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Reviewer 1# 1 

This is an interesting study, using machine learning to estimate the ozone formation 2 

sensitivity. The idea is not novel (a few previous studies with similar scope are cited in 3 

this manuscript). The method, using reactivity-corrected VOC measurements (i.e., 4 

initial VOC concentrations), sheds some insights into ozone production in an urban 5 

environment. 6 

Reply: Thanks for your positive comments. We have carefully responded to all of your 7 

point-by-point comments and issues and have revised the manuscript accordingly. 8 

These revisions are described in detail below. 9 

 10 

However, there are several major issues:  11 

Q1: (1) The machine learning workflow described in this manuscript does not include 12 

a robust or systematic solution to mitigate overtraining. I will elaborate on this later but 13 

the measures described in this work absolutely do not guarantee that overtraining is/can 14 

be avoided. 15 

Reply: Thank you for your good suggestion. According to your suggestion, we 16 

performed a 12-fold cross-validation after data-normalization, i.e., by randomly 17 

dividing the dataset into 12 subsets and alternately taking one subset as testing data and 18 

the rest as training data. By doing this, every data point has an equal chance being 19 

trained and tested. In lines 148-153 in the revised manuscript, we added a short 20 

paragraph “To avoid over-fitting, we trained the random forest model using cross-21 

validation for the normalized data, which can improve the robustness of the model. 22 

Briefly, we randomly divided the normalized data into 12 subsets, then alternately took 23 

one subset as testing data along with the rest as training data. By doing this, every data 24 

point has an equal chance being trained and tested.”.  25 

We added the RF model workflow to Text S3 in the revised Supporting 26 

Information.  27 

“Text S3. Workflow of RF model and the calculation of Relative Importance (RI) 28 

The workflow of RF model used in this study was established through the following 29 

steps.  30 
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(1) Data description. The length of the input data from 2014 to 2016 were 1190, 1062 31 

and 872 rows, respectively, in which different types of VOCs, NOx, CO, PM2.5 and 32 

meteorological parameters (including temperature, relative humidity, solar radiation, 33 

wind speed and direction) were used as input variables and O3 was the output variable. 34 

The mean values (±standard deviation) of input/output parameters are shown in Table 35 

S1. 36 

(2) Data process. After the extreme values were removed, all data were normalized 37 

(between 0 and 1) in order to decrease the sample distribution range, accelerate 38 

calculation efficiency and improve the robustness of the RF model. Then, the dataset 39 

was randomly divided into 12 subsets. Thus, a 12-fold cross-validation was performed 40 

by alternately taking one subset as testing data and the rest as training data to ensure 41 

that each data point has an equal chance being trained and tested. 42 

(3) Hyper-parameters optimization. All network configuration parameters (i.e., leaf 43 

number, number of trees, algorithm, and so on) were modified by a trial and error 44 

method to obtain the optimized network structure. The optimized RF model parameters 45 

are shown in Table S2. Figures S13 and S14 show the examples to optimize the number 46 

of minimal samples split and trees, respectively.  47 

(4) Model uncertainty estimation. The uncertainty of the model was estimated 48 

according to the predicted and observed O3 concentrations. The performance of the 49 

model was evaluated using R square (R2) and Root Mean Squared Error (RMSE). 50 

(5) Relative importance (RI) calculation: The influence of an input variable on model 51 

performance was evaluated by changes in the accuracy of the model by variable 52 

permuting. Briefly, a change of prediction error was resulted from permuting a variable 53 

across the observations. The magnitude of the response was estimated using out-of-bag 54 

error of a predictor according to following steps.  55 

For a random forest model that has T learners and p predictors in the training data, 56 

the first step is to identify the out-of-bag observations and the indices of the predictor 57 

variables that are split to a growing tree t (from 1 to T). Then, one can estimate the out-58 

of-bag error (εt) for each tree. For a predictor variable xj (j: from 1 to p), one can estimate 59 

the model error (εt, j) again corroding to the out-of-bag observations after randomly 60 
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permuting the observations of xj. Thus, the difference of the model error (dt, j = εt, j - εt) 61 

is obtained. If the predictor variables are not split, the difference of a growing tree t is 62 

0. The second step is to calculate the mean difference of the model errors (𝑑j), and the 63 

standard deviation (σj) of the differences for all the learners and each predictor variable 64 

in the training data. Finally, the out-of-bag relative importance (RI) for xj is calculated 65 

by dividing the difference of the model errors by the standard deviation (𝑑j/σj). 66 

(6) EKMA curves. The Empirical Kinetic Modeling Approach (EKMA) was used to 67 

assess the O3 formation mechanism regime. Both the RF model and a box model with 68 

Master Chemical Mechanism (MCM, 3.3.1) were used to calculate the EKMA curves. 69 

For the RF model simulations, the observed point data was chosen as the mean values 70 

of the input parameters during our observations, then the concentrations of VOCs and 71 

NOx were varied 10% (or from 90% to 110%) of their mean values with a step of 1% 72 

in a two-dimensional matrix along with other inputs unchanged. This matrix was used 73 

as the testing data, while all the measured data were taken as the training data in the RF 74 

model to simulate O3 concentrations under different scenarios of VOCs and NOx 75 

concentrations. To decrease the model uncertainty, we set relatively small variations of 76 

VOCs and NOx (±10%) compared to the observed values in this study. The mean 77 

relative error of simulated O3 concentrations between RF model and Box model (within 78 

15.6%, Figure S8) suggests that the RF model can well predict O3 concentrations during 79 

our observations.” 80 

 81 

Q2: (2) Random forest depends heavily on the training dataset. The authors do not 82 

provide an overview of the comprehensiveness of the training dataset: for instance, does 83 

the dataset cover all major chemical regimes in the EKMA plot, i.e., NOx-limited, 84 

VOC-limited, NO titration? The authors claim that ozone production in Beijing, China 85 

is mostly VOC-limited, which is consistent with previous studies. If the training set 86 

collected in Beijing does not have sufficient coverage in the NOx-limited regime, then 87 

the trained algorithm essentially attempts to extrapolate in that regime, which is 88 

dangerous and prone to overtraining. I would then question the if this random forest 89 
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model can make meaningful forecast in that regime at all.  90 

Reply: Thank you for your valuable suggestion. We added the description of training 91 

dataset in Text S3 in the revised SI. This point has been replied in the aforementioned 92 

question. The mean values (±standard deviation) of the input and output parameters for 93 

the training data set are shown in Table R1. This Table was also added as Table S1 in 94 

the revised SI. 95 

Table R1. An overview of training dataset from 2014 to 2016 during the observation 96 

period. 97 

species / unit 

2014 2015 2016 

Measured 

VOC 
Initial VOC 

Measured 

VOC 
Initial VOC 

Measured 

VOC 
Initial VOC 

aver

age 

std. 

dev.* 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

Cyclopentane / 

ppbv 

0.95  1.05  0.95  1.05  0.00  0.00  0.00  0.00  0.27  0.29  0.27  0.29  

Ethane / ppbv 2.38  0.98  2.39  0.98  1.84  0.88  1.85  0.89  1.07  0.51  1.07  0.51  

Acetylene / ppbv 1.64  1.31  1.65  1.31  0.13  0.33  0.14  0.33  0.32  0.30  0.32  0.30  

Propane / ppbv 2.44  1.60  2.46  1.61  2.42  1.75  2.45  1.76  1.35  0.93  1.36  0.93  

Benzene / ppbv 0.60  0.44  0.61  0.44  0.47  0.35  0.47  0.36  4.59  4.23  4.64  4.29  

iso-Butane / ppbv 0.95  0.66  0.96  0.67  0.35  0.53  0.35  0.54  0.24  0.18  0.24  0.19  

2,2-

Dimethylbutane / 

ppbv 

0.00  0.01  0.00  0.01  0.00  0.02  0.00  0.02  0.00  0.00  0.00  0.00  

n-Butane / ppbv 1.57  1.11  1.60  1.11  0.67  0.87  0.69  0.89  0.85  0.73  0.87  0.74  

2,2,4-

Trimethylpentane 

/ ppbv 

0.01  0.04  0.01  0.04  0.04  0.07  0.05  0.07  0.02  0.02  0.02  0.02  

iso-Pentane / 

ppbv 

0.11  0.38  0.11  0.40  0.00  0.00  0.00  0.00  0.16  0.18  0.16  0.18  

2,3-

Dimethylpentane 

/ ppbv 

0.07  0.08  0.07  0.08  0.06  0.08  0.06  0.08  0.02  0.03  0.02  0.03  

3-Methylhexane / 

ppbv 

0.06  0.07  0.06  0.07  0.04  0.05  0.04  0.05  0.01  0.02  0.01  0.02  

Toluene / ppbv 1.28  1.02  1.32  1.04  0.88  1.55  0.93  1.57  0.30  0.34  0.32  0.37  

