueller et al. (2004) for further discussions and details. However, as a result of the uncertainties in

aerosol information the use of well calibrated ground based turbidity data lead still to remarkable good results.785

7.2.6 Satellite

The new satellite generations (GOES, HIMAWARI, Meteosat Third Generation) offer a higher spatial and temporal resolution

and are equiped
::::::::
equipped with more spectral channels. These features enables

:::::
enable a better distinction between clouds and

snow. Overall, it can be expected that the new satellite generations will increase the accuracy of solar surface radiation data. A

particular new feature for Remote Sensing in Europe and Africa is the blue channel available with Meteosat Third Generation.790

In this wavelength spectrum most land surface types can be assumed to be dark surfaces. This in turn enables a more accurate

retrieval of aerosol from geostationary satellites, because, their is a better option to estimate the aerosol type and the absolute

errors induced by surface albedo are minimised. Further details of the enhanced features can be found on the MTG web page

(MTG-Weblink).

8 Conclusions795

Satellite-based remote sensing of solar surface irradiance (SSI) is a key component in monitoring and predicting the state of

the earth’s atmosphere and is also of great importance for the planing, monitoring and operation of solar energy systems.

The effective cloud albedo CAL, also reffered
::::::
referred

:
to as cloud index ore

::
or

:
effective cloud fraction, can be retrieved

directly from the radiances observed by the weather satellites without the need of any modelling or external informaion

:::::::::
information

:
(Mueller et al., 2011). The respective CALSAT approach was initially developed by Möser and Raschke (1984);800

Cano et al. (1986) and Diekmann et al. (1988). The basic relationship between observed radiances and the effectice
:::::::
effective

cloud albedo (equation 7) is still the basis for state of the art retrievals and for estimating SSI with an accuracy close to that

of well-maintained ground-based stations (Dürr and Zelenka, 2009; Posselt et al., 2011b; Mueller et al., 2012a; Müller et al.,

2015; Castelli et al., 2014; Pfeifroth et al., 2019b).

There are good reasons why the CALSAT approach is still very prominent and widely used. It is based on the physi-805

cal law of energy conservation and takes full benefit of the satellite observations for the retrieval of the cloud transmission.

There is no need for any ADM simulation or external information of the surface albedo or to asssume
:::::
assume

:
that clouds are

plane-parall
:::::::::::
plane-parallel. Only the observed reflections are needed to define the effective cloud albedo and thus the cloud

transmission. This reduces the uncertainty induced by 3rd party information or assumptions needed to model fluxes, which in

turn are necessary for the indirect methods.810

Therefore, the authors do not see any
:::
see

:::
no advantage in using indirect ways, e.g. to retrieve

::::
using COD and reff for the

estimation of the cloud transmission
:
to

::::::::
estimate

::::
cloud

:::::::::::
transmission

::
as

::::
part

::
of

:::
the

::::
SSI

:::::::
retrieval. For the retrieval of COD and

reff at least two visible channels are needed, which are not available for for Meteosat First Generation satellites as the MVIRI

instrument is equipped with only on
:::
one

:
visible channel. This is a serious limitation for the generation of climate data records.

CAL can be derived from all Meteosat satellite generations and can be easily adapted to other satellite systems. However,815

30



CALSAT methods provide only information about the cloud transmission, but not about the micro-physical cloud properties. If

micro-physical quantities of clouds are needed or of interest then retrieval methods based onCOD and reff are the preliminary

:::
first

:
choice. Depending on the area of application, it can then also be useful to use COD and reff for the determination of the

solar surface radiation in order to obtain a consistent data set.

Concepts developed within HELIOSAT-3 (Mueller et al., 2004) went eventually in
:::
into the development of the methods820

MAGIC (Mueller et al., 2009, 2011; Posselt et al., 2011b) and SPECMAGIC (Mueller et al., 2012a). In these methods the cloud

transmission derived with the CALSAT approach is coupled with RTM-LUT based clear sky model. In this way, the advantages

of the CALSAT approach can be fully exploited and at the same time the complete clear sky information can be used instead

of only turbidity. The concept of eigenvector hybrid LUTs (Mueller et al., 2009) enable a significant reduction of the needed

RTM calculations and is recommended therefore
::::::::
therefore

::::::::::::
recommended. SPECMAGIC was used for the generation of the825

first CDR of spectral resolved irradiance and is the basis of all CM SAF SARAH data sets.

