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Abstract. The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) onboard has
been measuring solar radiation backscattered by the Earth’s atmosphere and its surface since its launch on 13 October 2017.
Methane (CH,) and carbon monoxide (CO) data with a spatial resolution (initially 7 x 7 km?, upgraded to 5.5 x 7 km? on
6" of August 2019) have been retrieved from shortwave infrared (SWIR) and near-infrared (NIR) measurements since the
end of November 2017 and made available to the experts for early validation and quality checks before the official product
release. In this paper, we present for the first time the SSP CH,4 and CO validation results (covering a period from November
2017 to September 2020) using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of
the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori
alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application
of advanced co-location criteria.

We found that the required bias (systematic error) of 1.5 % and random error of 1 % for the S5P standard and bias-corrected
methane data are met for measurements over land surfaces with pixels having quality assurance (QA) value >0.5. The sys-
tematic difference between the S5P standard XCH,4 and TCCON data is on average -0.6940.73 %. The systematic difference
changes to a value of -0.2540.57 % for the S5P bias-corrected XCH, data. We found a correlation of above 0.6 for most sta-
tions, which is mostly dominated by the seasonal cycle. The contributions of smoothing uncertainty at the individual stations
are estimated and found to be dependent on the location. The highest contribution of the smoothing uncertainty is observed for
mid-latitude TCCON stations and high latitude stations for NDACC. A seasonal dependency of the relative bias is seen. We
observe a high bias during the springtime measurements at high SZA and a decreasing bias with increasing SZA for the rest of
the year.

We found that the required bias (systematic error) of 15 % and random error of <10 % for the S5P carbon monoxide data
are met in general for measurements over all surfaces with pixels having quality assurance value of >0.5. There are a few
stations where this is not the case, mostly due to co-location mismatches and the limited availability of co-located data. We
compared the S5P XCO data with respect to standard TCCON XCO and unscaled TCCON XCO (without application of
the empirical scaling factor) data sets. The systematic difference between the SSP XCO and the TCCON data is on average
9.1443.33 % (standard TCCON XCO data) and 2.3643.22 % (unscaled TCCON XCO data). We found that the systematic
difference between the S5P CO column and NDACC CO column data (excluding two stations that were obvious outliers) is on
average 6.4443.79 %. We found a correlation of above 0.9 for most TCCON and NDACC stations indicating that the temporal
variations in CO column captured by the ground-based instruments are reproduced very similarly by the SSP CO column. The

contribution of smoothing uncertainty at the individual stations is estimated and found to be significant. They are found to be
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dependent on the location with large changes seen for stations located in the Southern Hemisphere as compared to the Northern
Hemisphere and at highly polluted stations. A cone co-location criterion, which gives a better match between the ground-based
instrument’s line-of-sight and satellite pixels, seems to give better results for high latitude stations and stations located close to
emission sources. The validation results for the clear-sky and cloud cases of S5P pixels are comparable to the validation results
including all pixels with quality assurance value of >0.5. We observe that the relative bias increases with increasing SZA. We
estimated this increase is about 10 % over the complete range of measurement SZAs.

The study shows the high quality of SSP CH4 and CO data by validating the products against reference global TCCON and

NDACC stations covering a wide range of latitudinal bands, atmospheric conditions, and surface conditions.

1 Introduction

The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) onboard was launched
on 13 October 2017. The S5P is orbiting in a Sun-synchronous polar orbit with an equator crossing at 13:30 local solar time.
The TROPOMI instrument is a nadir-viewing hyperspectral spectrometer measuring solar radiation reflected by the Earth’s
atmosphere and its surface from the ultraviolet-visible (270-495 nm), near-infrared (675-775 nm) and shortwave-infrared
(2305-2385 nm) with daily global coverage for monitoring atmospheric trace gases and aerosol (Veefkind et al., 2012). Methane
(CHy) and carbon monoxide (CO) are retrieved from shortwave-infrared (SWIR) and near-infrared (NIR) measurements.

Methane is the second most important anthropogenic greenhouse gas (GHG) after carbon dioxide (CO,). It has a global
warming potential of about 28 times larger than CO4 over a 100 year time period. It is less abundant in the atmosphere and has
a significantly shorter lifetime than CO (Stocker et al., 2013). Reduction in CH4 will affect the Earth’s radiation budget on a
short time scale. CHy is also relevant in atmospheric chemistry, where it reacts with hydroxyl radicals (OH), thereby reducing
the oxidation capacity of the atmosphere and producing ozone (Kirschke et al., 2013).

Carbon monoxide is a poisonous reactive gas considered principally an anthropogenic atmospheric pollutant. Volatile organic
compounds (VOCs) are emitted to the atmosphere by incomplete combustion (e.g., vehicles, industry and biomass burning)
and have an important role in the production of CO. The lifetime of CO is relatively short and ranges from weeks to months
(Novelli et al., 1998). CO reacts with atmospheric oxidants, ozone (Ogs), hydroperoxy (HO-), and hydroxyl radicals (OH). It is
the largest direct sink of OH affecting the self-cleansing capacity of the atmosphere. An increase in CO would imply a higher
OH loss through chemical reaction and therefore less availability of OH for the depletion of other atmospheric constituents such
as CHy. CO is therefore affecting the concentrations of primary greenhouse gases and has an indirect but important influence
in determining the chemical composition and radiative properties of the atmosphere. It is therefore considered as an indirect
greenhouse gas (Stocker et al., 2013).

Continuous precise and accurate global measurements of these gases are very important for long-term monitoring and
their use by the inverse models such that the inferred surface fluxes can be better constrained. This paper focuses on the
quality assessment of the operational SSP CH, and CO products by performing validation of the total columns of these two

products with the reference data from all stations in the ground-based Total Carbon Column Observing Network (TCCON) and
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Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) networks.
The systematic and random error requirements of the CHy and CO products are checked based on 2.8 years of S5P data and
possible reasons are given where large deviations are observed.

The paper is organised as follows: Section 2 describes the satellite and ground-based reference data used in this study.
Section 3 gives the details of the validation methodology. Section 4 gives the validation results for CH4 and section 5 gives the

validation results for CO. Section 6 summarizes our results and conclusions.

2 Data

In this section, we present an overview of the input data from the SSP and the reference ground-based data from the TCCON
and NDACC-IRWG, herewith referred to as NDACC, which are used for the validation of the S5P operational CH4 and CO

products.
2.1 S5P Methane and Carbon monoxide data sets

TROPOMI is the unique payload of the ESA/Copernicus Sentinel-5 Precursor mission orbiting in a low-Earth Sun-synchronous
polar orbit with a wide swath of 2600 km across track resulting in daily global coverage. The TROPOMI radiometric measure-
ments of the Earth’s radiance and solar irradiance are processed using on-ground data processor to retrieve the atmospheric
abundances of ozone (Oj3), nitrogen dioxide (NO3), sulphur dioxide (SO3), formaldehyde (HCHO), methane (CHy), carbon
monoxide (CO), as well as cloud and aerosol properties. The spatial resolution of the operational Level 2 (L2) CH4 and CO
products was originally 7 x 7 km? and was increased to 5.5 x 7 km? on 6th of August 2019.

The operational processing to retrieve the total column-averaged dry air mole fraction of methane (XCHy) is performed
by the RemoTeC-S5P algorithm. The details describing the theoretical baseline of the algorithm, the input and ancillary data
needed, averaging kernel, and the output generated are described in detail in Hu et al. (2016) and Hasekamp et al. (2019). The
use of satellite measurements for estimating sources and sinks of CH, strongly depends on the precision and accuracy achieved.
Systematic biases or lower precision on regional or seasonal scales can jeopardise the usefulness of the satellite measurements
for the estimation of source and sink estimates (Bergamaschi et al., 2007). The bias requirement for SSP XCHy is 1.5 % and the
random error requirement is 1 % (as reported in the official ESA document ESA-EOPG-CSCOP-PL, 2017, Table 1, page 14).
The current S5P CH,4 data are only processed for cloud-free measurements over land. Along with the standard CH,4 product, a
bias-corrected CH4 product is also made operationally available. We provide a brief summary of the CH4 bias correction here
and the details of the bias correction can be found in section 5.6 of the Algorithm Theoretical Baseline Document (ATBD) for
S5P methane retrieval (Hasekamp et al., 2019). The operational SSP CH,4 product has been compared to co-located GOSAT
proxy measurements. The SSP-GOSAT XCHy, ratio shows a high correlation to the retrieved surface albedo in the SWIR. The
highest correlation is for low surface albedo scenes. A posteriori bias correction has been applied to the SSP CH4 product using
a second-order polynomial fit. The effect of the bias correction is an increase of the retrieved CH, for scenes with relatively low

albedo conditions (e.g., forest scenes) and a decrease of CH, for scenes with high albedo conditions (e.g., desert scenes). In the
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paper, we will show the validation results of both standard and bias-corrected SSP CH, products. The latest product versions of
S5P CHy4 data for the reprocessed (RPRO) + offline (OFFL) data from the start of the mission to 30 September 2020 are used in
this work. The version numbers and the respective dates are listed in Table 1 and further details on the relevant improvements
are given in the Product Readme File (PRF; https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Methane-Product-
Readme-File, last access 14 July 2020). The quality assurance (QA) value is provided as part of the CH, data product. QA
>0.5 is used as recommended by the PRF to filter out the SSP CH,4 data to be used for the validation studies. This selection
filters out measurements performed with surface albedo <0.02, solar zenith angle (SZA) >70°, viewing zenith angle >60°, and
some other criteria as mentioned in the PRF.

The operational processing to retrieve the total column density of carbon monoxide (CO) simultaneously with interfering
trace gases and effective cloud parameters (cloud height and optical thickness) is performed by the Shortwave Infrared Carbon
Monoxide Retrieval (SICOR) algorithm (Landgraf et al., 2016). The details describing the theoretical baseline of the algorithm,
the input and ancillary data needed, example plots of averaging kernel, and the output generated are described in details in
Landgraf et al. (2018). The bias requirement for total column-averaged dry air mole fraction of carbon monoxide (XCO) is
15 % and the random error requirement is <10 % (as reported in the official ESA document ESA-EOPG-CSCOP-PL, 2017,
Table 1, page 14). The CO total column L2 data products are available as the Offline (OFFL) and Near Real Time (NRTT)
timeliness data products. The version numbers and the respective dates are listed in Table 1 and further details on the relevant
improvements are given in the Product Readme File (PRF; https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-
Carbon-Monoxide-Level-2-Product-Readme-File, last access 14 July 2020). The latest product versions of SSP CO data for
the reprocessed (RPRO) + offline (OFFL) data from the start of the mission to 30 September 2020 are used in this work. The
NRTT data stream delivers the CO data product within 3 hours after sensing, whereas the OFFL data are available a few days
after sensing. Due to the different timeliness, the NRTI product are given in 5 min data granules, whereas the OFFL data
product are given per satellite orbit. The consecutive data granules of the NRTI product show an overlap of about 12 scan lines.
The NRTI processing chains employ the same algorithm as the OFFL since processor version 01.03.02 starting from orbit
number 8906 on 3rd of July 2019 (see section 9.4 of Lambert et al. (2020) for validation results showing the equivalence of
S5P NRTT and OFFL CO products). More details on the two processing streams of the two data sets are given in the Algorithm
Theoretical Basis Document (ATBD) (Landgraf et al., 2018). In this paper, we show the detailed validation results of the S5P
OFFL CO product. Data with QA values >0.5 is used as recommended by the PRF. This selection filters out measurements
performed with SZA >80°, sensor zenith angle >80°, two most westward pixels due to unresolved calibration issues and
some other criteria as mentioned in the PRF. Furthermore, we also separated retrievals performed for measurements under
clear-sky (CLSKY; cloud optical thickness <0.5 & cloud height <500 m, over land) and cloudy conditions (CLOUD; cloud
optical thickness > 0.5 & cloud height <5000 m, over land and ocean) as suggested by Borsdorff et al. (2018b). The clear-sky
observations over the ocean have too low signal intensities in the SWIR and therefore cannot be used for the data interpretation.
Unlike the S5P CH4 a priori profiles which are available in the L2 files, the S5P a priori profiles for CO were downloaded from
ftp://ftp.sron.nl/pub/jochen/TROPOMI_apriori/ (last access 01 December 2020). Among the known data quality issues of the

CO product, single overpasses of S5P show stripes of erroneous CO values <5 % in the flight direction, probably due to
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calibration issues of S5P. We did not do any correction of this stripe pattern as we show the operational validation of the CO
product and also because of small number of pixels <5 % are affected by it. The striping effect is analysed in detail by Borsdorff
et al. (2019). The effect on the TCCON validation was small. The destriping approach suggested by this work is planned to be
implemented by the operational TROPOMI CO processing in the near future. Furthermore, the effect of updating the spectral
cross-sections in the TROPOMI CO processing for clear-sky and cloudy conditions was analysed with ground-based FTIR
measurements from 12 stations of the TCCON network (Borsdorff et al., 2019).

