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Abstract. This study aims at introducing two conservative thermodynamic variables (moist-air entropy potential temperature

and total water content) into a one-dimensional variational data assimilation system (1D-Var) to demonstrate the benefit for

future operational assimilation schemes. This system is assessed using microwave brightness temperatures from a ground-based

radiometer installed during the field campaign SOFGO3D dedicated to fog forecast improvement.

An underlying objective is to ease the specification of background error covariance matrices that are currently highly depen-5

dent on weather conditions making difficult the optimal retrievals of cloud and thermodynamic properties during fog conditions.

Background error covariance matrices for these new conservative variables have thus been computed by an ensemble approach

based on the French convective scale model AROME, for both all-weather and fog conditions. A first result shows that the use

of these matrices for the new variables reduces some dependencies to the meteorological conditions (diurnal cycle, presence

or not of clouds) compared to usual variables (temperature, specific humidity).10

Then, two 1D-Var experiments (classical vs. conservative variables) are evaluated over a full diurnal cycle characterized by

a stratus-evolving radiative fog situation, using hourly brightness temperatures.

Results show, as expected, that analysed brightness temperatures by the 1D-Var are much closer to the observed ones than

background values for both variable choices. This is especially the case for channels sensitive to water vapour and liquid water.

On the other hand, analysis increments in model space (water vapour, liquid water) show significant differences between the15

two sets of variables.

1 Introduction

Numerical Weather Prediction (NWP) models at convective scale need accurate initial conditions for skillful forecasts of high

impact meteorological events taking place at small-scale such as convective storms, wind gusts or fog. Observing systems

sampling atmospheric phenomena at small-scale and high temporal frequency are thus necessary for that purpose (Gustafsson20

et al., 2018). Ground-based remote-sensing instruments (e.g. rain and cloud radars, radiometers, wind profilers) meet such
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requirements and provide information on wind, temperature, and atmospheric water (vapour and hydrometeors). Moreover,

data assimilation systems are evolving towards ensemble approaches where hydrometeors can be initialized together with

usual control variables. This is the case for the Météo-France NWP limited area model AROME (Seity et al., 2011; Brousseau

et al., 2016) where, on top of wind (U , V ), temperature (T ) and specific humidity qv , several hydrometeor mass contents can25

be initialized (cloud liquid water ql, cloud ice water qi, rain qr, snow qs and graupel qg) (Destouches et al., 2021). However,

these variables are not conserved during adiabatic and reversible vertical motion.

The accuracy of the analysed state in variational scheme highly depends on the specification of the so-called background

error covariance matrix. Background error variances and cross-correlations between variables are known to be dependent on

weather conditions (Montmerle and Berre, 2010; Michel et al., 2011). This is particularly the case during fog conditions with30

much shorter vertical correlation length-scales at the lowest levels and large positive cross-correlations between temperature

and specific humidity (Ménétrier and Montmerle, 2011). In this context, Martinet et al. (2020) have demonstrated that humidity

retrievals could be significantly degraded if sub-optimal background error covariances are used during the minimization. New

ensemble approaches allow a better approximation of background error covariance matrices but rely on the capability of the

ensemble data assimilation to correctly represent model errors, which might not always be the case during fog conditions. This35

is why it would be of interest to examine, in a data assimilation context, the use of variables that are more suitable when water

phase changes take place.

It is well-known that data assimilation systems used to be based on the assumptions of homogeneity and isotropy of back-

ground error correlations. To release these hypotheses, Desroziers and Lafore (1993) and Desroziers (1997) implemented a

coordinate change inspired by the semi-geostrophic theory to test flow-dependent analyses with case studies from the Front-8740

field campaign (Clough and Testud, 1988), where the local horizontal coordinates were transformed into the semi-geostrophic

space during the assimilation process. Another kind of flow-dependent analyses were made by Cullen (2003) and Wlasak et al.