2,3-

Dimethylbutane / 

ppbv 

0.00  0.00  0.00  0.00  0.00  0.03  0.00  0.03  0.06  0.08  0.06  0.08  

n-Propyl benzene 

/ ppbv 

0.01  0.02  0.01  0.02  0.01  0.03  0.01  0.03  0.04  0.11  0.05  0.11  
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iso-Propyl 

benzene / ppbv 

0.00  0.01  0.00  0.01  0.00  0.00  0.00  0.00  0.01  0.05  0.01  0.06  

2,3,4-

trimethylpentane / 

ppbv 

0.12  0.29  0.12  0.31  0.06  0.10  0.06  0.11  0.01  0.02  0.02  0.02  

n-hexane / ppbv 0.37  0.30  0.39  0.31  0.05  0.18  0.06  0.20  0.18  0.27  0.19  0.30  

n-heptane / ppbv 0.08  0.09  0.09  0.10  0.06  0.06  0.06  0.07  0.02  0.02  0.02  0.02  

2-methylhexane / 

ppbv 

0.03  0.03  0.03  0.04  0.02  0.04  0.02  0.04  0.01  0.01  0.01  0.01  

3-methylhexane / 

ppbv 

0.01  0.02  0.01  0.02  0.01  0.02  0.01  0.02  0.00  0.01  0.00  0.01  

cyclohexane / 

ppbv 

0.04  0.05  0.05  0.05  0.03  0.05  0.04  0.05  0.04  0.10  0.04  0.12  

ethylbenzene / 

ppbv 

0.33  0.31  0.34  0.32  0.21  0.23  0.23  0.25  0.10  0.15  0.10  0.16  

n-octane / ppbv 0.04  0.11  0.04  0.11  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

ethene / ppbv 2.15  1.36  2.31  1.43  1.72  1.16  1.90  1.25  0.39  0.30  0.41  0.31  

methylcyclohexa

ne / ppbv 

0.01  0.03  0.01  0.03  0.01  0.03  0.01  0.04  0.02  0.03  0.02  0.04  

n-nonane / ppbv 0.03  0.04  0.03  0.04  0.02  0.02  0.02  0.03  0.02  0.04  0.02  0.04  

n-decane / ppbv 0.02  0.04  0.02  0.05  0.02  0.03  0.02  0.03  0.00  0.01  0.00  0.01  

p-ethyltoluene / 

ppbv 

0.06  0.08  0.06  0.08  0.02  0.03  0.03  0.04  0.07  0.10  0.07  0.11  

p-diethyl benzene 

/ ppbv 

0.01  0.04  0.01  0.04  0.01  0.02  0.01  0.02  0.09  0.17  0.11  0.22  

o-ethyl toluene / 

ppbv 

0.03  0.04  0.04  0.04  0.01  0.03  0.01  0.03  0.08  0.28  0.09  0.32  

o-xylene / ppbv 0.09  0.18  0.10  0.18  0.16  0.18  0.19  0.20  0.14  0.26  0.15  0.27  

m-ethyl toluene / 

ppbv 

0.02  0.07  0.02  0.07  0.04  0.09  0.04  0.09  0.03  0.04  0.03  0.05  

m-diethyl 

benzene / ppbv 

0.01  0.03  0.01  0.03  0.00  0.01  0.00  0.01  0.00  0.02  0.00  0.02  

m/p-Xylene / 

ppbv 

0.61  0.64  0.68  0.65  0.45  0.51  0.54  0.59  0.22  0.38  0.25  0.41  

propene / ppbv 2.07  1.18  2.83  2.26  4.40  2.61  6.60  6.12  0.28  0.41  0.34  0.45  

1-Butene / ppbv 0.10  0.14  0.13  0.17  0.04  0.10  0.08  0.25  0.03  0.03  0.04  0.06  

1-Pentene / ppbv 0.03  0.09  0.04  0.09  0.03  0.07  0.05  0.12  0.02  0.06  0.02  0.07  

1,2,4-trimethyl 

benzene/ ppbv 

0.01  0.08  0.01  0.08  0.08  0.09  0.11  0.12  0.05  0.05  0.06  0.09  

1,2,3-trimethyl 

benzene/ ppbv 

0.00  0.01  0.00  0.01  0.03  0.05  0.04  0.08  0.05  0.28  0.05  0.28  

a-pinene / ppbv 0.01  0.03  0.02  0.03  0.01  0.03  0.01  0.03  0.18  0.46  0.84  3.48  

cis-2-Butene / 

ppbv 

0.34  0.70  0.85  2.67  0.66  0.85  1.77  4.56  0.04  0.05  0.11  0.29  
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1,3,5-

Trimethylbenzene

/ ppbv 

0.05  0.07  0.08  0.11  0.03  0.05  0.07  0.14  0.25  0.56  1.07  4.11  

styrene / ppbv 0.18  0.27  0.30  0.61  0.00  0.03  0.01  0.08  0.27  0.79  0.57  2.08  

2-methyl-1-

pentene / ppbv 

0.18  0.37  0.72  2.94  0.04  0.04  0.26  1.68  0.02  0.09  0.03  0.12  

trans-2-Butene / 

ppbv 

0.08  0.16  0.24  1.15  0.09  0.11  0.34  0.74  0.02  0.02  0.04  0.08  

cis-2-Pentene / 

ppbv 

0.15  0.20  0.37  0.93  0.17  0.17  0.91  4.24  0.01  0.02  0.02  0.08  

1,3-Butadiene / 

ppbv 

0.09  0.10  0.19  0.34  0.04  0.05  0.12  0.38  0.02  0.03  0.05  0.25  

trans-2-Pentene / 

ppbv 

0.03  0.08  0.06  0.27  0.01  0.02  0.11  0.89  0.01  0.02  0.01  0.05  

β-pinene / ppbv 0.00  0.01  0.01  0.03  0.01  0.01  0.02  0.15  0.00  0.01  0.00  0.02  

isoprene / ppbv 0.89  0.64  5.70  18.7

8  

0.34  0.43  6.40  21.5

6  

0.13  0.17  2.12  7.46  

NO / ppbv 7.03  17.02  7.03  17.0

2  

3.38  5.59  3.38  5.59  5.28  10.3

5  

5.28  10.3

5  

NO2 / ppbv 15.5

0  

15.79  15.5

0  

15.7

9  

19.1

1  

12.6

8  

19.1

1  

12.6

8  

18.7

2  

12.4

0  

18.7

2  

12.4

0  

T / °C 22.5

6  

6.28  22.5

6  

6.28  22.7

0  

5.24  22.7

0  

5.24  22.3

7  

4.85  22.3

7  

4.85  

RH / % 50.9

3  

23.88  50.9

3  

23.8

8  

41.4

9  

23.2

3  

41.4

9  

23.2

3  

36.2

3  

21.5

8  

36.2

3  

21.5

8  

SR / W m-2 162.

92  

222.9

5  

162.

92  

222.

95  

153.

29  

205.

01  

153.

29  

205.

01  

150.

81  

199.

35  

150.

81  

199.

35  

WS / m s-1 3.11  2.70  3.11  2.70  2.29  2.15  2.29  2.15  1.25  1.24  1.25  1.24  

WD / ° 162.

42  

105.0

7  

162.

42  

105.

07  

175.

38  

101.

87  

175.

38  

101.

87  

184.

21  

108.

06  

184.

21  

108.

06  

PM2.5 /μg m-3 67.1

6  

53.47  67.1

6  

53.4

7  

63.1

3  

56.4

6  

63.1

3  

56.4

6  

61.0

5  

48.6

4  

61.0

5  

48.6

4  

CO /mg m-3 0.78  0.49  0.78  0.49  0.68  0.44  0.68  0.44  0.57  0.36  0.57  0.36  

O3 / ppbv 44.3

2  

32.38  44.3

2  

32.3

8  

42.7

4  

27.9

4 

42.7

4  

27.9

4 

44.0

1  

29.6

4  

44.0

1  

29.6

4  

* Standard Deviation (std. Dev.) 98 

 99 

In Text S3 in the revised SI, we added a short paragraph “Data description. The 100 

length of the input data from 2014 to 2016 were 1190, 1062 and 872 rows, respectively, 101 

in which different types of VOCs, NOx, CO, PM2.5 and meteorological parameters 102 

(including temperature, relative humidity, solar radiation, wind speed and direction) 103 
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were used as input variables and O3 was the output variable. The mean values 104 

(±standard deviation) of input/output parameters are shown in Table S1” 105 

As shown in Figure R1 or Figure S15, the training dataset were located in VOC-106 

limited, NOx-limited, and transition regimes, while most of the training data were 107 

located in the VOC-limited regime. To avoid overtraining, we performed a 12-fold 108 

cross-validation, i.e., by randomly dividing the observed data into 12 subsets and 109 

alternately taking one subset as testing data and the rest as training data, to ensure that 110 

each data point has an equal chance of being trained and tested. Figure R2 (Figure 2 in 111 

the revised manuscript) shows the comparisons between the measured and predicted O3 112 

concentrations using different VOC inputs. The curves of the predicted O3 113 

concentrations were spliced using the testing datasets in all runs. Thus, both the training 114 

data and the testing data actually covered all the sensitivity regimes of O3 formation. 115 