2.2 Ground-based TCCON reference data set

The Total Carbon Column Observing Network (TCCON) represents a network of ground-based Fourier transform spectrom-
eters (FTS), of the type Bruker IFS 125HR (some long-existing sites also use Bruker 120/5HR), that records direct solar
absorption spectra in the near-infrared (NIR) spectral range to retrieve accurate and precise column-averaged abundances of
atmospheric constituents including CO2, CH4 and CO amongst other species (Wunch et al., 2011, 2015). It is the current
state-of-the-art validation system for total column measurements of important greenhouse gases (GHGs) by remote sensing.
TCCON data from several stations have been used in previous studies for the validation of trace gas data products from satellite
platforms such as OCO-2 (O’Dell et al., 2018; Wunch et al., 2016), GOSAT (Iwasaki et al., 2017; Kulawik et al., 2016), S5P
(Sha et al., 2018a; Borsdorff et al., 2018a, 2019), MOPITT (Hedelius et al., 2019), SCIAMACHY (Borsdorff et al., 2016;
Hochstaffl et al., 2018). Data from all stations (23 in the Northern Hemisphere and 5 in the Southern Hemisphere) are used
in this study and are listed in Table 2. The stations cover various atmospheric conditions (humid, dry, polluted, presence of
aerosol), various surface conditions (range of albedo, flat terrain, high altitude locations), latitudinal distribution from 80° N to
45° S. The stations at Nicosia and Xianghe are not yet officially part of TCCON but performs observations and data analysis
fully compatible with TCCON guidelines. GGG2014 (the current standard TCCON retrieval code) XCH, systematic errors for
TCCON are below 0.5 % for SZAs below 85°. The XCO errors are below 4 % and decrease with SZA (Wunch et al., 2015). The
uncertainty in the scaling slope for XCO is 6 % (20) (Hedelius et al., 2019). Previous studies have shown that the scaling factor
of ~7 % used in GGG2014 to tie the TCCON XCO measurements to the World Meteorological Organization (WMO) in situ
scale is large compared to the current uncertainty in spectroscopy (Sha et al., 2018b; Hedelius et al., 2019; Zhou et al., 2019).
A scaling factor of 7 % provided the best scaling to the in situ data available when the scaling for GGG2014 was calculated.
There is currently an ongoing effort within the TCCON community to determine whether the scaling factor is appropriate.
These results are very important to decide on the choice of spectroscopic cross-sections that should be implemented for the
future improved S5P CO product (Borsdorff et al., 2019). In this work, we use the official TCCON XCO product as well as
an XCO product without the application of the empirical scaling factor, herewith referred to as unscaled XCO. The validation
work is done using the standard and rapid delivery of TCCON data from the whole network. The publicly available TCCON

data can be accessed via https://tccondata.org/.
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2.3 Ground-based NDACC-IRWG reference data set

The Infrared Working Group (IRWG) of the Network for the Detection of Atmospheric Composition Change (NDACC) rep-
resents a network of high-resolution Fourier transform spectrometers that records solar absorption spectra in the mid-infrared
(MIR) spectral range. It is a multi-national collection of over twenty stations distributed from pole to pole (Eureka 80° N to Ar-
rival Heights 77.8° S). The solar absorption spectra are used to retrieve the atmospheric concentrations of a number of gaseous
atmospheric components, including ozone (Os), nitric acid (HNOs), hydrogen chloride (HCI), hydrogen fluoride (HF), carbon
monoxide (CO), nitrous oxide (N2O), methane (CH,), hydrogen cyanide (HCN), ethane (C2Hg) and chlorine nitrate (CIONO,)
(https://www2.acom.ucar.edu/irwg). NDACC CH4 and CO data from several stations have been used in previous studies for
satellites validation (Borsdorff et al., 2020; Hedelius et al., 2019; Hochstaffl et al., 2018; Sha et al., 2018b; Buchholz et al., 2017;
Olsen et al., 2017). In this study, data from all stations (19 in the Northern Hemisphere and 4 in the Southern Hemisphere) are
used and are listed in Table 3. Several of the stations are located in high latitude regions and many stations are located at high
altitudes to reduce the interference of water vapour in the measurements. Some of these stations (e.g., Karlsruhe, Garmisch,
Sodankyli) are not officially part of NDACC but performs observations and data analysis fully compatible with NDACC guide-
lines. The co-located NDACC and TCCON stations often share one FTIR instrument, applying the respective detector and filter
settings. The spectra are analysed either with the SFIT4 algorithm, an evolution of SFIT2 (Pougatchev et al., 1995) or with the
PROFFIT9 algorithm (Hase et al., 2004) to retrieve vertical profiles of CH4 and CO. The retrieval allows the derivation of a
tropospheric and a stratospheric column of the target gases (Sepulveda et al., 2012, 2014). The NDACC CO column values can
be used directly to validate the SSP CO column values. However, for the SSP XCH, validation, the NDACC XCHy values need
to be calculated. Due to the NDACC measurements being performed in the MIR range, the oxygen (Oz) total column is not
available from the spectrum for calculating the column-averaged dry air mole fractions of the target gas (Xgas), similar to what
is done for TCCON (see Eq. A9 of Wunch et al. (2011)). Therefore, the total column of dry air is computed as described in
Eq. 1 of Deutscher et al. (2010). The surface pressure (P;) is recorded at the local weather station of the FTS stations and H,O
total column (TCHQO) is derived from the National Centers for Environmental Prediction (NCEP) reanalysis data set. In case
if there is no surface pressure available, then we extrapolate the pressure grid to the surface. The XCH, calculated values for
NDACC measurements are then used for the validation of the SSP XCH,4 data. Unlike TCCON data, where a species specific
scaling factor is applied to tie the measurements to the WMO in-situ scale, the NDACC data do not apply any scaling of the
retrieved results. The typical accuracy and precision of the NDACC CHy data is about 3 % and 1.5 %, respectively. The typical
accuracy and precision of the NDACC CO data is about 3 % and 1 %, respectively. High systematic uncertainty is mainly due
to the too conservative spectroscopic uncertainty component. Both the consolidated data available via http://www.ndacc.org

and the rapid delivery data supported by the CAMS27 project (https://cams27.aeronomie.be/) have been used in this study.



195

200

205

210

215

220

https://doi.org/10.5194/amt-2021-36 Atmospheric
Preprint. Discussion started: 6 April 2021 Measurement
(© Author(s) 2021. CC BY 4.0 License. Techniques

Discussions
By

3 Validation methodology

S5P provides XCH,4 values but only column CO values and therefore XCO is calculated by taking the ratio of the total column
of CO (TC() divided by the total column of the dry air (TCdry air) (following Eq. 1 in Deutscher et al. (2010)) to compare
to the TCCON XCH,4 and XCO data.

TC TC
xco — _€co Cco 0

TCdry,air Ps/(g x mdry,air) —TCy,0o x (mHzO/mdry,air) 7

where Pg is the surface pressure, TCH,  is the total column of H>O, g is the column-averaged acceleration due to gravity,
My airs and myy (5 are the molecular masses of dry air and H,O, respectively. Pg and TCyy ( are taken from the S5P files.

The validation of the SSP methane and carbon monoxide data is performed based on the reference data sets from the ground-
based TCCON and NDACC networks. We present the results for both the networks with different co-location criteria applied
to the data sets. The differences in the validation results are also based on whether or not a common prior has been used for the
satellite and ground-based Fourier transform infrared (FTIR) data sets, details are discussed in Appendix A.

S5P provides daily global coverage with a huge data set having a wide swath at a high spatial resolution for every overpass.
Therefore, the selection of good co-location criteria is a crucial task in finding the best strict criteria while ensuring sufficient
co-located data for a statistically significant validation. We tried several co-location criteria to test the sensitivity of the method
in relation to the choice of the parameter (e.g., time, distance, line-of-sight, ...). The best co-location criteria will be such that

the bias is robust and not sensitive to small changes in the co-location criteria. In the next sections, the results of the application

of these criteria are shown for the case with the reduction of smoothing uncertainty and in relation to direct comparisons.

4 Validation of SSP methane products

The validation of the S5P methane products with the ground-based FTIR data is discussed in this section. The TCCON sta-
tions cover a wide range of varying ground conditions and topography. The high latitude stations (e.g., Eureka, Ny-Alesund,
Sodankyld, East Trout Lake, ...) challenge the satellite algorithm for measurements at very high SZAs, high air masses and
scenes with snow or ice coverage. The Edward site is adjacent to a very bright playa. The Park Falls and Lamont stations have
relatively uniform surface properties but the ground cover can vary seasonally. The TCCON stations at [zafia and Zugspitze
are located at high altitude. Izafa along with Ascension, Réunion, and Burgos are located on small islands, remote from large
landmasses but with significant topography. Several stations are located near or in urban regions with a large population (e.g.,
Pasadena, Paris, Tsukuba, ...). The Darwin site has the ocean to the north. The Wollongong site has the ocean on one side and
sharp escarpment on the other. The Lauder site is surrounded by hills. Nicosia is a new site, operational since August 2019,
using a FTIR which was moved from the Biatystock TCCON station after its closure in October 2018. The TCCON observa-
tory at Nicosia has been calibrated by vertical aircraft profiling at its former location Biatystok, but not at its current location.
Xianghe site in China, located in a heavily populated region, is a new site, which is operated following the recommendations of
TCCON, but is not yet affiliated as a TCCON station. The NDACC stations are often located at high altitude (e.g., Altzomoni,
Jungfraujoch, Mauna Loa, Zugspitze, 1zafia, Maido, Boulder). Several of the NDACC stations are located at high latitudes
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(e.g., Eureka, Ny—Alesund, Thule, Kiruna, Sodankyld). Several of the NDACC stations are located near or in urban areas (e.g.,
Bremen, St.Petersburg, Toronto, Boulder, Altzomoni - close to Mexico City). The NDACC station at Arrival Heights is the
only site on the Antarctic continent. TCCON provides dry-air column-averaged mole fractions of methane similar to the S5P
product, whereas NDACC provides concentration profiles of methane with sensitivities up to about 20 km. As the characteris-
tics of the two reference ground-based data sets are different, two slightly different comparison methods were applied for the

validation study which are discussed in this section.
4.1 Validation of S5P bias-corrected vs. standard methane data using TCCON and NDACC data sets

The validation results of the S5P bias-corrected and standard methane products with reference TCCON and NDACC data
are discussed in this section. The S5P observations co-located with the ground-based reference measurements are found by
selecting all filtered SSP pixels within a radius of 100 km around each site and with a maximal time difference of 1 h for
TCCON and 3 h for NDACC observations. The 1 h time difference for TCCON can be justified by noting that TCCON
instruments acquire only one type of spectra and from each good spectrum methane is retrieved, while NDACC instruments
are required to measure different types of spectra with different optical filter configurations, making the number of methane
observations more sparse. An effective location of the FTIR measurement on the line-of-sight (i.e. at a 5 km altitude) is used
to do the co-location. The co-located pixels can therefore differ from measurement to measurement. For each of the ground-
based measurements which are co-located with the SSP measurements, an average of all S5P pixels is done. Co-located pairs
are created between ground-based and averaged S5P only if a minimum of five pixels is found in applying the coincidence
criteria. In the comparison, the a priori in the TCCON and NDACC retrievals have been substituted with the S5P methane
a priori following Eq. Al. The a priori alignment is done to compensate/correct its contribution to the smoothing equation
(Rodgers and Connor, 2003). The TCCON results with the S5P prior substituted are then compared directly to the SSP XCHy4
data. However, the NDACC CH, concentration profile with the S5P prior substituted is additionally smoothed with the S5P
column averaging kernel following Eq. A2. The NDACC XCHy is derived as discussed in section 2.3 and then compared to
the S5P XCH, data. Furthermore, each validation run also includes the adaptation of the S5P columns to the altitude of the
ground-based FTIR instruments for cases where satellite averaging kernel is not applied or when column boundaries may differ
(see Appendix B for details).

Table 4 provides the validation results for the S5P bias-corrected and standard XCH, data with the a priori aligned TCCON
data at each TCCON station. The systematic difference (the mean of all relative differences) between the S5P and TCCON
data is on average -0.6940.73 % (S5P standard XCHy product) and -0.25+0.57 % (S5P bias-corrected XCH4 product). This
is well within the mission requirements for a bias of 1.5 %. Only at a few TCCON stations (Sodankyld, East Trout Lake, Park
Falls and Wollongong) the bias is slightly higher than 1.5 % for the S5P standard XCH, product. However, it never exceeds
the mission requirements for the bias-corrected product. The standard deviation of the relative bias, which is a measure of the
random error, is well below the mission requirement of 1 % for both standard (0.59+0.17 %) and bias-corrected (0.5740.18 %)
S5P XCHy products.
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Figure 1 shows the bar plots for the SSP XCHy relative bias with respect to the TCCON XCH,4 data at all stations (left panel)
and the standard deviation of the relative bias (right panel). The comparisons relative to the SSP bias-corrected XCH, product
(labeled — bcsm100k 1hr) are the blue bars and those for the standard XCH, product (labeled — stdsm100k1hr) are the magenta
bars. The bias-correction of the SSP XCH, product being a function of the surface albedo acts differently at the different
TCCON stations. Figure 2 shows the relative difference of the bias for the standard (top panel) and bias-corrected (bottom
panel) SSP XCH,4 products as a function of the retrieved SSP SWIR surface albedo at the TCCON stations. The bias correction
of the S5P XCH, product brings the high negative relative differences closer to zero for low surface albedo conditions and
the high positive relative differences closer to zero for high surface albedo conditions. The low surface albedo conditions
also show a high scatter in the relative difference plots. The latter is mainly because the scenes with low surface albedo are
challenging for satellite retrieved products due to large measurement noise. The difference of the relative bias between the
S5P bias-corrected and the standard XCH,4 product for each TCCON station is shown as magenta bar in the middle panel plot
(labeled — diff_bcvsstd) of Fig. 1. It shows the overall direction of change is positive for most stations (low surface albedo
conditions) and negative for few stations like Edwards, JPL, Pasadena (high surface albedo conditions). The standard deviation
of the relative bias for the SSP standard and bias-corrected XCH,4 products are comparable. Scenes with low and high albedos
pose specific challenges for SSP CHy retrieval. Validation of S5P CH,4 data at additional sites with different conditions (e.g.
high surface albedo, high humidity, regions not covered by TCCON and NDACC) using portable FTIR spectrometers (Sha
et al., 2020) will give further insight into the SSP CHy4 product quality.

The relative biases are plotted as mosaic plots and shown in Fig. 3, where the top panel shows the bias for SSP standard
XCHy product while the bottom panel shows the bias for S5P bias-corrected XCH,4 product relative to TCCON. Each bar in
the mosaic plots represents the weekly averages of the relative bias values. The high latitude stations show a high positive bias
during the spring, which is then reduced and even switched sign to show negative bias during the autumn. Lorente et al. (2021)
also found similar seasonality in the bias at the high latitude sites of Sodankyld and East Trout Lake and indicated correlations
of high bias during spring time with the presence of snow (low surface albedo in the SWIR but high surface albedo in the NIR).
In addition, the high latitude sites are also influenced by the polar vortex, which is difficult to be represented by the a priori. The
difference of the a priori from the true atmospheric profile will also add to the bias. This will be discussed further in the next
section. Since measurements rely on direct line-of-sight of the sun, data are not available during the winter months for high
latitude stations. The time series of the S5P bias-corrected XCH,4 product and TCCON data for each site are shown in Figs. 4
and 5. The ground-based TCCON XCH,4 data are represented in grey and the S5P data during that period is shown in light
blue. The S5P data co-located with TCCON data are shown in blue and the co-located TCCON data with a priori alignment are
shown in black. The amplitude of the CH, seasonal cycle is different at the different sites. This is related to the variability of
the CHy4 concentrations in the atmosphere. The CH,4 concentration profile decreases rapidly with increasing altitude above the
tropopause height. The concentration of CHy in the stratosphere, along with the troposphere, plays a key role in determining
the total column of CHy at the given location. The CHy4 seasonal cycle in the troposphere is driven by the seasonality of both,
CHy,4 sources and its sinks (mainly due to the reaction with OH), while the CH,4 seasonal cycle in the stratosphere is dominated

by the vertical transport (Sepulveda et al., 2012; Ostler et al., 2014; Bader et al., 2017; Zhou et al., 2018). The time series of
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the relative bias plots shown in Figs. 6 and 7 indicate a seasonal cycle, which is clearly seen for stations with a high density of
reference data with a low scatter e.g., Park Falls, East Trout Lake, Lamont, Edwards, Pasadena.