(2006) who proposed a low-order Potential Vorticity (PV) inversion scheme to define a new set of control variables. Similarly,

analyses on potential temperature θ were made by Shapiro and Hastings (1973) and Benjamin et al. (1991), and more recently

by Benjamin et al. (2004) with moist virtual θv and moist equivalent θe potential temperatures.45

The aim of the paper is to test a one-dimensional data assimilation method that would be less sensitive to the average vertical

gradients of the (T,qv, ql, qi) variables. To this end, two conservative variables will be proposed, generalizing previous uses of

θ (as a proxy for the entropy of dry air) to moist-air variables suitable for data assimilation. The new conservative variables are

the total water content qt = qv + ql + qi and the moist-air entropy potential temperature θs defined in Marquet (2011), which

generalize the two well-known conservative variables (qt,θl) of Betts (1973).50

The focus of the study will be on a fog situation from the SOFOG3D field campaign using a one-dimensional variational (1D-

Var) system for the assimilation of observed microwave brightness temperatures sensitive to T , qv and ql from a ground-based

radiometer. Short-range forecasts from the convective scale model AROME (Seity et al., 2011) will be used as background

profiles, the fast radiative transfer model RTTOV-gb (De Angelis et al., 2016; Cimini et al., 2019) will allow to accurately

simulate the brightness temperatures, and suitable background error covariance matrices will be derived from an ensemble55

technique.
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Section 2 presents the methodology (conservative variables, 1D-Var, change of variables). Section 3 describes the experi-

mental setting, the meteorological context, the observations and the different components of the 1D-Var system. The results

are commented in Section 4. Finally, conclusions and perspectives are given in Section 5.

2 The methods60

This section presents the methodology chosen for this study. The definition of the moist-air entropy potential temperature

θs is introduced, as well as the formalism of the 1D-Var assimilation system, before describing the “conservative variable”

conversion operator.

2.1 The moist-air entropy potential temperature

The moist-air entropy potential temperature θs is defined in Marquet (2011) to provide the same link with the specific entropy65

of moist air (s) as in Bauer (1908), leading to:

s = cpd ln
(
θs
T0

)
+ sd0 , (1)

where cpd ≈ 1004.7 J K−1 kg−1 is the specific heat of dry air at constant pressure, T0 = 273.15 K a standard temperature and

sd0(T0,p0)≈ 6775 J K−1 kg−1 the reference dry air entropy at T0 and at the standard pressure p0 = 1000 hPa.

Only the first order approximation noted (θs)1 in Marquet (2011) will be considered in the following, with:70

θs ≈ (θs)1 = θ exp
(
− Lvap ql +Lsub qi

cpd T

)
exp(Λr qt) , (2)

where θ = T (p/p0)κ is the dry-air potential temperature, p the pressure, κ≈ 0.2857, Lvap(T ) and Lsub(T ) the latent heat of

vaporization and sublimation.

The first term θ in the right-hand side of (2) leads to a first conservation law (invariance) during adiabatic compression

and expansion and with the joint variations of T and p to keep θ constant. The first exponential explains another form of75

conservation law: due to reversible and adiabatic phase changes for which cpd dT ≈ cp dT = Lvap dql +Lsub dqi, with cp the

moist-air value and with therefore joint variations of the numerator and denominator of this first exponential, leaving this

exponential invariant. It should be mentioned that the product of θ by the first exponential forms the Betts (1973) conservative

variable θl.

While the Betts variable was established with the assumption of a constant total water content qt, the second exponential in80

(2) sheds new light on conservation cases where the entropy of moist air can remain constant despite changes in the total water

qt. This occurs in regions where water vapour turbulence transport takes place, via the evaporation process over oceans, or at

the edges of clouds via entrainment and detrainment processes.

We consider here “open-system” thermodynamic processes, for which the second exponential takes into account the impact

on moist-air entropy when the changes in specific content of water vapour is balanced, numerically, by opposite changes of85

that of dry air, namely with dqd =−dqt 6= 0. In this case, as stated in Marquet (2011), the changes in moist-air entropy depend
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on reference values (with subscript “r”) according to d[ qd (sd)r + qt (sv)r ], and thus with (sd)r and (sv)r being constant and

with the relation qd = 1− qt, it leads to [ (sv)r − (sd)r ] dqt.

This explains the new term Λr = [(sv)r−(sd)r ]/cpd ≈ 5.869±0.003, which depends on the absolute reference entropies for

water vapour (sv)r ≈ 12671 J K−1 kg−1 and dry air (sd)r ≈ 6777 J K−1 kg−1. This also explains that these “open-system”90

thermodynamic effects can be taken into account to highlight regimes where the specific moist-air entropy (s), θs and (θs)1
can be constant in spite of variable values of qt, which may decrease or increase on the vertical (see Marquet, 2011, for such

examples).

