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Dear Reviewer, 1 

We appreciate your careful consideration of our manuscript. We have carefully 2 

responded to all of your point-by-point comments and issues and have revised the 3 

manuscript accordingly. These revisions are described in detail below. 4 

 5 

Reviewer 1# 6 

This is an interesting study, using machine learning to estimate the ozone formation 7 

sensitivity. The idea is not novel (a few previous studies with similar scope are cited in 8 

this manuscript). The method, using reactivity-corrected VOC measurements (i.e., 9 

initial VOC concentrations), sheds some insights into ozone production in an urban 10 

environment. 11 

Reply: Thanks for your positive comments. We have carefully responded to all of your 12 

point-by-point comments and issues and have revised the manuscript accordingly. 13 

These revisions are described in detail below. 14 

 15 

However, there are several major issues:  16 

Q1: (1) The machine learning workflow described in this manuscript does not include 17 

a robust or systematic solution to mitigate overtraining. I will elaborate on this later but 18 

the measures described in this work absolutely do not guarantee that overtraining is/can 19 

be avoided. 20 

Reply: Thank you for your good suggestion. According to your suggestion, we 21 

performed a 12-fold cross-validation after data-normalization, i.e., by randomly 22 

dividing the dataset into 12 subsets and alternately taking one subset as testing data and 23 

the rest as training data. By doing this, every data point has an equal chance being 24 

trained and tested. In lines 148-153 in the revised manuscript, we added a short 25 

paragraph ñTo avoid over-fitting, we trained the random forest model using cross-26 

validation for the normalized data, which can improve the robustness of the model. 27 

Briefly, we randomly divided the normalized data into 12 subsets, then alternately took 28 

one subset as testing data along with the rest as training data. By doing this, every data 29 

point has an equal chance being trained and tested.ò.  30 
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We added the RF model workflow to Text S3 in the revised Supporting 31 

Information.  32 

ñText S3. Workflow of RF model and the calculation of Relative Importance (RI) 33 

The workflow of RF model used in this study was established through the following 34 

steps.  35 

(1) Data description. The length of the input data from 2014 to 2016 were 1190, 1062 36 

and 872 rows, respectively, in which different types of VOCs, NOx, CO, PM2.5 and 37 

meteorological parameters (including temperature, relative humidity, solar radiation, 38 

wind speed and direction) were used as input variables and O3 was the output variable. 39 

The mean values (Ñstandard deviation) of input/output parameters are shown in Table 40 

S1. 41 

(2) Data process. After the extreme values were removed, all data were normalized 42 

(between 0 and 1) in order to decrease the sample distribution range, accelerate 43 

calculation efficiency and improve the robustness of the RF model. Then, the dataset 44 

was randomly divided into 12 subsets. Thus, a 12-fold cross-validation was performed 45 

by alternately taking one subset as testing data and the rest as training data to ensure 46 

that each data point has an equal chance being trained and tested. 47 

(3) Hyper-parameters optimization. All network configuration parameters (i.e., leaf 48 

number, number of trees, algorithm, and so on) were modified by a trial and error 49 

method to obtain the optimized network structure. The optimized RF model parameters 50 

are shown in Table S2. Figures S13 and S14 show the examples to optimize the number 51 

of minimal samples split and trees, respectively.  52 

(4) Model uncertainty estimation. The uncertainty of the model was estimated 53 

according to the predicted and observed O3 concentrations. The performance of the 54 

model was evaluated using R square (R2) and Root Mean Squared Error (RMSE). 55 

(5) Relative importance (RI) calculation: The influence of an input variable on model 56 

performance was evaluated by changes in the accuracy of the model by variable 57 

permuting. Briefly, a change of prediction error was resulted from permuting a variable 58 

across the observations. The magnitude of the response was estimated using out-of-bag 59 

error of a predictor according to following steps.  60 
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For a random forest model that has T learners and p predictors in the training data, 61 

the first step is to identify the out-of-bag observations and the indices of the predictor 62 

variables that are split to a growing tree t (from 1 to T). Then, one can estimate the out-63 

of-bag error (Ůt) for each tree. For a predictor variable xj (j: from 1 to p), one can estimate 64 

the model error (Ůt, j) again corroding to the out-of-bag observations after randomly 65 

permuting the observations of xj. Thus, the difference of the model error (dt, j = Ůt, j - Ůt) 66 

is obtained. If the predictor variables are not split, the difference of a growing tree t is 67 