Taylor diagrams for the SSP XCH, and TCCON XCHy, for the standard (top panel) and bias-corrected (bottom panel) SSP
XCHy products are shown in Fig. 8. The correlation, represented by the angular coordinate of the SSP bias-corrected XCH,
product improved in comparison to the SSP standard XCH4 product. Most stations have a correlation above 0.6 (see Table 4
for exact values), and the distance to the origin of the ground-based dot relative to the satellite dot (ratio of std of ground-
based/std of S5P) is below 1 for most stations implying that the satellite data are more variable than the ground-based data.
The correlation is mostly dominated by the seasonal cycle and low correlations are seen for high latitude sites where a bias
jump is seen between spring and summer periods. Outliers such as Ny-Alesund, JPL, and Biatystok are due to the limited
data sets available for the comparison. Ny—Alesund station is located on the shore of a bay on the west coast of the island of
Spitsbergen in Svalbard, Norway. As a result only a few valid S5P XCH, pixels are found around the station resulting in limited
co-located data available for comparison. The TCCON instrument from JPL and Biatystok stations were moved to Edwards
and Nicosia, respectively. Thus resulting in a limited data sets available from these sites. The very low correlation for Darwin
and Wollongong is due to the low satellite values for some days (see Fig. 5) and for high latitude sites is due to the jump in
the bias between spring and later months (see Fig. 6). The altitude correction of the pixels works well as can be seen by the
relatively good correlation for Zugspitze, however, the scatter in the data is high.

Table 5 provides the validation results for the SSP bias-corrected and standard XCH, data with the smoothed NDACC data
at each NDACC station. The systematic difference (the mean of all relative differences) between the SSP and NDACC data is
on average 011.12 % (SSP standard XCH, product) and 0.64+0.77 % (S5P bias-corrected XCH, product). This is well within
the mission requirements for a bias of 1.5 %. The mean of all stations is calculated by excluding outliers, which are stations
with a low number of co-locations (Ny—Alesund, Rikubetsu), high scatter in the ground-based data (Toronto), and unexpected
high bias (Thule, Arrival Height). Thule is located on the western coastline of Greenland. The valid SSP XCH4 pixels within
the co-location radius around Thule show several pixels with high XCH, values. These high XCH,4 values are in general found
along the coastline and regions with altitude variability. Although a filter for the variability of the terrain roughness is applied in
the QA filter options, these high values along the coastline of Greenland need detailed investigation and possible optimisation
of the filter settings to remove the unexpected high values. We also observe valid pixels with unexpected high XCH,4 around
the coastline and terrains with altitude variability in Antarctica. This is also the reason for the high bias observed at the Arrival
Heights station located along the west side of Hut Point Peninsula in Ross Island, Antarctica. The bias at Altzomoni is worse
than the requirement, while the random error is better than the requirement of 1 %. Bezanilla et al. (2014) found large variability
in CHy total columns measured at Mexico City Basin, pointing to significant local emissions affecting the natural background
levels. A co-location mismatch would contribute partly to the bias seen with respect to S5P (see section 4.3 on how using
an advanced co-location criterion reduces the bias at Altzomoni). The mean standard deviation of the relative bias which is a
measure of the random error is about 1 % (1.05£0.55 %) for both SSP standard and bias-corrected XCH4 products. The high
latitude stations in the Northern Hemisphere show values slightly higher than 1 %.
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The S5P XCHy relative bias and the standard deviation of the relative bias with respect to the NDACC stations as shown
in Table 5 are shown as bar plots in Fig. 9. The comparisons relative to the S5P bias-corrected XCHy product (labeled —
bcsm100k1hr) are the blue bars and those for the standard XCH4 product (labeled — stdsm100k3hr) are the magenta bars. The
standard deviation of the relative bias (right panel) for the S5P standard and bias-corrected XCH4 products are comparable.
Figure 10 shows the relative difference of the bias for the S5P standard (top panel) and bias-corrected (bottom panel) XCH,
products as a function of the retrieved surface albedo at the NDACC stations. Similar to the TCCON comparison, we also
see here that the bias correction of the SSP XCH,4 product brings the high negative relative differences closer to zero for low
surface albedo conditions and the high positive relative differences closer to zero for high surface albedo conditions. The data
at stations with low surface albedo conditions also show a high scatter in the relative difference plots. The difference of the
relative bias between the SSP bias-corrected and the standard XCHy product for each NDACC station is shown as magenta bar
in the middle plot (labeled — diff_bcvsstd) of Fig. 9. It shows the overall direction of change is positive for most stations (low
surface albedo conditions) and negative for few stations like Boulder, Altzomoni (high surface albedo conditions).

The relative biases are plotted as mosaic plots and are shown in Fig. 11, where the top panel shows the bias for the S5P
standard XCH, product while the bottom panel shows the bias for the S5P bias-corrected XCH,4 product relative to NDACC.
Each bar in the mosaic plots represents the weekly averages of the relative bias values. The high latitude stations show a high
positive bias during the spring, which is then reduced and even switched sign to show negative bias during the autumn. This
is the reason for the high standard deviation of the relative difference seen for the high latitude stations having measurements
during the spring and summer or autumn. Since measurements rely on direct line-of-sight of the sun, the data are not available
during the winter months for high latitude stations. The time series of the S5P bias-corrected XCH,4 product and the NDACC
data for each site are shown in Figs. 12 and 13, and the respective relative bias are shown in Fig. 14 and 15. In the plots, the
NDACC data are shown in grey and the SS5P data are shown in light cyan. The S5P data co-located with NDACC data are
shown in cyan and the co-located NDACC data are shown in black.

Taylor diagrams for the SSP XCH,4 and NDACC XCHy, for the standard (top panel) and bias-corrected (bottom panel) S5P
XCHy products are shown in Fig. 16. The correlation, represented by the angular coordinate, of the S5P bias-corrected XCH,
product improved for most sites in comparison to the SS5P standard XCH,4 product. Most stations have a correlation above
0.5 (see Table 5 for exact values). No clear conclusion can be drawn as to if the satellite data are more variable than the
ground-based NDACC data, as we find quite some stations where the distance to the origin of the ground-based dot relative to
the satellite dot is both below 1 and above 1. The correlation is mostly dominated by the seasonal cycle and low correlations
are seen for high latitude sites where a bias jump is seen between spring and summer periods. Outliers such as Ny—Alesund,
Rikubetsu are due to the limited data sets available for the comparison. The ground-based data set from Toronto show a high
scatter, while a high unexpected bias for Thule and Arrival Heights indicates some problem with the data set. The ground-based
data set from Harestua show a high scatter for few co-locations. The low correlation for the high latitude stations Sodankyld

and Kiruna is due to the jump in bias between spring and later months (see Figs. 12 and 14).
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Eight ground-based stations contributed to the validation study by providing XCH, data from both TCCON and NDACC
measurements performed at the sites. The differences in the relative bias of the S5P bias-corrected XCH,4 product with respect
to the TCCON and NDACC (biasnpacc-biastccon) for these stations are the following: 0.15 % (~2.9 ppb) for Eureka, 1 %
(~19 ppb) for Sodankyld, 1.62 % (~30.8 ppb) for Bremen, 0.68 % (~12.9 ppb) for Karlsruhe, 0.16 % (~3.0 ppb) for Garmisch,
0.57 % (~10.8 ppb) for Zugspitze, 0.84 % (~16.0 ppb) for Wollongong, and 0.26 % (~5.0 ppb) for Lauder. Ostler et al. (2014)
in a multistation (five) intercomparison study of column-averaged methane from NDACC and TCCON showed that there is
no overall bias between MIR (NDACC) and NIR (TCCON) XCH;, retrievals in general. However, dynamical variability can
cause NDACC-TCCON differences in the XCH, values at the sites, with values up to 30 ppb. The high latitude stations are
affected by the stratospheric subsidence induced by the polar vortex, whereas for other locations, a deep stratospheric intrusion
event can be the cause for the difference. Our study also shows differences between the biasnpacc—biastccon of the same
order (up to ~31 ppb) for the co-located stations. In the next section, we show detailed results of the a priori alignment and

smoothing correction at the individual stations.
4.2 Smoothing effect in the validation of S5P methane data

The validation of the S5P bias-corrected XCH, data relative to the TCCON and NDACC XCH, data with and without (i.e.,
direct comparison) a priori alignment and smoothing correction are discussed in this section. SSP, TCCON and NDACC all have
different vertical sensitivities and use different a priori profiles for their retrievals. In the case of similar vertical sensitivities,
we can assume that the smoothing effects from satellite and ground-based retrievals are of nearly equal magnitude. However,
the vertical sensitivities and the a priori used are different, which means that the a priori profiles and the averaging kernels
should be taken into account. For the case of TCCON, only an a priori alignment is done. The S5P prior is used as the common
prior in our validation study. Smoothing effects are most relevant for cases with strong dynamic variability in the atmosphere.
TCCON performs a profile scaling retrieval on the measurements performed in the NIR spectral region, whereas NDACC
performs a profile retrieval in the MIR spectral region. The altitude of perturbation of the CH, profile plays a significant role
on smoothing correction and is different for NIR and MIR retrievals. Ostler et al. (2014) showed that TCCON retrievals are
more accurate when perturbations are due to stratosphere—troposphere exchanges in the upper troposphere/lower stratosphere
(UTLS) region, whereas NDACC retrievals are more accurate for cases of stratospheric subsidence. In order to ascertain the
effect of a priori alignment and smoothing, the validation results of the direct comparison are compared against the validation
results with a priori alignment and smoothing as discussed in the previous section.

The validation results of the S5P bias-corrected XCH, data relative to the TCCON and NDACC data without a priori
alignment and smoothing correction (direct comparison) are shown in columns 12—15 of Tables 4 and 5, respectively. The
S5P XCHy relative bias and the standard deviation of the relative bias with respect to TCCON and NDACC are shown as
grey bars in the left panel and right panel plots of Figs. 1 and 9, respectively. The standard deviation of the relative bias
without smoothing correction is similar to the standard deviation of the relative bias for the case with smoothing correction.
The differences between the relative bias with and without smoothing correction for the S5P bias-corrected XCH, data for

each TCCON and NDACC station are shown as grey bars in the middle panel plot (labeled — diff _smvsnosm) of Figs. 1 and 9,
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respectively. The difference plot relative to TCCON shows that the overall direction of change is negative for all stations, with
high values for most stations in the Northern Hemisphere corresponding to regions with high dynamic variability. We observe
a maximum difference of -0.25 % (~-4.8 ppb) and a mean difference of -0.141+0.07 % (~-2.7+£1.3 ppb) across all TCCON sites
for the duration of available measurements used in this study. The a priori alignment correction for the Southern Hemisphere
sites is low where we observe on average a difference of about -0.07 % (~-1.3 ppb). The difference plot relative to NDACC
shows that the overall direction of change is positive for all stations. Ny—Alesund, which has the lowest number of collocations,
shows the highest difference of 2.18 % (~41.4 ppb). Thule, which has an unexpected high bias, shows the second highest
difference of 1.86 % (~35.3 ppb), and Toronto, which has a high scatter in the ground-based data, shows a high difference of
1.05 % (~20 ppb). The difference at all other stations is below 1 %, with the high values seen for high latitude sites, the mean
difference of the selected NDACC sites shown in Table 5 is 0.3740.28 % (~7+5.3 ppb).

As pointed out in section 4.1, the difference of smoothing (only a priori alignment for TCCON) vs. no smoothing for the
eight co-located stations is observed highest for mid-latitude TCCON stations and that for the NDACC stations, we observe the
highest difference for the high latitude stations. It is therefore important to use a realistic a priori profile for scaling retrievals,
especially for cases of stratospheric subsidence or stratosphere—troposphere exchanges. For such cases, improved a priori

profiles representing the realistic atmospheric state will reduce the difference.
4.3 Comparison of circular vs. cone co-location criterion for validation of SSP methane data

In our standard S5P CH, validation settings with or without smoothing, we have used a co-location radius of 100 km around
each ground-based site. As the operational SSP CH, pixels are currently provided only over land, the circular co-location
criterion may not be optimal to be applied for all sites. Ground-based sites located close to a sea/ocean coast will always
lack S5P CHy pixels over water. Furthermore, for sites located close to regions with high emission sources, there are possible
scenarios when the ground-based FTIR line-of-sight is not covering all pixels observed by the satellite using the circular co-
location criterion. This is also relevant for high latitude sites where the ground-based FTIRs, mostly measuring at high solar
zenith angles, are always looking south for Northern Hemispheric sites and are looking north for Southern Hemispheric sites.
We have implemented a cone selection criterion where we follow the ground-based FTIR line-of-sight with a 1° opening angle
of the cone at the highest altitude. Using the cone co-location criterion, we have done the validation of the S5P bias-corrected
CH,4 data with smoothing and compared to the validation results using circular co-location criterion using the same settings as
discussed in section 4.1.

The validation results of the S5P bias-corrected XCH, data relative to the TCCON and NDACC data applying cone co-
location criterion are shown in columns 16-20 of Tables 4 and 5, respectively. Using the cone co-location criterion reduces the
number of S5P co-locations with ground-based FTIRs significantly (see column 16 in relation to column 3). The S5P XCH,4
relative bias and the standard deviation of the relative bias with respect to TCCON and NDACC using the cone co-location
criterion are shown as orange bars in the left panel and right panel plots of Figs. 1 and 9, respectively. The standard deviation
of the relative bias with the cone co-location criterion is smaller than the standard deviation of the relative bias for the circular

co-location criterion for sites with significantly reduced co-locations and is similar for other sites with small reduction in

14



430

435

440

445

450

455

460

https://doi.org/10.5194/amt-2021-36 Atmospheric
Preprint. Discussion started: 6 April 2021 Measurement
(© Author(s) 2021. CC BY 4.0 License. Techniques

Discussions
By

the number of co-locations. The difference between the relative bias with circular and cone co-location criterion for the S5P
bias-corrected XCHy data for each TCCON and NDACC station is shown as orange bars in the middle panel plot (labeled
— diff_circvscone) of Figs. 1 and 9, respectively. The difference plot relative to TCCON shows the magnitude of change in
bias, with values for some stations being negative while for others stations being positive. We observe a maximum difference
of 0.3% (~5.7 ppb) and a mean difference of -0.02+0.12 % (~-0.4£2.3 ppb) across all TCCON sites for the duration of
available measurements used in this study. The high latitude sites in the Northern Hemisphere show a significantly low number
of co-locations for the cone criterion. The relative bias for these sites, Eureka, Ny—;\lesund, Sodankyli, and East Trout Lake,
shows a slight increase for the cone co-location criterion in comparison to the circular co-location criterion. Sites where the
relative bias using the cone criterion as compared to the circular criterion is lower by at least 2 ppb are the following: JPL
(-0.2 %), Pasadena (-0.18 %), Lamont (-0.11 %), and Biatystok (-0.11 %). While the sites where the cone criterion as compared
to the circular criterion is higher by at least 2 ppb are the following: Lauder (0.3 %), Saga (-0.18 %), and Orléans (0.12 %).
The difference plot relative to NDACC shows the magnitude of change in bias with values for some stations being negative
while for other stations being positive. We observe a maximum difference of 0.48 % (~9.1 ppb) and a mean difference of
0.01£0.2 % (~0.2+3.8 ppb) across the selected NDACC sites (see Table 5) for the duration of available measurements used in
this study. Several sites have few co-locations left upon selecting the cone criterion with Ny-Alesund showing no match at all.
Amongst the sites where a significant number of co-locations remains, the sites where the relative bias using the cone criterion
as compared to the circular criterion is lower by at least 2 ppb are the following: Altzomoni (0.48 %), Sodankyld (0.14 %), and
Jungfraujoch (-0.14 %). The sites where the cone criterion as compared to the circular criterion is higher by at least 2 ppb are
the following: Lauder (-0.30 %), Kiruna (0.25 %), Bremen (-0.15 %), and St. Petersburg (-0.12 %).