We think that the model is robust in the revised version according to your good 116 

suggestion. 117 

 118 

Figure R1. Sensitivity curves of O3 formation and distribution of training data in 2015. 119 
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 120 

Figure R2. Comparison of the predicted and measured O3 concentrations in Beijing in 121 

the summer of 2015. (A and D: TVOC concentrations; B and E: measured 122 

concentrations of VOC species; C and F: initial concentrations of VOC species). The 123 

testing data curves were spliced using the testing datasets in all runs during the 12-fold 124 

cross-validation. 125 

 126 

When plotting the O3 formation sensitivity curves, we made a virtual matrix of 127 

inputs by varying the concentrations of NOx and VOCs from 0.9 to 1.1 times (with a 128 

step of 0.01) of their mean values (observed point data) while keeping all other inputs 129 

unchanged (i.e., the mean values during our observations). Then, the new matrix was 130 

used as testing data, while all the measured data were taken as training data. Thus, the 131 

testing data should represent the mean sensitivity regime of O3 in Beijing, while the 132 

training data actually covered all the sensitivity regimes of O3 formation. As shown in 133 

Figure R3 or Figure 4B, the sensitivity of O3 formation was located in VOC-limited 134 

regime in 2015. The mean relative errors of simulated O3 between RF model and Box 135 

model was 15.6% (Figure R4 or Figure S8), which means that the RF model can well 136 

predict the O3 concentrations and the sensitivity regime of O3 formation. Although we 137 
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set relatively small variations of VOCs and NOx (±10%) compared to the observed 138 

values to decrease the model uncertainty when depicting the EKMA curves, the training 139 

data represent the real conditions in Beijing during our observations. Therefore, we 140 

think our results should be reliable and meaningful. 141 

 142 

Figure R3. Ozone formation sensitivity curves from 2014-2016. (A, B, C: calculated 143 

by the RF model for 2014, 2015, and 2016, respectively. D: calculated by the OBM for 144 

2015) 145 
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 146 

Figure R4. The relative error of simulated O3 concentrations between the RF model 147 

and the box model in 2015. 148 

In lines 232-240 the revised manuscript, we added a paragraph “It should be 149 

pointed out that if the training dataset does not have sufficient coverage in the NOx-150 

limited regime, then the trained algorithm essentially attempts to extrapolate in that 151 

regime, which is prone to overtraining. To avoid such overtraining, a 12-fold cross-152 

validation by randomly dividing the observation data in each day into 12 subsets and 153 

alternately taking one subset as testing data and the rest as training data ensures that 154 

each data point has an equal chance of being trained and tested. The curves of the 155 

predicted O3 concentrations in Figure 2 were spliced using the testing datasets in all 156 

runs. Thus, our results actually covered all the sensitivity regimes of O3 formation. This 157 

means that the model is robust”. 158 

In lines 171-178 in the revised manuscript, we added a paragraph “When plotting 159 

the O3 formation sensitivity curves, we made a virtual matrix of inputs by varying the 160 

concentrations of NOx and VOCs from 0.9 to 1.1 times (with a step of 0.01) of their 161 

mean values while keeping all other inputs unchanged (i.e., the mean values). Then, the 162 

new matrix was used as testing data, while all the measured data were taken as training 163 

data. Thus, the testing data should represent the mean sensitivity regime of O3 in Beijing, 164 

while the training data actually covered all the sensitivity regimes of O3 formation to 165 
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guarantee a sufficient coverage in the NOx-limited regime for the RF model 166 

simulations”. 167 

 168 

Q3: (3) The calculation of the initial VOC concentrations is problematic: the method 169 

depends heavily on initial/source ratio which is not discussed at all in this work; the 170 

method assumes biogenic VOCs share the same air mass histories as the anthropogenic 171 

VOCs which is not supported by any evidence. For these reasons, I do not recommend 172 

the current form of the manuscript for publication in Atmospheric Measurement and 173 

Techniques. Given the substantial amount of work needed to demonstrate the 174 

robustness of the machine learning workflow, to outline key details in a transparent 175 

manner, and to revise the initial VOC calculation, resubmission is recommended. Please 176 

see my specific and minor/technical comments below. 177 

Reply: Thank you so much for your good suggestions. In previous studies (Shao et al., 178 

2011; Zhan et al., 2021), it has been justified for selecting the pair of 179 

ethylbenzene/xylene as the tracers when calculating ambient OH exposure in terms of 180 

the following rules: 1) the concentrations of xylene and ethylbenzene are well 181 

correlated, which indicates that they are simultaneously emitted; 2) they have different 182 

degradation rates in the atmosphere; 3) the calculated initial VOCs are in good 183 

agreement with those calculated using other tracers, such as toluene/benzene.  184 

As shown in Figure R5 or Figure S9, the concentrations of xylene and 185 

ethylbenzene correlated well during our observations in this work. In addition, we 186 

compared the ratio of the initial concentrations calculated according to the ratio of 187 

xylene/ethylbenzene with that using the ratio of toluene/benzene (Figure R6 or S9). 188 

Except for several compounds, the ratio of the PICs for most of these VOCs varied 189 

within 1.00.1. This means the calculated photochemical initial concentrations (PICs) 190 

are in good agreement when using different tracers. Sensitivity tests showed that the 191 

uncertainty caused by the OH exposure (from −10% to +10%) ranged from 0.55 to 1.57 192 

(Table R2 or Table S4). Figure R7 or Figure S12 shows the calculated diurnal curves of 193 

the PICs from 2014 to 2016. Photochemical losses of VOCs occurred prominently 194 

during the daytime.  195 
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 196 

    197 

Figure R5. The relationship between xylene and ethylbenzene. 198 

 199 

Figure R6. Comparison of the initial VOCs calculated using the ratio of 200 

xylene/ethylbenzene with that using the ratio of toluene/benzene in 2015. (Error bars 201 

are standard deviations.) 202 
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 204 

Figure R7. The daily variation of VOCs concentration. (A and D for 2014; B and E 205 

for 2015; C and F for 2016) 206 

 207 

Table R2. kOH, Method Detection Limit (MDL) and sensitivity test on estimation of 208 

[OH]×t of different VOC species 209 

Speci

e 

numb

er 

species name kOH
*
 MDL** 

Ratio to the initial VOC*** 

2014 2015 2016 

-10% 

[OH]×

t 

+10% 

[OH]×

t 

-10% 

[OH]×

t 

+10% 

[OH]×

t 

-10% 

[OH]×

t 

+10% 

[OH]×

t 

1 Ethane 0.254 0.050 1.00 1.00 1.00 1.00 1.00 1.00 

2 Acetylene 0.756 0.022 1.00 1.00 1.00 1.00 1.00 1.00 

3 Propane 1.11 0.013 1.00 1.00 1.00 1.00 1.00 1.00 

4 Benzene 1.22 0.011 1.00 1.00 1.00 1.00 1.00 1.00 

5 iso-Butane 2.14 0.010 1.00 1.00 1.00 1.00 1.00 1.00 

6 

2,2-

Dimethylbutane 

2.27 0.005 1.00 1.00 1.00 1.00 1.00 1.00 

7 n-Butane 2.38 0.011 1.00 1.00 1.00 1.00 1.00 1.00 

8 

2,2,4-

Trimethylpentane 

3.38 0.008 1.00 1.00 1.00 1.00 1.00 1.00 

9 iso-Pentane 3.6 0.008 1.00 1.00 1.00 1.00 1.00 1.00 
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10 Cyclopentane 5.02 0.005 1.00 1.00 1.00 1.00 1.00 1.00 