0. The second step is to calculate the mean difference of the model errors (Ὠj), and the 68 

standard deviation (ůj) of the differences for all the learners and each predictor variable 69 

in the training data. Finally, the out-of-bag relative importance (RI) for xj is calculated 70 

by dividing the difference of the model errors by the standard deviation (Ὠj/ůj). 71 

(6) EKMA curves. The Empirical Kinetic Modeling Approach (EKMA) was used to 72 

assess the O3 formation mechanism regime. Both the RF model and a box model with 73 

Master Chemical Mechanism (MCM, 3.3.1) were used to calculate the EKMA curves. 74 

For the RF model simulations, the observed point data was chosen as the mean values 75 

of the input parameters during our observations, then the concentrations of VOCs and 76 

NOx were varied °10% (or from 90% to 110%) of their mean values with a step of 1% 77 

in a two-dimensional matrix along with other inputs unchanged. This matrix was used 78 

as the testing data, while all the measured data were taken as the training data in the RF 79 

model to simulate O3 concentrations under different scenarios of VOCs and NOx 80 

concentrations. To decrease the model uncertainty, we set relatively small variations of 81 

VOCs and NOx (Ñ10%) compared to the observed values in this study. The mean 82 

relative error of simulated O3 concentrations between RF model and Box model (within 83 

15.6%, Figure S8) suggests that the RF model can well predict O3 concentrations during 84 

our observations.ò 85 

 86 

Q2: (2) Random forest depends heavily on the training dataset. The authors do not 87 

provide an overview of the comprehensiveness of the training dataset: for instance, does 88 

the dataset cover all major chemical regimes in the EKMA plot, i.e., NOx-limited, 89 
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VOC-limited, NO titration? The authors claim that ozone production in Beijing, China 90 

is mostly VOC-limited, which is consistent with previous studies. If the training set 91 

collected in Beijing does not have sufficient coverage in the NOx-limited regime, then 92 

the trained algorithm essentially attempts to extrapolate in that regime, which is 93 

dangerous and prone to overtraining. I would then question the if this random forest 94 

model can make meaningful forecast in that regime at all.  95 

Reply: Thank you for your valuable suggestion. We added the description of training 96 

dataset in Text S3 in the revised SI. This point has been replied in the aforementioned 97 

question. The mean values (Ñstandard deviation) of the input and output parameters for 98 

the training data set are shown in Table R1. This Table was also added as Table S1 in 99 

the revised SI. 100 

Table R1. An overview of training dataset from 2014 to 2016 during the observation 101 

period. 102 

species / unit 

2014 2015 2016 

Measured 

VOC 
Initial VOC 

Measured 

VOC 
Initial VOC 

Measured 

VOC 
Initial VOC 

aver

age 

std. 

dev.* 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

aver

age 

std. 

dev. 

Cyclopentane / 

ppbv 

0.95  1.05  0.95  1.05  0.00  0.00  0.00  0.00  0.27  0.29  0.27  0.29  

Ethane / ppbv 2.38  0.98  2.39  0.98  1.84  0.88  1.85  0.89  1.07  0.51  1.07  0.51  

Acetylene / ppbv 1.64  1.31  1.65  1.31  0.13  0.33  0.14  0.33  0.32  0.30  0.32  0.30  

Propane / ppbv 2.44  1.60  2.46  1.61  2.42  1.75  2.45  1.76  1.35  0.93  1.36  0.93  

Benzene / ppbv 0.60  0.44  0.61  0.44  0.47  0.35  0.47  0.36  4.59  4.23  4.64  4.29  

iso-Butane / ppbv 0.95  0.66  0.96  0.67  0.35  0.53  0.35  0.54  0.24  0.18  0.24  0.19  