We have observed that applying the cone co-location criterion reduces the number of co-locations for all sites and quite
significantly for some sites. There are seven TCCON stations and seven NDACC stations where the magnitude of the difference
is above 2 ppb. Amongst all the stations, the magnitude of change in the relative bias between the two settings is the highest

for Altzomoni station (see section 5.3 for further discussion on the site).
4.4 Solar zenith angle dependence of the S5P methane bias relative to TCCON and NDACC

The remote sensing measurements made either from the ground or satellite are known to be affected by the solar zenith angle
(SZA) of the measurements. In this section, we show the SSP CH, bias relative to the ground-based reference data as a function
of the measurement SZA. Figure 17 shows the S5P relative bias for the a priori aligned and smoothed case as a function of the
measurement SZA against the reference ground-based TCCON (top panel) and NDACC (bottom panel) stations. As mentioned
in section 2.1, the SSP CH4 data are only available for SZA< 70°. The upper limits of the plots therefore show values only
until 70°. The S5P relative bias shows a high scatter for high SZAs. The high positive bias at high SZA is from the spring
measurements at high latitude sites which are influenced by surface conditions with snow cover and polar vortex conditions.
Whereas, the negative bias at high SZA is from the summer and autumn measurements (e.g., see Figs. 6 and 7). In order to see
this effect in detail we plotted the S5P relative bias against SZA at few stations as shown in Fig. 18. Stations like Sodankyl4,

East Trout Lake, and Park Falls show high scatter in the relative bias for measurements at high SZAs when measurements
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are performed during spring months. At Lamont we observe a strong increase in bias with decreasing SZA for measurements
performed during spring. This is seen particularly in the case where the bias correction due to the SWIR surface albedo change
occurred between 0.25 and 0.1 for measurements performed in this period at the site. The bias increase with decreasing SZA
is also seen for other months at the different sites. Except for the spring measurements, which show a high bias, we observe a

general decrease in relative bias with increasing SZA.

5 Validation of SS5P carbon monoxide products

The validation of the S5P carbon monoxide data with the ground-based FTIR data from TCCON and NDACC stations is
discussed in this section. The official SSP CO products are available over land as well as over water. As a result, in addition
to the stations mentioned in the S5P methane validation results, co-locations with ground-based stations located on islands
(e.g., Ascension, Izafia, Réunion, and Mauna Loa) are found and discussed here. The NDACC station at Paramaribo is the only
station in the South American continent currently contributing to the S5P CO validation study. As NDACC provides the CO
column values, they are used directly to validate the SSP CO column values. Whereas for the validation using TCCON XCO

data, the S5P CO columns are converted to XCO as described in section 3.

5.1 Validation of SSP XCO data using TCCON standard and unscaled XCO data and analysis of smoothing

uncertainty

As mentioned in section 2.2, the validation of the S5P XCO offline data is performed with the TCCON standard XCO data as
well as the TCCON unscaled XCO data and the results are discussed in this section. The density of the official S5P valid CO
pixels is higher as compared to the valid CH4 pixels. As a result, we found that using a co-location radius of 50 km around
each ground-based station gave a sufficient number of pixels for robust statistics. We have used a maximal time difference
of 1 h for TCCON observations, which is similar to the settings used for CH, validation. An effective location of the FTIR
measurement on the line-of-sight is used to do the co-location. As a result, the co-located pixels can differ from measurement
to measurement. For each of the ground-based measurements, which are co-located with the SSP measurements, an average
of all S5P pixels is made. Co-located pairs are created between ground-based and averaged S5P pixels only if a minimum of
five pixels is found in applying the coincidence criteria. In the comparison, the a priori in the TCCON retrievals have been
substituted with the S5P CO a priori following Eq. A1. The TCCON results with the S5P prior substituted are then compared
directly to the SSP XCO data. Furthermore, each validation run includes the adaptation of the S5P columns to the altitude of
the ground-based FTIR instruments.

Table 6 provides the validation results using the a priori aligned TCCON unscaled and standard XCO data at each TCCON
station. The systematic difference (the mean of all relative differences) between the SSP and TCCON data is on average
9.1443.33 % (TCCON standard XCO data) and 2.36+3.22 % (TCCON unscaled XCO data). These results are well within the
mission requirements for a bias of 15 %, also the relative bias at each ground-based station is below the requirements. While

most stations show a positive relative bias of SSP XCO with respect to the TCCON unscaled XCO, there are few exceptions
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that show high negative values (e.g., Xianghe, JPL, and Pasadena - all urban sites). This will be further discussed in detail later
in this section. The standard deviation of the relative bias, which is a measure of the random error, is well below the mission
requirement for a random error of <10 % for comparison against both TCCON standard and unscaled XCO data at all stations
except at Wollongong where the value is 18.12 % (for TCCON unscaled XCO) and 19.37 % (for TCCON standard XCO). The
high standard deviation of the relative bias at this station is due to the co-location mismatch during the period of fire event in
that region producing enhanced CO plume passing over/nearby the ground-based station at Wollongong. As a result for some
of the days we found enhanced CO values in the S5P co-located pixels, which were not observed by the FTIR as the enhanced
CO plume is not directly in the line-of-sight of the FTIR, while for other days we found enhanced CO values varying during the
day as the fire plume passes by the station and in comparison the satellite measures for a shorter duration during the local noon
and therefore misses the variability of CO during the co-location time selected for the validation. We tested with a reduced time
co-location criterion of 30 min and found that, for the Wollongong station, the standard deviation of the relative bias reduced
marginally to 18.05 % and the relative bias reduced to 2.03 % (for TCCON unscaled XCO validation results). The CO plumes
emitted from the Australian fire during the summer of 2019/2020 were also observed at the Lauder station in New Zealand.
The CO was well dispersed by the time the fire plumes were measured there, resulting in a better match between the S5P and
ground-based FTIR measured XCO (see Figs. 21 and 23).

Figure 19 shows the bar plots for the SSP XCO relative bias (left panel) and the standard deviation of the relative bias
(right panel) with respect to the TCCON XCO data at all stations. The comparisons relative to the TCCON unscaled XCO
data (labeled — unscsm50k1h) are the blue bars and those for the TCCON standard XCO data (labeled — stdsm50k1hr) are the
magenta bars. The relative bias of the S5SP XCO data with respect to the TCCON unscaled XCO data is systematically lower
than the relative bias with respect to the TCCON standard XCO data. The difference of the relative bias for SSP XCO data
using the TCCON unscaled XCO and the standard XCO data for each station is shown as magenta bar in the middle panel plot
(labeled — diff_unscvsstd) of Fig. 19. It shows the overall direction of change is negative with mean value of -6.78+0.57 %
for all stations. This result confirms the previously reported studies (Kiel et al., 2016; Sha et al., 2018b; Zhou et al., 2019).
The standard deviation of the relative bias for the SSP XCO data relative to the TCCON unscaled and standard XCO data are
comparable.

The time series of the S5P XCO and TCCON unscaled XCO data for each site are shown in Figs. 20 and 21. The ground-
based TCCON XCO data are represented in grey and the SSP XCO data during that period are shown in light red. The SSP data
co-located with TCCON data are shown in red and the co-located TCCON data with a priori alignment are shown in black.
The S5P and TCCON measurements observe the same seasonal cycle of CO. At the Northern Hemispheric sites, the high CO
values are observed during winter and low values are observed during summer dominated by the OH variation (Té€ et al., 2016).
At Southern Hemispheric sites, the high CO values are observed during September — November dominated by the influence
of biomass burning (Duflot et al., 2010; Zeng et al., 2012). In addition to the seasonal cycle, we also see that at several of the
ground-based sites, SSP and TCCON observe sometimes very high values of CO. These enhanced CO concentrations are due to
the passing of the plumes with elevated CO concentrations over/nearby the station location (e.g., high CO seen at Wollongong

during the Australian forest fires November 2019 — February 2020). Yurganov et al. (2004) also reported enhanced CO buildup
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measured at several sites with values much larger than the emission estimates. The time series of the relative bias plots shown
in Figs. 22 and 23 indicate a seasonal cycle with a high bias seen during the high CO event and low bias seen during the low
CO event. Sometimes very low S5P XCO values are observed in the validation plots at some stations, which pass the quality
filter and find a match with the reference TCCON XCO data following our selection criterion. In these particular cases, we
observe very low values in the relative bias plots. However, there are only a few occurrences of such low S5P XCO values.

The relative biases are plotted as mosaic plots and shown in Fig. 24, where the top panel shows the S5P bias with respect to
the TCCON standard XCO data while the bottom panel shows the SSP bias with respect to the TCCON unscaled XCO data.
Each bar in the mosaic plots represents the weekly averages of the relative bias values. We will focus on the comparison of the
results using TCCON unscaled XCO data. As mentioned in the previous paragraph, we observe a high positive bias during the
high CO event periods, which is then reduced and even switched sign to show a negative bias during the low CO event periods.
As TCCON performs solar absorption measurements, data are not available during winter for high latitude stations.

Taylor diagrams for the SSP XCO and TCCON unscaled XCO data are shown in Fig. 25. The correlation, represented by the
angular coordinate, is above 0.9 for most stations (see Table 6 for exact values), and the distance to the origin of the ground-
based dot relative to the satellite dot is below 1 for most stations implying that the satellite data are more variable than the
ground-based data. The good correlation indicates that the short scale temporal variations in the XCO column captured by the
ground-based instruments are moderately reproduced by S5P. Outliers such as Ascension, Zugspitze, and JPL are due to the
limited data sets available for the comparison. The altitude correction of the pixels works well as can be seen by the relatively
good correlation for Zugspitze, however, the scatter in the data is high.

In this section, we further show the results focusing on the effect of smoothing while doing the S5P XCO validation against
TCCON unscaled XCO data. SSP and TCCON have different vertical sensitivities (averaging kernels) and use different a priori
profiles for their retrievals. The different a priori and vertical sensitivities should be taken into account in the validation. In case
of TCCON only an a priori alignment is done. Smoothing corrections are most relevant for cases with strong dynamic variability
in the atmosphere. TCCON performs a profile scaling retrieval on the measurements performed in the NIR spectral range and
provides XCO. In order to ascertain the effect of smoothing correction, the results of the S5P validation using TCCON unscaled
XCO are compared to the SSP validation results using a priori aligned TCCON unscaled XCO data.

The validation results of the S5P XCO data relative to the TCCON unscaled XCO data without smoothing correction (direct
comparison) are shown in columns 12—15 of Table 6. The S5P XCO relative bias and the standard deviation of the relative bias
with respect to the TCCON unscaled XCO data are shown as grey bars (labeled — unsc50k1h) in the left panel and right panel
plots of Fig. 19. It can be seen that there exists an apparent interhemispheric difference in the bias for the direct comparison
case (grey bars) between the Southern Hemispheric and Northern Hemispheric sites. This difference is greatly reduced when
smoothing uncertainties are correctly accounted (blue bars) in the validation results (see left panel of Fig. 19). The difference
between the relative bias with and without a priori alignment for the SSP XCO data for each TCCON station are shown as grey
bars in the middle panel plot (Iabeled — diff_smvsnosm) of Fig. 19. The magnitude of change between the smoothed and direct
comparison is larger in the Southern Hemisphere than in the Northern Hemisphere with exception for sites located in high

polluted regions. The change at some stations (e.g., the Southern Hemispheric sites and high polluted sites) is significant as it
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is larger than the XCO error estimated in Wunch et al. (2015). Zhou et al. (2019) reported similar findings for a comparison
between six co-located sites, where both NDACC and TCCON CO measurements were performed. The difference plot shows
the highest value of -17.43 % for Xianghe, a station located in a polluted area, due to a very high a priori difference from the
true atmospheric state. As a result, the CO volume mixing ratio (VMR) at the surface is relatively high but it is not represented
by the TCCON a priori, leading to an underestimation from the smoothing uncertainty. The same is true for other stations like
Karlsruhe (change of -5.71 %), and Pasadena (change of -3.65 %). We observe a mean difference of 0.3314.32 % across all
TCCON stations. Figure 19 shows the TCCON stations where the a priori alignment uncertainty plays an important role in the

bias and needs to be accounted for in the CO validation studies.
5.2 Validation of SS5P CO column data using NDACC CO column data and analysis of smoothing uncertainty

In this section, the validation results of the SSP CO columns using NDACC CO columns are discussed. The S5P observations
co-located with the NDACC measurements are found by selecting all filtered S5P pixels within a radius of 50 km around
each site and with a maximal time difference of 3 h. An effective location of the measurement on the line-of-sight is used
to do the co-location. The co-located pixels can therefore differ from measurement to measurement. For each of the NDACC
measurements, co-located with the SSP measurements, an average of all SSP pixels is done. Co-located pairs are created
between NDACC and averaged S5P only if a minimum of five pixels is found in applying the coincidence criteria. In addition
to the direct comparison of the S5P and NDACC CO columns (referred to as NDACC CO un-smooth), the NDACC CO column
values are additionally aligned with the S5P prior (referred to as NDACC CO ap-smooth) and used for the S5P validation, and
in a further step the NDACC CO column values with the S5P prior substituted are additionally smoothed with the S5P column
averaging kernel (referred to as NDACC CO smooth) following Eq. A2 and used for S5P validation. Each validation run also
includes the adaptation of the S5P columns to the altitude of the ground-based FTIR instruments.

Table 7 provides the validation results for the SSP CO columns using smooth, un-smooth, and ap-smooth NDACC CO
column data at each NDACC station. The systematic difference (the mean of all relative differences) between the S5P and
NDACC data is on average 6.86+4.7 % (NDACC CO un-smooth), 4.37+5.88 % (NDACC CO ap-smooth), and 7.624+5.27 %
(NDACC CO smooth). This is well within the mission requirements for a bias of 15 %. However, the values are outside
the requirements at Altzomoni and Arrival Heights stations. Eliminating the results of these two stations from the statistics
of the overall stations, we observe the systematic difference between the SSP and NDACC data is on average 5.75+3.09 %
(NDACC CO un-smooth) 3.18+4.5 % (NDACC CO ap-smooth), and 6.44+3.79 % (NDACC CO smooth). The NDACC station
at Altzomoni is located at a high altitude in the south-west direction of the Mexico City (Plaza-Medina et al., 2017; Baylon
et al., 2017). The station is located <60 km from the city center. As a result, the emission from the world’s eighth-largest
megacity, with >22 million population in its metropolitan area, plays a significant role in the satellite footprint (Stremme et al.,
2013; Borsdorff et al., 2018a, 2020). In the example plot shown in Fig. 26, we can see that the ground-based FTIR located at
Altzomoni, with the line-of-sight to the south indicated by the yellow line, is not able to observe the high CO values located to
the north-west of the station, which are selected for S5P using our co-location criterion. However, using the cone co-location

criterion as described in section 4.3 we can eliminate the pixels with high CO values that are not in the line-of-sight of the
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FTIR instrument and thereby reduce the co-location mismatch. The bias at Arrival Heights, high latitude background station
located on the Antarctic continent showing very low values of CO, is slightly worse than the requirement, while the random
error is better than the requirement of 10 %. The mean standard deviation of the relative bias, which is a measure of the random
error, is well below the requirements of <10 % for validation using both smoothed and direct NDACC CO data. However, there
are few exceptions for stations like Altzomoni, Wollongong, and Boulder. The high values are due to the co-location mismatch
during the high CO events (e.g., passage of a plume with a high CO concentration in the vicinity of the site) observed at these
sites.