11 n-hexane 5.25 0.011 0.99 1.01 0.99 1.01 0.99 1.01 

12 Toluene 5.58 0.009 1.00 1.00 0.99 1.01 1.00 1.00 

13 

2,3-

Dimethylbutane 

5.79 0.004 1.00 1.00 1.00 1.00 0.99 1.01 

14 n-Propyl benzene 5.8 0.008 1.00 1.00 1.00 1.00 0.99 1.01 

15 iso-Propyl benzene 6.3 0.007 1.01 1.01 0.99 1.01 0.97 1.03 

16 

2,3,4-

trimethylpentane 

6.6 0.008 0.99 1.01 0.99 1.01 1.00 1.00 

17 n-heptane 6.81 0.009 0.99 1.01 0.99 1.01 0.99 1.01 

18 ethylbenzene 7 0.009 0.99 1.01 0.99 1.01 0.99 1.01 

19 cyclohexane 7.02 0.011 1.00 1.00 0.99 1.01 0.99 1.01 

20 

2,3-

Dimethylpentane 

7.15 0.009 1.00 1.00 1.00 1.00 1.00 1.00 

21 3-Methylhexane 7.17 0.009 1.00 1.00 0.99 1.01 1.00 1.00 

22 ethene 8.15 0.021 0.99 1.01 0.99 1.01 0.99 1.01 

23 n-octane 8.16 0.008 0.99 1.01 1.00 1.00 1.00 1.00 

24 2-Methylheptane 8.31 0.008 1.00 1.00 0.99 1.01 0.99 1.01 

25 3-Methylheptane 8.59 0.008 1.00 1.00 1.00 1.01 0.99 1.01 

26 methylcyclohexane 9.64 0.005 0.99 1.01 0.99 1.01 0.99 1.01 

27 n-nonane 9.75 0.006 0.99 1.01 0.99 1.01 0.98 1.02 

28 n-decane 11 0.007 0.99 1.01 0.99 1.01 0.99 1.01 

29 p-ethyl toluene 11.8 0.007 0.99 1.01 0.98 1.02 0.98 1.02 

30 p-diethyl benzene - 0.008 1.00 1.00 0.99 1.01 0.97 1.03 

31 o-ethyl toluene 11.9 0.007 0.99 1.01 0.99 1.01 1.00 1.00 

32 o-xylene 13.6 0.007 0.99 1.01 0.98 1.02 1.00 1.00 

33 m-ethyl toluene 18.6 0.010 0.99 1.01 0.99 1.01 0.97 1.03 

34 m-diethyl benzene - 0.009 0.99 1.01 0.99 1.01 0.98 1.02 

35 m/p-Xylene 23.1/14 0.008 0.99 1.01 0.98 1.02 0.98 1.03 
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.2 

36 propene 26 0.015 0.96 1.04 0.95 1.05 0.96 1.05 

37 1-Butene 31.1 0.010 0.97 1.04 0.90 1.12 0.92 1.10 

38 1-Pentene 31.4 0.009 0.98 1.02 0.93 1.09 0.93 1.08 

39 

1,2,4-trimethyl 

benzene 

32.5 0.008 1.00 1.01 0.95 1.05 0.91 1.10 

40 

1,2,3-trimethyl 

benzene 

32.7 0.009 0.96 1.04 0.96 1.04 0.97 1.03 

41 a-pinene 51.8 0.010 0.97 1.04 0.96 1.05 0.75 1.35 

42 cis-2-Butene 55.8 0.019 0.87 1.16 0.86 1.17 0.77 1.32 

43 

1,3,5-

Trimethylbenzene 

56.7 0.007 0.93 1.08 0.90 1.13 0.73 1.37 

44 styrene 58 0.010 0.91 1.11 0.90 1.13 0.98 1.02 

45 

2-methyl-1-

pentene 

63 0.002 0.81 1.25 0.70 1.49 0.81 1.28 

46 trans-2-Butene 63.2 0.014 0.84 1.22 0.82 1.25 0.76 1.35 

47 cis-2-Pentene 65 0.006 0.86 1.19 0.74 1.42 0.83 1.24 

48 1,3-Butadiene 65.9 0.024 0.88 1.16 0.82 1.26 0.87 1.18 

49 trans-2-Pentene 67 0.009 0.88 1.16 0.63 1.63 0.75 1.38 

50 β-pinene 73.5 0.010 0.90 1.12 0.81 1.26 0.92 1.10 

51 isoprene 99.6 0.009 0.73 1.40 0.67 1.50 0.55 1.57 

* Unit: 10-12 cm3 mole-1 s-1. kOH values were under conditions of 300K. (Carter 2010) 210 

** Unit: ppb. The relative standard derivations (RSDs) were within 10% for the target compounds in all six replicates. 211 

*** All species were selected for sensitivity tests of initial VOCs to [OH]×t. The reaction rates of these species with 212 

OH covered the range of 51 VOCs and were characterized by low, medium and high kOH levels. The sensitivity test 213 

results showed that the uncertainty in the estimation of initial VOCs caused by the [OH]×t estimation uncertainty 214 

ranged from 0.55 to 1.57. 215 

 216 

Potential source contribution function (PSCF) analysis has been further carried out 217 

to evaluated the possible influence of air mass on the emission ratio of ethylbenzene 218 
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and xylene. As shown in Figure R8A-D or Figure S11, xylene showed similar pattern 219 

to ethylbenzene in the early morning or in the whole day. These results indicate that 220 

variations of air mass should have little influence on their initial ratio. In addition, 221 

isoprene showed similar patterns to that of xylene and ethylbenzene (Figure R8G-H), 222 

which means VOC emissions are evenly distributed in Beijing. This can be ascribed to 223 

the fact that our observation site is a typical urban station. Although isoprene and 224 

xylene/ethylbenzene are from biogenic sources and anthropogenic sources, both them 225 

are non-point sources on a city scale.  226 
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Figure R8. The potential source contribution function (PSCF) maps for ethylbenzene 228 

(A and B), xylene (C and D), ratio of xylene to ethylbenzene (E and F), and isoprene 229 

(G and H) arriving in the observation site. The figures A, C, E and G are the results for 230 

the morning (05:00 and 06:00), and the figures of B, D, F and H are the results of the 231 

whole day (00:00-23:00). 232 

 233 

    In the revised SI, we added the details on calculation of the initial VOCs and more 234 

discussions in the Text S2. The changes are shown below. 235 

“Text S2. Calculation of initial VOCs concentrations 236 

Photochemical initial concentration (PIC) proposed by Shao et al. (2011), which 237 

is calculated based on the photochemical-age approach and has been applied to evaluate 238 

the effect of photochemical processing on measured VOC levels. Equation S1 239 

essentially describes the integrated OH exposure (Shao et al., 2011). 240 

∫ cOHdt = 
1

kA,OH−kB, OH
[ln(

VOCA

VOCB
)
initial

-ln(
VOCA

VOCB
)]             (S1) 241 

The initial concentration of species i can be calculated using Equation S2. 242 

VOCi, initial= 
VOCi

exp(-ki,OH)exp( ∫ cOHdt)
                   (S2) 243 

Substituting equation 1 into equation 2, then we can get equation S3. 244 

VOCi, initial= 
VOCi

exp(-ki, OH) exp(
1

kA,OH − kB, OH
 [ln(

VOCA
VOCB

)
initial

− ln(
VOCA
VOCB

) ])
         (S3) 245 

Where COH represents the ambient OH concentration; kA,OH and kB,OH represent the 246 

reaction rate of compound A and B with OH radical, respectively; t represents the 247 

reaction time of species i in the ambient. 248 

In previous work (Shao et al., 2011; Zhan et al., 2021), the selection of 249 

ethylbenzene and xylene as tracers was justified for calculating ambient OH exposure 250 

under the following conditions: 1) the concentrations of xylene and ethylbenzene were 251 

well correlated (Figure S9), which indicated that they were simultaneously emitted; 2) 252 

they had different degradation rates in the atmosphere; and 3) the calculated PICs were 253 

in good agreement with those calculated using other tracers (Shao et al., 2011; Zhan et 254 

al., 2021). 255 

In this study, the ethylbenzene/xylene pair was used to calculate ambient OH 256 
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exposure. As shown in Figure S9, the concentrations of xylene and ethylbenzene are 257 

well correlated, which indicates that they are simultaneously emitted. In addition, we 258 

compared the PICs according to xylene/ethylbenzene with that using toluene/benzene 259 

(Figure S10). The calculated PICs ratio (PIC Xylene/Ethylbenzene / PIC Toluene/Benzene) varied 260 

from 0.5 to 1.5 with a mean value of 0.96. This means the calculated initial VOCs was 261 

in good agreement when using different tracers. The mean ratio (0.52, from 0.45 to 0.66) 262 

of ethylbenzene/xylene before sunrise was taken as the initial ratio of 263 

ethylbenzene/xylene. Sensitivity tests showed that the uncertainty of PICs caused by 264 

the OH exposure (from −10% to +10%) ranged from 0.55 to 1.57 (Table S4).  265 

Variations of air mass may also affect the VOC ratio. Figure S11 A-D shows the 266 

mean concentration distribution of ethylbenzene and xylene in the early morning and 267 

the whole day based on potential source contribution function (PSCF) analysis. Xylene 268 

showed similar patterns to ethylbenzene in different air mass trajectories and different 269 

periods. These results indicate that the emissions of xylene and ethylbenzene were 270 

constant throughout the day and variations of air mass should have little influence on 271 

the initial ratio of VOCs. The hourly concentrations of ethylbenzene and xylene were 272 

used to calculate the concentration of initial VOCs. The initial VOC was calculated by 273 

adding the measured VOC concentration and the calculated photochemical loss. Figure 274 