2,2-

Dimethylbutane / 

ppbv 

0.00  0.01  0.00  0.01  0.00  0.02  0.00  0.02  0.00  0.00  0.00  0.00  

n-Butane / ppbv 1.57  1.11  1.60  1.11  0.67  0.87  0.69  0.89  0.85  0.73  0.87  0.74  

2,2,4-

Trimethylpentane 

/ ppbv 

0.01  0.04  0.01  0.04  0.04  0.07  0.05  0.07  0.02  0.02  0.02  0.02  

iso-Pentane / 

ppbv 

0.11  0.38  0.11  0.40  0.00  0.00  0.00  0.00  0.16  0.18  0.16  0.18  

2,3-

Dimethylpentane 

/ ppbv 

0.07  0.08  0.07  0.08  0.06  0.08  0.06  0.08  0.02  0.03  0.02  0.03  
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3-Methylhexane / 

ppbv 

0.06  0.07  0.06  0.07  0.04  0.05  0.04  0.05  0.01  0.02  0.01  0.02  

Toluene / ppbv 1.28  1.02  1.32  1.04  0.88  1.55  0.93  1.57  0.30  0.34  0.32  0.37  

2,3-

Dimethylbutane / 

ppbv 

0.00  0.00  0.00  0.00  0.00  0.03  0.00  0.03  0.06  0.08  0.06  0.08  

n-Propyl benzene 

/ ppbv 

0.01  0.02  0.01  0.02  0.01  0.03  0.01  0.03  0.04  0.11  0.05  0.11  

iso-Propyl 

benzene / ppbv 

0.00  0.01  0.00  0.01  0.00  0.00  0.00  0.00  0.01  0.05  0.01  0.06  

2,3,4-

trimethylpentane / 

ppbv 

0.12  0.29  0.12  0.31  0.06  0.10  0.06  0.11  0.01  0.02  0.02  0.02  

n-hexane / ppbv 0.37  0.30  0.39  0.31  0.05  0.18  0.06  0.20  0.18  0.27  0.19  0.30  

n-heptane / ppbv 0.08  0.09  0.09  0.10  0.06  0.06  0.06  0.07  0.02  0.02  0.02  0.02  

2-methylhexane / 

ppbv 

0.03  0.03  0.03  0.04  0.02  0.04  0.02  0.04  0.01  0.01  0.01  0.01  

3-methylhexane / 

ppbv 

0.01  0.02  0.01  0.02  0.01  0.02  0.01  0.02  0.00  0.01  0.00  0.01  

cyclohexane / 

ppbv 

0.04  0.05  0.05  0.05  0.03  0.05  0.04  0.05  0.04  0.10  0.04  0.12  

ethylbenzene / 

ppbv 

0.33  0.31  0.34  0.32  0.21  0.23  0.23  0.25  0.10  0.15  0.10  0.16  

n-octane / ppbv 0.04  0.11  0.04  0.11  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  

ethene / ppbv 2.15  1.36  2.31  1.43  1.72  1.16  1.90  1.25  0.39  0.30  0.41  0.31  

methylcyclohexa

ne / ppbv 

0.01  0.03  0.01  0.03  0.01  0.03  0.01  0.04  0.02  0.03  0.02  0.04  

n-nonane / ppbv 0.03  0.04  0.03  0.04  0.02  0.02  0.02  0.03  0.02  0.04  0.02  0.04  

n-decane / ppbv 0.02  0.04  0.02  0.05  0.02  0.03  0.02  0.03  0.00  0.01  0.00  0.01  

p-ethyltoluene / 

ppbv 

0.06  0.08  0.06  0.08  0.02  0.03  0.03  0.04  0.07  0.10  0.07  0.11  

p-diethyl benzene 

/ ppbv 

0.01  0.04  0.01  0.04  0.01  0.02  0.01  0.02  0.09  0.17  0.11  0.22  

o-ethyl toluene / 

ppbv 

0.03  0.04  0.04  0.04  0.01  0.03  0.01  0.03  0.08  0.28  0.09  0.32  

o-xylene / ppbv 0.09  0.18  0.10  0.18  0.16  0.18  0.19  0.20  0.14  0.26  0.15  0.27  