Figure 27 shows the bar plots for the S5P CO relative bias (left panel) and the standard deviation of the relative bias (right
panel) with respect to the NDACC CO column data at all stations. The comparisons relative to the NDACC smoothed CO data
(labeled — ALLsm50k3h) are the blue bars, those for the NDACC un-smooth CO data (labeled — ALL50k3hr) are the magenta
bars, and those for the NDACC ap-smooth CO data (labeled — ALLap50k3h) are the grey bars. The high latitude stations show
a high bias while some stations like Paramaribo, Izafia, Mauna Loa show a low bias. The difference of the relative bias for
S5P CO data for the NDACC smoothed CO (labeled — diff_smvsnosm) and NDACC ap-smooth (labeled — diff_apvsnosm)
relative to the un-smooth CO data for each station are shown as magenta and grey bars in the middle panel plot of Fig. 27. It
shows the magnitude of change in bias with values for some stations being positive while for other stations being negative. The
effect of smoothing appears to be dependent on the station location. We observe a maximum difference of -6.89 % and a mean
difference of 0.69+2.79 % for all stations for the diff _smvsnosm case. And we observe a maximum difference of -9.38 % and
a mean difference of -2.5742.79 % for all stations for diff_apvsnosm case. The changes at some stations are significant as it is
larger than the CO column error estimated in NDACC. The standard deviation of the relative bias for the SSP CO data relative
to the NDACC CO data with and without smoothing is comparable.

The time series of the SSP CO column and NDACC smoothed CO column data for each site are shown in Figs. 28 and 29.
The ground-based NDACC CO data are represented in grey and the SSP data during that period are shown in light red. The
SSP data co-located with NDACC data are shown in red and the co-located NDACC smoothed data are shown in black. The
implication of the altitude correction can easily be seen for stations located at high altitude (e.g., Zugspitze, Jungfraujoch, Izafia,
Mauna Loa, Altzomoni, Maido). The S5P and NDACC measurements observe the same seasonal cycle of CO. Similar to the
TCCON results, we also see that at several of the NDACC sites, SSP and NDACC sometimes observe very high values of CO
columns due to the passing of the plumes with elevated CO concentrations over/nearby the station location (e.g., Wollongong,
Boulder, St. Petersburg). The time series of the relative bias plots shown in Figs. 30 and 31 indicate a seasonal cycle with a
high bias seen during the high CO event and low bias seen during the low CO event. The high scatter observed at the Toronto
site is related to the scatter observed in the ground-based NDACC CO column data at the site.

The relative biases of the SSP CO column and NDACC smoothed CO column data for each site are shown as a mosaic plot
in Fig. 32. Each bar in the mosaic plot represents the weekly averages of the relative bias values. The plot shows high positive
bias during the high CO event periods, which is then reduced and even switched sign to show negative bias during the low CO

event periods. The bias at few stations like Toronto, Altzomoni, and Arrival Heights appear as outliers in the plot. As NDACC
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CO column data are retrieved from solar absorption measurements, the data are not available during few weeks in winter for
high latitude stations when the sun is very low on the horizon.

Taylor diagrams for the S5P CO column and NDACC smoothed CO column data are shown in Fig. 33. The correlation,
represented by the angular coordinate, is above 0.9 for most stations (see Table 7 for exact values), and the distance to the
origin of the ground-based dot relative to the satellite dot is below 1 for most stations (except at Paramaribo and Rikubetsu
which is due to the limited data sets available for the comparison) implying that the satellite data is more variable than the
ground-based data. The good correlation indicates that the temporal variations in the CO column captured by the ground-based
instruments are reproduced very similarly by S5P. Outliers such as Wollongong, Boulder, and Altzomoni are due to the co-
location mismatch during the high CO events (e.g., passage of a plume with a high CO concentration in the vicinity of the site)
observed at these sites. The altitude correction of the pixels works well as can be seen by the relatively good correlation at the

high altitude stations.

Eleven ground-based stations (Eureka, Ny—Alesund, Bremen, Karlsruhe, Garmisch, Zugspitze, Rikubetsu, Izafia, Réunion—
Maido, Wollongong, and Lauder) contributed to the validation study by providing CO data from both TCCON and NDACC
measurements performed at the sites. The mean difference in the relative bias of the S5P CO data with respect to the smoothed
NDACC and TCCON (biasgspysnpacc—biassspvsTccon) for these eleven stations is -4.31+3.7 %. This indirectly implies
that the NDACC CO is 4.3143.7 % larger than TCCON CO data. The ground-based data available for these eleven stations do
not always cover the same period. Therefore, this is only a qualitative estimate indicating the mean difference between NDACC
and TCCON CO data at these eleven sites. Zhou et al. (2019) showed that the bias between co-located and smoothed TCCON
and NDACC XCO data products for six stations has a mean value of 6.8 % (range 5.6 %—8.6 %). Our indirect comparison

results for more sites and not exactly co-located ground-based data for the TCCON and NDACC show similar differences.
5.3 Comparison of circular vs. cone co-location criterion for validation of SSP carbon monoxide data

In our standard S5P CO validation settings with or without smoothing, we have used a co-location radius of 50 km around
each ground-based site. In this section, we will discuss the validation results of the S5P CO column data with the smoothed
ground-based data following the cone co-location criterion as described in section 4.3. These results are further compared to
the circular co-location criterion using the same settings.

The application of the cone co-location criterion is shown in Fig. 26 for one sample day. The top-left panel plot shows all
available S5P pixels containing CO column number density data in the overpass file. The Altzomoni station is marked at the
center of the plot. The high CO values to the north-west of the station are the footprint of the CO from Mexico City. Towards
the northeast side of the station some missing pixels are filtered due to clouds. The top-right panel plot shows the co-located
S5P pixels with circular co-location criterion with a radius of 50 km as used for the CO validation study. As seen in the plot,
there are few pixels with high CO values in the north-west, which are included in the selected pixels. The yellow line in the
plot represents the line-of-sight of the ground-based FTIR at Altzomoni. Therefore, the high CO values in the north-west will

not be observed by the FTIR measurement. This mismatch is a cause of the potential bias. The bottom panel plot shows the
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co-located S5P pixels with the cone co-location criterion with 1° opening angle of the cone at the highest altitude. The selected
S5P pixels using the cone co-location criterion are in the line-of-sight of the ground-based FTIR instrument and will potentially
reduce a mismatch and therefore lowering the potential bias between the satellite and ground-based data.

The validation results of the SSP CO data relative to the TCCON and NDACC data with smoothing and applying cone
co-location criterion are shown in columns 16-20 of Tables 6 and 7, respectively. Using the cone co-location criterion only
marginally reduces the number of S5P co-locations with ground-based FTIRs (see column 16 in relation to column 3). This
is due to the high density of the official S5P valid CO pixels availability. The S5P CO relative bias and the standard deviation
of the relative bias with respect to TCCON and NDACC using the cone co-location criterion are shown as orange bars in the
left panel and right panel plots of Figs. 19 and 27, respectively. The S5P CO relative bias is comparable or slightly smaller
for the cone co-location criterion as compared to the circular co-location criterion. The standard deviation of the relative bias
with the cone co-location criterion is similar to the standard deviation of the relative bias for the circular co-location criterion.
The difference between the relative bias with circular and cone co-location criterion for the SSP CO data for each TCCON and
NDACC station is shown as orange bars in the middle panel plot (labeled — diff_circvscone) of Figs. 19 and 27, respectively.
The difference plot relative to TCCON shows the magnitude of change in bias, with values for some stations being negative
while for other stations being positive. We observe a maximum difference of 0.6 % and a mean difference of -0.02+0.24 %
across all TCCON sites for the duration of available measurements used in this study. Sites where the relative bias using the
cone criterion as compared to the circular criterion is outside the 1 o limit of the mean are Eureka (0.6 %), Garmisch (0.48 %),
Paris (0.23 %), Ny—Alesund (-0.37 %), Xianghe (-0.37 %), JPL (-0.49 %), Pasadena (-0.43 %). The difference plot relative to
NDACC shows the magnitude of change in bias, with values for some stations being negative while for other stations being
positive. We observe a maximum difference of -1.24 % and a mean difference of -0.05£0.49 % across the selected NDACC
sites for the duration of available measurements used in this study. The sites where the relative bias using the cone criterion
as compared to the circular criterion is outside the 1 ¢ limit of the mean are Eureka (0.78 %), Harestua (-0.53 %), Zugspitze
(-0.84 %), Jungfraujoch (-0.7 %), Boulder (0.64 %), Arrival Heights (-1.24 %). The high difference is observed mostly for the

high latitude stations where the cone co-location criteria following the ground-based FTIR line-of-sight is the best choice.
5.4 Validation of S5P CO (CLSKY, CLOUD, and ALL) data using TCCON and NDACC data sets

As discussed in section 2.1, we separated S5P retrievals performed for measurements under clear-sky (CLSKY; cloud optical
thickness <0.5 & cloud height <500 m, over land) and cloudy conditions (CLOUD; cloud optical thickness > 0.5 & cloud
height <5000 m, over land and ocean) in addition to our standard all case (ALL; cloud height <5000 m over land and ocean).
The validation results of S5P CO for ALL settings have been discussed in detail in sections 5.1 — 5.3. In this section, we show
the validation results of the SSP CO for CLSKY and CLOUD settings against TCCON unscaled XCO with a priori alignment
and NDACC CO column data with smoothing and compare the results in relation to the results of the ALL settings. Each
validation run includes the adaptation of the S5P columns to the altitude of the ground-based FTIR instruments.

Tables 8 and 9 provide the validation results for the S5P CO data for ALL case, CLSKY case, and CLOUD case at each
TCCON and NDACC station. The systematic difference (the mean of all relative differences) between the SSP and unscaled
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TCCON data is on average 2.3643.22 % (ALL case), 2.83£3.44 % (CLSKY case), and 1.91£3.08 % (CLOUD case). These
results are well within the mission requirements for a bias of 15 % as well as the relative bias at each ground-based station is
also below the requirements. The standard deviation of the relative bias which is a measure of the random error is well below
the mission requirement for a random error of <10 % for all sites except at Wollongong (ALL and CLOUD cases) and Pasadena
(CLOUD case).

Figure 34 shows the bar plots for the SSP XCO relative bias (left panel) and the standard deviation of the relative bias (right
panel) with respect to the TCCON XCO data at all stations. The comparisons relative to the TCCON unscaled XCO data for
ALL case (labeled — unscsm50k1hALL) are the blue bars, those for the CLSKY case (labeled — unscsm50k1hCLSKY) are the
red bars, and those for the CLOUD case (labeled — unscsm50k1hCLOUD) are the green bars. The middle panel plot of Fig. 34
shows for each TCCON station the difference of the relative bias for SSP XCO data using the TCCON unscaled XCO ALL case
and the CLSKY case (labeled — diff  ALLvsCLSKY) as red bars, as well as the CLOUD case (labeled — diff_  ALLvsCLOUD)
as green bars. The overall direction of change for the CLSKY case is negative with few exceptions, the maximum value of
change is 2.21 % and a mean value of -0.48+0.89 % for all stations. The overall direction of change for the CLOUD case is
positive with few exceptions, maximum value of change is 1.58 % and a mean value of 0.45+0.59 % for all stations.

The systematic difference (the mean of all relative differences) between the SSP and NDACC data is on average 7.62+5.27 %
(ALL case), 7.8£5.11 % (CLSKY case), and 7.65£5.18 % (CLOUD case). This is well within the mission requirements for a
bias of 15 %. However, the values are outside the requirements for the validation results at the Altzomoni and Arrival Heights
stations. Eliminating the results of these two stations from the statistics of the overall stations, we observe that the systematic
difference between the S5P and NDACC data is on average 6.44+3.79 % (ALL case), 6.564+3.35 % (CLSKY case), and
6.531+3.91 % (CLOUD case). The bias at Arrival Heights, a high latitude station located on the Antarctic continent, is slightly
worse than the requirement, while the random error is better than the requirement of 10 %. The mean standard deviation of the
relative bias, which is a measure of the random error, is well below the requirements of <10 % for all three cases of validation
results with few exceptions for stations like Altzomoni, Wollongong, and Boulder. The high values are due to the co-location
mismatch during the high CO events (e.g., the passage of a plume with a high CO concentration in the vicinity of the site)
observed at these sites.

Figure 35 shows the bar plots for the SSP CO relative bias (left panel) and the standard deviation of the relative bias (right
panel) with respect to the NDACC CO column data at all stations. The comparisons relative to the NDACC CO column data
for ALL case (labeled — ALLsm50k3h) are the blue bars, those for the CLSKY case (labeled — ALLsm50k3hCLSKY) are
the red bars, and those for the CLOUD case (labeled — ALLsm50k3hCLOUD) are the green bars. The middle panel plot of
Fig. 35 shows for each NDACC station the difference of the relative bias for S5P CO column data using the NDACC CO
column ALL case and the CLSKY case (labeled — diff ALLvsCLSKY) as red bars, as well as the CLOUD case (labeled —
diff_ALLvsCLOUD) as green bars. The direction of change for the CLSKY and CLOUD cases is negative for some stations
while for other stations it is positive. The maximum value of change is 2.68 % and a mean value of 0.17£1.0 % for CLSKY
case for all stations. The maximum value of change is 1.64 % and a mean value of -0.09£0.77 % for CLOUD case for all

stations.
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The CLSKY and CLOUD selection criteria can be useful in case of specific applications. For example, the CLSKY case
helped to reduce the standard deviation of the relative bias for Wollongong’s TCCON and NDACC validation results. This
is related to the significant filtering of the pixels over the ocean that are missing in the CLSKY case. The satellite clear-sky
observations made over ocean have too low signal in the SWIR spectral region and are therefore filtered out. However, the
ALL case results are quite comparable to the CLSKY and CLOUD cases and are therefore used as the general S5P CO data

set in our validation studies.
5.5 Solar zenith angle dependence of the SS5P carbon monoxide bias relative to TCCON and NDACC

In this section, we show the S5P carbon monoxide bias relative to the ground-based reference data as a function of the measure-
ment SZA. Figure 36 shows the S5P relative bias for the a priori aligned and smoothed case as a function of the measurement
SZA against the reference ground-based TCCON (top panel) and NDACC (bottom panel) stations. As mentioned in section 2.1,
the S5P carbon monoxide data are only available for SZA<80°. The upper limits of the plots therefore show values only till
80°. As explained in section 5.2, the high values of S5P relative bias are observed during winter (measurements performed
mostly at high SZAs) and the low values during summer (measurements performed mostly at low SZAs). We therefore observe
this in the S5P relative bias plotted against SZA. Figure 37 shows individual plots for a few sample stations. We observe that
the relative bias increases with increasing SZA of the measurement. This increase is about 10 % over the complete range of

measurements SZAs.