S12 shows the diurnal variations of the observed and initial VOCs concentrations from 275 

2014 to 2016. Photochemical loss of VOC occurred mainly during the daytime.  276 

It should be noted that the lifetimes (1/k2cOH) of highly reactive VOCs, such as 277 

isoprene, greatly depend on the OH exposure. The photochemical ages of isoprene were 278 

0.01–6.21 h (1.26  1.12 h). This value is comparable with previously reported 279 

photochemical ages (Shao et al., 2011; Gao et al., 2018). However, the initial 280 

concentrations of highly reactive VOCs may be overestimated due to their short 281 

lifetimes and should be taken as the upper limits. On the other hand, isoprene is a 282 

biogenic VOC, while xylene and ethylbenzene are anthropogenic VOCs. If they do not 283 

share the same air mass histories, an additional uncertainty is inevitable for the PICs of 284 

isoprene. As shown in Figure S11, isoprene showed similar patterns to that of xylene 285 

and ethylbenzene, which means VOC emissions are evenly distributed in Beijing during 286 
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our observations. This can be ascribed to the fact that our observation site is a typical 287 

urban station. Although isoprene and xylene/ethylbenzene different sources, both them 288 

are non-point sources on a city scale. Therefore, the photochemical clock calculated 289 

using xylene and ethylbenzene is able to correct the photochemical loss of biogenic 290 

VOCs to some extent. It should be noted that uncertainty is inevitable when we 291 

estimating the photochemical age (Parrish et al., 2007). However, the aim of this work 292 

is to test whether the ML-model can reflect the influence of photochemical loss of 293 

VOCs species on O3 modelling. The PICs should provide additional information for 294 

understanding O3 formation in the atmosphere.”. 295 

As for the robustness and workflow of RF model, we have replied this point in Q1 296 

and Q2 and revised the manuscript and the SI accordingly. 297 

 298 

Specific concerns: 299 

Q4: Line 70-71: This is a valid concern. However, the machine learning based 300 

approaches are also subject to this. 301 

Reply: Thank you for your comment. We have added a paragraph to point out the 302 

shortcoming of machine learn “Although attentions should be paid to the robustness of 303 

machine learning because it depends on input dataset (observations or outputs from 304 

chemical transport models), previous studies have demonstrated that cross-validation 305 

and data-normalization can well reduce the dependence of the model on input data and 306 

improve the robustness of the model (Wang et al., 2016; Wang et al., 2017b; Liu et al., 307 

2021; Ma et al., 2021)” in Lines 79-83 in the revised manuscript.  308 

 309 

Q5: Line 72-73: Respectfully, I disagree. Box models using condensed mechanisms are 310 

usually quite cheap. Near-explicit mechanisms such as MCM are more expensive, but 311 

the EKMA-type configurations are still considerably cheaper than 3D chemical 312 

transport models. Well-developed box models with MCM or other condensed 313 

mechanisms configured for ozone sensitivity (EKMA) can run on personal computers 314 

or small servers/clusters, providing timely predictions with no major demand for 315 

computational resources. OBMs generally are not considered as being time-consuming 316 
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or computationally expensive. 317 

Reply: Thank you. We have deleted the sentences “In addition, both of them are time-318 

consuming and expensive when computational resources are considered” and 319 

“Traditional models have difficulty assessing O3 formation sensitivity in a timely 320 

manner due to the limitations of flexibility and computational efficiency” in the revised 321 

manuscript. 322 

 323 

Q6: Line 79-90: This section lists a few previous studies with vaguely portrayed 324 

methodologies and outcomes, but failed to mention any disadvantages of machine 325 

learning, such as the demand for large volume of comprehensive and good quality data, 326 

and of course the risk of overtraining. This section also fails to address a concern 327 

brought up earlier by the authors themselves: uncertainties and biases in the input 328 

dataset (observations, or outputs from chemical transport models). Please revise this 329 

section and discuss the applications of machine learning in air quality studies in the 330 

context of its disadvantages. Please also address how the impacts of input data (e.g., 331 

uncertainties and biases) might be reduced. 332 

Reply: Thank you. We have revised this section and added the discussion in lines 79-333 

86 in the reversed manuscript “Although attentions should be paid to the robustness of 334 

machine learning because it depends on input dataset (observations or outputs from 335 

chemical transport models), previous studies have demonstrated that cross-validation 336 

and data-normalization can well reduce the dependence of the model on input data and 337 

improve the robustness of the model (Wang et al., 2016; Wang et al., 2017b; Liu et al., 338 

2021; Ma et al., 2021). Thus, it is a promising alternative to account for the effects of 339 

meteorology on air pollutants and has been intensively used in atmospheric study (Liu 340 

et al., 2020; Hou et al., 2022).”. 341 

 342 

Q7: Line 135-137: “… and then averages the scores of each decision tree as its final 343 

score…” This is a very vague description of the algorithm. Indeed, the ensemble 344 

prediction made by the entire forest is usually more accurate and robust than the 345 

predictions made by individual trees, relatively speaking. However, this (averaging 346 
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across all the decision trees) ABSOLUTELY DOES NOT guarantee that large biases 347 

and overfitting can be avoided. The splitting might help with mitigating the risk of 348 

overfitting but it is still FAR FROM BEING SUFFICIENT to guarantee the algorithm 349 

is not overfitted. Generally, much more comprehensive and rigorous measures than 350 

what is shown in this work are needed, for instance, multifold cross validation is a good 351 

idea. To further test the robustness of the machine learning workflow in real-world 352 

physics-driven problems, sometimes it is recommended to perform the cross validation 353 

with each fold being the data from a specific time period or geographic region. 354 

Reply: Thank you so much for your good suggestion. We agree with you that the 355 

splitting might help with mitigating the risk of overfitting but it is still not sufficient to 356 

guarantee the algorithm is not overfitted. As replied in above questions, we performed 357 

multifold cross-validation according to your suggestion. A 12-fold cross-validation was 358 

carried out to mitigate the risk of overfitting. Briefly, we randomly divided the 359 

normalized data into 12 subsets, then alternately took one subset as testing data along 360 

with the rest as training data. By doing this, every data point has an equal chance being 361 

trained and tested.  362 

In lines 145-153 in the revised manuscript, we have revised the sentence “… and 363 

then averages the scores of each decision tree as its final score…” to “The random forest 364 

(RF) is a type of ensemble decision tree that can be used for classification and 365 

regression (Breiman 2001). During the training process, the model creates a large 366 

number of different decision trees with different sample sets at each node, and then 367 

averages the results of all decision trees as its final results (Breiman 2001). To avoid 368 

over-fitting, we trained the random forest model using cross-validation for the 369 

normalized data, which can improve the robustness of the model. Briefly, we randomly 370 

divided the normalized data into 12 subsets, then alternately took one subset as testing 371 

data along with the rest as training data. By doing this, every data point has an equal 372 

chance being trained and tested.”.  373 

 374 

Q8: Line 132-: this section does not provide any details on whether the authors have 375 

performed any sort of hyperparameter tuning, which is important. How can the readers 376 
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be convinced that the performance is optimized? Information outlined in Table S1 is 377 

not at all sufficient to described how the algorithm is configured. And frankly, certain 378 

information in that table is practically useless (e.g., the method is "regression", and the 379 

sampling is "random"). Please also clarify if the authors implemented random forest by 380 

themselves or used that from a certain package (e.g., R, python). If latter, please specify 381 

which package is used. 382 

Reply: Thank you for you good comments. In the revised SI, we added the process of 383 

hyperparameter tuning, such as the influence of the min sample split (Figure R9 or 384 

Figure S13) and tree number (Figure R10 or Figure S14) on the mean squared error 385 

(MSE). We also revised Table S2 (Table R3). We implemented random forest 386 

simulation by ourselves. The code was written by ourselves based on a MATLAB 387 

platform.  388 

 389 

Figure R9. The relationship between min sample split and mean squared error (MSE) 390 
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 391 

Figure R10. The relationship between trees number and mean squared error (MSE). 392 

 393 

Table R3. RF model parameters and input parameters 394 

RF model parameters RF model inputs 

Type Value Type input parameter output parameter 

Cross-validation 12 Figure 2A 

Total VOC concentration, PM2.5, 

NO, NO2, CO, SR, RH, WD, WS, T 

O3 

tree number  500 

Figure 2B 

51 measured VOC species, PM2.5, 

NO, NO2, CO, SR, RH, WD, WS, T 

O3 

min sample split 5 

Figure 2C 

51 initial VOC species, PM2.5, NO, 

NO2, CO, SR, RH, WD, WS, T 

O3 

min sample leaf 1 

Note: In this study, we optimized the number of tree and min samples split as shown 395 

in Figure S14 and S13, respectively. The min sample leaf was set 1 (default), and 396 

other parameter were set to default (auto/none). 397 
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Min samples split: the minimum number of samples to be split; Min samples leaf: the 398 

minimum number of samples in a leaf; Trees number: the number of trees during the 399 

training. 400 

 401 

In lines 166-168 in the revised manuscript, we added a sentence “More details 402 

about workflow of RF model and the hyperparameter tuning can be found in the Text 403 