Although it should be possible to use (θs)1 as a control variable for assimilation, it appeared desirable to define an additional

approximation of this variable for a more “regular” and more “linear” formulation, insofar as tangent-linear and adjoint versions95

are needed for the 1D-Var system. Considering the approximation exp(x)≈ 1+x for the two exponentials in (2), neglecting the

second order terms in x2, also neglecting the variations of Lv(T ) with temperature and assuming a no-ice hypothesis (qi = 0),

the new variable writes:

(θs)a = θ

[
1 + Λr qt−

Lvap(T0) ql
cpd T

]
, (3)

(θs)a =
1
cpd

(
p0

p

)κ
[ cpd (1 + Λr qt)T −Lvap(T0) ql ] , (4)100

where Lvap(T0)≈ 2501 kJ kg−1. This formulation corresponds to Sm/cpd, where Sm is the Moist Static Energy defined in

Marquet (2011, Eq. 73) and used in the ECMWF1 NWP global model by Marquet and Bechtold (2020).

The new potential temperature (θs)a remains close to (θs)1 (not shown) and keeps almost the same three conservative

properties described for (θs)1. This new conservative variable (θs)a will be used along with the total water content qt = qv+ql

in the data assimilation experimental context described in the following sections.105

2.2 The 1D-Var formalism.

The 1D-Var data assimilation system searches for an optimal state (the analysis) as an approximate solution of the problem

minimizing a cost function J defined by:

J (x) =
1
2

(x−xb)T Bx
−1 (x−xb)

+
1
2

[ y−H(x) ]T R−1 [ y−H(x) ] . (5)110

The symbol T represents the transpose of a matrix.

The first (background) term measures the distance in model space between a control vector x (in our study, T , qv and ql

profiles) and a background vector xb, weighted by the inverse of the background error covariance matrix (Bx) associated with

the vector x. The second (observation) term measures the distance in the observation space between the value simulated from

the model variables H(x) (in our study, the radiative transfer model RTTOV-gb) and the observation vector y (in our study, a115

1European Centre for Medium range Weather Forecasts
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set of microwave brightness temperatures from a ground-based radiometer), weighted by the inverse of the observation error

covariance matrix (R). The solution is searched iteratively by performing several evaluations of J and its gradient:

∇x J (x) = Bx
−1 (x−xb)−HT R−1 [y−H(x)] , (6)

where H is the Jacobian matrix of the observation operator representing the sensitivity of the observation operator to changes

in the control vector x.120

2.3 The conversion operator

The 1D-Var assimilation defined previously with the variables x= (T,qv, ql) can be modified to use the conservative variables

z = ((θs)a, qt). A conversion operator that projects the state vector from one space to the other can be written as x= L(z). In

the presence of liquid water ql, an adjustment to saturation is made to separate its contribution to the total water content qt from

the water vapour content qv . This is equivalent to distinguishing the “unsaturated” case from the “saturated” one. Therefore,125

starting from initial conditions (TI , qI) = (T,qv) and using the conservation of (θs)a given by Eq. (4), we look for the variable

T ∗ such that:

T ∗ + α qsat(T ∗) = TI + α qI , (7)

where α=
Lvap(T0)

cpd (1 + Λr qt)
(8)

and qsat(T ∗) is the specific humidity at saturation.130

For the unsaturated case (qv < qsat(T ∗)), we obtain the variables (T,qv, ql) directly from Eq. (4):

ql = 0 , qv = qt and T = (θs)a

(
p

p0

)κ 1
1 + Λr qt

. (9)

For the saturated case (qv ≥ qsat(T ∗)), we write:

ql = qt− qsat(T ∗) and qv = qsat(T ∗) . (10)

In this situation, it is necessary to calculate implicitly the temperature T ∗, given by Equation (7). We compute numerically135

an approximation of T ∗ by an iterative Newton’s algorithm.

Taking into account this change of variables, the cost-function can be written as:

J (z) =
1
2

(z− zb)T Bz
−1 (z− zb)

+
1
2

[ y−H(L(z)) ]T R−1 [ y−H(L(z)) ] . (11)

Then, its gradient given by Eq. (6) becomes:140

∇zJ (z) = Bz
−1(z− zb)−LTHTR−1[y−H(L(z))], (12)

where LT is the adjoint of the conversion operator L.
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3 The experimental set-up

The numerical experiments to be presented afterwards will use measurements made during the SOFOG3D field experiment2

(SOuth west FOGs 3D experiment for processes study) that took place from 1 October 2019 to 31 March 2020 in southwestern145

France to advance understanding of small-scale processes and surface heterogeneities leading to fog formation and dissipation.

