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Abstract 10 

The formation of ground-level ozone (O3) is dependent on both atmospheric chemical 11 

processes and meteorological factors. In this study, a random forest (RF) model coupled 12 

with the reactivity of volatile organic compound (VOC) species was used to investigate 13 

the O3 formation sensitivity in Beijing, China, from 2014 to 2016, and evaluate the 14 

relative importance (RI) of chemical and meteorological factors to O3 formation. The 15 

results showed that the O3 prediction performance using concentrations of 16 

measured/initial VOC species (R2 = 0.82/0.81) was better than that using total VOCs 17 

(TVOCs) concentrations (R2 = 0.77). Meanwhile, the RIs of initial VOC species 18 

correlated well with their O3 formation potentials (OFPs), which indicate that the model 19 

results can be partially explained by the maximum incremental reactivity (MIR) method. 20 

O3 formation presented a negative response to nitrogen oxides (NOx) and relative 21 

humidity (RH), and a positive response to temperature (T), solar radiation (SR) and 22 

VOCs. The O3 isopleth calculated by the RF model were generally comparable with 23 

those calculated by the box model. O3 formation shifted from a VOC-limited regime to 24 

a transition regime from 2014 to 2016. This study demonstrates that the RF model 25 

coupled with the initial concentrations of VOC species could provide an accurate, 26 

flexible, and computationally efficient approach for O3 sensitivity analysis. 27 

 28 

 29 

  30 
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1. Introduction 31 

Ground-level ozone (O3) pollution, which can cause adverse human health effects 32 

such as cardiovascular and respiratory diseases, has received increasing attention in 33 

recent decades (Cohen et al., 2017). Oxidation of volatile organic compounds (VOCs) 34 

will produce peroxyl radicals (RO2) and hydroperoxyl radicals (HO2). The RO2/HO2 35 

can accelerate the conversion from NO to NO2, subsequently, formation of O3 by 36 

photolysis of NO2 in the presence of O2 (Wang et al., 2017a). The production and loss 37 

of RO2 and HO2 are highly dependent on the concentration ratio of VOCs and NOx in 38 

the atmosphere. Hence, atmospheric O3 concentrations or production rates show a 39 

nonlinear relationship with VOCs and NOx. Moreover, the O3-VOC-NOx sensitivity is 40 

readily influenced by VOC species (Tan et al., 2018), meteorological parameters (Liu 41 

et al., 2020a; Liu et al., 2020), and even atmospheric particulate matter (Li et al., 2019), 42 

thus, exhibiting high temporal and spatial variability. Therefore, it is urgent to develop 43 

an accurate and highly efficient method for timely assessing the sensitivity regime of 44 

O3 production and evaluating the effectiveness of a potential measure on O3 pollution 45 

control. The sensitivity of O3 formation can usually be analysed using observed 46 

indicators, such as ozone production efficiency (OPE, ΔO3/ΔNOz) (Wang et al., 2010; 47 

Lin et al., 2011), HCHO/NOy (Martin et al., 2004), and H2O2/NOz (or H2O2/HNO3) 48 

(Sillman 1995; Hammer et al., 2002; Wang et al., 2017a), observation-based model 49 

(OBM) (Vélez-Pereira et al., 2021) and chemical transport models including 50 

community multiscale air quality (CMAQ) (Djalalova et al., 2015) and Weather 51 
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Research and Forecasting with Chemistry (WRF-Chem) model (Wang et al., 2020a).  52 

The observed indicators can be utilized to quickly diagnose the sensitivity regime 53 

of O3 production. However, the accuracy is sensitive to the precision of tracer 54 

measurements. OBMs combine in-situ field observations, remote sensing 55 

measurements and chemical box models, which are built on widely-used chemistry 56 

mechanisms (e.g., MCM, Carbon Bond, RACM or SAPRC), and applied to the 57 

observed atmospheric conditions to simulate the in-situ O3 production rate (Mo et al., 58 