m-ethyl toluene / 

ppbv 

0.02  0.07  0.02  0.07  0.04  0.09  0.04  0.09  0.03  0.04  0.03  0.05  

m-diethyl 

benzene / ppbv 

0.01  0.03  0.01  0.03  0.00  0.01  0.00  0.01  0.00  0.02  0.00  0.02  

m/p-Xylene / 

ppbv 

0.61  0.64  0.68  0.65  0.45  0.51  0.54  0.59  0.22  0.38  0.25  0.41  

propene / ppbv 2.07  1.18  2.83  2.26  4.40  2.61  6.60  6.12  0.28  0.41  0.34  0.45  

1-Butene / ppbv 0.10  0.14  0.13  0.17  0.04  0.10  0.08  0.25  0.03  0.03  0.04  0.06  
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1-Pentene / ppbv 0.03  0.09  0.04  0.09  0.03  0.07  0.05  0.12  0.02  0.06  0.02  0.07  

1,2,4-trimethyl 

benzene/ ppbv 

0.01  0.08  0.01  0.08  0.08  0.09  0.11  0.12  0.05  0.05  0.06  0.09  

1,2,3-trimethyl 

benzene/ ppbv 

0.00  0.01  0.00  0.01  0.03  0.05  0.04  0.08  0.05  0.28  0.05  0.28  

a-pinene / ppbv 0.01  0.03  0.02  0.03  0.01  0.03  0.01  0.03  0.18  0.46  0.84  3.48  

cis-2-Butene / 

ppbv 

0.34  0.70  0.85  2.67  0.66  0.85  1.77  4.56  0.04  0.05  0.11  0.29  

1,3,5-

Trimethylbenzene

/ ppbv 

0.05  0.07  0.08  0.11  0.03  0.05  0.07  0.14  0.25  0.56  1.07  4.11  

styrene / ppbv 0.18  0.27  0.30  0.61  0.00  0.03  0.01  0.08  0.27  0.79  0.57  2.08  

2-methyl-1-

pentene / ppbv 

0.18  0.37  0.72  2.94  0.04  0.04  0.26  1.68  0.02  0.09  0.03  0.12  

trans-2-Butene / 

ppbv 

0.08  0.16  0.24  1.15  0.09  0.11  0.34  0.74  0.02  0.02  0.04  0.08  

cis-2-Pentene / 

ppbv 

0.15  0.20  0.37  0.93  0.17  0.17  0.91  4.24  0.01  0.02  0.02  0.08  

1,3-Butadiene / 

ppbv 

0.09  0.10  0.19  0.34  0.04  0.05  0.12  0.38  0.02  0.03  0.05  0.25  

trans-2-Pentene / 

ppbv 

0.03  0.08  0.06  0.27  0.01  0.02  0.11  0.89  0.01  0.02  0.01  0.05  

á-pinene / ppbv 0.00  0.01  0.01  0.03  0.01  0.01  0.02  0.15  0.00  0.01  0.00  0.02  

isoprene / ppbv 0.89  0.64  5.70  18.7

8  

0.34  0.43  6.40  21.5

6  

0.13  0.17  2.12  7.46  

NO / ppbv 7.03  17.02  7.03  17.0

2  

3.38  5.59  3.38  5.59  5.28  10.3

5  

5.28  10.3

5  

NO2 / ppbv 15.5

0  

15.79  15.5

0  

15.7

9  

19.1

1  

12.6

8  

19.1

1  

12.6

8  

18.7

2  

12.4

0  

18.7

2  

12.4

0  

T / £C 22.5

6  

6.28  22.5

6  

6.28  22.7

0  

5.24  22.7

0  

5.24  22.3

7  

4.85  22.3

7  

4.85  

RH / % 50.9

3  

23.88  50.9

3  

23.8

8  

41.4

9  

23.2

3  

41.4

9  

23.2

3  

36.2

3  

21.5

8  

36.2

3  

21.5

8  

SR / W m-2 162.