6 Conclusions

In this study, we have done the geophysical validation of Sentinel-5 Precursor operational methane and carbon monoxide data
sets (see Table 1 for version details) using reference ground-based TCCON and NDACC stations. A total of 28 TCCON stations
and 23 NDACC stations covering a wide latitudinal range (Eureka 80° N to Arrival Heights 77.8° S), various atmospheric
conditions (dry, humid, clean and polluted), various surface conditions (range of surface albedo), flat and high altitude terrains,
oceanic terrain) have been used in this study. Furthermore, the combined use of the near-infrared TCCON data and mid-infrared
NDACC data, as a whole network and at co-located stations, with their benefits helped to evaluate the Sentinel-5 Precursor
operational methane and carbon monoxide product’s quality in our validation study.

We found that the systematic difference between the S5P standard XCH, and a priori aligned TCCON data is on average
-0.6910.73 %. The systematic difference changes to a value of -0.253-0.57 % for the S5P bias-corrected XCH, data. The bias
for both S5P standard and bias-corrected XCH, data is well within the mission requirements for bias (systematic error) of
1.5 %. We also found that the random error is well below the mission requirements for a random error of 1 % for both stan-
dard (0.5940.17 %) and bias-corrected (0.57+0.18 %) S5P XCH,4 data. Most stations show a correlation above 0.6, the poor
correlation at some sites are mostly dominated by the seasonal cycle or due to limited data sets available for the comparison.
The systematic difference between the S5P standard and bias-corrected XCH, against smoothed NDACC data are on aver-

age 0.+1.12 % and 0.64+0.77 %, respectively. This is well within the mission requirements. As the accuracy and precision of
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NDACC CHy data are lower than TCCON, conclusions about the S5P systematic and random error are drawn based on TCCON
validation results. The bias-correction of the SSP XCH, data being a function of the retrieved surface albedo acts differently
at different locations. We observe high scatter in the relative bias for low surface albedo conditions. A seasonal dependency
of the relative bias is seen. We observe a high bias during the springtime measurements at high SZAs for high latitude sites
and a decreasing bias with increasing SZA for the rest of the year at all sites. The SZA dependence of the bias includes albedo
correction and a priori difference from the true atmospheric state. We estimated the contribution of the a priori alignment un-
certainty at the ground-based stations and found values up to ~4.8 ppb at a TCCON station with mean value of ~-2.7+£1.3 ppb.
The mean value of the smoothing uncertainty contribution at the NDACC stations is ~7%5.3 ppb with some stations showing
high values of up to ~41.4 ppb. At the co-located TCCON and NDACC stations, we observed the highest contribution of the
a priori alignment and smoothing uncertainty for mid-latitude TCCON stations, whereas for the NDACC stations we observe
the highest contribution for the high latitude stations. The comparison with a priori alignment and taking smoothing effects
into account is recommended as the preferred method for validation. We found that using the cone co-location criterion im-
proves the co-location between the satellite and ground-based station by observing similar airmass. This is crucial for certain
stations, which are located closer to emission sources or high latitude ones. Currently, we found seven TCCON and NDACC
stations where the bias changed by more than 2 ppb between the circular and cone co-location settings. The cone criterion also
significantly reduces the number of co-locations for some sites thereby making the statistics less reliable for those sites.

We found that the systematic difference between the SSP XCO and a priori aligned TCCON data is on average 9.1443.33 %.
Due to the uncertainty of the scaling slope of XCO in TCCON to tie the TCCON XCO measurements to WMO in situ scale, we
have also used the unscaled TCCON XCO data (without application of the empirical scaling factor) for SS5P XCO validation.
We found that the systematic difference between the SSP XCO and a priori aligned TCCON unscaled XCO data is on average
2.36+£3.22 %. Both results are within the mission requirements for bias (systematic error) of 15 %. We found that the difference
of the relative bias using the TCCON unscaled XCO and the TCCON standard XCO data is on average -6.78+0.57 %. We
estimated the contribution of the a priori alignment uncertainty in the validation and found that the magnitude of change
between the a priori aligned and direct comparison is larger in the Southern Hemisphere than in the Northern Hemisphere
except for sites located in polluted regions. The a priori alignment uncertainty contribution is significant at several sites as it is
larger than the estimated TCCON XCO error. We observe a mean difference of 0.334+4.32 % across all TCCON stations with
highest values of -17.43 % for Xianghe (due to very high a priori profile difference). We found that the systematic difference
between the SSP CO column and the NDACC CO column data (excluding two stations which were obvious outliers) is on
average 5.75+3.09 % (NDACC CO direct comparison), 3.18+4.5 % (NDACC CO smoothed by using S5P a priori as the
common prior), and 6.44+3.79 % (NDACC CO profile with S5P a priori substituted and additionally smoothed with S5P
column averaging kernel). The effect of the smoothing depends on the station location with a mean difference of 0.69£2.79 %
across all NDACC stations and a maximum value of -6.89 % in relation to the direct comparison. The effect of smoothing
by doing only a priori substitution in relation to the direct comparison gives a mean difference of -2.57+2.79 % across all
NDACC stations and a maximum value of -9.38 %. The comparison with a priori alignment and taking smoothing effects into

account is recommended as the preferred method. Most TCCON and NDACC stations show a correlation above 0.9 indicating
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that the temporal variations in CO column captured by the ground-based instruments are reproduced very similarly by S5P.
The few exceptions are due to the limited data sets available for the comparison. We also found that the S5P random error for
the TCCON and NDACC validation results is well below the mission requirements for a random error of 10 % except for few
stations where a co-location mismatch occurs during certain periods with high values of CO events occurring due to plumes
passing over/nearby the stations. A seasonal dependency of the relative bias is seen. We observe a high bias during the high
CO event and low bias during the low CO event. We observed a mean difference of -0.02+0.24 % with a maximum difference
of 0.6 % for TCCON validation results using the cone co-location criterion compared to the circular co-location criterion. The
results of the cone selection criterion at the NDACC stations show higher values than for the TCCON stations. We observe
a mean difference of -0.0540.49 % with a maximum difference of -1.24 %. The high difference is observed mostly for high
latitude stations, where the cone co-location criterion following the line-of-sight of the ground-based FTIR is the best choice
in finding co-located satellite pixels for validation. Furthermore, we observed that the validation results of the clear-sky and
cloud cases of S5P pixels are comparable to the validation results including all pixels passing the filter criteria. The clear-sky
or cloud cases are however useful for certain applications. We observe that the relative bias increases with increasing SZA of
the measurement. We estimated this increase to be 10 % over the complete range of measurement SZAs.

Based on the validation results of the S5P operational methane and carbon monoxide data sets against the reference ground-
based TCCON and NDACC data sets, we conclude that the SSP methane and carbon monoxide data fulfils the mission require-

ments.

Appendix A: Reducing a priori and averaging kernel contribution in the validation

The S5P and ground-based FTIR instruments have different instrument sensitivities and use different a priori profiles to retrieve
the best representation of the true atmospheric state from the recorded spectra. The S5P uses a priori derived from the TMS
model, whereas the TCCON uses a daily a priori profile generated by a stand-alone program provided by Toon and Wunch
(2017) and NDACC uses a single a priori profile from climatology of the Whole Atmosphere Community Climate Model
Version 6 (WACCM V6; ftp://nitrogen.acom.ucar.edu/user/jamesw/IRWG/2013/WACCM/V6/). In order to make the quanti-
tative comparison, the influence of the a priori contribution to the smoothing equation needs to be compensated/corrected by
adjusting the retrieval results to a common a priori (Rodgers and Connor, 2003). The S5P prior is used as the common prior.
It is re-gridded to the FTIR grid using a mass conservation algorithm (Langerock et al., 2015). For the case where the satellite
pixel elevation is above the ground-based site altitude, the S5P prior profile is extrapolated (i.e., a simple extension, the lowest
vmr is taken as the vmr at the lowest ground-based grid) to the altitude of the ground-based instrument. The re-gridded S5P

prior z,_gsp is substituted in the FTIR retrieval.

TETIR mod_prior = CrTIR + (I — ApriR)(%Ta_s5P — Ta_FTIR), (Al)

where zprrgr is the original vmr profile, x, Frrr is the a priori profile used for the original FTIR retrieval (zprrrR),

L FTIR_mod_prior 18 the corrected FTIR-retrieved profile, Aprrg is the FTIR averaging kernel matrix and I is the unity matrix.
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This step reduces the total smoothing uncertainty on the column differences by eliminating the uncertainty on the FTIR a priori.
Although Eq. Al is only valid for NDACC profiles, it can be modified to be applied for TCCON column data as well. In that
case, the prior profiles should be transformed to partial column profiles and divided by the total column of FTIR dry air.

For NDACC profiles, to further reduce the smoothing uncertainty contribution introduced by the averaging kernel, we smooth
the corrected FTIR-retrieved profile (zpriRr_mod_prior) With the SSP column averaging kernel (cAgsp). This requires the
re-gridding of the corrected FTIR-retrieved profile to the S5P column averaging kernel grid before applying the smoothing

equation:

CFTIR_smoothed — Ca_S5P + CAS5P [(xFTIRmedpriOT - xa?S’SP) X ndry,air]a (Az)

where c,_s5p is the column values derived from the S5P a priori profile, crrrr_smoothed 1S the smoothed FTIR column
associated with a co-located SSP pixel. The ng,yqir in Eq. A2 is the partial column profile calculated from the pressure

difference (A P) between the layer interfaces and the hydrostatic equation:
AP = Muyet,air X Nwet,air X g (A3)

For CHy, the partial column of dry air is available in the S5P Level 2 files. For CO, we derive it using the pressure on the
boundaries as described in Eq. A3. In the above Eq. A3, ny.ct qir is approximated by ngpy qi» and the molar mass of wet
air is approximated by the molar mass of dry air as there is no H,O profile available in the S5P prior. We found that this
approximation has only a small influence, e.g., the bias change at Paramaribo, a tropical site, is about 0.2% when compared
to the case of using NCEP H>O profile. If the satellite pixel elevation is below the FTIR site altitude, the re-gridding of the
corrected FTIR-retrieved profile is done such that the FTIR profile is extended with the S5P a priori profile. This extension of
the a priori profile cancels on the right hand side of Eq. A3 and the FTIR smoothed column coincides with the S5P a priori

partial column for the region where the grids mismatch.

Appendix B: S5P pixel altitude correction

An altitude correction is done for each S5P pixel in order to take into account the altitude difference between the S5P pixels
and the ground-based station. The correction can be significant for co-location with mountain stations where the satellite pixels
can be picked up from locations around the station, which are at lower or higher altitudes than stations. The scaling factor (f)
is calculated from the satellite a priori profile using the following equation:

_ cssp(FTIR altitude — toa)
 cs5p(S5P pizel altitude — toa)’

(B1)

where the numerator is the partial column from the FTIR station altitude to the top of the atmosphere (toa) and the denominator
is the total column from the pixel altitude to the top of the atmosphere. The scaling factor is less than 1 for cases where the
satellite pixels are located below the altitude of the FTIR station. In certain cases, where the S5P pixels are above the FTIR

station, the scaling factor goes above 1. The scaling factor is applied to the satellite data such that the co-located pairs are on
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the same FTIR station altitude. Equation B1 is valid for satellite pixels < station altitude and we use the S5P prior profile.
However, in the other case where satellite pixels > station altitude we extrapolate the satellite prior to compensate the small
865 altitude differences.

The S5P products are adapted to the altitude of the station by either cutting off the scaled mixing ratio profiles at the station
altitude (for FTIR station at high altitude locations) or by extending the profile assuming a constant elongation of the mixing
ratio up to the station altitude (for case where S5P pixel altitude is above the FTIR station). This method of SSP pixel altitude
correction is applied when the satellite and ground-based columns are not calculated between the same boundaries, e.g., SSP

870 vs. TCCON, and S5P vs. NDACC without extra satellite smoothing.
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Figure 2. Relative biases between co-located SSP (standard XCH4 product - top panel; bias-corrected XCHy4 product - bottom panel) and

TCCON XCHy data with a priori alignment are plotted as a function of the surface albedo retrieved by SSP at 25 TCCON stations within

the period between November 2017 and September 2020. Spatial co-location with radius of 100 km and time of £ 1 hour around the satellite

overpass was used.
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Figure 3. Mosaic plots showing relative biases between co-located S5P (standard XCH,4 product - top panel; bias-corrected XCH4 product
- bottom panel) and TCCON XCH, data with a priori alignment at 25 TCCON stations within the period between November 2017 and
September 2020. Spatial co-location with radius of 100 km and time of £1 hour around the satellite overpass was used. The stations are

sorted with decreasing latitude.
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Figure 4. XCH, time series for all TCCON data (grey), SSP bias-corrected data (light blue), SSP data co-located with TCCON data (blue)
and co-located TCCON data with a priori alignment (black) at each site ordered with decreasing latitude. Spatial co-location with radius of

100 km and time of £1 hour around the satellite overpass was used.
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Figure 6. Relative difference [(satellite - ground-based)/ground-based] of XCH4 time series for all co-located SSP bias-corrected data and
TCCON data with a priori alignment as the reference data at each site ordered with decreasing latitude as in Fig. 4. Spatial co-location with

radius of 100 km and time of 31 hour around the satellite overpass was used.
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Figure 7. same as Fig. 6
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Figure 8. Taylor diagram for daily mean differences between S5P and TCCON XCH4 data with a priori alignment: standard (top) and
bias-corrected (bottom) SSP XCH, data. The 25 TCCON stations are sorted with decreasing latitude. The data is within the period between

November 2017 and September 2020. Spatial co-location with radius of 100 km and time of 41 hour around the satellite overpass was used.
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L ]

30 .
20 .

10

L Ao salt. & .