2018). The sensitivity of O3 production to various O3 precursors, including NOx and 59 

VOCs can be diagnosed based on the empirical kinetic modeling approach (EKMA) or 60 

quantitatively assessed with the relative incremental reactivity (RIR). Chemical 61 

transport models, which are driven by meteorological dynamics and incorporated with 62 

the emissions of pollutants and the complex atmospheric chemical mechanism, provide 63 

a powerful tool for simulating various atmospheric processes, including spatial 64 

distribution, regional transport vs. local formation, source apportionment and 65 

production rates of pollutants and so on (Sayeed et al., 2021). At present, OBMs are 66 

widely used to investigate O3 formation sensitivity in China. Previous studies indicated 67 

that O3 formation in urban areas of China is located in a VOC-limited or a transition 68 

regime and varies with time and location (Ou et al., 2016; Wang et al., 2017a; Zhan et 69 

al., 2021). Although both OBMs and chemical transport models can assess the 70 

sensitivity of O3 production and predict the O3 pollution level in a scenario of control 71 

measures, the calculation accuracy is affected by the uncertainty of input parameters 72 
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(Tang et al., 2011; Yang et al., 2021b). Thus, they are mostly applied to sampling cases 73 

with a short time span (days or weeks) (Xue et al., 2014; Ou et al., 2016).  74 

Compared to traditional methods, machine learning (ML) is able to capture the 75 

main factors affecting atmospheric O3 formation in a timely manner with great 76 

flexibility (without the constraints of time and space) and high computational efficiency 77 

(Wang et al., 2020c; Grange et al., 2021; Yang et al., 2021a). Although attentions should 78 

be paid to the robustness of machine learning because it depends on the input dataset 79 

(observations or outputs of chemical transport models), previous studies have 80 

demonstrated that cross-validation and data-normalization can well reduce the 81 

dependence of the model on input data and improve the robustness of the model (Wang 82 

et al., 2016; Wang et al., 2017b; Liu et al., 2021; Ma et al., 2021a). Thus, it is a 83 

promising alternative to account for the effects of meteorology on air pollutants and has 84 

been intensively used in atmospheric studies (Liu et al., 2020a; Hou et al., 2022).  85 

Recently, ML based on convolutional neural network (CNN), random forest (RF) 86 

and artificial neural network (ANN) models have been applied in simulating 87 

atmospheric O3 and shown good performance in O3 prediction (Ma et al., 2020; Xing 88 

et al., 2020). For example, Ma et al. (2021a) simulated O3 concentrations in the Beijing-89 

Tianjin-Hebei (BTH) region from 2010-2017 using an RF model that considered 90 

meteorological variables and output variables from chemical transport models, and the 91 

correlation coefficient (R2) between the observed and modelled O3 concentrations was 92 

greater than 0.8. Liu et al. (2021) also reported a high accuracy (80.4%) for classifying 93 
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pollution levels of O3 and fine particulate matter with aerodynamic diameter less than 94 

2.5 µm (PM2.5) at 1464 monitoring sites in China using an RF model. Thus, the RF 95 

model has shown good performance in terms of prediction accuracy and computational 96 

efficiency (Wang et al., 2016; Wang et al., 2017b).  97 

Although ML is widely used to understand air pollution, many ML studies have 98 

used total VOCs (TVOCs) to simulate O3 formation and rarely considered the effect of 99 

VOC species on O3 formation sensitivity (Feng et al., 2019; Liu et al., 2021; Ma et al., 100 

2021a). Thus, they were unable to identify the chemical reactivity of a single species to 101 

O3 formation, which may lead to underestimations or even misunderstandings of the 102 

role of VOCs in O3 formation because the same concentration of TVOCs with different 103 

compositions may lead to different OPEs. In addition, VOCs react with OH radicals 104 

during atmospheric transport, which is the most important sink of VOCs (Carlo et al., 105 