Many instruments were located at the Saint-Symphorien super-site (Les Landes region), such a HATPRO microwave ra-

diometer (Rose et al., 2005), a 95 GHz BASTA Doppler cloud radar (Delanoë et al., 2016), a Doppler lidar, an aerosol lidar, a

surface weather station and a radiosonde station. One objective of this campaign was to test the contribution of the assimilation

of such instrumentation on the forecast of fog events by NWP models.150

3.1 The 9 February 2020 situation

This section presents the experimental context of 9 February 2020 at the Saint-Symphorien site characterized by (i) a radiative

fog event observed in the morning and (ii) the development of low-level clouds in the afternoon and evening.

Figure 1. Reflectivity profiles at 95 GHz (dBZ) measured by the BASTA cloud radar in the first 500 m (top) and up to 12000 m altitude

(bottom), with UTC hours in abscissas, for the day of 9 February 2020 at Saint-Symphorien (Les Landes region). From http://basta.projet.

latmos.ipsl.fr/?bi=bif

Figure 1 shows a time series of cloud radar reflectivity profiles (W-band at 95 GHz) measured by the BASTA instrument

(Delanoë et al., 2016) in the first few hundred meters (top panel) between 9 February 2020 at 00 UTC and 10 February 2020155

at 00 UTC. The instrument reveals a thickening of the fog between midnight and 04 UTC. The fog layer thickness is located

between 90 m and 250 m. After 04 UTC, the fog layer near the ground rises, lifting in a “stratus” type cloud (between 100

and 300 m). After 08 UTC, the stratus cloud dissipates. In the bottom panel BASTA observations up to 12000 m (≈ 200 hPa)

indicate low-level clouds after 14 UTC, generally between 1000 m (≈ 900 hPa) and 2000 m (≈ 780 hPa), with a fairly good

2https://www.umr-cnrm.fr/spip.php?article1086
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agreement with AROME short-range (1 h) forecasts (see Fig. 2 (f)). Optically thin (reflectivity below 0 dBZ) high altitude ice160

clouds are also captured by the radar.

Figure 2. Vertical profiles derived from 1 h forecasts of AROME background for all hours of the day 9 February 2020 at Saint-Symphorien

(Les Landes region in France) for: (a) absolute temperature T every 0.2 K; (b) dry-air potential temperature θ every 0.2 K, (c) water-vapour

specific content qv every 1 g/kg, (d) entropy potential temperature (θs)a every 0.2 K, (e) cloud liquid-water specific content ql (contoured

for 0.00001 g/kg and 0.002 g/kg, then every 0.1 g/kg above 0.1 g/kg) and (f) Relative Humidity (RH) every 10 %. The black curves (solid

and dashed lines) represent the PBL heights determined from maximum of vertical gradients of θ.

7
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Figure 2 depicts the diurnal cycle evolution in terms of vertical profiles of: (a) absolute temperature T , (b) dry-air potential

temperature θ, (c) water vapour specific content qv , (d) entropy potential temperature (θs)a, (e) cloud liquid water specific

content ql and (f) relative humidity (RH), from 1 h AROME forecasts (background) of 9 February 2020 at Saint-Symphorien.

At this stage, it is important to indicate that the AROME model has a 90-level vertical discretisation from the surface up to165

10 hPa, with a high resolution in the Planetary Boundary Layer (PBL) since 20 levels are below 2 km.

Figures 2 (e) and (f), for ql and RH, show two main saturated layers: a fog layer close to the surface between 00 and 09 UTC

with the presence of a thin liquid cloud layer aloft at 850 hPa at 00 UTC, and the presence of a stratocumulus cloud between

14 UTC and midnight at 850 hPa. During the night, near surface layers cool down, with a thermal inversion that sets at around

01 UTC and persists until 07 UTC. After the transition period between 06 UTC and 09 UTC, when the dissipation of the fog170

and stratus takes place, the air warms up and the PBL develops vertically (see the black curves plotted where vertical gradients

of θ in (b) are large). Towards the end of the day, the thickness of the PBL remains important until 24 UTC, probably due to

the presence of clouds between 800 and 750 hPa that reduces the radiative cooling (see Figs. 2 (c) and (f) for qv and RH).