92  

222.9

5  

162.

92  

222.

95  

153.

29  

205.

01  

153.

29  

205.

01  

150.

81  

199.

35  

150.

81  

199.

35  

WS / m s-1 3.11  2.70  3.11  2.70  2.29  2.15  2.29  2.15  1.25  1.24  1.25  1.24  

WD / Á 162.

42  

105.0

7  

162.

42  

105.

07  

175.

38  

101.

87  

175.

38  

101.

87  

184.

21  

108.

06  

184.

21  

108.

06  

PM2.5 /ɛg m-3 67.1

6  

53.47  67.1

6  

53.4

7  

63.1

3  

56.4

6  

63.1

3  

56.4

6  

61.0

5  

48.6

4  

61.0

5  

48.6

4  

CO /mg m-3 0.78  0.49  0.78  0.49  0.68  0.44  0.68  0.44  0.57  0.36  0.57  0.36  

O3 / ppbv 44.3

2  

32.38  44.3

2  

32.3

8  

42.7

4  

27.9

4 

42.7

4  

27.9

4 

44.0

1  

29.6

4  

44.0

1  

29.6

4  

* Standard Deviation (std. Dev.) 103 
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 104 

In Text S3 in the revised SI, we added a short paragraph ñData description. The 105 

length of the input data from 2014 to 2016 were 1190, 1062 and 872 rows, respectively, 106 

in which different types of VOCs, NOx, CO, PM2.5 and meteorological parameters 107 

(including temperature, relative humidity, solar radiation, wind speed and direction) 108 

were used as input variables and O3 was the output variable. The mean values 109 

(Ñstandard deviation) of input/output parameters are shown in Table S1ò 110 

As shown in Figure R1 or Figure S15, the training dataset were located in VOC-111 

limited, NOx-limited, and transition regimes, while most of the training data were 112 

located in the VOC-limited regime. To avoid overtraining, we performed a 12-fold 113 

cross-validation, i.e., by randomly dividing the observed data into 12 subsets and 114 

alternately taking one subset as testing data and the rest as training data, to ensure that 115 

each data point has an equal chance of being trained and tested. Figure R2 (Figure 2 in 116 

the revised manuscript) shows the comparisons between the measured and predicted O3 117 

concentrations using different VOC inputs. The curves of the predicted O3 118 

concentrations were spliced using the testing datasets in all runs. Thus, both the training 119 

data and the testing data actually covered all the sensitivity regimes of O3 formation. 120 

We think that the model is robust in the revised version according to your good 121 

suggestion. 122 
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 123 

Figure R1. Sensitivity curves of O3 formation and distribution of training data in 2015. 124 

 125 

Figure R2. Comparison of the predicted and measured O3 concentrations in Beijing in 126 

the summer of 2015. (A and D: TVOC concentrations; B and E: measured 127 

concentrations of VOC species; C and F: initial concentrations of VOC species). The 128 

testing data curves were spliced using the testing datasets in all runs during the 12-fold 129 
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cross-validation. 130 

 131 

When plotting the O3 formation sensitivity curves, we made a virtual matrix of 132 

inputs by varying the concentrations of NOx and VOCs from 0.9 to 1.1 times (with a 133 

step of 0.01) of their mean values (observed point data) while keeping all other inputs 134 

unchanged (i.e., the mean values during our observations). Then, the new matrix was 135 

used as testing data, while all the measured data were taken as training data. Thus, the 136 

testing data should represent the mean sensitivity regime of O3 in Beijing, while the 137 

training data actually covered all the sensitivity regimes of O3 formation. As shown in 138 

Figure R3 or Figure 4B, the sensitivity of O3 formation was located in VOC-limited 139 

regime in 2015. The mean relative errors of simulated O3 between RF model and Box 140 

model was 15.6% (Figure R4 or Figure S8), which means that the RF model can well 141 

predict the O3 concentrations and the sensitivity regime of O3 formation. Although we 142 

set relatively small variations of VOCs and NOx (Ñ10%) compared to the observed 143 

values to decrease the model uncertainty when depicting the EKMA curves, the training 144 

data represent the real conditions in Beijing during our observations. Therefore, we 145 

think our results should be reliable and meaningful. 146 



10 

 