Relative Differences (Sat-Gb)/Gb [%)]

ee0e ALTZOMONI eeee LAUDER
++++ ARRIVALHEIGHTS  ++++ NY.ALESUND
eeee BOULDER.CO eese RIKUBETSU
-10 4 “9 ++++ BREMEN ++++ SODANKYLA
.\ sess EUREKA sese ST.PETERSBURG
++++ GARMISCH ++++ THULE
esse HARESTUA ssee TORONTO
—207 . +4ee JUNGFRAUJOCH ++++ WOLLONGONG
e oo o5 o *#%® KARLSRUHE eses ZUGSPITZE
surface albedo [1] +rr+ KIRUNA
Relative Differences (Sat-Gb)/Gb for S5P xCH4 bc <100km <3h and FTIR.CH4 total column
.
30 1 *
g
8 20 L]
=
z +
= .
<8
o 104
g
g °
2 e doainting sotasaly. o .
e 01 [ 4 ®ses ALTZOMONI ssee LAUDER
2 ++++ ARRIVALHEIGHTS  ++++ NY.ALESUND
e esee BOULDER.CO esee RIKUBETSU
= 10 ++++ BREMEN ++++ SODANKYLA
N ®o0e EUREKA ®eee ST.PETERSBURG
o ++++ GARMISCH ++++ THULE
sees HARESTUA ®eee TORONTO
—20 1 b ++++ JUNGFRAUJOCH ++++ WOLLONGONG
oa ol ora o5 #%%% KARLSRUHE sses ZUGSPITZE
++++ KIRUNA

surface albedo [1]

Figure 10. Relative biases between co-located S5P (standard XCHy4 product - top panel; bias-corrected XCH4 product - bottom panel) and
NDACC XCHy data smoothed with S5P a priori and additionally smoothed with the S5P column averaging kernel are plotted as a function
of the surface albedo retrieved by S5P at 19 NDACC stations within the period between November 2017 and September 2020. Spatial

co-location with radius of 100 km and time of 3 hour around the satellite overpass was used.
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Figure 11. Mosaic plots showing relative biases between co-located SSP (standard XCH4 product - top panel; bias-corrected XCH4 product
- bottom panel) and NDACC XCH, data smoothed with SSP a priori and additionally smoothed with the SS5P column averaging kernel at
19 NDACC stations within the period between November 2017 and September 2020. Spatial co-location with radius of 100 km and time of

=43 hour around the satellite overpass was used. The stations are sorted with decreasing latitude.
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Figure 12. XCH4 time series for all NDACC data (grey), S5P bias-corrected data (light cyan), S5P data co-located with NDACC data (cyan)
and co-located NDACC data smoothed with S5P a priori and additionally smoothed with the S5P column averaging kernel (black) at each

site ordered with decreasing latitude. Spatial co-location with radius of 100 km and time of £3 hour around the satellite overpass was used.
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Figure 14. Relative difference [(satellite - ground-based)/ground-based] of XCH, time series for all co-located SSP bias-corrected data and

NDACC data smoothed with SSP a priori and additionally smoothed with the SSP column averaging kernel as the reference data at each site

ordered with decreasing latitude as in Fig. 12. Spatial co-location with radius of 100 km and time of +3 hour around the satellite overpass

was used.
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Figure 15. same as Fig. 14
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Figure 16. Taylor diagram for daily mean differences between S5P and NDACC XCH, data smoothed with S5P a priori and additionally

smoothed with the S5P column averaging kernel: standard (top) and bias-corrected (bottom) S5P XCH4 data. The 19 NDACC stations are

sorted with decreasing latitude. The data are within the period between November 2017 and September 2020. Spatial co-location with radius

of 100 km and time of 3 hour around the satellite overpass was used.
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Figure 17. Relative biases between co-located S5P bias-corrected XCH4 and a priori aligned TCCON XCHy (top panel) as well as co-located
S5P bias-corrected XCH4 and smoothed NDACC XCH4 (bottom panel) are plotted as a function of the SSP measurement solar zenith angles
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radius of 100 km and time of +1 hour (TCCON) and 43 hour (NDACC) around the satellite overpass was used.
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Figure 18. Relative biases between co-located S5P bias-corrected XCH4 and TCCON XCHy data with a priori alignment are plotted as
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September 2020. Spatial co-location with radius of 100 km and time of 41 hour around the satellite overpass was used. The colours represent

the different months from January (1) till December (12) of a year.
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Figure 20. XCO time series for all unscaled TCCON data (grey), all S5P data (light red), SSP data co-located with TCCON data (red) and
co-located unscaled TCCON data with a priori alignment (black) at each site ordered with decreasing latitude. Spatial co-location with radius

of 50 km and time of £1 hour around the satellite overpass was used.
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Figure 22. Relative difference [(satellite - ground-based)/ground-based] of XCO time series for all co-located SSP data and unscaled TCCON
data with a priori alignment as the reference data at each site ordered with decreasing latitude as in Fig. 20. Spatial co-location with radius

of 50 km and time of £1 hour around the satellite overpass was used.
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Figure 23. same as Fig. 22
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Figure 24. Mosaic plots showing relative biases between co-located SSP and TCCON XCO data with a priori alignment (standard - top

panel; unscaled - bottom panel) at 28 TCCON stations within the period between November 2017 and September 2020. Spatial co-location

with radius of 50 km and time of 1 hour around the satellite overpass was used. The stations are sorted with decreasing latitude.

62



https://doi.org/10.5194/amt-2021-36 Atmospheric
Preprint. Discussion started: 6 April 2021 Measurement
© Author(s) 2021. CC BY 4.0 License. Techniques

Discussions
oY

2! EUREKA {10716
3: WTALESUIND [3a55) oo
4: SODANKYLA [1B723]

%: EASTTROUTLAKE (31158}

& BIALYSTOK |4658) 2.00
T: SREMEN [1353)

8: KARLSAUHE (7530|

9 PARIS [12139) L.75
10: CALEANS [T462)

1

o

GARMISCH (3160

1.50
12: PUGSSITZE (1107)
13: PAREFALLS [18252]
14: RIKLIBETSU [5164] 1.25
13: MNGHE {3953}
16: LAMONT (17538)
17: TSURUEA, [10487) 1.00
18- NICOSLA [3233)
19: EDWARDS |24354) 0.75
20c JFL (4951)

71: PASADEMA |30114)

0.50

23- BAGA {13228)

Standard deviation (normalized)

Z3C |IZAMA |3423)

=
24: BURGOS [1B381) 0.95 @
Z3- ASCENZION (408
Zi: DARWIN [B2E%]
27 REUHNICM [3832) D_DD = | 1 ' 1 e 1 1 |
2E: WOLLONGONG [10113] 000 025 050 075 100 125 150 1.7% 200
- LAMER @012 Standard deviation (normalized)

Figure 25. Taylor diagram for daily mean differences between S5P and TCCON unscaled XCO data with a priori alignment at 28 TCCON
stations within the period between November 2017 and September 2020. Spatial co-location with radius of 50 km and time of +1 hour

around the satellite overpass was used. The stations are sorted with decreasing latitude.
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Figure 26. S5P CO column number density plotted around NDACC station at Altzomoni for one sample day. Top-left panel shows all

available S5P pixels containing CO data in the overpass file. Top-right panel shows the co-located S5P pixels with 50 km radius selection

criterion. Bottom panel shows the co-located S5P pixels with the cone co-location criterion with 1° opening angle of the cone at the highest

altitude. The yellow line in the plots represent the line-of-sight of the ground-based FTIR at the time of the satellite overpass over the site.
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Figure 28. CO column time series for all NDACC data (grey), all S5P data (light red), S5P data co-located with NDACC data (red) and

co-located NDACC data smoothed with S5P a priori and additionally smoothed with the S5P column averaging kernel (black) at each site

ordered with decreasing latitude. Spatial co-location with radius of 50 km and time of 43 hour around the satellite overpass was used.

66



https://doi.org/10.5194/amt-2021-36 Atmospheric
Preprint. Discussion started: 6 April 2021 Measurement
© Author(s) 2021. CC BY 4.0 License. Techniques

Discussions

C0_RPROIOFFL ALL smaoth and £TI.CO totalcoumn values €0_RPROIOFFL_ALL smaoth and £TIR.CO totalcolumn alues

C0_RPROIOFFL ALL smaoth and £TIR.CO totalcoumn vaues Y
(sur oo, BOULDER.C5 flal =40.0° ), 2019-12:06 Ul 2020/09-30, 610 meas. (s 00, IZANA (13 =26.3°), 2017-12-18 Ul 2020-06:26, 639 mess.)

(surl - Loa, RIKUBETSU {lat.=43.5" ), 2017-11-29 Ull 2019-12-13, 32 meas.)
20 N bt
o w50 | O ——
pregreneimiien ke houietuty
a0 T .
£ 00 7 E t
g T 2 000 H
H S ! H H
£ 2250 g ¥ - - £ £
H Fr & T 5 B
E: ol £ 2% R 3 I
2000 - 3 4 -+ o5 2000
s E RV T =
s S 4 Pt
1 1 1300
X
1500 1000
PrR et 20180 ol ﬂ\wsm 20189% et 201837 ad 2009 0¥ 2019°0%° ad 20190 ad 200937 o 202097 o 1010’05“‘ 20200 - 001 o 20189 et 10\5’05“’ 201# 050 20181 o 2009 o 2019 st 20190 o prc o 20209% d wie’ﬂsm 20200 - PrNRES o 20189 et ln‘wsﬂ‘ 201# 050 Pt o 2009 o 209 o5t 2019 oo prc e o 202090% u mwﬂsm 202007 -
T — co_nERGIOFF A smoseh and FI O tata colum vales Co_REROIOMF AL smosth and FI O taa colum vales
-t FANA oA 155 20171212 1 302059 0 155 meas) et ALTEOMON =9, 2011 13 52 1030 08 55 S0k mess) (o PARAMANIED (-5 20180305 2020 0404 5 meas)
[y 200 =% 3
=
i
t H 5 o0 ¥ L]
EH 2 S i : A
£ £ £ °E
8 g it g g e
o0 fi . s 3
2d .
Pt 15 5 Py SE 5 1600
- . T
1000 %
ﬂ - ? |
2o e 1006 a08® et 00t 1008 1009 0130 00080 0000 00w 2o a0 ia06 0 g 09 et g0t 008 1000 00 00080 0000 g00n 2o a0 g 08P g 09 et g0t 008 1000 00 00080 000?00
-8, LA REON WA o310 03502 1 300515311117 mess) G- ton WOLLONGONG (o 391 30186519 1 3070.09-53. 1905 meas) -t NGO (s .01 8711230 1 0500939, 1505 mese)
-
w000
B 2 o0 2 o
£ £ £
2 20 : ] = F
L - H o ] £
1300 ¥ % is
g . Bk N
= > 2000 - - ; . i - 2000
- Al ¥ ; %
e PPy e PP PSP o e e e e e e oo oo e e e e e o
Q01 e 03 e 060t g 000t g2 003t g 06t et 19100 0¥ 00t a0 2o 1800 g 080t a0t ettt g0t 000t g o ot 0080 0000 2o 1800 1g 060 g9t ettt g 0r 0t 0000t g0 et 0080 0060

C0_RPROIOFFL ALL smaoth and FTIR.CO totalcoumn values
st ton, ARTIVALEIGITTS (ot =77.0°), 2017-11:20 1 20200923, 174 meas )

oo KEACE sndon st ey
= 7 e

¥z

ot ot

=5

e

ol
il | oo H

o tpmtecreme]

W et

oV 0 00 1080 100 o0 080 19000t 10130t pq0n® 006t qa00ett

Figure 29. same as Fig. 28
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Figure 30. Relative difference [(satellite - ground-based)/ground-based] of CO column time series for all co-located SSP data and NDACC
data smoothed with S5P a priori and additionally smoothed with the SSP column averaging kernel as the reference data at each site ordered

with decreasing latitude as in Fig. 28. Spatial co-location with radius of 50 km and time of 43 hour around the satellite overpass was used.
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Figure 31. same as Fig. 30
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Figure 32. Mosaic plots showing relative biases between co-located S5P and NDACC CO column data smoothed with S5P a priori and ad-

ditionally smoothed with the S5P column averaging kernel at 22 NDACC stations within the period between November 2017 and September

2020. Spatial co-location with radius of 50 km and time of £3 hour around the satellite overpass was used. The stations are sorted with

decreasing latitude.
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Figure 33. Taylor diagram for daily mean differences between S5P and NDACC CO column data smoothed with S5P a priori and additionally
smoothed with the S5P column averaging kernel at 22 NDACC stations within the period between November 2017 and September 2020.
Spatial co-location with radius of 50 km and time of £3 hour around the satellite overpass was used. The stations are sorted with decreasing

latitude.
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Figure 36. Relative biases between co-located SSP XCO and a priori aligned TCCON unscaled XCO (top panel) as well as co-located S5P

CO column and smoothed NDACC CO column (bottom panel) are plotted as a function of the SSP measurement solar zenith angles retrieved

at the TCCON and NDACC stations within the period between November 2017 and September 2020. Spatial co-location with radius of
50 km and time of +1 hour (TCCON) and +3 hour (NDACC) around the satellite overpass was used.
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Figure 37. Relative biases between co-located S5P XCO and TCCON unscaled XCO data with a priori aligned are plotted as a function of
the S5P measurement solar zenith angles retrieved at a few TCCON stations within the period between November 2017 and September 2020.
Spatial co-location with radius of 50 km and time of 41 hour around the satellite overpass was used. The colours represent the different

months from January (1) till December (12) of a year.
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Table 1. SSP CH4 RPRO+OFFL data versions and CO RPRO+OFFL data versions used in the present work.

Product ID | Stream Version In operation from In operation until
(orbit no., date) (orbit no., date)
RPRO 01.02.02 0657,2017-11-28 5346, 2018-10-25
01.03.01 2818, 2018-04-30 5832,2018-11-28
01.03.02 2463, 2018-04-04 24717, 2018-04-05
L2 _CH4 OFFL 01.02.02 5833,2018-11-28 7424, 2019-03-20
01.03.00 7425, 2019-03-20 7906, 2019-04-23
01.03.01 7907, 2019-04-23 8814, 2019-06-26
01.03.02 8812, 2019-06-26 current version
RPRO 01.02.02 5236,2018-10-17 5346, 2018-10-25
01.03.01 2818, 2018-04-30 5832,2018-11-28
01.03.02 2463, 2018-04-04 24717, 2018-04-05
L2_CO OFFL 01.02.00 5346, 2018-10-25 5832,2018-11-28
01.02.02 5833,2018-11-28 7424, 2019-03-20
01.03.00 7425, 2019-03-20 7906, 2019-04-23
01.03.01 7907, 2019-04-23 8814, 2019-06-26
01.03.02 8815, 2019-06-26 current version
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Table 2. List of FTIR stations that are associated to TCCON and contributed to the present work by providing public and rapid delivery

data. The stations marked with a star (*) are not yet associated to TCCON but perform observations and data analysis fully compatible with