2004; Liu et al., 2020b). Makar et al. (1999) reported that the isoprene emissions were 106 

underestimated by up to 40% if the OH oxidation is not considered. Other studies 107 

indicated that the initial concentrations of VOCs, which account for the photochemical 108 

loss of VOCs during transport, were more representative of pollution levels in the 109 

sampling area than the observed VOCs (Yuan et al., 2013; Zhan et al., 2021). However, 110 

whether the ML model can identify the connection between the reactivity of VOC 111 

species and O3 formation sensitivity has not been clarified. 112 

It should be noted that physical interpretability of the results is an important 113 

question when ML models are applied in atmospheric studies (Hou et al., 2022). 114 
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However, explanations of ML results (e.g., RI) are somewhat vague because ML is a 115 

“black-box” model from the point view of chemical mechanism (Hou et al., 2022; 116 

Taoufik et al., 2022). In this study, we used the RF model to evaluate the prediction 117 

performance of atmospheric O3 using the TVOCs, measured VOC species and 118 

photochemical initial concentration (PIC) of VOC species, which is calculated based 119 

on the photochemical-age approach (Shao et al., 2011). We compared the relative 120 

importance (RI) of the precursors (VOC species, NOx, PM2.5, CO) and the 121 

meteorological parameters (temperature, solar radiation, relative humidity, wind speed 122 

and direction) on O3 formation in the summer of Beijing from 2014 to 2016. We also 123 

discussed the possibility of connecting the RIs of VOCs with their OFPs and the 124 

changes in O3-VOC-NOx sensitivity based on the RF model from 2014 to 2016. Our 125 

study indicates that the RF model combined with initial concentrations of VOC species 126 

can simulate O3 concentrations well and provides a flexible and efficient tool for O3 127 

modelling in a near real-time way. 128 

2. Methods 129 

2.1 Sampling site and data 130 

The sampling site (40.04°N, 116.42°E) is located at the campus of Chinese 131 

Research Academy of Environmental Sciences and was described in our previous work 132 

(Zhang et al., 2021). Briefly, the station is located two kilometers from the north 4th ring 133 

road and surrounded by a mixed residential and commercial area. The concentrations 134 

of VOCs, NOx, CO, O3 and PM2.5 were measured at 8 m above ground level at this 135 

location. Meteorological parameters, including temperature (T), relative humidity (RH), 136 
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wind speed and direction (WS&WD), solar radiation (SR), were monitored at 15 m 137 

above ground level. VOCs were measured by an online commercial instrument (GC-138 

866, Chromatotec, France), which consisted of two independent analysers for detecting 139 

C2-C6 and C6-C12 hydrocarbon components. More details about the observations can be 140 

found in the Supplemental Materials (S1). The calculation of initial VOCs and 141 

sensitivity tests can be found in the Supplemental Materials (S2). 142 

2.2 Random forest model 143 

The random forest (RF) is a type of ensemble decision tree that can be used for 144 

classification and regression (Breiman 2001). In this work, we performed O3 and RI 145 

calculations using the RF method in MATLAB’s Statistics and machine learning 146 

toolbox. During the training process, the model creates a large number of different 147 

decision trees with different sample sets at each node, and then averages the results of 148 

all decision trees as its final results (Breiman 2001). To avoid over-fitting, we trained 149 

the random forest model using cross-validation for the normalized data, which can 150 

improve the robustness of the model. Briefly, we randomly divided the normalized data 151 

into 12 subsets, then alternately took one subset as testing data along with the rest as 152 

training data. By doing this, every data point has an equal chance being trained and 153 

tested. The length of the input data from 2014 to 2016 were 1190, 1062 and 872 rows, 154 

respectively, in which different types of VOCs, NOx, CO, PM2.5 and meteorological 155 

parameters (including temperature, relative humidity, solar radiation, wind speed and 156 

direction) were used as input variables and O3 as output variables. The mean values 157 
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(±standard deviation) of input/output parameters are shown in Table S1. Approximately 158 

one-third of the samples are excluded from the sample, when the decision tree is built 159 

and used to calculate the out-of-bag data error. Hence, RF can evaluate the RI of 160 

variables via the changes in out-of-bag (OOB) data error (Svetnik et al., 2003), 161 