S3. The optimized parameters are shown in Table S2”.  404 

In the revised SI, we added a short paragraph to describe the process of 405 

hyperparameter tuning “(3) Hyper-parameters optimization. All network configuration 406 

parameters (i.e., leaf number, number of trees, algorithm, and so on) were modified by 407 

a trial and error method to obtain the optimized network structure. The optimized RF 408 

model parameters are shown in Table S2. Figures S12 and S13 show the examples to 409 

optimize the number of min sample split and tree, respectively.”. 410 

 411 

Q9: Line 143, 145: please clarify how this “tiny data noise” is added. 412 

Reply: Thank you. The “tiny data noise” was through randomly permutes the 413 

observations of feature i. We have revised it to “errOOB1 and errOOB2 represent the 414 

out-of-bag data error of feature i before and after randomly permuting the observation, 415 

respectively.” in line 163-165 in the revised manuscript. 416 

 417 

Q10: Line 147-150: I am not sure what the purpose is. Given the atmospheric lifetime 418 

of ozone, the measurements may well carry some “memory effects”. Do the authors 419 

suggest that the ozone records can be reconstructed with randomly arranged inputs and 420 

hence any transport footprint (and factors alike) is already captured by the suite of 421 

instantaneous measurements? 422 

Reply: Thank you. we agree with you that the measurements (especially O3) may carry 423 

some “memory effects”. However, it is inevitable that some “memory effects” cannot 424 

be considered. In order to decrease the dependence of the model on the data, we fed the 425 

randomly arranged inputs to the model by interrupting the continuity of the time series 426 

to check the robustness of the model. It is actually a cross-validation but with a smaller 427 
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fold (not systematic) than that used in the revised manuscript, in which we carried out 428 

a 12-fold cross-validation to split the training and testing data according to your 429 

suggestion. Therefore, the results are more robust in the revised manuscript. We deleted 430 

the sentence “we interrupted the continuity of the time series, fed the randomly arranged 431 

inputs to the model” in the revised manuscript, and added the detailed workflow in the 432 

Text S3. 433 

 434 

Q11: Line 160: It is unclear how the initial VOC concentrations are derived. I do notice 435 

that Text S2 in the supplement information is about initial VOCs. Please refer to SI 436 

contents whenever necessary. I also have several major concerns regarding the initial 437 

VOC calculations in Text S2: (1) these formulations require initial/source ratios. It 438 

remains absolutely unclear how the authors derive the initial or source ratio of 439 

ethylbenzene/xylene. (2) The initial/source ratios may vary among different sources 440 

(e.g., gasoline, diesel, combustion, …). How would the authors account for the impacts 441 

from different emission sources? Or the mix with air masses with different 442 

photochemical ages? (3) Ethylbenzene and xylene are primarily of anthropogenic origin. 443 

The underlying assumption here is that all VOCs experience similar transport and aging 444 

processes. This may not be a bad assumption for other anthropogenic VOCs, but I doubt 445 

this could be applied for biogenic VOCs, which, according to the authors (Line 261 and 446 

Figure 3), is quite important. To sum up, I am not convinced that the initial VOC 447 

calculation presented in this manuscript can accurately describe the VOC oxidation 448 

during the transport receptor site. 449 

Reply: Thanks for your comments. In the revised manuscript, we referred to SI contents 450 

accordingly, such as, “The calculation of initial VOCs and sensitivity tests can be found 451 

in the Supplemental Materials (S2)” in lines 142-143 and 190-191. 452 

We took the mean value (0.52) of ethylbenzene/xylene from 0.45 to 0.66 before 453 

sunrise during our observations as the initial ratio of ethylbenzene/xylene. The protocol 454 

is the same as that reported in literatures (Shao et al., 2011; Zhan et al., 2021).  455 

We agree with you that the initial/source ratios may vary among different sources 456 

(e.g., gasoline, diesel, combustion). Here, we used the ambient concentrations of 457 
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ethylbenzene and xylene to calculate the initial source ratio. Thus, it actually reflects a 458 

mean or mixing value of different sources instead of a specific one. There is a basic 459 

assumption that emission patterns of different sources are relatively stable in a day 460 

when calculating the photochemical initial concentrations of VOCs using this method 461 

(Yuan et al., 2013). As replied in the third question (Q3), we checked this assumption 462 

based on PSCF analysis. The results suggest that the emission patterns of xylene and 463 

ethylbenzene are highly similar in the early morning to that in the whole day.  464 

Although xylene and ethylbenzene are anthropogenic VOCs, while isoprene is a 465 

biogenic VOC, PSCF analysis indicated that the spatial pattern of isoprene was similar 466 

to that of xylene and ethylbenzene during our observations (Figure R8). This means 467 

VOC emissions were evenly distributed in Beijing. This can be ascribed to the fact that 468 

our observation site is a typical urban station and VOCs are emitted from non-point 469 

sources on a city scale. Therefore, the photochemical clock calculated using xylene and 470 

ethylbenzene is able to correct the photochemical loss of biogenic VOCs to some extent. 471 

In Text S2 in the revised SI, we added more details to calculate the initial 472 

concentrations of VOCs. 473 

“Text S2. Calculation of initial VOCs concentrations 474 

Photochemical initial concentration (PIC) proposed by Shao et al. (2011), which 475 

is calculated based on the photochemical-age approach and has been applied to evaluate 476 

the effect of photochemical processing on measured VOC levels. Equation S1 477 

essentially describes the integrated OH exposure (Shao et al., 2011). 478 

∫ cOHdt = 
1

kA,OH−kB, OH
[ln(

VOCA

VOCB
)
initial

-ln(
VOCA

VOCB
)]             (S1) 479 

The initial concentration of species i can be calculated using Equation S2. 480 

VOCi, initial= 
VOCi

exp(-ki,OH)exp( ∫ cOHdt)
                   (S2) 481 

Substituting equation 1 into equation 2, then we can get equation S3. 482 

VOCi, initial= 
VOCi

exp(-ki, OH) exp(
1

kA,OH − kB, OH
 [ln(

VOCA
VOCB

)
initial

− ln(
VOCA
VOCB

) ])
         (S3) 483 

Where COH represents the ambient OH concentration; kA,OH and kB,OH represent the 484 

reaction rate of compound A and B with OH radical, respectively; t represents the 485 

reaction time of species i in the ambient. 486 
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In previous work (Shao et al., 2011; Zhan et al., 2021), the selection of 487 

ethylbenzene and xylene as tracers was justified for calculating ambient OH exposure 488 

under the following conditions: 1) the concentrations of xylene and ethylbenzene were 489 

well correlated (Figure S9), which indicated that they were simultaneously emitted; 2) 490 

they had different degradation rates in the atmosphere; and 3) the calculated PICs were 491 

in good agreement with those calculated using other tracers (Shao et al., 2011; Zhan et 492 

al., 2021). 493 

In this study, the ethylbenzene/xylene pair was used to calculate ambient OH 494 

exposure. As shown in Figure S9, the concentrations of xylene and ethylbenzene are 495 

well correlated, which indicates that they are simultaneously emitted. In addition, we 496 

compared the PICs according to xylene/ethylbenzene with that using toluene/benzene 497 

(Figure S10). The calculated PICs ratio (PIC Xylene/Ethylbenzene / PIC Toluene/Benzene) varied 498 

from 0.5 to 1.5 with a mean value of 0.96. This means the calculated initial VOCs was 499 

in good agreement when using different tracers. The mean ratio (0.52, from 0.45 to 0.66) 500 

of ethylbenzene/xylene before sunrise was taken as the initial ratio of 501 

ethylbenzene/xylene. Sensitivity tests showed that the uncertainty of PICs caused by 502 

the OH exposure (from −10% to +10%) ranged from 0.55 to 1.57 (Table S4).  503 

Variations of air mass may also affect the VOC ratio. Figure S11 A-D shows the 504 

mean concentration distribution of ethylbenzene and xylene in the early morning and 505 

the whole day based on potential source contribution function (PSCF) analysis. Xylene 506 

showed similar patterns to ethylbenzene in different air mass trajectories and different 507 

periods. These results indicate that the emissions of xylene and ethylbenzene were 508 

constant throughout the day and variations of air mass should have little influence on 509 

the initial ratio of VOCs. The hourly concentrations of ethylbenzene and xylene were 510 

used to calculate the concentration of initial VOCs. The initial VOC was calculated by 511 

adding the measured VOC concentration and the calculated photochemical loss. Figure 512 

S12 shows the diurnal variations of the observed and initial VOCs concentrations from 513 