 147 

Figure R3. Ozone formation sensitivity curves from 2014-2016. (A, B, C: calculated 148 

by the RF model for 2014, 2015, and 2016, respectively. D: calculated by the OBM for 149 

2015) 150 

 151 

Figure R4. The relative error of simulated O3 concentrations between the RF model 152 
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and the box model in 2015. 153 

In lines 232-240 the revised manuscript, we added a paragraph ñIt should be 154 

pointed out that if the training dataset does not have sufficient coverage in the NOx-155 

limited regime, then the trained algorithm essentially attempts to extrapolate in that 156 

regime, which is prone to overtraining. To avoid such overtraining, a 12-fold cross-157 

validation by randomly dividing the observation data in each day into 12 subsets and 158 

alternately taking one subset as testing data and the rest as training data ensures that 159 

each data point has an equal chance of being trained and tested. The curves of the 160 

predicted O3 concentrations in Figure 2 were spliced using the testing datasets in all 161 

runs. Thus, our results actually covered all the sensitivity regimes of O3 formation. This 162 

means that the model is robustò. 163 

In lines 171-178 in the revised manuscript, we added a paragraph ñWhen plotting 164 

the O3 formation sensitivity curves, we made a virtual matrix of inputs by varying the 165 

concentrations of NOx and VOCs from 0.9 to 1.1 times (with a step of 0.01) of their 166 

mean values while keeping all other inputs unchanged (i.e., the mean values). Then, the 167 

new matrix was used as testing data, while all the measured data were taken as training 168 

data. Thus, the testing data should represent the mean sensitivity regime of O3 in Beijing, 169 

while the training data actually covered all the sensitivity regimes of O3 formation to 170 

guarantee a sufficient coverage in the NOx-limited regime for the RF model 171 

simulationsò. 172 

 173 

Q3: (3) The calculation of the initial VOC concentrations is problematic: the method 174 

depends heavily on initial/source ratio which is not discussed at all in this work; the 175 

method assumes biogenic VOCs share the same air mass histories as the anthropogenic 176 

VOCs which is not supported by any evidence. For these reasons, I do not recommend 177 

the current form of the manuscript for publication in Atmospheric Measurement and 178 

Techniques. Given the substantial amount of work needed to demonstrate the 179 

robustness of the machine learning workflow, to outline key details in a transparent 180 

manner, and to revise the initial VOC calculation, resubmission is recommended. Please 181 

see my specific and minor/technical comments below. 182 
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Reply: Thank you so much for your good suggestions. In previous studies (Shao et al., 183 

2011; Zhan et al., 2021), it has been justified for selecting the pair of 184 

ethylbenzene/xylene as the tracers when calculating ambient OH exposure in terms of 185 

the following rules: 1) the concentrations of xylene and ethylbenzene are well 186 

correlated, which indicates that they are simultaneously emitted; 2) they have different 187 

degradation rates in the atmosphere; 3) the calculated initial VOCs are in good 188 

agreement with those calculated using other tracers, such as toluene/benzene.  189 

As shown in Figure R5 or Figure S9, the concentrations of xylene and 190 

ethylbenzene correlated well during our observations in this work. In addition, we 191 

compared the ratio of the initial concentrations calculated according to the ratio of 192 

xylene/ethylbenzene with that using the ratio of toluene/benzene (Figure R6 or S9). 193 

Except for several compounds, the ratio of the PICs for most of these VOCs varied 194 

within 1.0°0.1. This means the calculated photochemical initial concentrations (PICs) 195 

are in good agreement when using different tracers. Sensitivity tests showed that the 196 

uncertainty caused by the OH exposure (from ī10% to +10%) ranged from 0.55 to 1.57 197 