Figure 2(d) reveals weaker vertical gradients for the (θs)a profiles, notably with contour lines often vertical and less numer-

ous than those of the T , θ and qv profiles in (a), (b) and (c), as also shown by more extensive and more numerous vertical arrows175

in (d) than in (b). Here we see the impact of the coefficient Λr ≈ 5.869 in Eqs. (3)-(4), which allows the vertical gradients of

θ in (b) and qv in (c) to often compensate each other in the formula for (θs)a. This is especially true between 980 hPa and

750 hPa in the morning between 04 and 10 UTC, and also within the dry and moist boundary layers during the day.

Note that the dissipation of the fog is associated with a homogenization of (θs)a in (d) from 04 to 05 UTC in the whole

layer above, in the same way as the transition from strato-cumulus toward cumulus was associated with a cancellation of the180

vertical gradient of (θs)1 in the Fig. 6 of Marquet and Geleyn (2015). This phenomenon cannot be easily deduced from the

separate analysis of the gradients of θ and qv in (b) and (c). Therefore, three air mass changes can be clearly distinguished

during the day. The vertical gradients of (θs)a are stronger during cloudy situations, first (i) at night and early morning before

04 UTC and just above the fog, then (ii) at the end of the day above the top-cloud level at 800 hPa; with (iii) turbulence-related

phenomena in between that mix the air mass and (θs)a, up to the cloudy layer tops that evolve between 950 and 800 hPa from185

13 UTC to 17 UTC.

The observations to be assimilated are presented in the following. The HATPRO (Humidity And Temperature PROfiler)

MicroWave Radiometer (MWR) measures brightness temperatures (TB) at 14 frequencies (Rose et al., 2005) between 22.24

and 58 GHz: 7 are located in the water vapour absorption band and 7 are located in the oxygen absorption band. For our

study, one of the channels (at 23.84 GHz) was eliminated because of a receiver failure identified during the campaign. In this190

preliminary study, we have only considered the zenith observation geometry of the radiometer for the sake of simplicity.

The radiative transfer model H needed to simulate the model equivalent of the observations, together with the choice of the

control vector and the specification of the background and observation error matrices, are presented in the next section.

8
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3.2 The components of the 1D-Var

In 1D-Var systems, the integrated liquid water content, Liquid Water Path (LWP ) can be included in the control vector x as195

initially proposed by Deblonde and English (2003) and more recently used by Martinet et al. (2020). A first experimental set-up

has been defined where the minimization is performed with the control vector being (T,qv,LWP ). It will be considered as

the reference being named “REF”. The 1D-Var system chosen for the present study is the one developed by the EUMETSAT

NWP SAF3, where the minimisation of the cost-function is solved using an iterative procedure proposed by Rodgers (1976)

with a Gauss-Newton descent algorithm.200

During the minimization process, only the amount of integrated liquid water is changed. In this approach, the two “moist”

variables qv and LWP are considered to be independent (no cross-covariances for background errors between these variables).

The second experimental framework, where the control vector is z = ((θs)a, qt), corresponding to the conservative variables,

is named “EXP”. The numerical aspects of the 1D-Var minimisation are kept the same as in “REF”.

Then, a set of reference matrices Bx(T,qv) has been estimated every hour using the Ensemble Data Assimilation (EDA)205

system of the AROME model on 9 February 2020. These matrices were obtained by computing statistics from a set of 25

members providing 3 h forecasts for a subset of 5000 points randomly selected in the AROME domain to obtain a sufficiently

large statistical sample. Then, matrices associated with fog areas, and noted Bx(T,qv)fog , were computed every hour by

applying a fog mask (defined by areas where ql is above 10−6 kg kg−1 for the three lowest model levels), in order to select

only model grid points for which fog is forecast in the majority of the 25 AROME members. The background error covariance210

matrices Bz((θs)a, qt) and Bz((θs)a, qt)fog were obtained in a similar way.