2014 to 2016. Photochemical loss of VOC occurred mainly during the daytime.  514 

It should be noted that the lifetimes (1/k2cOH) of highly reactive VOCs, such as 515 

isoprene, greatly depend on the OH exposure. The photochemical ages of isoprene were 516 
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0.01–6.21 h (1.26  1.12 h). This value is comparable with previously reported 517 

photochemical ages (Shao et al., 2011; Gao et al., 2018). However, the initial 518 

concentrations of highly reactive VOCs may be overestimated due to their short 519 

lifetimes and should be taken as the upper limits. On the other hand, isoprene is a 520 

biogenic VOC, while xylene and ethylbenzene are anthropogenic VOCs. If they do not 521 

share the same air mass histories, an additional uncertainty is inevitable for the PICs of 522 

isoprene. As shown in Figure S11, isoprene showed similar patterns to that of xylene 523 

and ethylbenzene, which means VOC emissions are evenly distributed in Beijing during 524 

our observations. This can be ascribed to the fact that our observation site is a typical 525 

urban station. Although isoprene and xylene/ethylbenzene different sources, both them 526 

are non-point sources on a city scale. Therefore, the photochemical clock calculated 527 

using xylene and ethylbenzene is able to correct the photochemical loss of biogenic 528 

VOCs to some extent. It should be noted that uncertainty is inevitable when we 529 

estimating the photochemical age (Parrish et al., 2007). However, the aim of this work 530 

is to test whether the ML-model can reflect the influence of photochemical loss of 531 

VOCs species on O3 modelling. The PICs should provide additional information for 532 

understanding O3 formation in the atmosphere.”. 533 

 534 

Q12: Line 176-177: Simply comparing RF outputs to measurements ABSOLUTELY 535 

DOES NOT guarantee that the RF model is robust. An over-trained model will also 536 

show good performance when evaluated with measurements. Figure 2 says nothing 537 

about the robustness of the model. 538 

Reply: Thank you so much. We agree with you that simply comparing RF outputs to 539 

measurements absolutely does not guarantee that the RF model is robust. We have 540 

carried out cross-validation in the revised manuscript according to your good 541 

suggestion. The details on the robustness of the model have been replied in Q1 and Q2. 542 

All the figures (Figure 2, Figure S3 and Figure S4) have been updated in the revised 543 

manuscript and the revised SI. 544 

 545 

Q13: Line 221-222: The authors stated that “ML is a black-box model” then cited 546 
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Sayeed et al. (2021). Do the authors then imply that the convolutional neural network 547 

model developed by and described in Sayeed et al is a “black-box”? If this is the case, 548 

please elaborate how the Sayeed et al model appears to be a black-box to the authors, 549 

since this is a somewhat strong accusation. I also do not fully agree with this statement. 550 

Random forest is actually fairly transparent compared to some other types of machine 551 

learning algorithms, as one can certainly examine the trees and see how a certain feature 552 

is used for splitting the nodes and how the overall importance is propagated, if they 553 

wish. 554 

Reply: Thank you. We agree with you that when compared with other types of machine 555 

learning algorithms, random forest is actually fairly transparent because one can 556 

examine every node. However, when compared with chemical models, such as box 557 

model and chemical transport model. It is still a “black box” from the point view of 558 

chemical mechanism. In lines 116-118 in the revised manuscript, we revised this 559 

sentence to “Although ML is widely used to understand air pollution, explanations of 560 

ML results (e.g., RI) are somewhat vague because ML is a black-box model from the 561 

point view of chemical mechanism”. 562 

 563 

Q14: Line 267-270, Line 287-293: Please clarify how the EKMA plots were generated 564 

using the RF model. It is confusing that Figures 4A-C and Figure 4D use different color 565 

scales. It also appears to me that Figure 4B and Figure 4D show considerable 566 

discrepancy: the “observed point” in Figure 4B indicates ~44 ppb ozone but in Figure 567 

4D the ozone level at the “observed point” is ~60 ppb. Please also define this “observed 568 

point”. It could be that the OBM predicts some sort of “maximum ozone production 569 

potential” driven by chemistry and impacts like transport would not be captured. But 570 

this would be inconsistent with one of the conclusions of this work (e.g., Line 206) that 571 

ozone production seems to be dominated by local chemistry. Either way, the 572 

discrepancy needs to be elaborated. 573 

Reply: Thank you for your good comment. In the revised SI, we have added the 574 

calculation process of EKMA in Text S3. This has also been replied in Q2. In lines 171-575 

179 in the revised manuscript, we added a paragraph “When plotting the O3 formation 576 
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sensitivity curves, we made a virtual matrix of inputs by varying the concentrations of 577 

NOx and VOCs from 0.9 to 1.1 times (with a step of 0.01) of their mean values while 578 

keeping all other inputs unchanged (i.e., the mean values). Then, the new matrix was 579 

used as testing data, while all the measured data were taken as training data. Thus, the 580 

testing data should represent the mean sensitivity regime of O3 in Beijing, while the 581 

training data actually covered all the sensitivity regimes of O3 formation. The EKMA 582 

curves were plotted using the daily maximum 8-h (MDA8) O3. More details can be 583 

found in the SI”. 584 

In the initial submission version of the manuscript, the EKMA curves based on the 585 

RF model were plotted using the mean O3 concentrations in a day with different color 586 

scale, while the EKMA curves from the Box model were plotted using the maximum 587 

O3 concentrations in a day. This leads to the difference in O3 concentrations between 588 

Figure 4B and 4D. In the revised manuscript, we plotted the EKMA curves from both 589 

models using the daily maximum 8-h (MDA8) O3 with the same scale. As shown in 590 

Figure R3 or Figure 4. The predicted O3 concentrations using two different models are 591 

comparable. In addition, we calculated the relative errors (within 15.6%) of O3 592 

concentrations from the RF model compared with that of the Box model (Figure R4 or 593 

Figure S8). The observed point has been added in the revised Figure 4 or Figure R3.  594 

In Text S3 in the revised SI, we have added the details for plotting EKMA curves: “(6) 595 

EKMA curves. The Empirical Kinetic Modeling Approach (EKMA) was used to assess 596 

the O3 formation mechanism regime. Both the RF model and a box model with Master 597 

Chemical Mechanism (MCM, 3.3.1) were used to calculate the EKMA curves. For the 598 

RF model simulations, the observed point data was chosen as the mean values of the 599 

input parameters during our observations, then the concentrations of VOCs and NOx 600 

were varied 10% (or from 90% to 110%) of their mean values with a step of 1% in a 601 

two-dimensional matrix along with other inputs unchanged. This matrix was used as 602 

the testing data, while all the measured data were taken as the training data in the RF 603 

model to simulate O3 concentrations under different scenarios of VOCs and NOx 604 

concentrations. To decrease the model uncertainty, we set relatively small variations of 605 

VOCs and NOx (±10%) compared to the observed values in this study. The mean 606 
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relative error of simulated O3 concentrations between RF model and Box model (within 607 

15.6%, Figure S8) suggests that the RF model can well predict O3 concentrations during 608 

our observations.”. 609 

 610 

Q15: Line 299-301: I actually fail to see this. Figures 2E and 2F show that the 611 

improvement is small. 612 

Reply: Thank you. In the revised manuscript, we have revised the sentence “Thus, our 613 

model has good prediction performance (R2 = 0.87) when combined with the initial 614 

VOC species…and identify the connection between the reactivity of VOC species and 615 

O3 formation in the atmosphere” to “When the TVOCs were split into measured or 616 

initial VOC species, the R2 increased obviously as the number of data features increased. 617 

Therefore, the VOC composition has a significant influence on O3 prediction using the 618 

RF model.” in Lines 221-223 in the revised manuscript. Meanwhile, we added “To 619 

verify the stability of the model, we performed a significance test on the model results. 620 

The results showed that there was no significant difference among the different tests 621 

(P>0.05, R2>0.98).” in Lines 168-170 in the revised manuscript. 622 

 623 

Minor/technical comments: 624 

Q16: Line 16: Beijing, China. 625 

Reply: Thank you. It has been corrected in Line 14 in the revised manuscript. 626 

 627 

Q17: Line 21: Define abbreviations upon first appearance. NOx and PM2.5 are not 628 

defined. Also, x should be subscripted throughout. 629 

Reply: Thank you. We have defined the abbreviations when it first appears, such as 630 

“nitrogen oxides (NOx) and relative humidity (RH), and a positive response to 631 

temperature (T), solar radiation (SR)” and “fine particulate matter with aerodynamic 632 

diameter less than 2.5 µm (PM2.5)” in Lines 22 and 95-96. The “x” in NOx has been 633 

subscripted throughout the paper. 634 

 635 

Q18: Line 22: Delete curves 636 
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Reply: Thank you. We have deleted the “curves” 637 

 638 

Q19: Line 33: “NO-O3-NO2 cycle” please elaborate. The audience will appreciate 639 

clearly described concepts. 640 

Reply: Thank you. The “NO-O3-NO2 cycle” can be expressed by eq. R (1) and R (2).  641 