(Table R2 or Table S4). Figure R7 or Figure S12 shows the calculated diurnal curves of 198 

the PICs from 2014 to 2016. Photochemical losses of VOCs occurred prominently 199 

during the daytime.  200 

 201 
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    202 

Figure R5. The relationship between xylene and ethylbenzene. 203 

 204 

Figure R6. Comparison of the initial VOCs calculated using the ratio of 205 

xylene/ethylbenzene with that using the ratio of toluene/benzene in 2015. (Error bars 206 

are standard deviations.) 207 
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 209 

Figure R7. The daily variation of VOCs concentration. (A and D for 2014; B and E 210 

for 2015; C and F for 2016) 211 

 212 

Table R2. kOH, Method Detection Limit (MDL) and sensitivity test on estimation of 213 

[OH]Ĭt of different VOC species 214 

Speci

e 

numb

er 

species name kOH* MDL** 

Ratio to the initial VOC*** 

2014 2015 2016 

-10% 

[OH]Ĭ

t 

+10% 

[OH]Ĭ

t 

-10% 

[OH]Ĭ

t 

+10% 

[OH]Ĭ

t 

-10% 

[OH]Ĭ

t 

+10% 

[OH]Ĭ

t 

1 Ethane 0.254 0.050 1.00 1.00 1.00 1.00 1.00 1.00 

2 Acetylene 0.756 0.022 1.00 1.00 1.00 1.00 1.00 1.00 

3 Propane 1.11 0.013 1.00 1.00 1.00 1.00 1.00 1.00 

4 Benzene 1.22 0.011 1.00 1.00 1.00 1.00 1.00 1.00 

5 iso-Butane 2.14 0.010 1.00 1.00 1.00 1.00 1.00 1.00 

6 

2,2-

Dimethylbutane 

2.27 0.005 1.00 1.00 1.00 1.00 1.00 1.00 

7 n-Butane 2.38 0.011 1.00 1.00 1.00 1.00 1.00 1.00 

8 

2,2,4-

Trimethylpentane 

3.38 0.008 1.00 1.00 1.00 1.00 1.00 1.00 

9 iso-Pentane 3.6 0.008 1.00 1.00 1.00 1.00 1.00 1.00 
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10 Cyclopentane 5.02 0.005 1.00 1.00 1.00 1.00 1.00 1.00 