Of course, satellite retrievals has also
:::
also

:::::
have limitations. That is the reason why during the last decades several exten-

sions has
::::
have been done to improve the CALSAT based methods, including a specific and powerful method for mountains,

the Heliomont method (Dürr and Zelenka, 2009; Stöckli, 2013). The improvements of the method cover parallax correction,

slant geometry correction, snow-cloud differentiation, calibration and correction of shadowing effects. Although, significantly830

::::::::
significant

:
improvements have been achieved more studies and works

::::
work are needed to gain further improvements. However,

it is likely that significant increase of the SSI quality can be gained from an improved accuracy of information in cloud-free

skies, in particular concerning aerosol optical depth and type (Müller et al., 2016). For the clear sky input, due to the extension

and further development of data assimilation, ECMWF data might be the best choice. Finally, the upcoming satellite genera-

tions, having a higher resolution and more spectral channels, will likely contribute to the further improvement of atmospheric835

input information and retrieval schemes.

Code and data availability. The near real time and forecast data is available at opendata.dwd.de/weather/satellite/radiation/, the CDRs at

wui.cmsaf.eu, the code is available on request (GPL license). Please contact Richard.Mueller@dwd.de

31



Meaning of eigenvector approach

Appendix840

::::::::
Meaning

::
of

::::::::::
eigenvector

::::::::
approach

A process is called independent of other atmospheric processes if for a given deviation of an atmospheric variable (here water

vapour for example) a unique scalar tH2O can be defined which fulfils the following equation.

RTMδH2O I0 = tH2O · I0 (1)

I0 is the extraterrestrial irradiance and RTMδH2O is an operator, describing the effect of deviations in water vapour on I0.845

For every RTMδH2O a unique tH2O exists which depends only on the amount of water vapour and on no other atmospheric

variable. The value of t describes the atmospheric transmission. The atmospheric transmission of the operator RTMδH2O

depends only on the amount of water vapour. tH2O can therefore be interpreted as eigen-value of the operator RTMδH2O and

Io as “eigenvector”.

For aerosols this is not the case, because no eigenvalue exists. Hence,850

RTMδAODI0 6= taod · I0 (2)

For equal δAOD not a unique but different taod values exist, as t depends on the value of aod (aerosol optical depth), ssa

(single scattering albedo) and gg (asymmetry factor). The transmission for a given aod depends also on the values for ssa and

gg.

For the surface albedo, Equation 1 is also valid not for the extraterrestrial irradiance but the surface irradiance:855

δSALIsurf = tH2O · Isurf (3)

::::::
C-code

::::::::::
calibration

:::::::
method

::::::
C-code

::::
lines

:::
for

:::
the

:::::::::
calculation

::
of

:::::
(ρcal):::::

used
::
for

:::
the

:::::::::
calibration

::
of
:::
the

::::::
visible

::::::::
channels

::
of

:::
the

::::::::
Meteosat

::::::::::
instruments.

:

::::::::::
heapsort

:
(

::::::
kend1

:
,
:::::
fper

::
);

::::
int

:::
pm

:::
=(

:::
int

::::::::::
)(0.95*(::::::

kend1
::::::
+1));860

::::
int

::::
pmm

:::
=(

:::
int

::::::::::::
)(0.9999*(::::::

kend1
::::::
+1));

::::::::
for

:::
(

:::
kkk

::
=

::
pm

:
;
:::::
kkk

::
<
:::::
pmm

:
;
:::::
kkk

::::
+=

:::::
1){

::::::::::::::::
Rmaxsum

:::
+=

::::::
fper

:
[
::::
kkk

::
];

::::::::::::
Rnum

::::
+=

:::
1;

::::::
}865

::::::::
rho_cal

::::::
=1.1*:::::::::

Rmaxsum
:
/
:::::
Rnum

:
;
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