RIi= ∑ (errOOB2i-errOOB1i) /N (1) 162 

where N represents the number of decision trees, and errOOB1 and errOOB2 represent 163 

the out-of-bag data error of feature i before and after randomly permuting the 164 

observation, respectively. The RIi used to evaluate the importance and sensitivity of 165 

feature i to O3 formation in this study. More details about workflow of RF model and 166 

the hyperparameter tuning can be found in the Text S3. The optimized parameters are 167 

shown in Table S2. To verify the stability of the model, we performed a significance 168 

test on the model results. The results showed that there was no significant difference 169 

among the different tests (P>0.05, R2>0.98). 170 

When plotting the O3 formation sensitivity curves, we made a virtual matrix of 171 

inputs by varying the concentrations of NOx and VOCs from 0.9 to 1.1 times (with a 172 

step of 0.01) of their mean values while keeping all other inputs unchanged (i.e., the 173 

mean values). Then, the new matrix was used as testing data, while all the measured 174 

data were taken as training data. Thus, the testing data should represent the mean 175 

sensitivity regime of O3 in Beijing, while the training data actually covered all the 176 

sensitivity regimes of O3 formation to guarantee a sufficient coverage in the NOx-177 

limited regime for the RF model simulations. The EKMA curves were plotted using the 178 
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daily maximum 8-h (MDA8) O3. More details can be found in the SI. 179 

3. Results and discussion 180 

3.1 Overview of air pollutants and meteorological conditions 181 

Figure 1 shows the time series of air pollutants and meteorological parameters 182 

during the observations from 2014 to 2016. In 2014, 2015 and 2016, the wind direction 183 

was dominated by northwest winds (Figure S1), with mean wind speeds of 3.1 ± 2.7 m 184 

s-1, 2.3 ± 2.2 m s-1, and 1.3 ± 1.2 m s-1, respectively, and the mean daytime temperature 185 

were 22.3 ± 5.8, 23.9 ± 5.0 and 24.0 ± 4.4 °C, respectively. The average value of SR 186 

decreased from 162.9 to 150.8 W m-2 during the observation period. As shown in Figure 187 

1F-G, in 2014, 2015 and 2016, the mean VOC concentrations were 20.3 ± 10.9, 15.8 ± 188 

8.3 and 12.1 ± 7.7 ppbv, respectively, while the mean initial VOC concentrations were 189 

28.1 ± 25.7, 27.2 ± 32.6 and 16.4 ± 16.1 ppbv, respectively. The calculation of initial 190 

VOCs and sensitivity tests can be found in the Supplemental Materials (S2). Both the 191 

measured VOCs and initial VOCs showed a decline along with a decrease in PM2.5 192 

concentration from 67.2 ± 53.5 to 61.1 ± 48.6 μg m-3 due to the Air Pollution Prevention 193 

and Control Action Plan in China (Zhao et al., 2021). However, O3 concentrations 194 

showed a slight downward trend from 44.3 ± 32.4 to 42.7 ± 27.9 ppbv from 2014 to 195 

2015 and then reach to 44.0 ± 29.6 ppbv in 2016. A slight upward trend was observed 196 

for NOx concentrations (Figure S2). As shown in Figure 1F-G, the concentrations of 197 

four types (alkanes, alkenes, alkynes, and aromatics) of VOCs showed significant 198 

differences from 2014 to 2016 due to the variations in emission sources (Zhang et al., 199 
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2021). In addition to VOC species, the variations in other parameters, such as 200 

meteorological conditions and PM2.5, should have a complex influence on O3-VOC-201 