The observation errors are those proposed by Martinet et al. (2020) with values between 1 and 1.7 K for humidity channels

(frequencies between 22 and 31 GHz), values between 1 and 3 K for transparent channels affected by larger uncertainties in the

modelling of the oxygen absorption band (frequencies between 51 and 54 GHz) and values below 0.5 K for the most opaque

channels (frequencies between 55 and 58 GHz).215

The RTTOV4 radiative transfer model is used to calculate brightness temperatures in different frequency bands from atmo-

spheric temperature, water vapour and hydrometeor profiles together with surface properties (provided by outputs from the

AROME model). This radiative transfer model has been adapted to simulate ground-based microwave radiometer observations

(RTTOV-gb) by De Angelis et al. (2016).

4 Numerical results220

The 1D-Var algorithm was tested on the day of 9 February 2020 with observations from the HATPRO microwave radiometer

installed at Saint-Symphorien. This section presents and discusses the results obtained on three aspects: (1) the study of back-

ground error cross-correlations; (2) the performance of the 1D-Var assimilation system in observation space by examining the

3Numerical Weather Prediction Satellite Application Facility
4Radiative Transfer for the TIROS Operational Vertical Sounder
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fit of simulated TB with respect to the observed ones; and (3) in model space in terms of analysis increments for temperature,

specific humidity and liquid water content.225

4.1 The background error cross correlations

Figure 3 displays for the selected day at 06 UTC the cross-correlations between T and qv (top) and between (θs)a and qt

(bottom), with (right) and without (left) fog mask. For the classical variables the correlations are strongly positive in the

saturated boundary layer with the fog mask from levels 75 to 90 (between 1015 and 950 hPa), while with profiles in all-

weather conditions the correlations between T and qv are very weak in the lowest layers. On the other hand, the atmospheric230

layers above the fog layer exhibit negative correlations between temperature and specific humidity along the first diagonal.

When considering conservative variables, the correlations along the diagonal show a consistently positive signal in the

troposphere (below level 20 located around 280 hPa). Contrary to the classical variables, which are rather independent in clear-

sky atmospheres as previously shown by Ménétrier and Montmerle (2011), the Bz matrix reflects the physical link between

the two new variables as diagnosed from the AROME model. The correlations are positive with and without fog mask. This235

result shows that the matrix Bz(θs, qt) is less sensitive to fog conditions than the Bx matrix. It could therefore be possible

to compute a Bz(θs, qt) matrix without any profile selection criteria that would be nevertheless suitable for fog situations,

resulting in a more robust estimate. This result is key for 1D-Var retrievals which are commonly used in the community of

ground-based remote sensing instruments to provide databases of vertical profiles for the scientific community. In fact, the

accuracy of 1D-Var retrievals is expected to be more robust with less flow-dependent B matrices.240

It has also been noticed that these background error statistics are less dependent on the diurnal cycle and on the meteorolog-

ical situation (e.g. in the presence of fog at 06 UTC and low clouds at 21 UTC), contrary to the Bx(T,qv) matrix where there

is a reduction in the area of positive correlation in the lowest layers between 06 UTC and 21 UTC (Fig. 4).

The 1D-Var results are now assessed in observation space by examining innovations (differences between observed and

simulated brightness temperatures) from AROME background profiles and residuals. In the following, we have only used245

background error covariance matrices estimated at 06 UTC with fog mask, for a simplified comparison framework of the two

1D-Var systems.

4.2 1D-Var analysis fit to observations

Figure 5 presents both (a) innovations and (b,c) residuals obtained with the two 1D-Var systems (b: REF and c: EXP) for the

13 channels and for each hour of the day. The innovations are generally positive for water vapour sensitive channels during the250

day, and negative for temperature channels, especially in the morning. The differences are mostly between −2.5 and 5 K. For

channels 6, 7 and 8, which are sensitive to liquid water content, the innovations can reach higher values exceeding 10 K (in the

afternoon) or being around −5 K (in the morning).

In terms of residuals, as expected from 1D-Var systems, both experiments significantly reduce the deviations of the observed

TB from those calculated using the background profiles, especially for the first eight channels sensitive to water vapour255

and liquid water. The temperature channels used in the zenith mode are modified less or very little, the deviations from the

10
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Figure 3. Background error cross-correlation matrices at 06 UTC 9 February 2020 with (right) and without (left) fog mask. Top: between

the classical variables (T,qv) denoted in the axes by “T” and “Qv”, respectively. Bottom: between the new conservative variables ((θs)a, qt)

denoted in the axes by “Thetas” and “Qtot”, respectively. The axes correspond to the levels of the AROME vertical grid (1 at the top and 90

at the bottom).

background values being much smaller than for the other channels. During the second half of the day, characterized by the

presence of clouds around 800 hPa (see Figs. 2 (e) and (f)), the residual values are largely reduced in the frequency bands

sensitive to liquid water for channels 5, 6 and 7, especially for EXP as shown by the comparison of the pixels in the dashed
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Figure 4. Same as Fig. 3, but at 21 UTC.

rectangular boxes in Figs. 5 (b) and (c). Residuals are also slightly reduced for EXP in the morning and during the fog and low260

temperature period for the first five channels between 2 and 8 UTC.