11 n-hexane 5.25 0.011 0.99 1.01 0.99 1.01 0.99 1.01 

12 Toluene 5.58 0.009 1.00 1.00 0.99 1.01 1.00 1.00 

13 

2,3-

Dimethylbutane 

5.79 0.004 1.00 1.00 1.00 1.00 0.99 1.01 

14 n-Propyl benzene 5.8 0.008 1.00 1.00 1.00 1.00 0.99 1.01 

15 iso-Propyl benzene 6.3 0.007 1.01 1.01 0.99 1.01 0.97 1.03 

16 

2,3,4-

trimethylpentane 

6.6 0.008 0.99 1.01 0.99 1.01 1.00 1.00 

17 n-heptane 6.81 0.009 0.99 1.01 0.99 1.01 0.99 1.01 

18 ethylbenzene 7 0.009 0.99 1.01 0.99 1.01 0.99 1.01 

19 cyclohexane 7.02 0.011 1.00 1.00 0.99 1.01 0.99 1.01 

20 

2,3-

Dimethylpentane 

7.15 0.009 1.00 1.00 1.00 1.00 1.00 1.00 

21 3-Methylhexane 7.17 0.009 1.00 1.00 0.99 1.01 1.00 1.00 

22 ethene 8.15 0.021 0.99 1.01 0.99 1.01 0.99 1.01 

23 n-octane 8.16 0.008 0.99 1.01 1.00 1.00 1.00 1.00 

24 2-Methylheptane 8.31 0.008 1.00 1.00 0.99 1.01 0.99 1.01 

25 3-Methylheptane 8.59 0.008 1.00 1.00 1.00 1.01 0.99 1.01 

26 methylcyclohexane 9.64 0.005 0.99 1.01 0.99 1.01 0.99 1.01 

27 n-nonane 9.75 0.006 0.99 1.01 0.99 1.01 0.98 1.02 

28 n-decane 11 0.007 0.99 1.01 0.99 1.01 0.99 1.01 

29 p-ethyl toluene 11.8 0.007 0.99 1.01 0.98 1.02 0.98 1.02 

30 p-diethyl benzene - 0.008 1.00 1.00 0.99 1.01 0.97 1.03 

31 o-ethyl toluene 11.9 0.007 0.99 1.01 0.99 1.01 1.00 1.00 

32 o-xylene 13.6 0.007 0.99 1.01 0.98 1.02 1.00 1.00 

33 m-ethyl toluene 18.6 0.010 0.99 1.01 0.99 1.01 0.97 1.03 

34 m-diethyl benzene - 0.009 0.99 1.01 0.99 1.01 0.98 1.02 

35 m/p-Xylene 23.1/140.008 0.99 1.01 0.98 1.02 0.98 1.03 
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.2 

36 propene 26 0.015 0.96 1.04 0.95 1.05 0.96 1.05 

37 1-Butene 31.1 0.010 0.97 1.04 0.90 1.12 0.92 1.10 

38 1-Pentene 31.4 0.009 0.98 1.02 0.93 1.09 0.93 1.08 

39 

1,2,4-trimethyl 

benzene 

32.5 0.008 1.00 1.01 0.95 1.05 0.91 1.10 

40 

1,2,3-trimethyl 

benzene 

32.7 0.009 0.96 1.04 0.96 1.04 0.97 1.03 

41 a-pinene 51.8 0.010 0.97 1.04 0.96 1.05 0.75 1.35 

42 cis-2-Butene 55.8 0.019 0.87 1.16 0.86 1.17 0.77 1.32 

43 

1,3,5-

Trimethylbenzene 

56.7 0.007 0.93 1.08 0.90 1.13 0.73 1.37 

44 styrene 58 0.010 0.91 1.11 0.90 1.13 0.98 1.02 

45 

2-methyl-1-

pentene 

63 0.002 0.81 1.25 0.70 1.49 0.81 1.28 

46 trans-2-Butene 63.2 0.014 0.84 1.22 0.82 1.25 0.76 1.35 

47 cis-2-Pentene 65 0.006 0.86 1.19 0.74 1.42 0.83 1.24 

48 1,3-Butadiene 65.9 0.024 0.88 1.16 0.82 1.26 0.87 1.18 

49 trans-2-Pentene 67 0.009 0.88 1.16 0.63 1.63 0.75 1.38 

50 ɓ-pinene 73.5 0.010 0.90 1.12 0.81 1.26 0.92 1.10 

51 isoprene 99.6 0.009 0.73 1.40 0.67 1.50 0.55 1.57 

* Unit: 10-12 cm3 mole-1 s-1. kOH values were under conditions of 300K. (Carter 2010) 215 

** Unit: ppb. The relative standard derivations (RSDs) were within 10% for the target compounds in all six replicates. 216 

*** All species were selected for sensitivity tests of initial VOCs to [OH]Ĭt. The reaction rates of these species with 217 

OH covered the range of 51 VOCs and were characterized by low, medium and high kOH levels. The sensitivity test 218 

results showed that the uncertainty in the estimation of initial VOCs caused by the [OH]Ĭt estimation uncertainty 219 

ranged from 0.55 to 1.57. 220 

 221 

Potential source contribution function (PSCF) analysis has been further carried out 222 

to evaluated the possible influence of air mass on the emission ratio of ethylbenzene 223 
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and xylene. As shown in Figure R8A-D or Figure S11, xylene showed similar pattern 224 

to ethylbenzene in the early morning or in the whole day. These results indicate that 225 

variations of air mass should have little influence on their initial ratio. In addition, 226 

isoprene showed similar patterns to that of xylene and ethylbenzene (Figure R8G-H), 227 

which means VOC emissions are evenly distributed in Beijing. This can be ascribed to 228 

the fact that our observation site is a typical urban station. Although isoprene and 229 

xylene/ethylbenzene are from biogenic sources and anthropogenic sources, both them 230 

are non-point sources on a city scale.  231 
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