NOx sensitivity (Li et al., 2019; Ma et al., 2021b). 202 

 203 

Figure 1. Time series of air pollutants and meteorological parameters during 204 

observations in Beijing. (In A, the red arrows represent the O3 concentration exceed 205 

74.6 ppbv according to the national ambient air quality standard.) 206 

3.2 Prediction performance of the model 207 

To build a robust model, we evaluated the prediction performance of the RF model 208 

for the ambient O3 simulation. Figure 2 shows the O3 prediction performance in 2015 209 

when chemical species (including VOCs, NOx, PM2.5, CO) and meteorological factors 210 

(i.e., WS, WD, SR, T and RH) were used as inputs in the RF model. The prediction 211 
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performance of RF model for 2014 and 2016 is shown in Figures S3 and S4 respectively. 212 

The details of the modelling and input parameters are shown in Table S2. Figure 2A-C 213 

shows the time series of the measured and modelled O3 concentrations, which were 214 

simulated using the TVOCs, measured VOC species and initial VOC species as part 215 

input variables along with the same set of other parameters. The correlation coefficients 216 

(R2) of the training data were 0.77, 0.82 and 0.81 for the TVOCs, measured VOC 217 

species and initial VOC species, respectively. The corresponding root mean squared 218 

errors (RMSEs) for the predicted O3 concentrations were 17.4, 12.6 and 13.9. Figure 219 

2D-F shows the prediction performance of the testing dataset under these three 220 

circumstances. When the TVOCs were split into measured or initial VOC species, the 221 

R2 increased obviously as the number of data features increased. Therefore, the VOC 222 

composition has a significant influence on O3 prediction using the RF model. In 223 

previous studies using TVOCs, the influence of VOC composition was neglected (Liu 224 

et al., 2021; Ma et al., 2021a). Our results indicate that the RF model can accurately 225 

predict O3 concentrations when the concentrations of measured/initial VOC species are 226 

considered. 227 
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 228 

Figure 2. Comparison of the predicted and measured O3 concentrations in Beijing in 229 

the summer of 2015. (A and D: TVOC concentrations; B and E: measured 230 

concentrations of VOC species; C and F: initial concentrations of VOC species) 231 

It should be pointed out that if the training dataset does not have sufficient 232 

coverage in the NOx-limited regime, then the trained algorithm essentially attempts to 233 

extrapolate in that regime, which is prone to overtraining. To avoid such overtraining, 234 

a 12-fold cross-validation by randomly dividing the observation data in each day into 235 

12 subsets and alternately taking one subset as testing data and the rest as training data 236 

ensures that each data point has an equal chance of being trained and tested. The curves 237 

of the predicted O3 concentrations in Figure 2 were spliced using the testing datasets in 238 

all runs. Thus, our results actually covered all the sensitivity regimes of O3 formation. 239 

This means that the model is robust 240 

3.3 Relative importance of major factors 241 
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Figure 3A shows the RIs of different ambient factors, including chemical and 242 

meteorological variables on O3 formation. The difference in the RIs is also compared 243 

using the TVOCs and the VOC species as inputs. Chemical factors (including VOC 244 

species, NOx, PM2.5 and CO) accounted for 79.1% of the contribution to O3 production 245 

in the summer of 2016. Meanwhile, VOC species accounted for approximately 63.4% 246 

of O3 production while the RIs using TVOC concentrations accounted for only 2.1%. 247 

Ma et al. (2021b) analysed the contribution of meteorological conditions and chemical 248 

factors to O3 formation on the North China Plain (NCP) using the CMAQ model in 249 

combination with process analysis and found that chemical factors dominate O3 250 

formation in summer. Using probability theory, Ueno et al. (2019) also found that 251 