In order to quantify these results on 9 February 2020 dataset (all hours and all channels), the bias and root mean square

(RMS) error values are computed for the background and the analyses produced by REF and EXP. The innovations are

characterized by a RMS error of 3.20 K and a bias of 1.32 K. Both assimilation experiments reduce these two quantities by
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Figure 5. Differences in observed (channels 0 to 5 being located between 22 and 31 GHz and channels 6 to 12 being located between 51

and 58 GHz, HATPRO radiometer) and simulated (with RTTOV-gb) brightness temperatures: (a) from AROME background profiles; (b)

from 1D-Var analyses from the REF configuration; and (c) from 1D-Var analyses from the EXP configuration for all hours of the day on 9

February 2020 at Saint-Symphorien (Les Landes region).

modifying model profiles. The RMS errors are 0.71 K for EXP and 0.72 K for REF and the biases are −0.17 K for EXP and265

−0.11 K for REF.
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4.3 Vertical profiles of analysis increments

Figure 6. Profiles of analysis increments resulting from two 1D-Var experiments: REF (left) and EXP (right), for: (a)-(b) T in K; (c)-(d) qv

in kg/kg; (e)-(f) ql in g/kg and (g) (θs)a in K.
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After examining the fit of the two experiments to the observed TBs, we assess the corrections made in model space. Figure 6

shows the increments of (a), (b) temperature, (c), (d) specific humidity, and (e), (f) liquid water for the two experiments REF

(left panels) and EXP (right panels). In addition, the increments of (θs)a are shown in (g).270

The temperature increments are mostly located in the lower troposphere (below 650 hPa) with a dominance of negative

values of small amplitude (around 0.5 K). This is consistent with negative innovations observed on temperature channels

highlighting a warm bias in the background profiles. The areas of maximum cooling take place in cloud layers (inside the thick

fog layer below 900 hPa until 9 UTC and around 700 hPa after 12 UTC). The increments are rather similar between REF and

EXP, but the positive increments appear to be larger with EXP (e.g. at 08 and 20 UTC around 800 hPa).275

Concerning the profiles associated with moist variables, the structures show similarity between the two experiments but with

differences in intensity. During the night and in the morning, the qv increments near the surface are negative. These negative

increments are projected into increments having the same sign as T by the strong positive cross-correlations of the Bfog matrix

up to 900 hPa (Fig. 3). Thus, the largest negative temperature and specific humidity increments remain confined in the lowest

layers.280

Liquid water is added in both experiments between 03 UTC and 07 UTC, close to the surface, where the Jacobians of

the most sensitive channels to ql are the largest (not shown). After 14 UTC, values of qv between 850 and 700 hPa and ql

around 800 hPa are enhanced in both cases, with larger increments for the REF case, in particular at 20 UTC and around

midnight. Most of the liquid water is created in low clouds, while for EXP, increments of ql aloft are more extended in time

and in the vertical. For example, at 21 UTC in the REF experiment, the creation of liquid water reaching 0.3 g/kg is observed285

around 400 hPa. For EXP after 12 UTC, condensation occurs over a thicker atmospheric layer between 500 and 300 hPa. In

this experimental set-up, condensed water can be created or removed over the whole column by means of the supersaturation

diagnosed at each iteration of the minimisation process (since RTTOV-gb needs (T,qv, ql) profiles for the TB computation.)

This is a clear advantage over REF which keeps unchanged the vertical structure of the ql profile from the background. Liquid

water is added where it already existed in the background because once the LWP variable is updated, the analyzed ql profile is290

just modified proportionally to the ratio between the LWP of the analysis and of the background, as explained in more details

by Deblonde and English (2003).

The profiles of increments for (θs)a show similar structures to the increments of qv around 800 hPa and to the increments of

T below, where temperature Jacobians are the largest (not shown).