HO2/RO2+NO→OH/RO + NO2            R (1) 642 

NO2+ O2

hv
→ NO + O3                 R (2) 643 

We have revised “NO-O3-NO2 cycle” to “conversion from NO to NO2, subsequently, 644 

formation of O3 by photolysis of NO2 in the presence of O2” in Line 36 in the revised 645 

manuscript. 646 

 647 

Q20: Line 31-34: Very busy and ill-formed sentence. Please rephrase. 648 

Reply: Thank you. We have revised this sentence to “Oxidation of volatile organic 649 

compounds (VOCs) will produce peroxyl radicals (RO2) and hydroperoxyl radicals 650 

(HO2). The RO2/HO2 can accelerate conversion from NO to NO2, subsequently, 651 

formation of O3 by photolysis of NO2 in the presence of O2 (Wang et al., 2017a) ” in 652 

lines 34-37 in the revised manuscript. 653 

 654 

Q21: Line 52-53: “In addition, this method lacks the predictability of O3 concentrations 655 

for policy-making.” This is a bizarre statement. By definition, observations do not have 656 

predictability. 657 

Reply: Thank you. We have deleted this statement in the revised manuscript. 658 

Q22: Line 53: OBM can use remote sensing measurements too. 659 

Reply: Thank you. We have revised to “OBMs combine in-situ field observations, 660 

remote sensing measurements and chemical box models, which…” in Line 56 in the 661 

revised manuscript. 662 

 663 

Q23: Line 80: has -> have. 664 

Reply: Thank you. We have revised “has” to “have” in Line 88 in the revised 665 
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manuscript. 666 

 667 

Q24: Line 99: please fix citation style as per the journal requirements. 668 

Reply: Thank you. We have fixed citation style as per the journal requirements in the 669 

revised manuscript. 670 

 671 

Q25: Line 98-100: “Makar et al (1999) reported that highly reactive species, such as 672 

isoprene, were underestimated by 40% when the OH reactions were ignored” This is 673 

confusing as currently written, which is also a misinterpretation of the paper. Makar et 674 

al. clearly stated that it is the isoprene emissions that are underestimated if the OH 675 

oxidation is not considered. 676 

Reply: Thank you. We have revised it to “the isoprene emissions were underestimated 677 

by up to 40% if the OH oxidation is not considered.” in Lines 109-110 in the revised 678 

manuscript. 679 

 680 

Q26: Line 101: Please clearly define what exactly “initial concentration” is. It is my 681 

opinion that this concept is vague: if one attempts to measure this “initial concentration”, 682 

how close shall the sensor be placed? When it comes to biogenic compounds like 683 

isoprene, shall the sensor be placed at the leaf level, within the canopy, or what? 684 

Reply: Thank you. The “initial concentration” is a concept based on reaction time 685 

instead of location or space. It is defined as the concentrations of VOCs before 686 

degradation has occurred in a day and actually extrapolated according to a “chemical 687 

clock” (OH exposure).  688 

In lines 118-121 in the revised manuscript, we clarified it “In this study, we used 689 

the RF model to evaluate the prediction performance of atmospheric O3 using the 690 

TVOCs, measured VOC species and photochemical initial concentration (PIC) of VOC 691 

species, which is calculated based on the photochemical-age approach (Shao et al., 692 

2011)” and in the revised SI, we added a sentence “Photochemical initial concentration 693 

(PIC) proposed by Shao et al. (2011), which is calculated based on the photochemical-694 

age approach and has been applied to evaluate the effect of photochemical processing 695 
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on measured VOC levels”. 696 

 697 

Q27: Line 133: Random forest is not a type of decision tree. It is a collection of a 698 

number of decision trees. 699 

Reply: Thank you. We have revised it to “The random forest (RF) is a type of ensemble 700 

decision tree that can be used for classification and regression” in Line 145 in the 701 

revised manuscript. 702 

 703 

Q28: Line 132-: this section does not mention anything about how these input variables 704 

are pre-processed: are extreme values removed? Do the authors apply any 705 

standardization or normalization? These variables are on very different numerical scales 706 

and sometimes standardization could improve the stability and/or performance. 707 

Reply: Thank you. We carried out data-normalization and removed the extreme values 708 

before modelling. In the revised SI, we clarified it and added the data processing in Text 709 

S3 “(2) Data process. After the extreme values were removed, all data were normalized 710 

(between 0 and 1) in order to decrease the sample distribution range, accelerate 711 

calculation efficiency and improve the robustness of the RF model. Then, the dataset 712 

was randomly divided into 12 subsets. Thus, a 12-fold cross-validation was performed 713 

by alternately taking one subset as testing data and the rest as training data to ensure 714 

that each data point has an equal chance being trained and tested.”. 715 

 716 

Q29: Line 136: Please define “score”. 717 

Reply: Thank you. To describe the random forest more accurately, we have revised 718 

“score” to “result” in line 146-148 in the revised manuscript.  719 

“During the training process, the model creates a large number of different decision 720 

trees with different sample sets at each node, and then averages the results of all 721 

decision trees as its final results”. 722 

 723 

Q30: Figure 1: what are those red arrows in the top panel? 724 

Reply: Thank you. The red arrows represent the O3 concentration exceeding 74.6 ppbv 725 
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according to the national ambient air quality standard. We have added this explanation 726 

in Figure 1 or Figure R11 in Lines 205-206 in the revised manuscript. 727 

 728 

Figure R11. Time series of air pollutants and meteorological parameters during 729 

observations in Beijing. (In A, the red arrows represent the O3 concentration exceed 730 

74.6 ppbv according to the national ambient air quality standard.) 731 

 732 

Q31: Figure 1: it would be interesting to separate biogenic VOCs from anthropogenic 733 

VOCs. 734 

Reply: Thank you. In this figure, we want to show the general characteristics of 735 

different kinds of VOCs. It is usually classified according to the structures of VOCs. 736 

Figure R12 shows the time series of biogenic and anthropogenic VOCs. We also added 737 

this figure in the revised SI (Figure S16). 738 
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 739 

Figure R12. Time series of biogenic and anthropogenic VOCs during the observation 740 

period. (Biogenic VOCs: including isoprene, α-pinene and β-pinene; Anthropogenic 741 

VOCs: including all detected VOCs except isoprene, α-pinene and β-pinene) 742 

 743 

Q32: Figure 2: all top panels are not readable. Please consider extending the time series 744 

plots. 745 

Reply: Thank you. We have revised Figure 2 (or Figure R2) in the revised manuscript. 746 

 747 

Q33: Text S1: "total of 51 VOCs (including 21 alkanes, 13 alkenes, 1 alkyne and 16 748 

aromatics) were analyzed within a limit of quantification of 0.1-100 ppbv". Well this is 749 

a very wide range for limit of quantification. Please include a table and list the limits of 750 

quantification/detection for all VOCs used in this work. I'd argue that if the LOQ/LOD 751 

of an ambient VOC is on the order of 100 ppb, the data is practically useless. The total 752 

VOC levels are less than ~30 ppb (Figure 1F). 753 

Reply: Thank you. In the submission version, we made a mistake about the number. It 754 

was 0.002-0.05 ppbv instead of 0.1-100 ppbv. We have added the method detection 755 

limit (MDL) for all measured species in Table R2 or Table S4. In Text S1, we have 756 
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revised "total of 51 VOCs (including 21 alkanes, 13 alkenes, 1 alkyne and 16 aromatics) 757 

were analyzed within a limit of quantification of 0.1-100 ppbv" to “total of 51 VOCs 758 

(including 21 alkanes, 13 alkenes, 1 alkyne and 16 aromatics) were analyzed within a 759 

limit of quantification of 0.002-0.05 ppbv as shown in Table S4”. 760 

 761 

Q34: Text S2: please define all variables. COH, t, k, are not defined. Also, Equation S1 762 

essentially describes the integrated OH exposure, rather than the "changes in VOC 763 

concentration as a function of time due to photochemical reaction". 764 

Reply: Thank you. We have defined the all variables and revised the description 765 

“Equation S1 essentially describes the integrated OH exposure (Shao et al., 2011)” in 766 

Text S2 in the revised SI. 767 

“Where COH represents the ambient OH concentration; kA,OH and kB,OH represent the 768 

reaction rate of compound A and B with OH radical, respectively; t represents the 769 

reaction time of species i in the ambient.” 770 

 771 

Q35: Table S1: please define all parameters. What's leaf number? Is this the number of 772 

leaf nodes, leaf levels/depths, or what? What's fboot? 773 

Reply: Thank you, we have revised the Table S2 (Table R3). The leaf number represents 774 

the minimum number of samples to be split. The fboot represents the minimum number 775 

of samples in a leaf. They are added in the footnotes of Table S2. 776 

 777 
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