VOCs/NOx dominate O3 production compared to meteorological variables. Thus, our 252 

results are similar to those of previous studies based on chemical models (Ueno et al., 253 

2019), which demonstrates that the RF model can reflect the contribution of VOC 254 

species to O3 production even if the observed VOC species are used. 255 
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 256 

Figure 3. Percentage of RI for O3 precursors and meteorological parameters (A) and 257 

the top 10 factors with high values of RI in 2014-2016 (B-D: using initial concentrations 258 

of VOC species). 259 

Here, we compared the RIs of VOCs calculated using the initial VOC species and 260 

the observed VOC species with the O3 formation potentials (OFPs). The OFPs were 261 

calculated by the maximum incremental reactivity (MIR) method (Carter 2010). As 262 

shown in Figure S5, the RIs showed good correlations with the OFP. Interestingly, the 263 

initial concentrations of VOC species improved the correlation coefficients between the 264 

RIs and OFPs. Furthermore, we calculated the RIs and OFPs of different species using 265 

the observed data during the campaign study in Daxing District in the summer of 2019 266 

(Zhan et al., 2021), and a stronger correlation was observed between the RIs of the 267 

initial VOC species and the OFPs (Figure S6). These results indicate that the RIs of the 268 

initial VOCs species in the ML model should partially reflect the chemical reactivity of 269 



16 
 

VOCs to produce O3 in the atmosphere.  270 

Although the RIs calculated using the initial VOC species slightly changed 271 

compared to those calculated using the observed VOCs (Table S3), VOCs still 272 

dominated O3 formation (Figure 3A). For example, the initial VOCs dominated O3 273 

production in 2014, 2015, and 2016, with RI values of 64.0, 59.0 and 63.3% 274 

respectively. Li et al. (2020a) used a multiple linear regression (MLR) model to study 275 

the contribution of anthropogenic and meteorological factors to O3 formation in China 276 

from 2013-2019 and found that meteorological factors accounted for 36.8% and 277 

anthropogenic factors accounted for 63.2%, which is similar to our results. Figure 3B-278 

D shows the top 10 factors having a strongly influence on O3 production. Interestingly, 279 

NOx and RH showed negative responses to O3 formation, while other variables, 280 

including T, SR, CO and all of the VOCs, showed positive responses. Thus, a decrease 281 

in NOx or RH will lead to an increase in O3 concentration while a decrease in T, SR, 282 

CO and VOCs will lead to a decrease in O3 concentration. Although O3 formation is 283 

highly related to the photolysis of NO2, a previous study demonstrated that it is VOC-284 

limited in summer in Beijing (Zhan et al., 2021). This finding is consistent with the 285 

observed negative response of O3 to NOx in this work. High RH usually coincides with 286 

low surface O3 concentrations in field observations, which can be ascribed to the 287 

inhibition of O3 formation by the transfer of NO2/ONO2-containing products into the 288 

particle phase and the promotion of dry deposition of O3 on the surface (Kavassalis et 289 

al., 2017; Yu 2019). In addition, it has been shown that RH is negatively related to the 290 
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rate constant of HONO formation (Hu et al., 2011). Thus, RH might also affect the O3 291 

formation by influencing atmospheric OH radicals from photolysis of HONO. It should 292 

be noted that the negative response of ozone to RH might also be resulted from the 293 

dependence of RH on other parameters/conditions, such as SR. However, RH and SR 294 

showed a bad correlation (r < 0.1). We further tested the dependence of the RI on RH 295 

and SR with or without the counterpart as input. The stable RI values (Table S4) mean 296 

that RH and SR are independent from each other. These previous works can well 297 

explain the observed negative response of O3 to RH in Figure 3B-D. Previous studies 298 

have observed a positive correlation between the O3 concentration and T or SR (Steiner 299 

et al., 2010; Paraschiv et al., 2020; Li et al., 2021). Temperature can directly affect the 300 

chemical reaction rate of O3 formation (Fu et al., 2015), and SR can promote the 301 

photolysis of NO2 (Hu et al., 2017; Wang et al., 2020b), thus accelerating O3 formation. 302 