TCCON guidelines. Active dates correspond to the dates for which the measurements were provided from the satellite launch till the present

work.
Station Latitude  Longitude  Altitude (km a.s.l.) Active dates Data reference
EUREKA 80.05°N  86.42°W 0.61 Nov 2017 - Present Strong et al. (2019)
NY-ALESUND 78.90° N 11.90° E 0.02 Nov 2017 - Present Notholt et al. (2014b)
SODANKYLA 67.37°N 26.63° E 0.19 Nov 2017 - Present Kivi et al. (2014); Kivi and Heikkinen (2016)
EAST TROUT LAKE 54.35°N  104.99° W 0.50 Nov 2017 - Present Waunch et al. (2018)
BIALYSTOK 53.23°N  23.05°E 0.18 Nov 2017 - Oct 2018 Deutscher et al. (2019)
BREMEN 53.10°N 8.85°E 0.03 Nov 2017 - Present Notholt et al. (2014a)
KARLSRUHE 49.10° N 8.44°E 0.12 Nov 2017 - Present Hase et al. (2015)
PARIS 48.85° N 236°E 0.06 Nov 2017 - Present Té et al. (2014)
ORLEANS 47.97°N 2.11°E 0.13 Nov 2017 - Present Warneke et al. (2019)
GARMISCH 47.48° N 11.06° E 0.74 Nov 2017 - Present Sussmann and Rettinger (2018a)
ZUGSPITZE 47.42° N 10.98° E 2.96 Nov 2017 - Present Sussmann and Rettinger (2018b)
PARK FALLS 4595°N  90.27°W 0.44 Nov 2017 - Present Wennberg et al. (2017)
RIKUBETSU 4346°N  143.77°E 0.38 Nov 2017 - Present Morino et al. (2018c)
XIANGHE* 39.75°N  116.96°E 0.05 Nov 2017 - Present Yang et al. (2019)
LAMONT 36.60°N  97.49°W 0.32 Nov 2017 - Present Wennberg et al. (2016b)
TSUKUBA 36.05°N  140.12°E 0.03 Nov 2017 - Present Morino et al. (2018a)
NICOSIA* 35.14°N  3338°E 0.19 Aug 2019 - Present Petri et al. (2019)
EDWARDS 3496°N 117.88°W 0.70 May 2018 - Present Iraci et al. (2016)
JPL 3420°N  118.18°W 0.39 Nov 2017 - May 2018 Wennberg et al. (2016a)
PASADENA 34.14°N  118.13° W 0.23 Nov 2017 - Present Wennberg et al. (2015)
SAGA 3324°N  130.29°E 0.01 Nov 2017 - Present Kawakami et al. (2014)
IZANA 28.30° N 16.50° W 2.37 Nov 2017 - Present Blumenstock et al. (2017)
BURGOS 18.53° N  120.65°E 0.04 Nov 2017 - Present Morino et al. (2018b); Velazco et al. (2017)
ASCENSION 7.92°8S 14.33° W 0.01 Nov 2017 - Present Feist et al. (2014)
DARWIN 12.46°S  130.93°E 0.04 Nov 2017 - Present Griffith et al. (2014a)
REUNION 20.90° S 55.49°E 0.09 Nov 2017 - Present De Maziere et al. (2017)
WOLLONGONG 3441°S  150.88°E 0.03 Nov 2017 - Present Griffith et al. (2014b)
LAUDER 45.04° S 169.68° E 0.61 Nov 2017 - Present Sherlock et al. (2014); Pollard et al. (2019)
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Table 3. List of FTIR stations that are associated to NDACC-IRWG and contributed to the present work by providing public and rapid delivery
data. The stations marked with a star (*) are not yet associated to NDACC but perform observations and data analysis fully compatible with

NDACC guidelines. The location of the stations and the teams involved are indicated for the respective stations.

Station Latitude = Longitude  Altitude (km a.s.l.) Active dates Teams

EUREKA 80.05°N  86.42°W 0.61 Nov 2017 - Present  U. of Toronto; Batchelor et al. (01 Jul. 2009)
NY-ALESUND 78.90° N 11.90°E 0.02 Nov 2017 - Present U. of Bremen

THULE 76.52° N 68.77° W 0.22 Nov 2017 - Present NCAR; Hannigan et al. (01 Sep. 2009)
KIRUNA 67.84° N 20.40° E 0.42 Nov 2017 - Present KIT-ASF; IRF Kiruna
SODANKYLA* 67.37°N  26.63°E 0.19 Nov 2017 - Present FMI; BIRA-IASB
HARESTUA 60.20° N 10.80° E 0.60 Nov 2017 - Present Chalmers
ST.PETERSBURG 59.88°N  29.83°E 0.02 Nov 2017 - Present SPbU; Makarova et al. (2015)
BREMEN 53.10° N 8.85°E 0.03 Nov 2017 - Present U. of Bremen
KARLSRUHE* 49.10° N 8.44°E 0.12 Nov 2017 - Present KIT-ASF
GARMISCH* 47.48°N 11.06° E 0.74 Nov 2017 - Present KIT-IFU

ZUGSPITZE 4742°N 10.98° E 2.96 Nov 2017 - Present KIT-IFU
JUNGFRAUJOCH 46.55° N 7.98°E 3.58 Nov 2017 - Present U. of Liege

TORONTO 43.60°N  79.36°W 0.17 Nov 2017 - Present  U. of Toronto; Wiacek et al. (01 Mar. 2007)
RIKUBETSU 43.46°N  143.77°E 0.38 Nov 2017 - Present Nagoya U.; NIES
BOULDER 40.04° N 105.24° W 1.61 Nov 2017 - Present NCAR; Ortega et al. (2019)
IZANA 28.30° N 16.50° W 2.37 Nov 2017 - Present AEMET; KIT-ASF
MAUNA LOA 19.54° N 155.57° W 3.40 Nov 2017 - Present NCAR

ALTZOMONI 19.12° N 98.66° W 3.98 Nov 2017 - Present UNAM
PARAMARIBO 5.81°N 55.21°W 0.03 Nov 2017 - Present U. of Bremen
LAREUNION.MAIDO  21.08° S 55.38°E 2.16 Nov 2017 - Present BIRA-IASB
WOLLONGONG 3441°S  150.88°E 0.03 Nov 2017 - Present U. of Wollongong
LAUDER 45.04°S  169.68°E 0.37 Nov 2017 - Present NIWA

ARRIVAL HEIGHTS 77.82°S  166.65°E 0.20 Nov 2017 - Present NIWA
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Table 8. Validation of S5P XCO ALL, CLSKY and CLOUD data with TCCON XCO data at 28 stations for the period between November
2017 and September 2020. Spatial co-location with radius of 50 km and time co-location of £1 hour around the satellite overpass was used.
TCCON station (column 1) are sorted according to the decreasing latitude (column 2). The column with title ’No.” represents the number
of co-located measurements, column title *Std’ represents the standard deviation of the time series of the ground-based data relative to the
standard deviation of the time series of the SS5P data, column title *Corr’ represents the correlation coefficient between the S5P and the
reference ground-based data, column title "Rel diff bias’ represents the relative difference ((SAT-GB)/GB) bias in percent and column title

"Rel diff std’ represents the standard deviation of the relative bias in percent.

TCCON unsc XCO smooth 50 km 1 hr ALL

TCCON unsc XCO smooth 50 km 1 hr CLSKY

TCCON unsc XCO smooth 50 km 1 hr CLOUD

Sites Lat No. Std  Corr Rel diff  Rel diff No. Std  Corr Rel diff Rel diff No. Std  Corr Rel diff Rel diff
bias (%) std (%) bias (%) std (%) bias (%) std (%)

EUREKA 80 10716 0.8 0.95 6.4 4.18 9421 0.8 0.94 7.19 4.33 6019 0.9 0.92 4.82 3.88
NY-ALESUND 78.9 9495 0.9 0.97 7.54 4.4 7854 0.9 0.96 7.75 4.93 4637 0.9 0.97 6.12 443
SODANKYLA 67.4 18723 0.9 0.95 5.75 493 12972 0.9 0.94 6.4 5.56 7633 0.9 0.96 4.19 4.08
EAST TROUT LAKE 54.3 31198 1 0.94 5.92 5.18 18415 1 0.92 7.03 5.11 16283 0.9 0.91 4.79 6.26
BIALYSTOK 53.2 4698 0.9 0.97 2.88 3.24 1122 1 0.98 2.04 2.02 4110 0.9 0.97 3.04 3.41
BREMEN 53.1 1399 1 0.92 333 4.65 829 1 0.97 4.75 3.31 976 1 0.9 2.9 522
KARLSRUHE 49.1 7990 0.9 0.97 -0.02 2.95 3885 0.9 0.96 0.29 32 5948 0.9 0.96 0.03 3.27
PARIS 48.8 12139 1 0.93 227 3.59 5703 1.1 0.92 3.11 3.8 8627 1 0.93 1.77 3.64
ORLEANS 48 7462 0.9 0.97 4.13 2.81 3229 1 0.96 4.54 3.05 5976 0.9 0.97 4.14 2.98
GARMISCH 47.5 5160 1 0.92 3.83 4.6 3158 0.9 0.87 4.84 5.84 3609 0.9 0.93 3.07 4.36
ZUGSPITZE 474 1107 1.2 0.82 5.55 7.63 741 1.2 0.7 5.86 9.38 861 1.1 0.84 5.13 7.12
PARK FALLS 45.9 16252 09 0.94 432 6.56 9013 1 0.93 5.2 7.93 10553 0.9 0.94 3.33 4.15
RIKUBETSU 435 5164 1.1 0.97 3.89 3.77 2775 1 0.94 5.7 4.25 4398 1 0.97 3.15 3.53
XIANGHE 39.8 9993 0.9 0.95 -5.81 6.95 4511 0.9 0.93 -4.18 8.55 6655 0.9 0.95 -6.51 6.95
LAMONT 36.6 17558 1 0.93 -0.95 422 6513 0.9 0.88 -0.4 4.79 15128 1 0.94 -1.16 4.28
TSUKUBA 36 10467 1 0.95 3.05 4.54 5651 0.9 0.95 5.04 4.2 7887 1 0.95 2.03 4.5
NICOSIA 35.1 5259 0.9 0.95 4.59 3.34 4248 0.9 0.94 5.44 4.06 4744 0.9 0.95 4.37 3.38
EDWARDS 35 34554 09 0.94 3.1 4.71 17050 0.9 0.94 2.32 4.74 32387 09 0.93 35 5.09
JPL 34.2 4951 1.3 0.89 -3.3 5.02 2626 1.2 0.84 29 5.75 3897 1.2 0.86 -4.32 5.14
PASADENA 34.1 30114 0.8 0.84 -3.38 7.76 19375 1 0.83 -3.71 6.73 25831 04 057 -3.16 19.33
SAGA 332 15288 1 0.97 0.3 4.02 7428 1 0.95 1.31 491 13487 1 0.97 0.54 4.33
IZANA 28.3 8425 1 0.88 5.15 4.92 3541 1 0.78 5.8 6.61 7707 1 0.88 5.04 4.96
BURGOS 18.5 18581 0.9 0.97 0.24 4.07 8442 0.9 0.94 0.69 4.67 17951 0.9 0.97 0.09 4.17
ASCENSION -1.9 406 1.2 0.63 -0.62 4.66 126 2 0.88 -2.83 4.34 383 1.1 0.59 -1.54 4.99
DARWIN -12.5 8989 1 0.92 -0.65 6.2 3866 1.1 091 0.08 7.27 8092 1 0.93 -0.76 5.89
REUNION -20.9 3892 0.9 0.96 3.47 4.61 1055 0.9 0.9 3.13 7.53 3892 0.9 0.95 3.57 4.84
WOLLONGONG -344 10115 0.8 0.82 2.14 18.12 7141 1 0.89 1.48 9.06 7228 0.8 0.77 2.62 22.63
LAUDER -45 29012 1 0.97 2.84 3.97 19196 1 0.96 3.39 4.23 22116 1 0.97 2.62 4.25
Mean all stations 1 0.92 2.36 52 1 091 2.83 5.36 0.9 0.91 1.91 5.75
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Table 9. Validation of S5P CO column ALL, CLSKY and CLOUD data with NDACC CO column data at 22 stations for the period between

November 2017 and September 2020. Spatial co-location with radius of 50 km and time co-location of &3 hour around the satellite overpass

was used. NDACC station (column 1) are sorted according to the decreasing latitude (column 2). The column with title ’No.” represents the

number of co-located measurements, column title ’Std’ represents the standard deviation of the time series of the ground-based data relative

to the standard deviation of the time series of the S5P data, column title ’Corr’ represents the correlation coefficient between the S5P and the

reference ground-based data, column title "Rel diff bias’ represents the relative difference ((SAT-GB)/GB) bias in percent and column title

"Rel diff std’ represents the standard deviation of the relative bias in percent.

NDACC CO smooth 50 km 3 hr ALL

NDACC CO smooth 50 km 3 hr CLSKY

NDACC CO smooth 50 km 1 hr CLOUD

Sites Lat No. Std  Corr Rel diff Rel diff No. Std  Corr Rel diff Rel diff No. Std  Corr Rel diff Rel diff
bias (%)  std (%) bias (%)  std (%) bias (%)  std (%)
EUREKA 80.1 714 0.8 095 12.96 4.56 597 08 095 12.23 4.08 300 08  0.96 11.72 4.64
NY-ALESUND 78.9 73 09 096 11.72 3.82 72 0.8 095 11.04 4.24 56 09 097 11.7 39
THULE 76.5 2667 09 095 9.44 4.79 2388 09 095 9.43 4.67 1609 09 094 7.8 5.14
KIRUNA 67.8 581 08 095 3.51 4.77 500 0.8 094 4.19 4.33 403 0.8 094 2.52 5.05
HARESTUA 60.2 216 09 097 6.7 3.73 159 09 095 6.47 4.45 126 1 0.97 6.81 3.69
ST.PETERSBURG 59.9 846 09 096 6.67 3.87 744 09 094 6.4 43 654 09 094 6.76 4.52
BREMEN 53.1 250 09 097 5.12 3.31 164 09  0.96 5.98 3.69 163 09 097 5.23 3.69
KARLSRUHE 49.1 933 1 0.96 -0.55 3.24 506 1 0.96 0.19 3.27 795 1 0.96 -0.8 3.42
GARMISCH 47.5 275 09 095 1.26 425 105 08 094 0.97 53 247 1 0.95 1.37 4.33
ZUGSPITZE 474 1420 1 0.9 6.48 5.4 984 1 0.89 6.25 6.01 992 1 0.93 6.67 5.63
JUNGFRAUJOCH 46.6 384 1 0.94 8.09 4.43 306 1 0.92 7 4.92 310 09 095 9.01 4.79
TORONTO 43.6 935 1 0.9 11.82 7.1 400 1 0.9 10.27 6.32 868 1 0.89 12.46 7.73
RIKUBETSU 435 32 1 0.97 7.77 3.73 22 1 0.96 7.36 3.8 26 1.1 0.96 9.11 5
BOULDER.CO 40 610 08 073 8.29 11.89 323 09 047 9.74 15.73 563 0.7  0.66 9.11 16.33
IZANA 283 639 09 092 2.54 4.24 261 1 0.85 2.67 5.85 597 09 093 2.54 4.17
MAUNA.LOA.HI 19.5 155 09 097 2.65 322 81 09 0.88 2.1 6.11 145 09 096 2.52 3.64
ALTZOMONI 19.1 364 0.7  0.62 20.6 10.73 212 0.7 073 22.05 13.44 338 08  0.65 19.51 10.3
PARAMARIBO 5.8 59 1.2 0382 0.88 6 59 1.2 0382 1.01 5.98
LA.REUNION.MAIDO  -21.1 1117 09 098 6.44 4.62 265 09  0.96 7.92 6.61 1011 09 098 6.57 4.64
WOLLONGONG -344 1403 0.5 0.7 9.17 23.01 1007 09 0.89 6.49 8.01 1050 05 0.7 10.7 26.87
LAUDER -45 1805 09  0.96 7.82 4.54 1132 09  0.96 791 4.58 1501 09 097 7.83 4.81
ARRIVAL.HEIGHTS -77.8 174 0.8 095 18.3 5.63 152 0.8  0.96 17.17 517 107 09 094 18.08 5.9
Mean all stations 09 091 7.62 5.95 0.9 0.9 7.8 5.97 09 091 7.65 6.55
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