5 Conclusions295

The aim of this study was to examine the interest of using moist-air entropy potential temperature (θs)a and total water content

qt to study fog initiation and dissipation at small scale. A 1D-Var system has been used for assimilating brightness temperature

(TB) observations from the ground-based HATPRO microwave radiometer installed at Saint-Symphorien (Les Landes region

over South-Western France) during the SOFOG3D measurement campaign (winter 2019-2020).
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The motivations for using the entropy of moist air in atmospheric science by taking into account the absolute value for300

dry air and water vapour were described by Richardson (1922) and formalized by Hauf and Höller (1987), with the moist-

air potential temperature variables θs and (θs)1 defined by Marquet (2011). The conservative aspects of these variables and

their meteorological properties (fronts, convection, cyclones) have been studied in Marquet (2011), Blot (2013) and Marquet

and Geleyn (2015). The links with the definition of the Brunt-Väisälä frequency and the potential vorticity are described in

Marquet and Geleyn (2013) and Marquet (2014), while the interest of the absolute entropy to describe the thermodynamics of305

cyclones is shown in Marquet (2017) and Marquet and Dauhut (2018). The use of the θs variable in data assimilation can thus

be considered as an additional and natural step that continues these series of studies.

The 1D-Var system has been adapted to consider these new quantities as control variables. Since the radiative transfer

model needs profiles of temperature, water vapour and cloud liquid water for the simulation of TB, an adjustment process has

been defined to obtain these quantities from (θs)a and qt. The adjoint version of this conversion has been developed for an310

efficient estimation of the gradient of the cost-function. Dedicated background error covariance matrices have been estimated

from the Ensemble Data Assimilation system of AROME. We firstly demonstrated that the matrices for the new variables are

less dependent on the meteorological situation (all-weather conditions vs. fog conditions) and on the time of the day (stable

conditions by night vs. unstable conditions during the day) leading to potentially more robust estimates. This is an important

result as the optimal estimation of the analysis depends on the good specification of the background error covariance matrix315

which is known to highly vary with weather conditions when using classical control variables.

The comparison of the new 1D-Var system with a classical system using temperature, water vapour and liquid water path

shows rather similar results in terms of fit to observed TB. On the other hand, atmospheric increments on water vapour and

liquid water can be locally very different between the two systems.

The encouraging results obtained from this feasibility study need to be consolidated by complementary studies. The re-320

trieved profiles from the 1D-Var should be compared against independent observations (e.g. radiosoundings available from the

SOFOG3D field campaign). Observed brightness temperatures at lower elevation angles should be included in the 1D-Var for

a better constraint on temperature profiles within the atmospheric boundary layer. Indeed, larger differences in the temperature

increment might be obtained between the classical 1D-Var system and the 1D-Var system using the new conservative variables

when additional elevation angles are included in the observation vector. Other case studies from the field campaign could also325

be examined to confirm our first conclusions. Finally, the conversion operator could be improved by accounting not only for

liquid water content ql but also for ice water content qi (e.g. using a temperature threshold criteria). Indeed, the variable (θs)a
can easily be generalized to the case of the ice phase and mixed phases by taking advantage of the general definition of θs and

(θs)1, where Lvap ql is simply replaced by Lvap ql +Lsub qi.

Code and data availability. The numerical code of the radiative transfer model RTTOV-gb together with the associated resources (coef-330

ficient files) can be downloaded from http://cetemps.aquila.infn.it/rttovgb/rttovgb.html and from https://nwp-saf.eumetsat.int/site/software/

rttov-gb/. The 1D-Var software has been adapted from the NWP SAF 1D-Var provided here: https://nwp-saf.eumetsat.int/site/software/
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1d-var/ and is available on request to pauline.martinet@meteo.fr. The instrumental data are available on the AERIS website dedicated to the

SOFOG3D field experiment: https://sofog3d.aeris-data.fr/catalogue/. AROME backgrounds are available on request to pauline.martinet@meteo.fr.

Quicklooks from the cloud radar BASTA are available on: http://basta.projet.latmos.ipsl.fr. The BUMP library to compute background error335

matrices, developed in the framework of the JEDI project led by the JCSDA (Joint Center for Satellite Data Assimilation, Boulder, Colorado),

can be downloaded at https://github.com/JCSDA/saber.
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