As mentioned above, O3 formation is VOC-limited in Beijing; thus, a positive response 303 

of O3 concentration to VOCs is observed in Figure 3B. Interestingly, the RIs of isoprene 304 

showed an increasing trend from 2014 to 2016 because of the obvious reduction in 305 

anthropogenic VOCs (Figure S7) (Zhang et al., 2021). In the context of global warming, 306 

studies should focus on the factors that affect O3 formation, including biogenic 307 

emissions, T and SR. Thus, additional efforts will be required to reduce anthropogenic 308 

pollutants in the future. 309 

3.4 Ozone formation sensitivity 310 

To further analyse the sensitivity of O3 to VOCs and NOx from 2014 to 2016, we 311 
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plotted sensitivity curves for O3 generation using the RF model, and the results are 312 

shown in Figure 4A-C. Moreover, EKMA curves in 2015 were also obtained using the 313 

OBM (Figure 4D). As shown in Figure 4A-C, O3 formation was sensitive to VOCs in 314 

the summer of Beijing during our observations, which is consistent with previous 315 

studies that used box models (Li et al., 2020b) and chemical transport models (Shao et 316 

al., 2021). This result is also consistent with the RIs of VOCs or NOx to O3 formation 317 

(Figure 3B-D). Interestingly, the O3 formation sensitivity to VOCs decreases or 318 

gradually shifts from the observed point to the transition regime from 2014 to 2016 319 

(Figure 4A-C), which is similar to that reported by Zhang et al. (2021). These 320 

phenomena can be ascribed to the increased relative importance of meteorological 321 

factors, such as T, SR, and RH, for O3 formation and the variation in anthropogenic 322 

VOC emissions (Steiner et al., 2010; Ma et al., 2021b). 323 
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 324 

Figure 4. Ozone formation sensitivity curves from 2014-2016. (A, B, C: calculated by 325 

the RF model for 2014, 2015, and 2016, respectively. D: calculated by the OBM for 326 

2015.) 327 

We compared the relative error of simulated MDA8 O3 calculated using the RF 328 

and OBM model in 2015, as shown in Figure S8. The mean relative error of simulated 329 

MDA8 O3 between RF model and Box model was 15.6%. Hence, a combination of the 330 

RF model and initial VOCs species can accurately depict the sensitivity regime of O3 331 

formation, while the calculated RIs correlate well with the OFPs. 332 

4. Conclusions 333 

In summary, this work investigated O3 formation sensitivity in the summer from 334 

2014-2016 in Beijing using the RF model coupled with the reactivity of VOC species. 335 
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The results show that the prediction performance of O3 by the RF model was 336 

significantly improved when measured/initial VOC species were considered compared 337 

to TVOCs. Furthermore, after the photochemical loss of VOC species during transport 338 

was corrected, the RIs of the VOC species were well correlated with the OFPs of VOC 339 

species calculated using the MIR method, thus indicating that the RIs in the ML model 340 

reflect the chemical reactivity of VOCs. Meanwhile, both NOx and highly reactive 341 

species (such as isoprene, propene, benzene) played an important role in O3 formation. 342 

An increased contribution of temperature to O3 production was observed, which 343 

implied the importance of temperature to O3 pollution in the context of global warming 344 

conditions. Both the RF model and the box model results showed that O3 formation was 345 

sensitive to VOCs in Beijing, although the sensitivity regime shifted from VOC-limited 346 

regime to a transition regime from 2014 to 2016. Due to the high computational 347 

efficiency of ML, the O3 formation sensitivity plotted by the RF model coupled with 348 

the reactivity of VOC species can provide an accurate, flexible and efficient approach 349 

for analysing O3 sensitivity in a near real-time way. 350 

 351 
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